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As is common in biological invasions, the rate at which cane toads (Rhinella
marina) have spread across tropical Australia has accelerated through time.
Individuals at the invasion front travel further than range-core conspecifics
and exhibit distinctive morphologies that may facilitate rapid dispersal.
However, the links between these morphological changes and locomotor
performance have not been clearly documented. We used raceway trials
and high-speed videography to document locomotor traits (e.g. hop dis-
tances, heights, velocities, and angles of take-off and landing) of toads
from range-core and invasion-front populations. Locomotor performance
varied geographically, and this variation in performance was linked to mor-
phological features that have evolved during the toads’ Australian invasion.
Geographical variation in morphology and locomotor ability was evident
not only in wild-caught animals, but also in individuals that had been
raised under standardized conditions in captivity. Our data thus support
the hypothesis that the cane toad’s invasion across Australia has generated
rapid evolutionary shifts in dispersal-relevant performance traits, and
that these differences in performance are linked to concurrent shifts in
morphological traits.
1. Introduction
To understand the evolutionary processes that have shaped phenotypic
variation within and among species, we ideally need information not only on
morphology, but also on the ways in which morphological variation translates
into effects on performance, and hence on lifetime reproductive success [1–3].
For many traits, such evidence is difficult to gather. For example, a trait may
be invariant within a broad phylogenetic lineage (e.g. viviparity in mammals)
or may have complex and difficult-to-document effects on a range of per-
formance measures (e.g. brain morphology versus cognitive ability). Also, the
evidence may be weakened by the need to rely on comparisons between taxo-
nomic entities that have been separated for long periods of time and hence may
have accumulated many differences unrelated to the trait of interest. For these
reasons, some of the best opportunities to explore adaptive evolution come
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from systems in which change has occurred very rapidly and
involves characteristics whose performance attributes are
readily measurable.

Locomotor ability in invasive species satisfies these criteria.
Individuals at the expanding edge of an invasion often exhibit
enhanced rates of dispersal relative to conspecifics from
range-core populations [4], and at least some of those cases
reflect heritable changes rather than phenotypic plasticity
[5,6]. Variation in locomotor performance is easier to quantify
than many other biological functions, and that variation often
has an intuitive link to fitness. For example, greater speed
may enhance survival because a faster individual can capture
prey or escape predators more effectively [7–11]. Likewise,
for dispersal ability, individuals that move further may
have access to new resources and/or experience reduced
competition with conspecifics or kin [12–15].

Despite the potential management implications of
enhanced dispersal ability at the expanding edge of invasions,
most analyses of this topic have not directly measured loco-
motor ability. Instead, they have documented morphological
changes, and inferred that those changes enhance an individ-
ual’s ability to disperse [16–18]. Although in some cases
those inferences are strong, ideally we need empirical evidence
not only about morphological changes during an invasion, but
also on changes in locomotor ability, and the relationship
between those two parameters.

One of the most intensively studied cases of accelerated
spread involves the invasion of the cane toad (Rhinella
marina) through tropical Australia [19]. Extensive data are
available to document the increasing rate of spread overall
[20] and to link that acceleration to faster dispersal of individ-
uals at the invasion front comparedwith the range core [21,22].
Invasion-front toads also exhibit distinctive morphologies
[23,24], physiologies [25–27] and behaviours [28–30] that
have evolved rapidly during the colonization of Australia.
By raising individuals from different populations in a
common-garden experiment, researchers have demonstrated
that some of these dispersal-enhancing traits are heritable
[5,24,25,29,30]. Evolved shifts in morphology have been
interpreted as adaptive responses to the benefits of faster
dispersal [13,24,31,32], but the critical links between variation
in morphology and locomotor performance have attracted
little attention. In the field, toads with relatively longer legs
dispersed faster than their short-limbed conspecifics [31]—
but the relationships (if any) between morphological traits
and performance traits remain largely unstudied.

