
1. Introduction
Traditionally, the uncertainty in observed streamflow has mostly been described by combining a determin-
istic model of hydrological processes with a stochastic error model for the observations. Such error models 
are often formulated as additive terms to the output of the deterministic model, potentially at a transformed 
scale to account for heteroscedasticity in the errors while keeping the error term at the transformed scale 
homoscedastic (Bates & Campbell, 2001; Kuczera, 1983). This approach suffers from the conceptual limita-
tion that it tends to underestimate the uncertainty in the hydrological processes (only considered by uncer-
tain parameters of a quite rigid, deterministic model structure and, potentially, by uncertainty in input) and 
compensates for this by mapping the effect of all remaining uncertainties to a lumped output error model. 
The lumped output error results from the propagation of input errors, errors in the initial state (these first 
two contributions only if they are not addressed explicitly), intrinsic, apparent stochasticity, model struc-
tural error, and output observation errors. Such a model has to consider autocorrelation (resulting from 
memory-effects of errors in the hydrological states), heteroscedasticity (as larger values of outputs can also 
be expected to have larger uncertainty), positivity of the resulting uncertain discharge, and non-normality 
(as distributions of positive values are skewed; the larger the relative uncertainty, the larger the skewness) 
(Bates & Campbell, 2001; Kuczera, 1983; Sorooshian & Dracup, 1980). As the mechanisms leading to the 
lumped error are not described explicitly, this lumped output error model needs an empirical parameteriza-
tion. A lot of empirical evidence demonstrates that with this approach it is difficult to get model calibration 
and quantification of prediction uncertainty that seem appropriate to hydrologists (Ammann et al., 2019; 
Evin et al., 2013, 2014; Reichert & Schuwirth, 2012; Schoups & Vrugt, 2010).

Uncertainty analysis for deterministic models can be improved by considering input and model struc-
ture uncertainty explicitly. In hydrology, input uncertainty has mostly been addressed by modifying 

Abstract Stochastic hydrological process models have two conceptual advantages over deterministic 
models. First, even though water flow in a well-defined environment is governed by deterministic 
differential equations, a hydrological system, at the level we can observe it, does not behave 
deterministically. Reasons for this behavior are unobserved spatial heterogeneity and fluctuations of 
input, unobserved influence factors, heterogeneity and variability in soil and aquifer properties, and 
an imprecisely known initial state. A stochastic model provides thus a more realistic description of the 
system than a deterministic model. Second, hydrological models simplify real processes. The resulting 
structural deficits can better be accounted for by stochastic than by deterministic models because they, 
even for given parameters and input, allow for a probability distribution of different system evolutions 
rather than a single trajectory. On the other hand, stochastic process models are more susceptible to 
identifiability problems and Bayesian inference is computationally much more demanding. In this paper, 
we review the use of stochastic, time-dependent parameters to make deterministic models stochastic, 
discuss options for the numerical implementation of Bayesian inference, and investigate the potential 
and challenges of this approach with a case study. We demonstrate how model deficits can be identified 
and reduced, and how the suggested approach leads to a more realistic description of the uncertainty 
of internal and output variables of the model compared to a deterministic model. In addition, multiple 
stochastic parameters with different correlation times could explain the variability in the time scale of 
output error fluctuations identified in an earlier study.

REICHERT ET AL.

© 2020. American Geophysical Union. 
All Rights Reserved.

Potential and Challenges of Investigating Intrinsic 
Uncertainty of Hydrological Models With Stochastic, 
Time-Dependent Parameters
Peter Reichert1 , Lorenz Ammann1 , and Fabrizio Fenicia1 

1Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland

Key Points:
•  Stochastic, time-dependent 

parameters consider intrinsic model 
uncertainty and propagate this 
uncertainty to the model output

•  Cross-validation sensitively 
identifies model structure deficits 
and the time-course of the identified 
parameters gives hints for model 
improvements

•  Posterior uncertainty naturally 
gets autocorrelated and reflects the 
difference in knowledge between 
calibration and validation or 
extrapolation periods

Supporting Information:
• Supporting Information S1

Correspondence to:
P. Reichert,
peter.reichert@eawag.ch

Citation:
Reichert, P., Ammann, L., & 
Fenicia, F. (2021). Potential and 
challenges of investigating intrinsic 
uncertainty of hydrological models 
with stochastic, time-dependent 
parameters. Water Resources Research, 
57, e2020WR028400. https://doi.
org/10.1029/2020WR028400

Received 20 JUL 2020
Accepted 15 DEC 2020

10.1029/2020WR028400

Special Section:
Advancing process representation 
in hydrologic models: Integrat-
ing new concepts, knowledge, 
and data

RESEARCH ARTICLE

1 of 28

https://orcid.org/0000-0001-7832-4257
https://orcid.org/0000-0002-6028-0871
https://orcid.org/0000-0002-8065-6004
http://doi.org/10.1029/2020WR028400
https://doi.org/10.1029/2020WR028400
https://doi.org/10.1029/2020WR028400
http://doi.org/10.1029/2020WR028400
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-7973.HYDROREAL1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-7973.HYDROREAL1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-7973.HYDROREAL1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-7973.HYDROREAL1
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020WR028400&domain=pdf&date_stamp=2021-03-05


Water Resources Research

rain input with storm-dependent multipliers (Kavetski et al., 2003, 2006a, 2006b; Kuczera, 1990; Vrugt 
et al., 2008), but continuously varying descriptions of input uncertainty have also been used (Del Giudice 
et  al.,  2016; Reichert & Mieleitner,  2009). Model structure uncertainty has been considered by multi-
model approaches, either in the form of ensemble predictions based on Bayesian model averaging (Duan 
et al., 2007; Liang et al., 2013), or by a careful model selection procedure (Fenicia et al., 2016). Conceptual 
hydrological models can ideally distinguish different time scales of hydrological processes and associated 
storages, but they cannot directly provide their physical interpretation for a heterogeneous catchment. 
The comparison of the performance of multiple model structures can support the understanding of the 
underlying system (Fenicia et al., 2016). Nevertheless, despite the usefulness of this approach for hydro-
logical systems analysis, we should be aware of the problem that multimodel approaches with determin-
istic models still suffer from the problem of rigid model structures defined by the deterministic process 
models.

There are two main reasons, why a stochastic process model provides a better description of the hydrolog-
ical system than a deterministic model. First, the same observed input affecting the same observed initial 
state of a hydrological system will not lead to the same output, because (i) observations are incomplete 
regarding influence factors and their spatial and temporal resolution, (ii) the knowledge about the initial 
state of the hydrological system is incomplete, and (iii) changes in catchment properties caused by vege-
tation growth, structural changes in soil structure due to drying and wetting processes, bioturbation, etc. 
affect the response of the catchment. Thus, despite the deterministic nature of water flow in a given physical 
environment, at the resolution we can observe it, the hydrological system is not deterministic (Blöschl & 
Sivaplalan, 1995; Kuczera et al., 2006). This can only partly be accounted for by explicitly considering un-
certainty in input and in the initial state of a deterministic process model. Second, hydrological models need 
simplification of real processes. Such structural deficits can better be accounted for by stochastic than by 
deterministic process models because they, even for given parameters and input, allow for a probability dis-
tribution of different system evolutions rather than a single system trajectory. Still, multimodel approaches 
and the explicit consideration of uncertainty in input and in the initial state remain important, also for 
stochastic models.

To account for intrinsic stochasticity of the hydrological system (in the sense defined above) and for model 
structural errors, the hydrological process model has to be made stochastic. Stochastic hydrological mod-
eling has a long history: Originally, stochastic hydrological models were primarily introduced to describe 
statistical features observed in discharge time series, such as extreme events or long periods of low or high 
flow (Koutsoyiannis,  2002; Mandelbrot & Wallis,  1968). More recently, stochastic hydrological models 
were primarily used, often even without explicitly mentioning the need for stochasticity, in the context 
of sequential “data assimilation,” where stochasticity in the mass balance equations of hydrological res-
ervoirs makes it possible to iteratively learn about reservoir levels from discharge observation time series 
(Clark et al., 2008; Y. Liu et al., 2012; Moradkhani et al., 2005; Vrugt et al., 2013, and many more). Multiple 
reasons have been mentioned to make parameters of hydrological models stochastic and thus time-de-
pendent: The inadequacy of modeling runoff with deterministic models (Kuczera et al., 2006, “the notion 
of a deterministic conceptual rainfall-runoff model is indefensible”), the “effective” nature of hydrological 
model parameters that makes them more susceptiple to changes than universal, physical constants (Y. 
Liu & Gupta, 2007, “one might wish more generally to permit the system characteristics represented as 
‘parameters’ to vary slowly with time”), the presence of model structure deficits (Leisenring & Morad-
khani, 2010, “to account for imperfect model representation of the physical processes”), and opportunities 
for the identification of model structure deficits (Beck & Young, 1976; Wagener et al., 2003). Making the 
parameters stochastic can be an additional element of stochasticity to stochastic mass balance equations 
(Y. Liu & Gupta, 2007; J. Liu & West, 2001; Suweis et al., 2010), or it can be made the exclusive way of in-
troducing stochasticity (Reichert & Mieleitner, 2009). The latter approach is conceptually more satisfying 
as it preserves the mass balance equations by making the fluxes between the reservoirs stochastic rather 
than the water levels in the reservoirs (resulting changes in the water levels of reservoirs occur then due 
to changes in fluxes between reservoirs that preserve mass balances). In addition, this approach allows 
us to directly learn about potential improvements of the mechanistic part of the model, by analyzing the 
dependence of inferred time-dependent parameters on states or external influence factors (Reichert & 
Mieleitner, 2009).
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The additional degrees of freedom resulting from stochastic, time-dependent parameters can lead to iden-
tifiability problems or even to “misuse” of the time-dependence by partly explaining observed responses to 
input by variations of parameters. This can make the results sensitive to model assumptions and priors (Re-
nard et al., 2010). Depending on the involved correlation time scales and the observation time interval, there 
can also be an identifiability problem between remaining uncorrelated, random errors and stochastic pro-
cesses to be identified. This requires very careful analysis of the results. Another disadvantage of stochastic 
compared to deterministic process models is the much higher algorithmic and computational requirements 
needed for Bayesian inference. These problems may be the reasons that still the majority of hydrological 
modeling studies are based on deterministic process models (plus a stochastic, lumped error term).

