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Abstract: A wide knowledge base regarding the ecological preferences of benthic macroinvertebrates is synthesized
in public databases. This knowledge can assist in disentangling the influence of multiple environmental factors on the
probability of occurrence of macroinvertebrates and in identifying anthropogenic impacts on the macroinvertebrate
assemblage. We aimed to examine and extend current knowledge on ecological preferences by confronting it with
independent biomonitoring datasets and to assess how the taxonomic resolution of datasets and the prevalence of
taxa affects our ability to do so. We used a habitat suitability-based multi-species distribution model (HS-MSDM) and
applied Bayesian inference to confront current knowledge (formalized as prior probability distributions) against inde-
pendent biomonitoring data across rivers in Switzerland. Shifts in the resulting posterior probability distributions rel-
ative to the priors indicate a disagreement with the current knowledge of ecological preferences. Ecological preferences
for temperature and organic matter had the highest influence on the predicted occurrence of macroinvertebrates in
themodel, followed by flow velocity, insecticide pollution, and substratum. Three-fold cross-validation tests demon-
strated that the HS-MSDM predicted the distribution of taxa with a relative frequency of occurrence between 0.2 and
0.8 considerably better than a model without consideration of environmental factors. However, it was less able to pre-
dict the distribution of taxa with a frequency of occurrence <0.1 or >0.9. Nine taxa with a frequency of occurrence be-
tween 0.4 and 0.8 were identified as potentially useful bioindicators, given their strong association with the environ-
mental factors in the model. We also identified 29 taxa for which part of the ecological preference data, particularly
temperature and flow-velocity preferences, should be re-examined. For river morphology, 18 sensitive and 10 insen-
sitive taxa were identified, although direct and uniquely linked prior knowledge regarding morphology was lacking for
all taxa. Phylogenetically derived information on ecological preferences could be integrated and updated to fill gaps
in ecological preference databases. However, the taxonomic resolution of the biomonitoring and ecological preference
data plays an important role, as we show by identifying families comprising species that respond differently to envi-
ronmental factors. These results demonstrate the value of conducting biomonitoring at the most detailed taxonomic
level possible.
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A major challenge in ecology and environmental manage-
ment lies in disentangling the influence of multiple natural
and anthropogenic environmental factors on the composi-
tion of communities (Elith and Leathwick 2009, Guisan et al.
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environmental factors) can contribute to tackling this chal-
lenge. Existing knowledge on ecological preferences describes
cause–effect linkages, including non-linear relationships, be-
tween the occurrence of taxa and univariate environmental fac-
tors (Poff et al. 2006,Menezes et al. 2010). By analyzing spatial
patterns in the occurrence of taxawith certain ecological pref-
erences, a general understanding of environmental factors
that drive community composition can be achieved (Poff et al.
2006). Such an analysis provides a scientific basis for environ-
mental management across large scales. For example, changes
in composition, analyzed in terms of ecological preferences
across taxonomically diverse communities, can be used to de-
tect ecological impairments.

Stream macroinvertebrates form a species-rich group that
is frequently used as a bioindicator for anthropogenic impacts
(Schäfer et al. 2007, Stribling et al. 2008, Menezes et al. 2010,
Ruaro et al. 2016). However, macroinvertebrate communi-
ties often contain a large number of taxa with a low frequency
of occurrence (i.e., spatially rare; Nijboer and Schmidt-Kloiber
2004, Arscott et al. 2006). The spatial rarity of individual spe-
cies makes it difficult to use biomonitoring data to identify
the environmental factors determining their spatial distribu-
tion patterns; therefore, our ability to use spatially rare taxa
as bioindicators is limited, although spatial rarity may also
be an indication of high sensitivity to environmental factors
(Cao et al. 2001). A long research history has culminated in
a rich knowledge base on ecological preferences of freshwater
macroinvertebrates, available in databases such as Poff et al.
(2006), Vieira et al. (2006), Tachet et al. (2010), Schäfer et al.
(2011), Schmidt-Kloiber and Hering (2015), and Kefford
et al. (2020). Ecological preference data is not consistently avail-
able in different geographic locations, but data from exist-
ing databases could be combined with independent, local
biomonitoring data to increase its information content. For
example, when the amount of knowledge that can be gained
from biomonitoring data is poor, such as for spatially rare
species, combining that data with existing ecological prefer-
ence data can assist in interpreting occurrence patterns. Such
combination can be done by explicitly integrating ecological
preference data as a source of prior information into sta-
tistical species distribution models (Vermeiren et al. 2020)
to strengthen their predictive performance when local bio-
monitoring data is limited.

Information within ecological databases may be uncer-
tain and, in some cases, incomplete. Knowledge about eco-
logical preferences of taxa in databases is often pooled across
a wide range of data sources, including controlled experiments
and field observations, through a process of literature syn-
thesis and expert opinion (Schmidt-Kloiber and Hering 2015,
Serra et al. 2016). This process often lacks evaluation and
validation with independent data not used to construct the
databases (but see Kissling et al. 2014 for terrestrial mam-
mals). In this case, using a species distribution model to com-
bine existing knowledge on ecological preferences with inde-
pendent biomonitoring data in a Bayesian framework provides
a systematic methodology to examine existing knowledge on
ecological preferences. A comparison of the prior distribution
with the resulting posterior parameter distribution indicates
if there is disagreement between prior knowledge on ecolog-
ical preferences and the occurrence of species. Sequential con-
frontation of prior knowledge on ecological preferences with
new independent biomonitoring data can lead to an iterative
learning process (Vermeiren et al. 2020).