To fill this gap in knowledge,we examined themorphology
and locomotor performance (and relationships between
those parameters) of cane toads from range-core and inva-
sion-front populations. We predicted that range-core and
invasion-front toads would differ both in morphology and
performance, that these differences would be seen in captive-
raised (common-garden experiment) progeny as well as in
wild-caught animals, and that morphological and locomotor
variables would be significantly correlated.
2. Material and methods
(a) Study species
Native to a large range in South America, cane toads were brought
to Australia (via Puerto Rico and Hawai’i) in 1935, as a control for
insect pests of commercial sugar-cane farming [19]. Thousands of
the progeny of the introduced toads were released in coastal areas
of Queensland (QLD). Over the next 85 years, the toads spread
westwards across QLD, the Northern Territory and Western
Australia (WA) at an accelerating pace [20]. Toads at the
western invasion front differ morphologically, physiologically
and behaviourally from those in the eastern range core, and
many of those differences are heritable (see Introduction and
references cited therein).

(b) Study animals and jumping performance trials
Adult toads (snout–vent length (SVL) > 90 mm) were collected
from four invasion-front populations (El Questro, Oombulgurri,
Purnululu, Wyndham; all 0–3 years post-colonization) in WA
and three long-colonized populations (Innisfail, Townsville,
Tully; all 80 years post-colonization) in QLD from October to
December in 2013. These individuals were maintained in captiv-
ity at the University of Sydney Tropical Ecology Research Facility
(Northern Territory: 12°370 S, 131°180 E) as part of a ‘common-
garden’ breeding experiment (see [32] for details). In October
2014, we tested locomotor performance of 195 wild-caught
toads (F0) by filming them as they hopped over a 5 m2 area of
hard bare ground (soil). Between 19.00 and 00.00 h, toads were
filmed at 240 fps using two high-speed (HS) filming cameras
(model Casio Exilim EX-ZR1000), which were placed on tripods
(10 cm off of the ground, 20 cm apart) forming an angle between
them of 140°, along with portable work lights (model IronHorse
24 LED), a camera flash and a calibration checkerboard. All indi-
viduals filmed were encouraged to jump by gently tapping them
on the urostyle with a blunt pole, a common procedure for indu-
cing jumping in anuran amphibians [33]. After each filming
trial, we used a camera flash in order to synchronize the two
high-speed filming cameras (left and right), and we placed a
checkerboard in several locations and orientations within the
jumping track in order to calibrate the cameras and reconstruct
the dimensions and positions of the three-dimensional (3D)
space for each trial. Morphological characteristics (mass, SVL,
head width, lengths of the forefeet, hindfeet, radioulna, humerus,
femur and tibiofibula) were measured (by C.M.H.) with an elec-
tronic balance andVernier calipers (to the nearest 0.1 mm) for each
individual following trials. We ran a second set of trials in March
2016 using captive-raised (F1) individuals (progeny from the
common-garden experiment, 19–24 months of age at the time of
testing), following the same procedure as above. Ambient
temperatures during the trials ranged from 24.9 to 28.5°C.

(c) Raceway trials
In a separate set of trials, toadswere placed by hand at the start of a
2 m wide, 15 m long outdoor raceway and encouraged to hop by
prodding their urostyle with a blunt pole. This raceway was con-
structed on hard bare ground (soil) and had 0.5 m high walls to
prevent escape. Trials commenced immediately after the toad
was placed on the racetrack. Individuals that refused to hop after
10 consecutive pokeswere considered to be exhausted or unwilling
to move, and their trial was terminated. We also recorded the time
and number of hops for the toad to complete each 5 m segment of
the racetrack. All trials were conducted between 19.00 and 00.00 h,
at ambient temperatures of 25.4–27.4°C.

(d) Video analyses
High-speed videos from both views (left and right cameras) were
split into frames using QuickTime Pro v. 7.7.4. These frame
sequences were loaded into the Digilite Toolbox v. 1.4 (ANU
Visual Sciences Group) of MATLAB v. 8.2.0.701 [34]. The entire
jump sequence (take-off to landing) was scored by placing digital
landmarks on the snout and cloaca of a toad for each frame,
resulting in a series of points that define a discrete jump. We
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calibrated each of our filming trials using the Camera Calibration
Toolbox for MATLAB [35], which uses an optimized implemen-
tation to rectify frame sequences from both cameras (left and
right) and creates a 3D space framework that can integrate the
digitized coordinates from both views (left and right). We
selected 10–20 synchronized pairs of images from the left and
right videos containing the calibrating planar checkerboard
and processed them with the Camera Calibration Toolbox for
MATLAB [35], using the two-dimensional (2D) calibration and
stereo-calibration (3D) functions. We controlled the accuracy of
all calibrations and stereo-calibrations by suppressing any
images that displayed more than 1% inaccuracies between the
left and right views.