The increasing availability of statistical inference techniques for stochastic models and the increasing com-
putational power becoming available make it possible to gain experience with such models. It is the goal of 
this paper to demonstrate the feasibility, the potential and also the challenges of this approach. In particular, 
we have the following objectives:

•  Clarify the concept of stochastic process models based on stochastic, time-dependent parameters and 
review numerical techniques to do Bayesian inference for these models

•  Develop a methodology to deal with the challenges of the approach, in particular with potential overpa-
rameterization and identifiability problems

•  Demonstrate how time-dependent parameters can be used as a diagnostic approach to identify model 
structure or parameterization deficits and guide their resolution

•  Illustrate how stochastic, time-dependent parameters lead to a realistic description of predictive uncer-
tainty once severe model deficits have been substantially reduced

•  Explore the potential of a simple multimodel approach for stochastic hydrological models
•  Investigate whether multiple time-dependent parameters with different correlation times may provide 

an explanation for multiple time scales found in lumped error models (Ammann et al., 2019)

In the following section, we will establish a connection between stochastic and deterministic process 
models, introduce the concept of stochastic, time-dependent parameters, establish an analysis proce-
dure to avoid “misuse” of the stochastic parameters to model functional relationships, discuss numeri-
cal implementation schemes for Bayesian inference with stochastic parameters, and conclude with dis-
cussing the potential and challenges of the suggested approach. In the subsequent sections, we will 
describe our case study and its results, discuss methodological aspects beyond the case study, and draw 
our conclusions.

2. Methods
2.1. Connection Between Stochastic and Deterministic Process Models

A stochastic model evaluated for a finite number of observed variables at discrete locations in space and 
time can be written as a vector of random functions:

Y xobs( , , ) ,  (1)

where, Yobs is a vector of random variables representing the observations, x are the model inputs, θ are 
the parameters of the model of the investigated system, and ψ are the parameters of the observation (sub)
model. In many cases it makes sense to split the system and observation models explicitly:

Y x Y x E Y xobs out obs out( , , ) ( , ) ( , ), ,        (2)

where, Yout is the model of the true output and Eobs is the observation error model. Note that Equation 2 
describes the probability distribution of observations conditional on input and parameters. This does not 
mean that input and parameter uncertainty cannot be considered. Known uncertainty can be propagated 
through the model. If input and/or parameter uncertainty have to be estimated, we need a prior for their 
distribution and an observation model for input. In our notation, this changes “true” input into parameters 
and observed input into additional observations.
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The response of any stochastic model can be splitted into its expected val-
ue plus a total error term equal to the response minus the expected value
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In this equation, ydet (x, θ, ψ) is the deterministic model defined as the 
expected value of the stochastic model including the observation model, 
and Etot (x, θ, ψ) is the residual, lumped error model. While Equation 3 
demonstrates that the use of a deterministic hydrological model plus a 
residual error term is not conceptually wrong, it also demonstrates why 
this approach is so difficult to implement: (i) The deterministic model is 

the expectation of a stochastic model. When formulating a deterministic model without deriving it from a 
stochastic model, it can only be an empirical parameterization of this expectation (note that the expectation 
of a nonlinear deterministic model that has been made stochastic by making parameters stochastic pro-
cesses or by adding a noise term to the time evolution equations is not equal to the original deterministic 
model). As most models are anyway parameterized empirically, from a practical point of view, this may not 
be a very severe restriction. Still, the modeler should be aware that the parameter values reflect the empir-
ical description of mean behavior and not of a single model trajectory. (ii) The derivation of the residual, 
lumped error in Equation 3 clarifies that the full output of the stochastic model is needed for its definition. 
The presence of apparent intrinsic stochasticity in a hydrological system, as outlined above, together with 
the propagation of this stochasticity through internal state variables to the output, implies that output errors 
will be autocorrelated due to the memory effect caused by the internal states. If this stochasticity and its 
propagation are not modeled explicitly by a stochastic model, the residual error term must be parameterized 
empirically. Experience has shown, that it is very difficult to formulate such an empirical term in a way 
that leads to satisfying results (Ammann et al., 2019; Evin et al., 2013, 2014; Reichert & Schuwirth, 2012; 
Schoups & Vrugt, 2010). The complex structure of the lumped error term, Etot (x, θ, ψ), in Equation 3 clar-
ifies why this is a very plausible outcome.

2.2. Concept of Stochastic, Time-Dependent Parameters

The idea of using stochastic, time-dependent parameters for considering intrinsic stochasticity of a system 
and making the model less susceptible to structural errors is very old. Originally, inference was implement-
ed for discrete-time models by applying an Extended Kalman Filter (EKF) algorithm (Beck, 1987; Beck & 
Young, 1976). The concept was later on also occasionally mentioned in the hydrological literature on “data 
assimilation,” mostly in addition to, not instead of, stochasticity in the mass balance equations (Kucze-
ra et al., 2006; Leisenring & Moradkhani, 2010; Y. Liu & Gupta, 2007; J. Liu & West, 2001; Moradkhani 
et  al.,  2005). The idea of using stochastic parameters was later on generalized to make it applicable to 
nonlinear, continuous-time models without the need for linearization (Buser, 2003; Tomassini et al., 2009) 
and further extended to a systematic procedure of model identification and uncertainty analysis (Reichert 
& Mieleitner, 2009). Figure 1 illustrates the approach of making parameters stochastic processes. The pa-
rameter vector, θ, is split into constant and time-dependent parameters, θ = (θconst, θtdep). The probability 
distribution of the constant parameters, θconst, and of the hyperparameters, ξ, of the stochastic process that 
underlies the time-dependent parameters describes the uncertain knowledge about these parameter values, 
whereas the stochastic processes of the time-dependent parameters, θtdep, describe intrinsic randomness of 
the system described by the model. By choosing parameters to be stochastic and time-dependent, we can 
make the model a more realistic description of the real system as we can consider effects of unobserved 
spatial variation and fluctuations in observed and unobserved influence factors.
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Figure 1. Illustration of the conceptual approach of making some of the 
model parameters stochastic. Left panel: model with constant parameters. 
Right panel: model with some of the parameters θ replaced by stochastic, 
time-dependent parameters with hyperparameters ξ (e.g., their means, 
standard deviations, and autocorrelation times).
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The switch from the model shown in the left panel of Figure 1 to that in the right panel is associated with 
the switch from the joint probability

p p p( , , , | ) ( | , ) (y y x y y yobs out obs out

obs. likelihood

      oout

process model prior of par.

| , ) ( , )x        p (4)

 to the joint probability with an additional hierarchical level for the time-dependent parameters
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In these equations, the observational likelihood does not change formally. However, in Equation 4, depend-
ing on the structure of the process model, it may have to consider autocorrelation as it may represent a 
lumped error that includes the effect of intrinsic stochasticity and model structure errors propagated to the 
output. On the other hand, the process model does not change except that it has to consider the time-de-
pendence of some of its parameters. Note that in the Equations 4 and 5 the process model, p (yout|x, θ), is 
assumed to be stochastic (we get a probability distribution of outputs even for given inputs and parameters). 
For a deterministic process model, Yout (x, θ), these equations simplify to

p p( , , | ) | ( , ),y x y y xobs obs out

proc. mod.

obs. likelih

      

oood incl. proc. mod.

prior of par.

 



  
 p( , )  (6)

and

p

p

( , , , , | )

| ,( , ) ,

y x

y y x

obs
const tdep

obs out
const tdep

p

   

    
rrocess model

obs. likelihood incl. process model

  
 

 

 
 

   p p( | ) ( , , )    tdep

stochastic par.

const

pprior of const. par.

   .
 (7)

Again, the observational likelihood can still be the same across all models (Equations 4–7), but the need for 
an autocorrelated, lumped error model is even higher in Equation 6 than in Equation 4, as a deterministic 
process model often has serious structural errors.