Biomonitoring using macroinvertebrates is often conducted
at coarse taxonomic levels, such as genus or family level, be-
cause of the suggested ecological similarity among taxa at these
taxonomic levels and the difficulty in species identification
(Dolédec et al. 2000, Poff et al. 2006, Beketov et al. 2009). This
mix of taxonomic resolutions leads to some taxa within a sin-
gle study or database reported at species level and others at
genus, family, or even coarser taxonomic levels (Lenat and
Resh 2001). Coarse taxonomic resolution limits the informa-
tion content within biomonitoring datasets, which, in turn,
limits the use of such biomonitoring data for environmen-
tal management (Schmidt-Kloiber and Nijboer 2004) and its
ability to fill gaps in existing knowledge on ecological prefer-
ences. Phylogenetic niche conservatism suggests that closely
related species are ecologicallymore similar than expected by
simple Brownian evolutionary motion (Losos 2008). Conse-
quently, ecological preferences for taxa missing specific in-
formation could potentially be derived from phylogenetically
related taxa (Poff et al. 2006, Bruggeman 2011). However,
ecological preferences ofmacroinvertebrates can show a high
diversity at fine taxonomic levels (Losos 2008, Graf et al. 2009,
Serra et al. 2016). Hence, coarse taxonomic resolution within
biomonitoring data likely increases uncertainty when deriv-
ing ecological preference information from phylogenetically
related species.

In this study, we aimed to examine and extend current
knowledge on the ecological preferences of macroinvertebrates
by confronting it with independent biomonitoring data. We
addressed the following research questions (RQ): RQ1)Which
ecological preferences are most important to predict the spa-
tial distribution of taxawithin invertebrate assemblages? RQ2)
Can we improve existing knowledge on ecological preferences
by confronting it with independent biomonitoring data, and
will our ability to improve that knowledge be affected by the
prevalence of taxa? RQ3) Canwe fill gaps in knowledge on eco-
logical preferences in cases where prior knowledge is not avail-
able in databases (a) regarding specific taxa for specific envi-
ronmental factors within the database and (b) regarding all
taxa for an environmental factor that is currently not avail-
able within the databases? and RQ4) How does the taxonomic
resolution of the biomonitoring data affect inferences about
ecological preferences from those data?

METHODS
Invertebrate biomonitoring data

We used data on presence and absence of macroinver-
tebrate taxa collected between 2010 and 2015 by the Swiss
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BiodiversityMonitoring (BDM) program overseen by the Fed-
eral Office for the Environment and available from the Makro-
invertebraten-Datenbank (MIDAT database; http://www.cscf
.ch/cscf/Makrozoobenthos/MIDAT, accessed 13 July 2017).
The BDM program aims to document nationwide biodiver-
sity trends in Switzerland by using a standardized multi-
microhabitat sampling method (IBCH Procedure; Stucki
2010; Appendix S1.1) to conduct sampling at regularly spaced
sampling points in rivers close to intersections of a reg-
ular grid spread across Switzerland. The dataset contained
taxonomic resolution up to species or genus level for Ephe-
meroptera, Plecoptera, and Trichoptera (EPT), with the ex-
ception of theTrichoptera familiesHydroptilidae,Goeridae, and
Lepidostomatidae (Table 1). Non-EPT taxa were available
at family level, except for the Gastropod genusAncylus and
6 taxa with a coarser taxonomic resolution (the class Oligo-
chaeta, ordersHymenoptera, Lepidoptera, and Prostigmata,
andthephylaNematoda and Cnidaria; Table 1).We included
all sampled taxa to maintain a full overview of the assemblage.

At some sites, taxa complexes containing multiple species
were identified only as a species complex, whereas at other
sites the individual species were recorded.We used a 5% rule
to resolve such cases of taxonomic mismatches, where if any
species within a complex was recorded at the species level
within at least 5%of the sites,we kept the species level (other-
wise we recorded presence of the associated complex). For
sites where the complex was recorded to be absent, we kept
the absence records for each of the corresponding species.
For sites where the complex was recorded to be present, we
made a notation of “not available” for the corresponding spe-
cies because we could not know if the species were absent or
present. For modeling we removed sites for a specific taxon
when itwas noted as not available,which resulted in a reduced
number of presence/absence data points for some taxa.

Data on ecological preferences
Knowledge on ecological preferences for macroinverte-

brates used in this study was extracted from the freshwater-
ecology.info (https://www.freshwaterecology.info, accessed
on 29March 2016; Schmidt-Kloiber andHering 2015), Spear
(http://www.systemecology.eu/indicate/; Liess et al. 2008),
and Tachet (available at https://www.freshwaterecology.info;
Tachet et al. 2010; Table 2) databases. These databases de-
scribe different ecological preferences by assigning affinity
scores for individual taxa for different environmental con-
ditions. Hereafter, affinity scores refer to the information as
originally presented in the databases, and ecological prefer-
ence scores refer to the information as we entered and exam-
ined itusingourmodel (see next 2 paragraphs). For example,
in the Tachet database, affinity scores for flow velocity, ranging
between 0 for low and 3 for high affinity, were given within
different classes. These classes correspond to specific inter-
vals of standing (<0.01 m/s), low (0.01–0.24 m/s), moderate
(0.25–0.5m/s), and high (>0.5m/s)flow velocities and, thus,
describe the affinity of a given taxon to the discrete flow-
velocity classes (Fig. 1B). Affinity scores in the freshwater-
ecology.info database contain information primarily at species
level. The Tachet and Spear databases contain information
at species and coarser taxonomic levels.