We obtained time-stamped, real-world 3D trajectories of the
snout and cloaca by processing the digitized landmark infor-
mation through this calibrated 3D space framework using batch
processor for the MATLAB Toolbox Synchronise [36]. Because
the 3D coordinates had been gathered fromdifferent trials, the pos-
ition of the xz-coordinate plane differed across specimens. In order
to make 3D jumping trajectories comparable across all specimens,
we standardized the position of all xz-coordinate planes by rigidly
rotating each 3D coordinate to the (x, 0, z) plane, following the
methodology from Vidal-García et al. [37] and using internal func-
tions from the R package ShapeRotator [38].With these aligned 3D
coordinates (in cm) of the snout and cloaca for each individual, and
in each frame, we extracted the following kinematic variables:
mean velocity (cm s−1), maximum velocity (cm s−1), distance
(cm), height (cm) and jumping angles (calculated between the
xz-plane and the vector from the cloaca to the snout) at take-off
and at landing. Code for obtaining these kinematic variables is pro-
vided in our GitHub repository (https://github.com/marta-
vidalgarcia/jumping-toads) and the Dryad Digital Repository.

(e) Comparisons between jumping performance and
raceway trials

Our earlier analysis of raceway performance in 449Australian cane
toads revealed differences between range-core and invasion-front
individuals in behavioural responses; notably, invasion-front
toads were reluctant to run and hence were slower [32]. Some of
these animals (n = 89) were the same as those for which we
measured jumping performance (above). We re-analysed the raw
data from the raceway study to ask if distances covered per hop
were significantly linked to the morphology of toads, andwhether
an individual’s performance on the raceway was correlated with
its jumping performance in the video trials.

( f ) Statistical analyses
To remove effects of body size on other dimensions, we regressed
each morphological variable (e.g. femur length) against the ani-
mal’s body length (SVL), and we used the residual scores from
those regressions as our measures of body shape. Analyses of
locomotor performance (from jumping and raceway trials)
were based on a single value per individual; in cases where we
had data for two jumps per animal, we used data from the long-
est hop. Because of strong ontogenetic and sexual differences in
body sizes and body proportions [24], we conducted some ana-
lyses separately for males, females and juveniles (individuals
less than 90 mm SVL, and thus too small for us to determine
sex). Data for wild-caught and captive-raised individuals also
were analysed separately to explore some issues, and combined
for others.

Initial MANOVAs on morphology, with invasion category
(range core versus invasion front) and population nested within
invasion category as factors, and morphological traits as the
repeated measure, showed that morphological traits differed
between invasion categories in different ways (interaction between
invasion category and morphological traits for all toads F7,294 =
3.90, p < 0.001; for F0 only, F7,159 = 7.22, p < 0.0001; for F1 only
F7,120 = 3.43, p < 0.003). The same was true for our locomotor
measures (interaction between invasion category and jumping
performance variables for all toads F5,289 = 2.87, p < 0.02; for F0
only, F5,156 = 2.42, p < 0.04; for F1 only F5,120 = 3.94, p < 0.003) so
we proceeded to explore geographical variation in each trait separ-
ately. To clarify these patterns, we used ANOVA with invasion
category (range core versus invasion front) and population
nested within invasion category as factors, and either morpho-
logical or performance measures as dependent variables. The
contribution of morphology to the variation in performance was
assessed throughmultiple regression analyses (backward stepwise
elimination). To quantify links between traits such as alternative
measures of performance, or morphology versus performance,
or between data from jumping versus raceway trials, we calculated
standard (Pearson’s product-moment) correlation coefficients.
JMP v. 14.0 (SAS Institute, Cary, NC, USA) was used for all
statistical analyses.
3. Results
(a) Sample sizes and body sizes
We obtained data for 311 toads (138 females, 128 males,
45 juveniles) from three range-core populations (Innisfail
n = 46, Townsville n = 49, Tully n = 53) in QLD and four inva-
sion-front populations (El Questro n = 44, Oombulgurri n =
35, Purnululu n = 32, Wyndham n = 52) in WA. The mean
body masses averaged larger in females than in males, and
larger in adults than in juveniles, but were similar within
each of these groups in WA and QLD (ANOVA main effect
of sex/age class F2,305 = 49.31, p < 0.0001; state F1,305 = 2.71,
p = 0.10; interaction sex × state F2,305 = 0.21, p = 0.81; tables 1
and 2). Of the 235 toads in total, 174 were wild-caught and
the other 137 were captive-raised progeny.