Note that, although the function yout remains deterministic in Equation 7, the stochastic, time-dependent 
parameters, θtdep, make the deterministic model stochastic when seen as a function of the hyperparameters 
ξ rather than of realized time series of time-dependent parameters θtdep (the dependence on inputs, x, and 
constant parameters, θconst, remains the same). The probability density of (Yout|x, θconst, ξ) is obtained by 
propagating the distribution p (θtdep | ξ) through the deterministic model  const tdep

out ,( , )y x θ θ . This leads to 

the formal expression
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where

   



const tdep const tdepout
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( )
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 (9)

is the Jacobian of Yout with respect to θtdep,

    T const tdep T const tdep
out out,( , ) ,( , )JJ J Jy yx xθ θ θ θ (10)
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and σy (θtdep) is the Hausdorff measure on the surface    tdep const tdep
out{ | , , }y x yθ θ θ  (Stroock, 1999, Equa-

tion 5.3.28). Note that we will approximate the stochastic parameters, θtdep, by their values on a fine grid in 
time, and use linear interpolation between these values in the function yout, so that the integral (Equation 8) 
becomes a well-defined, although very high dimensional integral. Equation 8 is very complicated because 
analytically propagating a probability distribution through a deterministic model is difficult as different 
combinations of input may lead to the same result (see the complicated domain of integration below the 
integral sign in Equation 8) and the transformation of volume further modifies the probability density (see 
the denominator in the integrand of Equation 8). Note, however, that whenever distributions are represent-
ed numerically by samples, propagation just reduces to propagating all sample points through the model to 
get the sample that approximates the distribution of the result of Equation 8. This means that we will hardly 
ever have to apply Equation 8 explicitly.

Equation 8 is the basis for prediction of our knowledge of true output, yout, with prior or posterior dis-
tributions of the parameters. In case of prediction for a time period immediately following calibration 
and if the stochastic processes θtdep are Markov processes, conditioning the predictive distribution of θtdep 
on the posterior distribution consists only of using the posterior distribution of θtdep at the final time 
point of the calibration period as the distribution of θtdep to start prediction of the stochastic parameters 
with the posterior distribution of the process parameters ξ. Prediction of model outputs then consists of 
propagating this posterior distribution of θtdep together with the posterior distribution of the constant 
parameters θconst through the model. The observational error, Eobs, can still be added to get predicted 
observations, Yobs.

In the following, we choose the time-dependent parameters or adequately transformed parameters (e.g., 
their logarithms for parameters bounded to positive values) to follow Ornstein-Uhlenbeck processes 
(Uhlenbeck & Ornstein, 1930). The Ornstein-Uhlenbeck process is the simplest continuous stochastic pro-
cess with finite variance and can be characterized by its mean, μ, its asymptotic standard deviation, σ, and 
its rate, γ, or correlation time, τ = 1/γ. It is defined by the combination of a random walk and a drift back to 
the mean with rate γ. This concept is realized by the stochastic differential equation

         d ( ) ( ) 2 d ( ) ,t t W t (11)

where W(t) is a Wiener process (continuous-time random walk). The solution to this differential equation 
at time t, given the solution at time s ≤ t, is given by

                    ( ) | ( ) N ( ) exp ( ) , 1 exp 2 ( ) ,t s s t s t s (12)

where N is the Normal distribution with mean and standard deviation as its arguments. Equation 12 shows 
the drift from the solution at time s towards the mean with an increasing standard deviation that asymptoti-
cally approaches σ. This process is useful for characterizing fluctuating parameters as its standard deviation 
is bounded.

When formulating discretized Ornstein-Uhlenbeck processes on a fine grid of time values, 1{ }n
j jt , we get the 

following probability density of the stochastic parameter i:
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here, ξ =       1 1 1 tdep tdep tdep( , , , , , , )n n n , contains the means, asymptotic standard deviations, and rates of 

the Ornstein-Uhlenbeck processes of all stochastic parameters and ntdep is the number of time-dependent 
parameters. Finally in the Equations 5, 7, and 8, we use the joint density of all stochastic parameters
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2.3. Bayesian Inference and Recommended Analysis Procedure

2.3.1. Bayesian Inference

Bayesian inference consists of jointly inferring the constant parameters of the process model, θconst, and of 
the observation model, ψ, the time courses of the stochastic, time-dependent parameters, θtdep, the hyper-
parameters, ξ, of the stochastic processes of the time-dependent parameters, and, in case of a stochastic 
process model, the distribution of the outputs, Yout, from given observational data for Yobs. The joint poste-
rior density of all these variables is proportional to the joint density that includes the observations given by 
Equation 5 or 7, respectively, with the actual observations substituted for yobs. Options for the numerical 
implementation of Bayesian inference for these equations will be discussed in Section 2.4.

As outlined in the introduction, inference of stochastic, time-dependent parameters can lead to the “misuse” 
of the large number of degrees of freedom to compensate for model deficits by inferring a time series that does 
not fluctuate randomly, but partly models a missing relationship of the time-dependent parameter as a func-
tion of inputs or model state variables. This violates our statistical assumptions and has to be avoided. For this 
reason, inference has to be followed by a careful analysis for such problems and strong model deficits have to 
be removed before using posterior distributions for prediction. In the next two subsections, we briefly discuss 
how this can be done by exploratory analysis of results and by cross-validation, respectively.

2.3.2. Exploratory Analysis of Results

The most obvious way of identifying the “misuse” of the large number of degrees of freedom of the infer-
ence process to compensate for model deficits is to search for relationships of the values of the time-depend-
ent parameters on inputs, model state variables, and outputs. Any kind of exploratory statistical analysis of 
the values of the time-dependent parameters, inputs, internal model states and outputs at all points in time 
can be useful for this purpose. For this analysis we are not primarily interested in uncertainty, but in finding 
potential dependences of the parameter time series realization that led to the best model fit on model states, 
inputs or outputs. For models with low-dimensional state and parameter spaces, the simplest technique is 
to use scatter plots and smoothing algorithms to visualize and quantify potential relationships between the 
values of the time-dependent parameter and model states or inputs. In higher dimensions, multivariate 
exploratory statistical analyses can be done or machine learning algorithms can be applied to find potential 
relationships. The identified relationships can either be used directly to improve the model or they can 
inspire parameterized model extensions or even structural changes to the model. Inference of stochastic 
model parameters should then be redone with the improved model until no strong relationships can be 
identified which would indicate that a stochastic process may be a realistic description of system behavior.

2.3.3. Cross-Validation

For models with high-dimensional parameter or state spaces, it may be difficult to get confidence in having 
found all relevant relationships between the posterior time series of the parameter and states, inputs or 
outputs by the techniques described in the previous subsection. For this reason, it may be useful to learn 
from different approaches whether it makes sense to invest more effort in searching for such relationships. 
Predictive cross-validation is a simple technique to do so. If a time-dependent parameter was “misused” to 
compensate for model deficits, it will not be able to correct for this deficit in “prediction mode,” when mod-
el results are based on the posterior of model and stochastic process parameters, but not on the posterior 
time-course of the stochastic parameter. In this case, this will thus lead to poor predictions. In case of short 
time-series that do not allow for predictive cross-validation, this can even be done by running the model 
in “prediction mode” for the calibration period, and still a potential compensation of model deficits by the 
posterior parameter time courses would be indicated by poor predictive performance.
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2.4. Numerical Implementation

If the stochastic process used to describe the time-dependent parameters has the Markov property (such 
as the Ornstein-Uhlenbeck process), hydrological models that are based on differential equations become 
state-space or hidden Markov models. The following subsections briefly describe options for the numerical 
implementation of Bayesian inference for this class of models.

2.4.1. Particle Markov Chain Monte Carlo

States of state-space or hidden Markov Models are often inferred using the Ensemble Kalman Filter (EKF) 
(Evensen, 2009). This approach has the advantage of being very efficient, but the disadvantage of relying on 
linear approximations the accuracy of which is difficult to assess. Alternative approaches are particle filters 
or particle smoothers, which approximate the distribution of the states at each time point through a sample 
of values, called “particles.” These particles are propagated through the time-series combining probabil-
istic propagation with the model (sampling from the distribution that describes the time evolution of the 
”particles” to the next output time point) with weighting based on the likelihood of the observations at the 
next time step (Fearnhead & Künsch, 2018; Godsill et al., 2004; Künsch, 2001; Van Leeuwen et al., 2019). 
The difference between particle filters and smoothers is that the former condition each state on current and 
past observations, while the latter condition on the full time series including future observations. Particle 
Markov Chain Monte Carlo (PMCMC) techniques combine particle filtering or smoothing for the states 
with Markov Chain Monte Carlo (MCMC) for the constant parameters either based on an approximation 
to the marginal likelihood calculated from the particle sample at each step of the Markov chain or by Gibbs 
sampling between states and parameters (Andrieu et al., 2010; Andrieu & Roberts, 2009; Kantas et al., 2015; 
Kattwinkel & Reichert, 2017; Sukys & Kattwinkel, 2018).

2.4.2. Hamiltonian Monte Carlo

The concept of Hamiltonian Monte Carlo (HMC) is to construct a Hamiltonian (energy as a function of 
locations and momentums of particles) with a potential energy equal to minus the log of the posterior 
density (interpreting the parameters as locations) and with a kinetic energy as a sum of quadratic terms 
of corresponding momenta. Drawing momenta randomly and integrating the Hamiltonian equations of 
motion over time leads to a proposal with an acceptance rate close to unity (Duane et al., 1987; Neal, 2011). 
This makes it possible to proceed with large steps without compromizing the acceptance probability and 
thus makes this algorithm very efficient. The particle masses needed to formulate the kinetic energy and the 
time integration interval are tuning parameters of the algorithm.