We first attempted to exactly match the name of each
taxon in the biomonitoring data with the name of a taxon
in the databases (which could be at species or coarser tax-
onomic level, depending on the taxonomic resolution in the
biomonitoring dataset). When no exact match was found in
the databases, or when affinity scores were lacking for a spe-
cific combination of taxon and environmental factor, we de-
rived affinity scores phylogenetically (here approximated as
pooling information from taxonomically related taxa). To do
so we searched for affinity scores at the genus level and then
derived affinity scores for the taxon in question by aggregat-
ing information from the other species in that genus. To ag-
gregate information, we took the maximum affinity score for
each environmental factor across the species, with the ex-
ception of sensitivity to insecticide pollution, where we took
the minimum affinity score. This is a conservative approach
that overestimates, rather than underestimates, the affinity
score for the taxon. When no matches were found at the ge-
nus level, we conducted the aggregation at the family level.
When no matches were found at the family level, affinity
scores were recorded as not available. No affinity scores for
any environmental factors were derived for 6 taxa that were
identified at taxonomic levels coarser than family level: the
class Oligochaeta, orders Prostigmata, Lepidoptera, and Hy-
menoptera, and the phyla Nematoda and Cnidaria.

Affinity scores derived from the databases can be expressed
on different scales depending on the database and environ-
mental factor considered. To standardize the information, we
normalized the affinity scores to values between 0 and 1, which
Table 1. Overview of the BDM dataset including all taxa at the most detailed available taxonomic resolution, with most
Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa resolved to species or genus level and other taxa to coarser
levels (S) and the same data with EPT species and genera merged to family level (F).

Dataset

Finest
taxonomic

level
Total
taxa

Taxa at
species
level

Taxa at
genus
level

Taxa at
family
level

Coarser
level
taxa Sites Samplings

S Species 245 148 23 68 6 491 579

F Family 102 – – 96 6 481 562

http://www.cscf.ch/cscf/Makrozoobenthos/MIDAT
http://www.cscf.ch/cscf/Makrozoobenthos/MIDAT
https://www.freshwaterecology.info
http://www.systemecology.eu/indicate/
https://www.freshwaterecology.info


Volume 40 March 2021 | 205
we used in the model and hereafter refer to as ecological pref-
erence scores. We normalized values by dividing each affinity
score for a given environmental factor by the maximum affinity
score for that environmental factor (Fig. 1A–F, Appendix S1.3).
Natural and anthropogenic environmental data
For each of the ecological preferences included in the

model, we derived data about the corresponding environ-
mental conditions at each of the sites and sampling dates
Table 2. Environmental factors, their derivation from indirect environmental factors, and the ecological preference to which they were
linked. FWE refers to the freshwaterecology.info database (Schmidt-Kloiber and Hering 2015). Additional details are provided in
Appendix S1.2 and Vermeiren et al. (2020).

Temperature T (7C)

Definition: Maximum morning water temperature in summer as defined by the FWE database.

Derivation: Estimated from catchment area and mean catchment elevation (Vermeiren et al. 2020).

Ecological preference: Temperature preference (FWE database) described in 4 classes after normalization and preprocessing:
very cold <67C, cold 6–107C, moderate 10–187C, warm >187C.

Saprobic condition sap (unitless)

Definition: Water quality related to easily degradable organic substances leading to reduced oxygen conditions for
macroinvertebrates.

Derivation: Estimated from proportion of agricultural land in the catchment, fraction of treated wastewater, and livestock unit
densities (Vermeiren et al. 2020).

Ecological preference: Saprobity (FWE database, using the Austrian saprobity values). Sensitivity of organisms to pollution by easily
degradable organic substances is described by saprobity, which contains 5 classes from no to high pollution (xeno-saprobic 5 0,
oligo-saprobic 5 1, b-meso-saprobic 5 2, a-meso-saprobic 5 3, and poly-saprobic 5 4).

Flow velocity v (m/s)

Definition: Average flow velocity of the river reach.

Derivation: Estimated from slope, mean annual discharge, river width at the sampling location, width variability, the proportion
of the substratum containing sediments with grain size >2.5 mm, and the proportion of the riverbed containing macro-algae.

Ecological preference: Flow velocity preference (Tachet database, there called current velocity preference) described in 4 classes:
standing <0.05 m/s, low 0.05–0.25 m/s, moderate 0.25–0.5 m/s, and high >0.5 m/s.

Insecticide pollution IP (unitless)

Definition: A combination of agricultural and urban sources that contribute to insecticide pollution in the river.