(b) Effect of location on body shape
ANOVAs with invasion category (range core versus invasion
front) and population nested within invasion category as fac-
tors, and residual scores as dependent variables, showed that
toads from the two extremes of the species’s Australian distri-
bution differed in many traits (figure 1 and tables 1 and 2).
First, we look at data from wild-caught adult animals. For
female toads, range-core and invasion-front individuals dif-
fered significantly in the relative length of the limb bones
(femur, radioulna) and forefeet, and width of the head, with
invasion-front females larger in each case. For male toads,
these geographical differences were significant for length of
the tibiofibula (range core larger; figure 1 and table 2).

If we restrict analysis to captive-raised progeny only (i.e.
excluding wild-caught animals), at least one sex/age class
showed statistically significant differences between inva-
sion-front and range-core populations for all traits (adult
females for head width and tibiofibula length; adult males
for relative forefoot length; juveniles for all traits: table 2).

(c) Variation in jumping performance
The 311 hops that we analysed spanned awide range inmost of
the attributes that we measured. For example, the mean vel-
ocity ranged from 95.1 to 389.5 cm s−1, the distance covered
from 22.8 to 119.9 cm and the maximum height aboveground
from 2.2 to 23.9 cm. Many of the variables that we measured
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were intercorrelated. For example, higher velocity was
associated with longer distances covered (r = 0.76) and greater
height (r = 0.54), and steeper take-off angles generated higher
(r = 0.33) hops.
(d) Effect of location on jumping performance
In wild-caught adult toads, females from invasion-front popu-
lations exhibited highermaximumvelocity during a jump (p =
0.014) than did range-core conspecifics (tables 1 and 2 and
figure 2). The captive-raised female progeny of wild-caught
range-core adults exhibited faster jumps (both average
and maximum velocity) than did the progeny of invasion-
front toads (tables 1 and 2). Likewise, captive-raised male
progeny of range-core toads showed flatter take-off angles
and achieved lower heights than did captive-raised progeny
of invasion-front toads (tables 1 and 2).

(e) Correlations between morphology and jumping
performance

Combining all data, multiple regression with backwards elim-
ination suggests that the distance jumped by a toadwas related
to its body length (SVL β = 0.52, s.e. = 0.08, t = 6.67, p < 0.0001)
and relative foot length (β = 0.75, s.e. = 0.38, t = 2.00, p < 0.047).
The height of a jump was also related to the animal’s relative
hindfoot length (β = 0.26, s.e. = 0.11, t = 2.38, p < 0.018). Maxi-
mum velocities during jumps were higher for larger toads
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Figure 2. (a–f ) Effects of sex/age class and geographical origin on locomotor traits of cane toads, R. marina, as tested in jumping trials and raceway trials. (Online
version in colour.)
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(SVL β = 1.25, s.e. = 0.46, t = 2.72, p = 0.007) and for those
with relatively longer hindfeet (β = 5.89, s.e. = 2.22, t = 2.66,
p = 0.008). Larger toads also had shallower angles of landing
(β = 0.10, s.e. = 0.04, t = 2.15, p = 0.03).