Note that for performing the large sampling steps the equations of Hamiltonian dynamics have to be inte-
grated numerically. This does not only require numerical integration, but it also requires multiple evolu-
tions of the derivatives of the Hamiltonian, or the posterior probability density. Whenever this can be done 
analytically or by automatic differentiation, HMC is likely to considerably outperform Metropolis or Gibbs 
sampling. An interesting variant of HMC is to automatically adjust the integration time as it is done by the 
No-U-Turn Sampler, NUTS (Hoffman & Gelman, 2014). The idea of HMC can even be applied to numeri-
cally solve inference problems for stochastic differential equations (Albert et al., 2016).

2.4.3. Approximate Bayesian Computation

For many models it is difficult to evaluate the likelihood function analytically, but it may be (relatively) 
easy to sample from the model. Specific methods have been developed for this kind of problems (Albert 
et al., 2015; Beaumont, 2010; Beaumont et al., 2002; Marjoram et al., 2003). The simplest algorithm just 
consists of sampling from the prior and accepting the sample if the model prediction is closer to the data 
than some predefined tolerance (Marjoram et al., 2003). This and similar algorithms become increasing-
ly inefficient with increasing dimension of the observation space. In this case, to increase the numerical 
efficiency of the algorithm, a small number of summary statistics of observations are used rather than 
the original observations. Such summary statistics can either be generated (Fearnhead & Prangle, 2012) 
or constructed based on characteristic properties of the solution. In hydrology, the latter choice is called 
“signature-based calibration” (Fenicia et al., 2018; Kavetski et al., 2018). Because of the use of summary 
statistics and the need of using a tolerance level as described above, we are sampling from an approximate 
posterior. In the context of this paper, this technique could be applied to infer the constant and stochastic 
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process parameters, but, due to the high dimensionality of the inference problem, hardly for inferring the 
time-series of the stochastic parameters.

2.4.4. Conditional Ornstein-Uhlenbeck Sampling

The final technique discussed in this paper is to combine Metropolis or Metropolis-Hastings sampling of the 
constant parameters with conditional sampling from Ornstein-Uhlenbeck processes for the time-depend-
ent parameter(s) in an overarching Gibbs sampling framework (Buser, 2003; Reichert & Mieleitner, 2009; 
Tomassini et al., 2009). The key idea is to increase the acceptance rate of sampling from an Ornstein-Uhlen-
beck process by dividing the time range into subintervals and iteratively re-sample the Ornstein-Uhlenbeck 
process within the subintervals conditional on the values at the end points of the intervals to guarantee a 
continuous process (Buser, 2003; Tomassini et al., 2009).

The conditional Ornstein-Uhlenbeck sampling (COUS) process is illustrated in Figure 2. At each iteration 
step for the time-dependent parameters a random division of the time range into subintervals is chosen. 
Figure 2 illustrates then conditional proposals in these subintervals and their acceptance or rejection. When 
all subintervals were sampled, Metropolis or Metropolis-Hastings MCMC steps are taken for the constant 
parameters and for the process parameters of the Ornstein-Uhlenbeck process(es). For more details, see the 
original publications (Buser, 2003; Tomassini et al., 2009).

2.4.5. Comparison of the Approaches

The numerical efficiency of the algorithms can be expected to increase from Approximate Bayesian Compu-
tation (ABC) to COUS and PMCMC and from these to HMC. On the other hand, the implementation effort 
on the algorithmic side and regarding the need for adapting the simulation program is likely to increase 
in the same order. Unless user friendly packages become available for PMCMC or HMC for stochastic dif-
ferential equations (there are packages available for HMC with ordinary differential equation models, see 
e.g., stan, https://mc-stan.org), it may be a useful strategy to do preliminary trials with relatively short time 
series with COUS and switch only to better techniques if the results are promising. This paper is based on 
the application of COUS (Buser, 2003; Tomassini et al., 2009) as implemented in the R package timedeppar, 
https://cran.r-project.org/package=timedeppar developed for this paper.

REICHERT ET AL.

10.1029/2020WR028400

9 of 28

Figure 2. Illustration of conditional sampling from an Ornstein-Uhlenbeck process in subsequent subintervals. Black 
line: time course of the time-dependent parameter from the previous iteration step. Red and green lines: proposals 
within the subintervals separated by the vertical lines, green proposals were accepted, red proposals were rejected. On 
the top, the ratio of probability densities of proposal to previous time course are indicated on a logarithmic scale. Values 
larger than one lead to acceptance (they have to be green), values smaller than one are accepted with the probability 
equal to this ratio (they can thus be green or red).
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2.5. Metrics for Comparing Results

As the lumped error model combines the effects of input, model structure and observation error on 
modeled observed output, we do not have a complete probabilistic description of our knowledge of 
model states and output (in this approach, states and model output do not contain the effect of model 
structure error, and of input only if input uncertainty is considered explicitly; on the other hand, out-
put with the lumped error includes also observation error). This is in contrast to the approach with 
stochastic parameters, where the probability distributions of states and output reflect our knowledge 
about states and true output that we can formulate without the random part of the observation error. 
(Note that systematic observation errors, e.g., could be considered as well (Sikorska & Renard,  2017; 
Sikorska et al., 2013; Thyer et al., 2011). We can still add the observation error to get predictions for ob-
servations. This difficulty implies that a fair comparison of model output between the two approaches is 
only possible at the observation level. Nevertheless, we will calculate the metrics discussed below for the 
probability distributions of Yobs and Yout, even though, as discussed above, Yout has a different meaning 
for the two approaches. In the following, we denote the probabilistic model outcomes as Y and later on 
substitute Yobs or Yout for Y for both of the modeling approaches. This leads to four different results for 
each of the metrics.

The most widely used metric to quantify model performance in hydrology is the Nash-Sutcliffe Efficiency 
(NSE) (Nash & Sutcliffe, 1970) which, when taking the expectation over a posterior distribution of model 
output or modeled observations, Y, is given by
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where mean(.) is the mean of the set provided as its argument, and the expected value, E, can be ignored 
if a sequence of real values is provided for Y rather than a sequence of random variables. NSE takes values 
between −∞ and 1, where 1 indicate a perfect fit and values above 0.5 are often denoted as indicating an 
acceptable agreement.

To compare the distribution of data with predictive distributions, if the latter vary from observation to ob-
servation, it makes sense to evaluate the corresponding cumulative distribution functions of the predictions 

at the data points:   
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tions, these transformed points should be a sample of a uniform distribution. This can be visualized by a QQ 
plot of these values (Renard et al., 2010, is an example with explanations in a hydrological context), or, as a 
numeric indicator, the “reliability,” that is defined as the integral of the absolute deviation of the empirical 
cumulative distribution from the 1:1 line in this plot (McInerney et al., 2017; Renard et al., 2010). Unfor-
tunately, this absolute deviation does not indicate whether the model prediction is too wide or too narrow; 
it just indicates a deviation of the observations from this distribution. As our knowledge is incomplete, we 
expect the predictive distribution to be wider than the empirical distribution of the data. For this reason, we 
are interested to distinguish excessive uncertainty (which we may accept) from overconfidence (which are 
indications of structural problems of the model). For this reason, we modify the “reliability” by omitting the 
absolute value in the deviation from the uniform cumulative distribution, splitting the integral at 0.5, and 
reverting the sign for the second part. If we denote the empirical cumulative distribution function of the 
observations relative to a predictive distribution transformed to a uniform distribution as F, we thus define 
the Data Coverage Deviation (DCD) as follows:
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This measure is motivated as follows: F(x) denotes the probability mass 
in the left tail up to the value x, which indicates the probability mass 
(= fraction of data points) we would expect for the uniform distribution. 
x − F(x) is thus a measure of excess predictive uncertainty (or lack of data 
points) in the left tail of the predictive distribution up to a predicted prob-
ability x. The same is true for F(1 − x) − (1 − x) for the right tail. Adding 
the two terms provides the excess uncertainty (or overconfidence if nega-
tive) in both tails together. To become independent of the threshold x, we 
integrate over all values of x and normalize accordingly to get a measure 
in the interval [−1,1] (this justifies the factor of 4 in Equation 16). The in-
terpolation points of the distribution function F can easily be obtained by 

combining the sorted points of the sample   


( ) obs
1

( )
n

Y t jj j
F y t  for x values 

with equidistantly increasing points in the interval [0,1] for the y values. 
Integration in Equation 16 can then be done, for example, by using the trapezoidal rule. Note that the em-
pirical distribution function, F, corresponds to the function in the plot of Figure 3 in Renard et al. (2010) 
with interchanged x and y axes. With this definition, we get positive values for excess uncertainty and 
negative values for overconfidence or strong over- or underprediction. A small degree of over- or underpre-
diction combined with a narrow distribution of the data can still lead to positive values of DCD, as the data 
points may then still be sufficiently covered by the predictive distribution. Perfect agreement of data with 
the predictive distribution results in a deviation DCD of zero.

To check whether data coverage was achieved by very wide distributions, it makes sense, also to quantify 
the width of the predictive distribution. We do this by the average of the quotient of the standard deviation 
of the predictive distribution at each observation point and the observation:
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where SD is the standard deviation of the random variable provided as its argument.