Derivation: The insecticide application rate (IAR) is a weighted sum of the proportions of crops weighted by the average number
of insecticide applications/year; the wastewater fraction (WW) is the proportion of wastewater at average discharge conditions.
Insecticide pollution is calculated as the weighted sum of IAR and WW, considering a weighting factor that was estimated from
the data (see Table S1.2).

Ecological preference: Sensitivity regarding pesticides (Spear database), which is a binary classification (sensitive or insensitive) from
a combination of 4 biological traits that influence the sensitivity of macroinvertebrates to pesticide (mainly insecticide) pollution
(sensitivity to organic chemicals, generation time, migration ability, and presence of aquatic life stages during the application
period of insecticides; Liess et al. 2008). Note: in the main text, referred to as sensitivity to insecticide pollution.

Substratum classes subst [0:1]

Definition: Relative coverage of substratum types.

Derivation: Proportion of cover of each substratum class recorded in the field including: 1) pebbles (containing mobile blocks >250 mm,
natural and artificial surfaces, and coarse inorganic sediments between 25 mm and 250 mm), 2) macrophytes (containing:
mosses, hydrophytes, and helophytes), 3) gravel between 2.5 mm and 25 mm, 4) roots and litter, 5) sand and silt <2.5 mm, 6)
mud <0.1 mm, and 7) microphytes (algae).

Ecological preference: Microhabitat/substratum preference (Tachet database), which was available in 9 discrete classes. These were
combined into 7 classes to link them to substratum classes recorded in the field. Specifically, we combined the classes sand and
silt, and roots and litter, respectively, based on the mean of the normalized affinity score across the 2 classes.

Morphology morph [0:1]

Definition: Morphological assessment according to the Swiss modular concept for stream assessment including width variability,
modifications of the river bed and the river banks, width and condition of the riparian zone, and presence of culverts. 0 is the
worst and 1 the best morphological condition (Liechti 2010, Langhans et al. 2013).

Ecological preference: Not available.
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targeted by the BDM program (Table 2, Appendix S1.2).
In addition, we included an integrated assessment of multi-
ple components of river morphology (hereafter morphology)
based on the Swiss methods for stream assessment (Liechti
2010) as an environmental factor for which no existing eco-
logical preferences were available in a database. We used this
morphology factor as a test case for our procedure to derive
ecological preferences in the absence of prior knowledge for
all taxa for a given influence factor. Data on substratum and
morphology were available for all BDM sites and sampling
dates. We calculated 4 other environmental factors, as de-
scribed in Vermeiren et al. (2020), that were not collected at
the specific BDM sites and sampling dates (Appendix S1.2).
Specifically we: 1) estimated average flow velocity based on
Manning’s equation (Cowan 1956), 2) derived temperature
with a model independently calibrated with 58 recording sta-
tions across Switzerland, 3) estimated saprobic conditions
(a factor reflecting water quality related to easily degrad-
ableorganicsubstances leadingtoreducedoxygenconditions
for macroinvertebrates) with a model calibrated with water-
quality data from 345 stations across Switzerland, and 4)
calculated insecticide pollution from agricultural land-use
types weighted by the average number of insecticide appli-
cations and the fraction of treated wastewater in the river.
The habitat suitability-based multi-species
distribution model

Vermeiren et al. (2020) developed a species distribution
model, the habitat suitability-based multi-species distribu-
tion model (HS-MSDM), that applies Bayesian inference to
integrate prior knowledge regarding ecological preferences
with independent monitoring data into models. Previously,
ecological preference information and its uncertainty had
mostly been treated as fixed inputs (Vermeiren et al. 2020).
Here, we briefly describe the main characteristics of the HS-
MSDM (also see Appendices S1.4–S1.6 and Vermeiren et al.
2020).We use the following indices:

Sites: i ∈ {1, ... , I }
Sampling dates at site i
(subscripted for site i): ti ∈ {1, ... , Ti}

Taxa: j ∈ {1, ... , J }
Ecological preferences: r ∈ {1, ... , R}
Figure 1. Derivation of a habitat suitability h for temperature (A), flow velocity (B), saprobic condition (C), substratum classes
(1: pebbles, 2: gravel, 3: sand and silt, 4: mud, 5: roots and litter, 6: microphytes (algae), 7: macrophytes) (D), insecticide pollution (E),
and morphology (F). Panels A–D show the original prior information from the databases, in the form of affinity scores as numbers
at the top of each panel, for an example taxon (Baetis alpinus), ecological preference scores sjr, normalized to the habitat-suitability
interval 0 to 1 (gray continuous lines), and processed to obtain a habitat suitability function hr (black dashed lines). Panels E and F
show habitat suitability as a continuous function of insecticide pollution and morphology, respectively, for an insensitive (continuous
line), moderately sensitive (dashed line), and sensitive (dotted line) taxon. Given the environmental conditions, xiti , at site i and sampling
ti, the habitat suitabilities, hitijr , can be derived from the suitability functions.
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We modeled the probability of occurrence (which includes
the probability of detection) for individual taxa making up
the assemblage at given sites and sampling dates. We as-
sumed there was sufficient time for the observed assem-
blages to have responded to changes in environmental con-
ditions at the site at a time scale of seasons to years. Model
inputs were: 1) the regional taxa pool based on the list of
taxa present within the BDM biomonitoring data, 2) xitir ,
the environmental factors (i.e., the explanatory variables or
predictors), at site i and sampling date ti that are uniquely
linked to ecological preference r, and 3) the prior knowledge
on the ecological preferences derived from the databases.