If we look only at adult females (the group with most geo-
graphical variation in both morphology and performance;
table 2), pairwise correlations on data for wild-caught toads
showed that steeper angles of landing were associated with
relatively narrow heads (r =−0.24, n = 90, p < 0.022) and shorter
femurs (r =−0.25, n = 90, p < 0.016). In captive-reared female
offspring, a longer radioulna was associated with longer hops
and greater mean speeds in raceway trials (respectively,
r = 0.51, n = 19, p < 0.025; r = 0.53, n = 19, p < 0.019).
( f ) Comparisons between morphology and raceway
performance

Our two measures of raceway performance (speed and
average distance per hop) were themselves highly correlated
(n = 89, r = 0.67, p < 0.0001) and were linked to several of the
residual scores for morphology that we calculated. Using
multiple regression with backwards elimination (as above),
we found that the mean distance covered per hop in raceway
trials was positively related to a toad’s body length (β = 0.002,
s.e. = 0.0003, t = 5.62, p < 0.0001), relative forefoot length
(β = 0.01, s.e. = 0.005, t = 2.13, p = 0.036) and tibiofibula
length (β = 0.01, s.e. = 0.004, t = 3.15, p = 0.002), and negatively
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related to its relative head width (β =−0.01, s.e. = 0.0004,
t =−2.26, p = 0.027). Speed on the raceway was also positively
related to a toad’s body size (β = 0.001, s.e. = 0.0008, t = 2.32,
p = 0.024) and relative forefoot length (β = 0.03, s.e. = 0.01,
t = 2.33, p = 0.0022).

(g) Comparisons between jumping performance and
raceway performance

For the 89 individuals for which we have data both on jump-
ing performance and raceway performance, we can compare
those two datasets. Toads that travelled further per hop in the
raceway also travelled further per jump (r = 0.32, p < 0.0022)
and jumped higher (r = 0.22, p < 0.04) in our locomotor
video trials.
R.Soc.B
287:20201964
4. Discussion
Variation in morphology and locomotor performance was
linked in the cane toads that we studied, and those suites of
traits differed between toads from range-core versus inva-
sion-front populations. Relative to body length, toads from
the invasion front had longer limb bones (femur, tibiofibula,
radioulna), larger hindfeet and smaller forefeet. Those diver-
gences were greater in adult females than in other toads
(table 2). The invasion-front animals also tended to jumpdiffer-
ently than their range-core counterparts, although differences
for many aspects of jumping performance were minor
(table 2 and figure 2). Comparisons between data from raceway
trials and jumping trials show that measurements of variation
in distances per hop can predict 10% of the variation in
locomotor performance over longer distances (15 m).

Previous research has documented divergence between
range-core and invasion-front toads in other aspects of loco-
motor performance. Importantly, cane toads from the native
range in South America resemble those from the range core
in Australia, indicating that the phenotypic traits of invasion-
front toads (at least for morphology) represent a derived not
ancestral condition [24]. In the field, invasion-front toads dis-
persed further per day than did range-core conspecifics
[21,22] and the rate of dispersal declined rapidly in the years
following the toads’ initial arrival at a site [39]. By forcing
toads to travel along raceways, Llewelyn et al. [40] found three-
fold higher endurance (distances moved) in wild-caught
invasion-front toads than in range-core conspecifics. However,
Tracy et al. [41] reported no significant difference in a similar
study, based on animals that had been held in captivity for a
longer period prior to testing. Toads from the invasion front
were more adept at climbing than were toads from the range
core [24]. Unlike range-core conspecifics, invasion-front toads
tended to move in consistent directions rather than meander-
ing [28]. In sum, dispersal-relevant traits have shifted
profoundly during the toads’ Australian invasion.

Importantly, the geographical divergences in our overall
dataset were also evident (and in some cases stronger)
when we looked only at offspring raised under standard
(common-garden) conditions in captivity (table 2). Their
enclosures gave no opportunity for sustained locomotion,
so that the longer legs and greater athleticism of invasion-
front animals cannot be attributed to phenotypically plastic
responses to higher rates of dispersal at the invasion front
(see [42]). In keeping with our results, Hudson et al. [24]
and Stuart et al. [43] reported that relative leg lengths differed
among progeny of toads from different populations. In the
Stuart et al. [43] study, exercising the young toads did not
affect their relative leg lengths (but see [44] for a counter-
example with lizards). Captive-raised progeny of range-core
and invasion-front toads also exhibited significant differences
in stamina, and in the effects of rearing conditions on stamina
[43]. Heritable differences in stamina of adult toads may
involve shifts in thermal effects on this trait, with invasion-
front individuals outperforming range-core individuals only
when the animals are tested at high temperatures [26]. At
least some dispersal-relevant behaviours are heritable [5,28].