Another property of hydrological observations or model prediction is their strength of fluctuations, which 
can be quantified by the flashiness index, FI (Baker et al., 2004; Fenicia et al., 2018),
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where again the expected value, E, can be ignored, if the argument is a sequence of numbers rather than 
random variables.

2.6. Potential and Challenges of the Suggested Approach

Summarizing the arguments outlined in the introduction and methods sections, we expect the following 
potential of the suggested approach:

•  At the initial stage of the analysis, stochastic, time-dependent parameters may be “misused” to partly 
represent missing deterministic relationships in the model. While these results cannot be used for uncer-
tainty analysis, by the analysis of potential dependences of the time-dependent parameter(s) on model 
states and inputs, they provide information about model deficits in a constructive and nonparametric 
way and stimulate model structure improvement

•  After removing severe structural deficits, stochastic parameters may lead to a more realistic description 
of the hydrological system by considering apparent intrinsic stochasticity and model structure deficits 
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Figure 3. Illustration of the hydrological models M1 and M2. See text and 
equations for an explanation of the symbols.
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while still maintaining mass balances exactly. In particular, propagating intrinsic errors to the output 
should contribute substantially to the observed autocorrelation in output errors that is difficult to param-
eterize empirically in lumped output error models

The suggested approach can be seen as an approach to combine mechanistic modeling with data science 
in the sense of “theory-guided data science” (Jiang et al., 2020; Karpatne et al., 2017) or “interpretable data 
science” (Molnar, 2019). It combines the advantages of a mechanism-based approach regarding interpret-
ability and uncertainty quantification by being based on simple, hydrological models and a statistically 
rigorous description of uncertainty with the advantages of a data-based approach of profiting from a higher 
flexibility in process rates for better describing the data.

On the other hand, we see the following challenges of the approach:

•  Identifiability problems between processes at close time scales can hamper the separate identification 
of different internal sources of stochasticity as well as the separation of internal stochasticity and the 
random component of observation errors

•  Overlooked “misuses” of the time-dependence of parameters to describe nonstochastic relationships 
may lead to poor predictions

•  High algorithmic and computational demand

These challenges need careful consideration and we have to learn from applications of the suggested 
technique to better being able to assess under which circumstances it is worth to follow this path. In the 
following case study, we will investigate the power of the suggested approach as well the challenges men-
tioned above.

3. Case Study
3.1. Catchment and Data

To demonstrate the methodology, we chose a small catchment that can be described by relatively simple, 
conceptual hydrological models and for which input uncertainty is small. The Maimai catchments on the 
South Island of New Zealand are a set of small headwater catchments with a long history of hydrological re-
search and are thus well-suited for this purpose (Brammer & McDonnell, 1996; Seibert & McDonnell, 2002). 
We here use hourly precipitation (P), discharge (Q) and potential evaporation (E) data from the 3.8 ha M8 
Maimai catchment (Freer et al., 2004; McDonnell et al., 2020). We use a calibration period of 6 months 
starting on June 5, 1985 after a long dry period that allows us to use priors favoring small initial water levels 
of the reservoirs. The 6 months calibration period is followed by a 2 months validation period until February 
4, 1986 that contains multiple high discharge peaks as well as low flow periods.

3.2. Hydrological Models

Figure 3 illustrates the two very simple hydrological models used in this case study. They are intentionally 
kept simple to illustrate how the analysis of time-dependent parameters can support model development. 
The model M1 is defined by the following equations:
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The model M2 extends the model M1 by an additional “groundwater reservoir” and is defined by the fol-
lowing equations:
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In these equations and in Figure 3, P is precipitation (mm/h); Epot is the potential evapotranspiration rate 
(mm/h); E, E1, and E2 are actual evapotranspiration rates from different reservoirs (mm/h), Qout is the cal-
culated outflow of the catchment (mm/h); S, S1, and S2 are reservoir levels (mm); Styp is a typical reservoir 
level, introduced to make the reservoir outflow parameters k, k1, k2, and k12 less dependent on the catch-
ment; k, k1, k2, and k12 are reservoir outflow parameters (1/h); α, α1, and α2 are parameters to characterize 
nonlinearity in reservoir outflow as a function of reservoir level (-); ce is a correction factor of potential 
evapotranspiration (-); m, m1, and m2 are parameters to describe limitation of evapotranspiration with de-
creasing reservoir levels (mm); and fk, 1kf  and 2kf  are multipliers that are usually set to 1.

We distinguish the following submodels of the models M1 and M2: Model M1a is based on a linear reser-
voir (α = 1) whereas in model M1b the exponent, α, of the relationship between discharge and outflow is 
estimated. Similarly, model M2a is based on linear reservoirs (α1 = α2 = 1), in model M2b the outflow of 
reservoir 1 is made nonlinear by estimating the exponent α1 whereas α2 is still kept at 1, and in model M2c 
both exponents, α1 and α2, are estimated.

3.3. Output Error Model

We assume the observed discharge at time t to be distributed according to the distribution  out ( ),QD Q t ψ  
(Ammann et al., 2019). The dependence of this distribution on Qout(t) allows us to use different distributions 
(of the same class) for different outflow rates. In particular, this allows us to describe heteroscedasticity.

In the likelihood function, we will have to evaluate this distribution for the observed discharge at the obser-
vation times ti. To make the residuals at the observation times comparable, we transform them to normally 
distributed “residuals,” ηi, according to the following transformation (Ammann et al., 2019):

      1
N(0,1) obs( ),out

( ) .i iD Q tQ i
F F Q tψ (21)

In this equation, F is the cumulative distribution function of the distribution given as its index and N repre-
sents the Normal distribution with mean and standard deviation given by its arguments.

In our specific example, we assume  out ,QD Q ψ  to be a shifted Normal or Student-t distribution with its 
mean and standard deviation given by:
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with observation model parameters ψ = (a, b, c). This distribution is truncated at zero and the integral of the 
tail in the negative domain is assigned to a point probability mass at Q = 0. The constant Qtyp in Equation 22 
is a typical discharge and makes the parameters a and b nondimensional. In our application, Qtyp is chosen 
to be the mean of the observed discharge time series.
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In our application we assume the observational likelihood to be the product of the densities of  out ( ),Q iD Q t ψ  
at all-time points, ti, with data. This independence assumption is justified, as in the presence of stochastic, 
time-dependent parameters, the output error model only describes the small random part of the obser-
vation error and input and structural errors are described by propagating the uncertainty of the time-de-
pendent parameters to the output. Note that systematic observation errors, for example, resulting from 
inaccurate gauging curves, are not considered by this approach but could be considered as well (Sikorska & 
Renard, 2017; Sikorska et al., 2013; Thyer et al., 2011). For better comparability, we use the same output er-
ror model for inference with constant parameters where the output error model describes the lumped errors 
resulting from input, model structure, and observation error. This makes the output errors much larger and 
violates the independence assumption. This will be discussed when interpreting the results.

3.4. Implementation of the Time-Dependent Parameter Concept for Hydrological Models

Due to the small catchment in our case study, we can assume the precipitation to be quite precisely known. 
The key uncertainty of hydrological dynamics in the models defined by the Equations 19 and 20 and il-
lustrated in Figure 3 is then caused by the dependence of the outflows Q (M1) or Q1 and Q2 (M2) on the 
corresponding reservoir levels S (M1) or S1 and S2 (M2). These outflow rates are determined by the outflow 
rate parameters k (M1) or k1 and k2 (M2) and in case of nonlinear reservoirs by the exponents α (M1b), α1 
(M2b, M2c), and α2 (M2c).

As the outflow rate parameters k (M1) or k1 and k2 (M2) most directly affect the modeled discharge and as 
reservoir outflow - water level relationships are very crucial for conceptual hydrological models, it seems 
natural to make the parameters k (M1) or k1 and k2 (M2) stochastic. Making instead the exponents, α or α1 
and α2 stochastic would modify the same release rates and would thus not lead to fundamentally different 
results. Note that this choice of the stochastic parameters does not allow us to profit from the advantage 
of getting (additional) autocorrelation of fluctuations by the retention of water in internal reservoirs as 
they affect outflows that are directly linked to the model output. This would be different when making k12 
stochastic. Nevertheless, due to the smaller sensitivity of the results to k12 than to k2 and to avoid having 
two stochastic parameters in series, we decided to keep k12 constant. The left panel of Figure 4 shows the 
most straightforward way of applying the concept shown in the right panel of Figure 1 to our models. The 
parameters k (M1) or k1 and k2 (M2) become stochastic and time-dependent with the corresponding means, 
μ, asymptotic standard deviations, σ, and rates, γ as hyperparameters. An alternative way of making the pa-
rameters stochastic is to keep the parameters k (M1) or k1 and k2 (M2) constant and make the factors, fk (M1) 
or 1kf  and 2kf  (M2), stochastic parameters with the mean kept fixed at 1. With this latter parameterization, a 
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Figure 4. Illustration of the two slightly different implementations of the stochastic parameter approach shown in the 
right panel of Figure 1 to the hydrological models given by the Equations 19 and 20 (vertical lines separate parameters 
of model M1 from those of M2): Left panel: the parameters k (M1) or k1 and k2 (M2) become stochastic (here fk =  1kf  = 

2kf  = 1). Right panel: the parameters k (M1) or k1 and k2 (M2) remain constant parameters, but their multipliers, fk (M1) 
or 1kf  and 2kf  (M2), become stochastic (here  fk  = 

1fk  = 
2fk  = 1).
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change in the parameter ki leads to a shift of the whole time series of k iif k . This improves convergence of 
our Gibbs sampling algorithm compared to keeping kif  fixed to unity and inferring ki as a time-dependent 
parameter with inferred mean, as in the latter case, the mean can only shift as a consequences of shifts in 
many subintervals of our sampling scheme. For this reason we applied the parameterization shown in the 
right panel of Figure 4 to analyze stochastic, time-dependent parameters.