The ecological preference scores, sjr, combined with the
environmental factors, xitir , describe a habitat suitability func-
tion (Fig. 1A–F):

hitijr 5 hr xitir , sjr , ur
� �

(Eq. 1),

where ur represents additional, taxon-independent param-
eters (in our study we included 2 parameters to describe the
response of taxa to insecticide pollution, UIAR and Kinvmax;
Fig. 1E, Table S1.2, Appendix S1.4). Bold lowercase letters
refer to vectors that are indexed by subscripts for sites, sam-
pling dates, taxa, and ecological preferences. We can then
calculate the habitat suitability score, hitijr , for each envi-
ronmental influence factor r, taxon j, site i, and sampling
date ti, which is a value on a continuous scale between 0
(unsuitable) and 1 (suitable). Such habitat suitability scores
can be calculated a priori and then entered in species distri-
bution models (Vermeiren et al. 2020). Alternatively, we in-
cluded the habitat suitability function, hrðxitir , sjr , urÞ, itself
into the model. Because the habitat suitability functions can
take a non-linear shape, the model can describe a non-linear
response to the environmental factors. Furthermore, includ-
ing the habitat suitability functions into the HS-MSDM leads
to a non-linear model regarding the parameters.

To derive predictions regarding the probability of occur-
rence of each taxon j, site i, and sampling date ti from the
HS-MSDMmodel (Fig. 2), we calculated a linear predictor, zitij,
which is a weighted sum over all habitat suitability functions:

zitij 5 aj 1orbrhr xitir , sjr , ur
� �

(Eq. 2),

where aj is a taxon-specific parameter that can increase or
decrease the probability of occurrence of a specific taxon at
all sites and sampling dates and, thus, relates to its overall
prevalence across Switzerland. br are the taxon-independent
weighting factors (with values between 0 and infinity) that
apply to the whole assemblage. The br parameters describe
how strongly the habitat suitability function regarding each
environmental influence factor affects the occurrence of taxa
within the community. The final term, hrðxitir , sjr , urÞ, is the
habitat suitability function from Eq. 1.
Figure 2. Conceptual representation of the HS-MSDM based on habitat suitabilities h. Ecological preferences and parameter a are
shown in ovals, and environmental factors are shown in hexagons. The b-parameters are weighting factors that apply to the whole as-
semblage (i.e., are not taxon-specific). The a-parameters, as well as the ecological preference scores (dashed lines), are taxon-specific.
Model output is the probability of occurrence for each taxon after logistic transformation (modified after Vermeiren et al. 2020).
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To convert the predictor zitij in Eq. 2 to probabilities of
occurrence PðYitij 5 1jx, s, a, b, uÞ between 0 and 1, we ap-
plied a logistic transformation:

P Yitij 5 1jx, s, a, b, u� �
5

1

1 1 exp 2zitij
� � (Eq. 3),

where Yitij takes a value of 1 for occurrence and 0 for ab-
sence of taxon j at site i and sampling time ti, x are the
environmental factors, and s, a, b, and u are the model
parameters.

Parameter inference
We can assume that the observations of different taxa

at different sites and sampling dates are independent of each
other. Consequently, the probability of any outcome is given
by the product of the probabilities for individual observations:

P yjvð Þ 5
YJ

j51

YI

i51

YTi

ti51P yitijjv
� �

(Eq. 4),

where v stands for the model parameters: x, s, a, b, u. Hence,
the probability of occurrence for a specific taxon at a spe-
cific site and sampling date (yitij 5 1) is given by PðYitij 5
1jx, s, a, b, uÞ, and the probability of absence (yitij 5 0) is
given by 1 2 PðYitij 5 1jx, s, a, b, uÞ. When we insert the
actual observations from the BDM biomonitoring data in
Eq. 4, it becomes the likelihood function for the model pa-
rameters given the data. The likelihood function describes
how likely the observed data are if the model was true. By
searching for model parameter values that lead to the larg-
est likelihood, one can obtain the best agreement between
model output and observations (i.e., maximum-likelihood
parameter estimation). Additionally, we can account for
prior knowledge about the parameters by applying Bayesian
inference.

Bayesian inference is well suited to confront existing knowl-
edge (termed prior knowledge) about model parameters
(e.g., parameters that describe the ecological preference scores)
with independent data through the process of model cali-
bration. The prior knowledge about the parameters is for-
mulated as a probability distribution. This distribution is
wider with weaker prior knowledge and narrower if the prior
uncertainty about the parameters is small. The calibration
procedure tries to find the best compromise between the prior
knowledge and a good fit to the data, which is formalized in
a likelihood function. In combination with the prior prob-
ability distributions of the model parameters, f (v), the joint
posterior parameter distribution f (vFy) can then be obtained
according to Bayes’ theorem:

f vjyð Þ ∝ f vð ÞP yjvð Þ (Eq. 5).

The resulting posterior distribution of a specific parame-
ter can be compared with the corresponding prior distribu-
tion. If the prior knowledge is confirmed by the data, then
the width of the posterior distribution will be narrower than
the prior. If there is contradicting information between the
priorknowledge and the data, themode of the posterior will
be shifted compared with the mode of the prior (prior-to-
posterior shift; Fig. 3). In the case of low information con-
tent in the data about the parameters, the prior and poste-
rior distributions will be similar.