Previous studies on cane toads also have documented
links between morphology and locomotion. Longer-legged
toads tended to travel further per week in the field, and to
move more quickly in standardized trials of escape ability
[31]. Longer legs also assisted toads to climb [23] and in
laboratory raceway trials, longer-legged toads were more
willing to run [32]. The analyses in the present paper add
to this body of evidence, in that we found strong correlations
between a toad’s morphology and its performance both in
jumping trials and in raceway trials. Importantly, those
form-function correlations support the idea that morphologi-
cal modifications that have arisen during the toad’s invasion
of Australia have been accompanied by shifts in locomotor
performance, as inferred but not documented by earlier
studies [31]. Morphological traits such as relative length of
forelimbs or relative limb length ratio (forelimb length/hind-
limb length) also might be correlated with habitat usage and
locomotor kinematics in cane toads [45,46], as these morpho-
logical traits play a crucial role during the landing phase [47].
Moreover, forelimb length and relative limb length ratio
might influence the ability of cane toads to perform bouts
of repeated hopping [48].

However, we cannot dismiss the possibility that the corre-
lations between morphology and locomotor ability might be
due to undetected effects of other variables. For example,
invasion-front toads tend to be bolder and more active than
range-core conspecifics [29,30]. That behavioural difference,
rather than morphological adaptations, might modify their
performance in jumping trials. However, the plausibility of
this interpretation is weakened by the strong concordance
between our results and the predictions from biomechanical
models: for example, longer limbs are expected to provide
greater propulsive power, and hence to generate longer
jumps [8,33,49–51]. This is broadly the pattern that we have
seen. The shifts in foot morphology, and their correlations
with jumping performance, are more ambiguous. Increased
foot length may be an adaptive consequence of the transition
to more powerful jumps, but also may reflect a greater
reliance on bounding (repeated rather than single hops) in
range-front individuals [24]. In toads, bounding locomotion,
with no resting phase between successive hops, requires
modified placement of the feet during take-off and landing,
and allows for efficient transfer of elastic energy between
hops through the forearms [47,48].

Although all age/sex classes showed morphological and
locomotor divergence among sites, those divergences tended
to be stronger for females than for males or juveniles (figures 1
and 2, and tables 1 and 2). Why should females be more
strongly affected by the invasion process? Mathematical
models suggest that if the sexes differ in intrinsic capacity for
dispersal during an accelerating invasion, selection for rapid



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20201964

9
dispersal will be stronger on the slower sex than the faster sex
(because the latter otherwise will outrun all of their potential
sexual partners [52]). In cane toads from the range core in Aus-
tralia, males have relatively longer legs (figure 1a–c) and are
faster than females of the same body size (figure 2d), a pattern
also seen in other toad species [53]. Perhaps as a result, overall
leg length (across both sexes) has converged to more female-
like dimensions in both sexes over the course of the cane
toad invasion [24]. Also, male limb lengths are under strong
sexual selection in this species: for example, shorter forelimbs
enable an amplexing male to cling more strongly to a female
[54,55]. Those conflicting advantages for dispersal in some
situations but not others, and for success in sexual struggles,
may haveweakened net selection on limb lengths andmobility
in male toads.

In summary, our study provides empirical evidence for
an oft-assumed but rarely tested assumption: the idea that
‘dispersal-enhancing’ traits at an invasion front do actually
affect locomotor performance. Often, investigators have
interpreted distinctive phenotypic traits in invasion-front
individuals as adaptations to accelerate movement, but with-
out performance data. For example, voles that reached
outlying Swedish islands had longer feet, plausibly enabling
them to swim more effectively [18]. Bush crickets at an inva-
sion-front in Britain had larger wings, putatively enhancing
flight ability [17]. Pine trees at the expanding northern
range edge had lighter seeds, presumably enabling them to
travel further on the wind [16]. We cite these examples not
as criticisms, but to point out that logistical constraints
often prevent investigators (ourselves included) from fully
exploring the assumptions inherent in their interpretations.
Encouragingly, our data on cane toads show the patterns
that we expect, and importantly, show those patterns not
only in wild-caught animals, but in their captive-raised
(common-garden) progeny. As cane toads have spread
across Australia, they have evolved not only in body shape
but also in the ways that they move.
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