3.5. Parameter Values and Priors

The values of the fixed parameters as well as the priors of the estimated parameters are defined in Table 1. 
The priors for the water release coefficients could well be estimated from recession curves within a part of 
the hydrograph that was not used for calibration. For the other parameters of the hydrological model we 
used values based on our experience with other modeling studies. The priors for the initial reservoir levels 
have a preference for low values as the simulation starts after a long dry period. The prior for the asymptotic 
standard deviation of the Ornstein-Uhlenbeck process was chosen to be very narrow with a maximum at zero 
to induce a preference for constant parameters to avoid unnecessary time variations. This reflects our goal of 
getting the key pattern of the discharge time series from the hydrological model and not producing it with 
a “misuse” of the stochastic water release parameter. The joint prior density was chosen to be equal to the 
product of the individual prior densities of the estimated parameters. In addition to these parameters, we set 
the typical reservoir level, Styp = 10 mm, and the typical discharge, Qtyp to the mean of the observed discharge. 
These settings just scale some of the other parameters to make them better transferable to other applications.

3.6. Statistical Inference and Computational Considerations

We applied the method COUS as described in Section 2.4.4 (Buser, 2003; Reichert & Mieleitner, 2009; To-
massini et al., 2009) to jointly infer constant and stochastic parameters. The hydrological model was imple-
mented in R using the package deSolve, https://cran.r-project.org/package=deSolve with a C implementa-
tion of the right-hand side of the differential Equations 19 and 20 to profit from fast numerical integration. 
Inference was done using the R package timedeppar, https://cran.r-project.org/package=timedeppar. Infer-
ence with multiple chains for multiple models was run on Intel servers operated under Linux.
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Variables Value if not est. Distribution Mean Std. dev.

Parameters of the hydrological model

 k, k1, k2, k12 Lognormal 0.02, 0.04, 0.005, 0.01 h−1 0.25⋅mean

 ce Lognormal 1 0.05

 m, m1, m2 0.5, 0.5, 2 mm

 α, α1, α2 1, 1, 1 Lognormal 2, 2, 1 0.25⋅mean

 α12 1

 Sini, S1,ini, S2,ini TruncNormal 0, 0, 0 5, 5, 5 mm

Parameters of the output error model

 a, b 0.05, 0.02 Lognormal 0.1, 0.05 0.25⋅mean

 c 0.7

Parameters of Ornstein-Uhlenbeck processes for factors fk, 1kf , 2kf

  fk , 
1fk , 

2fk 1

  fk , 
1fk , 

2fk 0.1 TruncNormal 0 0.05

  fk , 
1fk , 

2fk 0.1 h−1 Lognormal 0.1 h−1 0.1⋅mean

Table 1 
Prior Distributions of Different Variables (TruncNormal Refers to a Normal Distribution Truncated From Negative 
Values at Zero; in This Case, Mean and Std. Dev. Refer to the Distribution Before Truncation)

https://cran.r-project.org/package=deSolve
https://cran.r-project.org/package=timedeppar
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3.7. Results and Discussion

As outlined in Section 2.6, we have to identify and reduce model deficits before interpreting the results and 
their uncertainty. After the convergence analysis of the Markov chains in Section 3.7.1, we therefore analyze 
model deficits in Section 3.7.2. For the model with reduced deficits, we then interpret the inferred param-
eters in Section 3.7.3 and posterior output uncertainty during calibration and validation time intervals in 
Section 3.7.4.

3.7.1. Convergence and Computational Requirements

Convergence was easily achieved for all models with constant parameters when inferring hydrological pa-
rameters and the parameters a and b of the lumped error model (see Figures S1–S5 for 1d projections of 
the Markov chains and 1d marginals of all model parameters and Figures S6–S10 for 2d projections of the 
same Markov chain samples). Despite the good convergence, we simulated Markov chains of the posterior 
of length 100’000 (with a thinning factor of 100) after having established reasonable starting points and 
proposal distributions in earlier runs (see the supporting information figures mentioned above).

When estimating the parameters a and b of the observation error model (Equation 22) jointly with the pa-
rameters of the hydrological model and the time-dependent parameter fk, and after choosing a large number 
of subintervalues (200–400, depending on the parameter) and an adaptive weighting for the sampling pro-
cess of the interval end points, we achieved convergence of the algorithm for model M1a, with residual error 
model parameters in the order of a = 0.07 and b = 0.0075. However, for the other models that allow a better 
fit already with constant parameters, when estimating time-dependent parameters, the observation error 
model parameters decreased so much that the acceptance rate of the time-dependent parameters became 
very small and convergence could not be achieved (multiple chains got stuck at different local maxima of 
the posterior). This reflects the problem, that very small, random observation errors cannot be separated 
from internal model stochasticity. To resolve this problem, for the remaining analysis, we fixed the param-
eters a = 0.05 and b = 0.02. This leads to a random part of the observation error that is much smaller than 
the effect of parameter and intrinsic uncertainty on the output.

We then achieved acceptable convergence for all investigated model structures when running very long 
Markov chains of length 600’000 (with a thinning factor of 100) (see Figures S26–S30 for a complete over-
view of the Markov chains and 1d marginals of all constant and Ornstein-Uhlenbeck process parameters of 
all models, Figures S31–S35 for the corresponding 2d marginals, and Figures S36–S43 for the Markov chains 
and 1d marginals of the time-dependent parameters of all models at selected points in time).

The slow convergence process that requires many subintervals to sample the time-dependent parameters 
and long Markov chains for the constant and Ornstein-Uhlenbeck parameters leads to a very high compu-
tational burden. For the more complex model structure M2 and with 400 subintervals for the parameter 1kf  
and 200 for 2kf  in our case study, it takes about a day for completing 10,000 Markov chain steps on a single 
core of modern Intel hardware. In addition, our 6 min time-resolution of the Ornstein-Uhlenbeck process 
(10 times higher resolution than the hourly data) leads to high memory requirements for storing the Mark-
ov chains for a half year calibration period, which we handled by choosing a thinning factor of 100 (storing 
only each 100th point of the Markov chain). Still, memory requirements for storing a sample of a single 
time-dependent parameter are then around 183 (days) ⋅ 24 (hours) ⋅ 10 (steps per hour) ⋅ 8 (bytes per double) 
⋅ 600’000/100 (stored steps of the Markov chain) ≈ 2.1 Gbytes. Running multiple chains and multiple model 
structures in parallel on different cores, can thus lead to memory allocation problems. This could be avoided 
by not keeping the whole chain in memory which would, however, make postprocessing more difficult.

3.7.2. Deficit Analysis and Model Improvement

3.7.2.1. Scatter Plots

As discussed in Section 2.3.2, for our models with low-dimensional state and parameter spaces, scatter plots 
and smoothing of the solution with the highest observational likelihood can be used to identify potential 
relationships of the time-dependent parameters on model states or inputs.

The top left panel of Figure 5 shows the scatter plot of the variation factor, fk, of the reservoir release rate, k, 
as a function of the reservoir level, S, for the model M1a in which the exponent, α, of the reservoir level is 
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set to unity (see Figure 3 and Equation 19). This plot shows that there is not a unique relationship between 
fk and S but that there is very strong evidence that a stronger increase of the outflow as a function of the 
reservoir level than provided by the linear model should improve the model. This was the motivation for 
the model M1b in which the exponent, α, of the reservoir level was fitted in addition to k (see Figure 3 and 
Equation 19). This led to a considerable increase in the value of α that will be discussed in Section 3.7.3 
(see in particular Figure 7). The resulting scatter plot for the model M1b is shown in the top right panel of 
Figure 5. This figure shows that this parameterization, while not being perfect, mostly resolves the problem 
of a systematic increase of fk with S at large values of S. However, there is now a very strong increase in fk 
needed at small reservoir levels, S (to a much smaller degree this was already the case for the model M1a). 
This indicates that the new parameterization of outflow as a function of reservoir level leads to problems 
with modeling base flow (or increases the problem already present for model M1a). Although a one box 
model may be able to describe a hydrological system sufficiently well (Kirchner, 2009) it often makes more 
sense to resolve fast response to rain events and the provision of relatively constant base flow by a two box 
model (Jakeman & Hornberger, 1993). This is thus the strategy for the next model extension (see Figure 3 
and Equation 20).