For our model, including the habitat suitability func-
tions allowed us to infer the parameters of these habitat
Figure 3. Comparison of prior and posterior probability distributions for ecological preferences (in this example, temperature) for
a unique taxon. The bold dashed line indicates the ecological preference score, which was derived (and normalized) from a database.
The gray area shows the prior distribution that reflects prior knowledge about the ecological preference score and its uncertainty.
The solid black line illustrates the marginal posterior distribution obtained from Bayesian inference, updating the prior distribution
by confrontation with independent data through model calibration. In this example, the prior-to-posterior shift to higher values indi-
cates higher preferences for very cold and moderate temperatures than were suggested by the database, whereas the low preference
for warm temperatures is confirmed by a reduction in parameter uncertainty (the posterior distribution is narrower than the prior
and has the maximum at the same value as the prior). A posterior distribution that is similar to the prior indicates low information
content in the data or a minor influence of the parameter on model output.
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suitability functions (including the parameters for the eco-
logical preference scores, sjr) during model calibration to
the BDMmonitoring data. By including the prior knowledge
on the ecological preferences, we can systematically examine
differences between the marginal prior and posterior proba-
bility distributions (including the prior-to-posterior shift and
the uncertainty in the probability distributions; Fig. 3) to
assess if there is agreement between the information in the
databases and the biomonitoring data.

The posterior probability distribution of all parameters
combined is referred to as the joint posterior distribution and
includes information about the correlation among param-
eters, whereas the distribution of each individual parame-
ter is called a marginal posterior distribution.We formulated
marginal prior probability distributions for the ecological
preference scores sjr in the form of a normal distribution
truncated to the interval [0, 1] with a mean centered at the
normalized ecological preference scores and with a standard
deviation of 0.2 (Fig. 3; Appendix S1.5). We chose this stan-
dard deviation to account for the uncertainty of the infor-
mation in the databases and to allow the posterior param-
eter distribution to shift during Bayesian inference in case
of strong evidence in the BDM monitoring data. For taxa
with missing affinity scores, we chose uniform prior distri-
butions, which give an equal probability for all values be-
tween 0 and 1 (Appendix S1.5). We used wide prior distribu-
tions for both aj and br parameters to allow the posteriors
to be shifted by learning from the BDM biomonitoring data
during Bayesian inference (Appendix S1.5).

For all numerical simulations (Appendix S1.6), we used
Hamiltonian Monte Carlo simulation implemented in the
rstan package (version 2.19.2) in R statistical software (ver-
sion 3.5.2; R Project for Statistical Computing, Vienna, Aus-
tria).The Stan code of the model is provided in Appendix S1.8.
Model evaluation
We evaluated the HS-MSDM for its model fit to the

whole dataset and for its ability to predict using 3-fold cross
validation. We chose 3 folds to allow for a reasonable repre-
sentation of rare taxa across the training datasets. We calcu-
lated 3 evaluation metrics: standardized deviances (d ), the
Dj

2 statistic, and the area under the receiver operating char-
acteristic curve (AUC; Appendix S1.7). Smaller standardized
deviances indicate better fit (when evaluated for the whole
dataset) or better predictive performance (when evaluated
for the 3-fold cross-validation datasets), and we calculated
standardized deviances for each taxon (dj) and across all
taxa (d ). The Dj

2 statistic quantifies the explanatory power
of the environmental factors for taxon j, with values close
to 1 indicating a high explanatory power and values close to
0 indicating a low explanatory power. The AUC is a popular
metric used to assess the performance of species distribu-
tion models (Jiménez-Valverde 2012). It is based on a com-
parison of the true positive vs the false positive rate, with
a value near 0.5 indicating no ability to separate presence
from absence and a value of 1 indicating perfect separation
(however, see limitations of this measure as summarized by
Lobo et al. 2007). We assessed AUC for each taxon. Note
that each of these 3 evaluation metrics are affected by the
relative frequency of occurrence (prevalence) of the individ-
ual taxa.We analyzed all evaluationmetrics at the maximum
posterior parameter estimates.
Model application
To address RQ1, we quantified the relative importance

of the different ecological preferences on the probability of
occurrence of taxa within macroinvertebrate assemblages
across all model applications described below. Specifically,
we compared the posterior distributions of the br parame-
ters for the different ecological preferences. The br param-
eters reflect the influence of each environmental factor as
well as the distribution of ecological preferences among taxa
(i.e., if all taxa have a similar preference for a given environ-
mental factor, its importance in governing the composition
of the assemblage will be less than if taxa had marked differ-
ences in their ecological preferences).
Table 3. Performance of different HS-MSDM applications for fitting and predicting spatial-distribution patterns of macroinvertebrate
assemblages at river sites throughout Switzerland, given different inputs of BDM biomonitoring and environmental data for the
2 datasets S and F (see Table 1). Total number of data points (n dat), number of estimated parameters (n par), mean deviance for
model calibration (d fit) and cross-validation (d val ± SD across the 3 folds), explanatory power for calibration (D2

fit) and cross-
validation (D2 val ± SD across the 3 folds), and the AUC for cross-validation (AUC val ± SD across the 3 folds). T 5 temperature,
v 5 flow velocity, sap 5 saprobic condition, IP 5 insecticide pollution, subst 5 substratum classes, and morph 5 morphology.

Model
version

Finest
taxonomic

level
Environmental

factors
n
dat

n
par

d
fit

d
val

D2

fit
D2

val
AUC
val

MS1 Species T, v, sap, IP, subst 111,419 5353 0.360 0.384 ± 0.009 0.183 0.177 ± 0.006 0.760 ± 0.015

MS2 Species T, v, sap, IP, morph 115,652 3927 0.359 0.380 ± 0.008 0.178 0.173 ± 0.011 0.796 ± 0.006

MS3 Species T, v, sap, IP, subst,
morph

111,419 5597 0.364 0.386 ± 0.004 0.176 0.172 ± 0.007 0.771 ± 0.014

MF1 Family T, v, sap, IP, subst 57,324 2251 0.463 0.489 ± 0.009 0.148 0.143 ± 0.003 0.733 ± 0.010
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We applied the HS-MSDM to the BDMdataset at its finest-
available taxonomic resolution (Table 1, dataset S)with stream
temperature, flow velocity, saprobic conditions, insecticide
pollution, and substratum classes as environmental factors
(MS1; Table 3). Additional hydro-morphological influence
factors were considered but not included in the final model
because of data scarcity or low sensitivity of the model (see
Appendix S1.2). We then identified taxa for which specific
preference information should be revised by experts (RQ2)
by identifying shifts of >0.2 from the maximum prior to the
maximum posterior probability distributions of ecological
preference scores (prior-to-posterior shift; Fig. 3). We chose
a threshold of 0.2 to focus on taxa with a considerable change
for which databases might most benefit from updating in
consultation with ecological experts.

We also used model MS1 to examine the ability of the
HS-MSDM to derive ecological preference scores for taxa
(RQ3a) and for an environmental factor (RQ3b) with miss-
ing prior information. To answer RQ3a, we pooled informa-
tion from the biomonitoring data for phylogenetically related
taxa as described previously. We identified taxa with pooled
ecological preference scores for which we obtained better
model performance (i.e., dj and Dj

2 statistics) than expected
based on their frequency of occurrence (Fig. 4A–D). To an-
swer RQ3b, we attempted to infer ecological preference scores
for the environmental factor of morphology from the
Figure 4. Standardized deviance dj (A) and Dj
2 statistics (B) for model MS1 fit of individual taxa vs their relative frequency of occur-

rence for: Ephemeroptera (n 5 54), Plecoptera (n 5 42), Trichoptera (n 5 76) (EPT), and remaining taxa (n 5 71) in Swiss rivers. Black
lines indicate the null model. Taxa abbreviations: E: Elmidae, G: Gammaridae, Br: Baetis rhodani, Ba: Baetis alpinus, Rt: Rhyacophila
tristis, Nm: Nemoura mortoni, Pl: Protonemura lateralis, Lb: Leuctra braueri, and Dd: Drusus discolor. The distribution of standardized
deviance dj (C) and Dj

2 statistics (D) are boxes encompassing the 75th and 25th percentiles with the medians as horizontal bars and whis-
kers extending 1.5� the interquartile range for model MS1 for EPT taxa. Green boxplots include all taxa within the respective order,
and orange boxplots include only taxa with a relative frequency of occurrence between 0.2 and 0.8. The numbers on top of the boxplots
provide the mean values.
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monitoring data without using prior knowledge. Although
the databases contain some prior knowledge for individual
aspects of morphology, there is no direct and uniquely
linked ecological preference that corresponds to the mor-
phological assessment used in Switzerland. We applied the
HS-MSDM with morphology instead of substratum (MS2;
Table 3) and with both morphology and substratum (MS3;
Table 3) as environmental factors. We classified taxa with
a relative frequency of occurrence >0.1 (because the model
performs more poorly for rare taxa) and aDj

2 >0.2 (indicat-
ing a reasonable explanatory power) as sensitive or insensi-
tive regarding morphology when their maximum posterior
preference score was >0.55 and <0.45, respectively (indicating
a considerable difference from 0.5).

To evaluate the effect of taxonomic resolution (RQ4),
we derived a 2nd dataset (Table 1, dataset F) by pooling the
EPT species and genera of dataset S at family level and keep-
ing the other taxa at family or coarser levels as in dataset S.
We applied the HS-MSDM model to dataset F with stream
temperature, flow velocity, saprobic conditions, insecticide
pollution, and substratum classes as environmental factors
(MF1; Table 3). We then compared the explanatory power
(D2 statistic) of the HS-MSDMwhen applied to theMS1 and
MF1 datasets and qualitatively compared ecological prefer-
ence scores obtained for pooled families in dataset MF1 com-
pared with those of the individual taxa in dataset MS1.
RESULTS
RQ1—Relative influence of ecological preferences