To check, whether also in a two box model nonlinearity in outflow as a function of reservoir water level is 
needed, we start with the linear model M2a (see Figure 3 and Equation 20 with α1 = α2 = 1). The bottom 
left plot in Figure 5 shows the resulting scatter plots of the release rate modification factor 1kf  as a function 
of the reservoir level S1. The plot clearly indicates the need for a nonlinear dependence of the outflow of 
reservoir 1 on S1 analogously to the one box model. This is implemented in model M2b in which the expo-
nent α1 is fitted in addition to the other model parameters. This led to a significant increase in the parameter 
α1 similarly to the increase in α for the model M1b (see Section 3.7.3). The bottom right plot in Figure 5 
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Figure 5. Scatter plot of the time-dependent parameters (multipliers), fk versus the reservoir level S for the models 
M1a and M1b, and 1kf  versus the reservoir level S1 for the models M2a and M2b. The red line indicates a potential 
relationship between the variables produced with a smoothing algorithm implemented in the R function loess. The 
value of R2 at the top of the plots shows the degree of variance reduction achieved by the smoothing model.
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demonstrates that now scatter dominates potential remaining relationships. The smoothing relationship 
can only reduce 1% of the variance in 1kf . The scatter plot of 1kf  versus S1 for the model M2c, in which also 
potential nonlinearity in the outflow of the slow reservoir by an exponent α2 is considered, looks quite 
similar to the one for the model M2b as the marginal posterior of α2 in model M2c did not strongly deviate 
from its value of 1 (see Figure S59 and the black density of α2 in Figure 7). To the degree assessable from the 
analyzed potential relationships, we conclude that the model M2b sufficiently reduced the biases to allow 
the quantification of its uncertainty with stochastic, time-dependent parameters. The model M2c does only 
slightly better.

3.7.2.2. Predictive Cross-Validation

In this simple example with a low-dimensional parameter space, it was easy to identify the “misuse” of 
stochastic, time-dependent parameters during calibration to compensate for model deficits by scatter plots 
of the time-dependent parameter versus model state variables (see Figure 5 and its discussion in the text). 
This may be more difficult in higher-dimensional settings where multivariate analyses or machine learning 
approaches may be needed. As discussed in Section 2.3.3, predictive cross-validation is an excellent tool 
to assess the presence of such “misuse,” as the compensation of model deficits by the time-dependence 
during calibration will lead to a poor predictive performance of the model when operated in “predictive 
mode” where only information about the parameters of the stochastic processes but not about the realized 
time-courses are available. This is demonstrated in Figure 6 which clearly illustrates the breakdown of the 
prediction of the model M1a and the much better predictive power of the model M2c (see Figures S49–S53 
for the time-series plots of all investigated model structures over this time interval, Figures S44–S48 for the 
results over the full calibration and validation periods, and Figures S54–S58 for the results within a short 
part of the validation period). The lack of predictive power of the model M1a with stochastic parameters 
seen in Figure 6 is supported by a strong decrease of the NSE from the calibration to the prediction range. 
This is shown in the top left panel of Figure 10 and will be discussed in Section 3.7.4.

3.7.2.3. Model Improvement

The analysis in this section, in particular the dependence analysis in Figure 5 and the cross-validation dis-
cussed in the previous paragraph and illustrated in Figure 6 show that the Model M2b mostly resolves the 
structural deficits of the models M1a, M1b and M2a and thus this model could be used for further analysis. 
Nevertheless, we will proceed with the model M2c that has the potential to perform even slightly better 
without adding too much additional complexity that could deteriorate its identifiability.

3.7.3. Posterior Distribution of Model Parameters

3.7.3.1. Marginal Posterior Parameter Distributions

Figure 7 shows the marginal posterior densities of the constant and stochastic process parameters of the 
model M2c with constant and time-dependent parameters. The simulations were started with a precipita-
tion event after a long dry period. This leads to a rapid initial increase in the water level, S1, as can be seen 
in the full time series in the supporting information (Figure S15 for constant parameters and Figure S48 
for stochastic parameters). This makes the importance of the differences in initial values S1,ini and S2,ini less 
relevant than it seems from the two top left plots in Figure 7. The calibrations with and without time-de-
pendent parameters lead to values of α1 around 2.5 to 3 indicating a strong nonlinear increase of the out-
flow of reservoir 1 with increasing water level. On the other hand, we have a stronger nonlinearity with α2 
around 0.5 with constant parameters whereas it is close to 1 with time-dependent parameters. As will be 
seen in the next subsection, this leads to a poorer prediction of base flow for the model with time-dependent 
parameters. The values of the parameters k1 and k2 are not easy to compare because of the different expo-
nents. However, the values of the (linear) interflow rate parameter k12 shows a strong difference between 
calibration with constant and time-dependent parameters. This difference indicates a different separation 
of the underground water body into the two compartments of the conceptual model. Its much smaller value 
for calibration with constant parameters implies that the slow reservoir reacts much more slowly to changes 
in the fast reservoir than for calibration with time-dependent parameters. This will be clearly seen in the 
slower dynamics of S2 for constant than for time-dependent parameters in the next subsection (Figures 8 
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and 9). The asymptotic standard deviation,  1fk  in the order of 0.38 compared to  2fk  in the order of 0.25 

indicates the need for a higher amplitude of the stochasticity of the fast reservoir.

It is a very remarkable result of this study that, despite the identical priors, we get considerably different 
posterior values for the time correlation parameters of the fast and the slow reservoirs,  1fk  and  2fk . The 

release rate parameter of the fast reservoir has a fluctuation rate in the order of γ ≈ 0.058 h−1 which corre-
sponds to a characteristic time τ ≈ 17 h whereas the slow (groundwater) reservoir has a fluctuation rate in 
the order of γ ≈ 0.019 h−1 which corresponds to a characteristic time τ ≈ 53 h. This result matches the expec-
tation that the fluctuation rates of the release rate parameter are larger for fast than for slow reservoirs. In 
addition, this result provides a nice explanation of a recent observation that an empirical, autocorrelated er-
ror model needs less autocorrelation during rain events when the discharge is driven by fast reservoirs than 
during dry weather periods during which the discharge is driven by slow reservoirs (Ammann et al., 2019). 
Our approach with stochastic, time-dependent parameters thus replaces the need for an explicit depend-
ence of error model autocorrelation by stochastic parameters that can keep their characteristic time scales. 
The variation in output fluctuation time scale results then from the dominance of the outflow from one or 
the other reservoir (from reservoir 1 during and shortly after rain events and from reservoir 2 during longer 
dry periods).

3.7.4. Posterior Uncertainty of Model Output During Calibration and Prediction Time Intervals

The Figures 8 and 9 show time series of discharge and water levels of the model M2c with constant param-
eters and of the model M2c with time-dependent parameters 1kf  and 2kf , respectively, over the final part of 
the calibration time range and the first part of the validation time range (see Figures S11–S25 for time series 
results of all models with constant parameters over the full calibration an validation ranges, over part of 
these ranges and over a short part of the validation range, and Figures S44–S58 for the corresponding plots 
with stochastic parameters). These plots and the known properties of the stochastic processes lead to the 
following observations:

•  The suggested approach with stochastic parameters leads to a description of uncertainty in all model 
state variables that is propagated to the output and is much larger than the random observation error
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Figure 6. Final part of the calibration time range and initial range of the prediction time range of discharge, Q, for the models M1a (top) and M2c (bottom). 
Points represent data, lines and gray areas median, and 95% uncertainty bands; the vertical line separates the calibration from the prediction period. The colored 
lines represent three realizations of the model.
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•  The approach leads to very narrow uncertainty bands during calibration, to an intermediate phase where 
the knowledge about observed discharge fades out, and a final phase with considerably higher prediction 
uncertainty in model states and output

•  The approach naturally leads to autocorrelation in model output, in the presence of multiple reservoirs 
even to different output error time scales during phases in which different reservoirs have a dominating 
effect on the output

•  The approach leads to a distinction of intrinsic uncertainty of a system from the random component of 
the observation error

Figure 10 quantifies the observations discussed in the previous paragraph and the previous subsections with 
the diagnostics measures introduced in Section 2.5.

The top left panel of Figure 10 shows the results for the NSE (Equation 15). The Nash-Sutcliffe Efficiency 
is very stable during calibration and prediction with constant parameters, although at much lower levels 
for the model structures M1a and M2a that do not consider nonlinearity in reservoir outflow - water level 
relationships. Due to the large number of degrees of freedom with stochastic parameters, the Nash-Sutcliffe 
Efficiency is very close to unity during the calibration phase with stochastic parameters. However, it drops 
very strongly for prediction with the model structures M1a and M2a which clearly show the model structure 
deficits of these models that were discussed in Section 3.7.2. It also drops quite strongly for the model M1b 
that considers nonlinearity but still relies on a single reservoir. As already discussed in Section 3.7.2, the 
models M2b and M2c perform similarly well as nonlinearity seems to be much more important for the fast 
than for the slow reservoir.

The top right panel of Figure 10 shows the results for the Flashiness Index, FI (Equation 18). In contrast to 
the other measures shown in Figure 10, the Flashiness Index is not a comparative measure between simula-
tions and data but it reflects a property of a single time series. The horizontal lines at the bottom of the top 
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Figure 7. Posterior marginals of the constant and stochastic process parameters of model M2c (black) and of the same model with constant parameters (red).
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right panel of Figure 10 show the Flashiness Index of the observations. It is evident that the lumped error 
model without autocorrelation greatly overestimates the flashiness of the observations whereas the output 
of this model without the lumped error term, which only considers parametric uncertainty, has a flashiness 
very close to the data. The model with stochastic parameters overestimates the flashiness, in particular 
when considering the random component of the observation error, which still seems to have to be chosen 
to be too large, although it is a minor contribution to the overall prediction uncertainty that is dominated 
by the intrinsic stochasticity in this model. In all model versions, the flashiness is quite stable for prediction 
compared to calibration.

The bottom left panel of Figure 10 shows the results for spread, the mean relative standard deviation,  rel 
(Equation 17) of the posterior distributions. We expect this quantity to be stable between calibration and 
prediction for the models with constant parameters. The decrease for prediction for these models is prob-
ably caused by a different fraction of rain and dry weather periods in these two time intervals. In contrast, 
there is a large increase in prediction uncertainty compared to calibration for the model with stochastic pa-
rameter. This reflects our much better knowledge of state and output during calibration than for prediction. 
This is a very important feature missing in the simple lumped error model.

Finally, the bottom right panel of Figure 10 shows the results for the DCD (Equation 16). The value close to 
zero for the model with constant parameters including the lumped error model indicates a similar shape of 
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Figure 8. Time series of discharge, Q, and reservoir levels, S1 and S2 for the model M2c with constant parameters over the final part of the calibration time 
range and the first part of the validation time range. Points represent data, lines and gray areas median, and 95% uncertainty bands; the vertical line separates 
the calibration from the prediction period. The colored lines represent three individual samples of time evolution.
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Figure 9. Time series of the time-dependent parameters (multiplier), 1kf  and 2kf , discharge, Q, and reservoir levels, S1 and S2 for the model M2c over the final 
part of the calibration time range and the first part of the validation time range. Points represent data, lines and gray areas median and 95% uncertainty bands; 
the vertical line separates the calibration from the prediction period. The colored lines represent three individual samples of time evolution.
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the posterior distributions and the data. Omitting the lumped error model clearly leads to a very strong un-
derestimation of uncertainty which is a natural result (ignoring major parts of uncertainty cannot lead to a 
good uncertainty estimate). The models with stochastic parameters show a strong decrease in data coverage 
from calibration to validation which is in contrast to the strong increase in spread. It seems that the increase 
in spread is still insufficient to lead to a good data coverage for prediction. Figure 11 identifies the cause of 
this problem. Insufficient coverage of the data for the model with stochastic parameters occurs primarily 
during low flows where even a quite large relative error is insufficient to cover the data if the predicted 
discharge is too low. The model with constant parameters performs better at low discharge first, because its 
lower value of α2 allows more discharge and second, because the offset parameter, b, of the lumped error 
model increases the relative error strongly for small values of discharge. A similar mechanism is harder to 
get with stochastic parameters. First, in the current model formulation, uncertainty in the parameter ki is 
independent of the discharge and cannot easily model such an offset. Second, an increase in the offset of the 

REICHERT ET AL.

10.1029/2020WR028400

23 of 28

Figure 10. Values of diagnostics measures introduced in Section 2.5 for the calibration and validation time domains and for model output with and without 
the lumped/observation error model for all model structures. Small circles indicate results for the model output without the lumped error model (in case 
of constant parameters) or without the observation error model (in case of time-dependent parameters), blue circles indicated results for constant model 
parameters and red circles results with stochastic model parameters. The results for the calibration range of each model are plotted left of those for the 
validation time range and the two corresponding values are connected with a line to clarify which pairs belong together.
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random observation error, that could easily increase the uncertainty at low discharges, is in clear disagree-
ment with the observations as it would even more increase the flashiness of the time series.

3.8. Conclusions of the Case Study

Our results clearly demonstrated some of the advantages of stochastic model parameters, both as a diagnostic 
approach to understand model deficits, and as an instrument to improve the characterization of predictive 
uncertainty. However, even this simple application also showed some of the challenges that are associat-
ed with having to solve a much more complex inference problem than when using time constant model 
parameters.

Failures in predictive cross-validation of models with stochastic parameters (see Figure 6 and the top left 
panel of Figure 10) clearly identified deficient model structures, and the (simple) exploratory analyses of 
the time-course of the parameters led to constructive suggestions for model improvement (see Figure 5). 
After reducing model deficits, stochastic process parameters lead to much more realistic uncertainty esti-
mates of internal model states than with a lumped error model that adds uncertainty only to the output 
(compare uncertainty bands of the states S1 and S2 in the Figures 8 and 9). In addition, the stochastic model 
structure allows us to describe our knowledge about the true output and add (the random part of) the ob-
servation error if we want to describe observations. In contrary, a lumped error model leads to a difficult to 
interpret model output without the error term, as it considers only part of the uncertainty and when adding 
the lumped error term, we have to include observation error also (as it cannot be not separated from the 
other errors). This does not allow us to make predictions about the true output, only of observations. The 
stochastic model reflects the difference in posterior knowledge we have between calibration and prediction 
time ranges, by having much narrower uncertainty bands in the calibration period (where we use the obser-
vations) than in the prediction period (where we do not use the observations). Simple lumped error models 
do not correctly describe this important property of the results. Note however, that this feature can also 
be reproduced with more sophisticated output error models (Reichert & Schuwirth, 2012). One of the key 
advantages of the stochastic process parameters found in our case study was the identification of different 
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Figure 11. Time series of discharge, Q, for the model M2c with constant parameters over a small part of the validation time range for calibration with constant 
model parameters (top) and with stochastic model parameters (bottom). Points represent data, lines and gray areas median, and 95% uncertainty bands. The 
colored lines represent three individual samples of time evolution.
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fluctuation time scales in different reservoir outflow coefficients that explain varying time scales found in a 
lumped error model in an earlier study (Ammann et al., 2019).

On the other hand, stochastic model parameters result in a greatly higher computational demand and more 
severe identifiability and convergence problems than constant model parameters. In addition, the resulting 
prediction uncertainty bands were too narrow at low predicted discharge (see Figure 11). This lead to an 
insufficient coverage of the data by the prediction bands (see the bottom right panel of Figure 10). The cause 
of this problem is that an uncertain water release parameter, ki, leads to a relative error in the resulting dis-
charge (see Equations 19 and 20) which is known to be insufficient for describing uncertainty for discharge 
predictions that are much smaller than the observations. In a lumped error model, this problem is easily 
solved by adding an offset to the width of the empirical error distribution, but this simple recipe cannot 
directly be transferred to the setting in the case study as the uncertainty in the parameters ki is independent 
of the reservoir level, Si.

4. Conclusions
Considering the theoretical development and extrapolating from the case study, we can draw the following 
conclusions:

The potential of the suggested approach can be summarized as follows:

•  Stochastic, time-dependent parameters are a very convincing concept for considering intrinsic model 
uncertainty (apparent stochasticity and model structure uncertainty) while still exactly keeping mass 
balances

•  Cross-validation of models with stochastic parameters very sensitively identifies model structure deficits 
and exploratory analysis of potential dependences of the stochastic parameter on model states and exter-
nal influence factors provide constructive hints to model improvement

•  After having eliminated strong model structure deficits, models with stochastic, time-dependent param-
eters lead to a much better description of (apparent) nondeterministic behavior and uncertainty in inter-
nal states and output than approaches based on deterministic models. In particular: (i) The propagation 
of (apparent) intrinsic stochasticity to model output naturally leads to autocorrelated output errors (this 
was not fully exploited in our case study). (ii) Stochastic parameters with different characteristic time 
scales may explain different dominating fluctuation time scales in model output during times in which 
different hydrological processes dominate the output. (iii) The characterization of posterior knowledge 
of stochastic models naturally leads to much narrower posterior distributions of model output during 
the calibration phase, where the knowledge is conditioned to the observations, than during the predic-
tion phase where no observations of output are used

On the other hand, there are remaining challenges that need more research:

•  Bayesian inference with stochastic, time-dependent parameters is computationally very demanding 
which is a particular problem for inference from long time-series. This problem may become less severe 
with improved numerical algorithms, with the availability of easy-to-use numerical implementations, 
and with increasing power of computational resources. The R package timedeppar, https://cran.r-pro-
ject.org/package=timedeppar, developed for this paper, is a first step in this direction

•  In the presence of processes with similar fluctuation time scales or small amplitudes, unique identifi-
cation of different sources of stochasticity may be difficult (in our case study, we could not identify the 
random component of the observation error)

•  As in hydrological modeling the intrinsic error will typically dominate the observation error, it may be 
more difficult to precisely characterize output uncertainty than with an empirical parameterization of a 
large, lumped error term (in our case study, uncertainty for low values of predicted discharge was under-
estimated due to the lack of an empirical parameter for an offset in the error variance at low discharge)

As we improve predictions by combining a mechanistic model with learning from adding many degrees 
of freedom to the inference problem, the suggested approach can be seen as an implementation of “the-
ory-guided data science” or “interpretable data science.” More applications of this approach to other case 
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studies and the consideration of some of the above-mentioned research needs could strongly contribute to 
a better assessment of its usefulness for improving dynamic environmental models and their uncertainty 
quantification.

Data Availability Statement
Current versions of the R package timedeppar developed for this paper and the code of the hydrological 
simulation program are available at: https://cran.r-project.org/package=timedeppar, https://gitlab.com/p.
reichert/timedeppar, https://gitlab.com/p.reichert/conhydmod. In addition, the frozen versions of software 
and data exactly as used for this paper are available in our institutional repository https://opendata.eawag.
ch at https://doi.org/10.25678/0002TG.
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