The different HS-MSDM models had only a slightly higher
deviance for cross validation than for calibration (Table 3),
indicating a reasonable predictive performance and no is-
sueofoverfitting. Ecologicalpreferences related to tempera-
ture, followed by saprobic condition, had the highest influ-
ence on the probability of occurrence of macroinvertebrates
across Switzerland in all models, with the other environmen-
tal factors following but varying in their order of influence
among models, as indicated by the posterior distributions
of the br parameters (Fig. 5). All ecological preferences con-
tributed to explaining the observed distribution patterns, as
indicted by the positive posterior distributions of their br
parameters that did not overlap with 0 (Fig. 5). Exceptions
were substratum and morphology in model MS3, which had
lower br parameter values that overlapped with 0, suggest-
ing some redundancy in the information content of substra-
tum and morphology. However, the Pearson’s correlation
coefficients between morphology and each of the 7 substra-
tum classes were low (mean: –0.07 ± 0.17 SD, range: –0.23–
0.28).
RQ2—Confronting existing knowledge of ecological
preferences with data

By comparing prior and posterior distributions of the pref-
erence parameters, we were able to identify taxa and prefer-
ences for which inferred information from the monitoring
data contradicts existing knowledge. However, for this com-
parison it is important to consider the goodness of fit (devi-
ance, dj) and explanatory power (Dj

2) of themodel, which are
affected by the frequency of occurrence of the taxa (Fig. 4A,
B). For example, taxa with a very high (>0.9) or low (<0.1) fre-
quency of occurrence often obtained a deviance below 0.2
(Fig. 4A, Appendix S2), but the model’s explanatory power
was often limited in these cases (Fig. 4B) because these taxa
were predicted to have a high or low probability of occurrence
everywhere. By contrast, the ability of the model to distinguish
presence from absence at sites was highest for taxa with an
intermediate relative frequency of occurrence of roughly be-
tween 0.2 and 0.8 and even including some taxa with a rel-
ative frequency of occurrence down to 0.1. Notable examples
for taxa with good predictive performance, as evidenced by
low deviances (Fig. 4A), in the MS1 model and a relative fre-
quency of occurrence between 0.4 and 0.8 included 2 fami-
lies, Gammaridae and Elmidae, and 7 species, Baetis rhodani,
Baetis alpinus, Rhyacophila tristis, Protonemura lateralis,
Drusus discolor, Leuctra braueri, and Nemoura mortoni.
These taxa also had relatively high Dj

2 values in the MS1
model (Fig. 4B), indicating that the included environmental
Figure 5. Distributions of the br parameters, which indicate
the strength of the effect of each environmental factor, via the
ecological preferences, on the probability of occurrence of
macroinvertebrates across Swiss rivers. Priors are shown as yel-
low shaded areas, which are hardly visible because they are
much wider (flatter) than the posterior distributions. Priors are
normally distributed with mean and standard deviation of 3.
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factors were strongly associated with occurrence of these
individual taxa. The MS1 model performance was compa-
rable across Ephemeroptera, Plecoptera, and Trichoptera,
especially when considering species with a relative frequency
of occurrence between 0.2 and 0.8 (Fig. 4C, D).

Some ecological preferences shifted in prior-to-posterior
distributions when confrontedwith biomonitoring data. Tem-
perature preferences of individual taxa displayed the largest
prior-to-posterior shifts (especially the cold and moderate
classes, which are well represented in the monitoring data;
Fig. 6A), followed by flow-velocity preferences (particularly
low-, moderate-, and high-velocity classes; Fig. 6B) and the
beta-saprobic condition class (Fig. 6C). By contrast, there were
few prior-to-posterior shifts for insecticide pollution (Fig. 6D)
and substratum classes, except for the class of pebbles (Fig. 6E).
Ecological preferences did not substantially shift for envi-
ronmental factors with poor coverage in the monitoring data,
such as classes of standing water and xeno- and poly-saprobic
conditions.
We generally confirmed the Spear classification of taxa’s
sensitivity or insensitivity to insecticide pollution (Liess et al.
2008), with only a few observed prior-to-posterior shifts. For
example, with model MS1, the genus Amphinemura, fam-
ily Athericidae, and species Baetis alpinus obtained narrower
marginal posterior probability distributions for sensitivity to
insecticide pollution compared with the priors, confirming
their high sensitivity. Likewise, the insensitivity of 13 families:
Asellidae, Cordulegastridae, Dugesiidae, Elmidae, Erpobdelli-
dae,Gammaridae,Glossiphoniidae,Hydrobiidae, Lymnaeidae,
Physidae, Sphaeriidae, Stratiomyidae, and Tabanidae were
confirmed by the model. For the suborders Oligochaeta and
Prostigmata and the phylum Nematoda, for which no prior
knowledge was available, model calibration suggested low
sensitivity to insecticidepollution.The largest prior-to-posterior
shift occurred for the caddisfly genus Tinodes (relative fre-
quency of occurrence: 0.12; insecticide pollution shift:–0.29).

Prior-to-posterior shifts differed in magnitude among
taxa depending on their frequency of occurrence. Infrequently
Figure 6. Distribution of prior-to-posterior shifts across all taxa (dark gray) and across taxa with a relative frequency of occurrence
of 0.2 to 0.8 (light gray) for each class of the different ecological preferences across Swiss rivers: temperature preference (A), flow-
velocity preference (B), saprobity (C), sensitivity to pesticides (D), and substratum preference (E). Note: some of these taxa derived
information from genus or family level. Those that did not have or did not derive information (i.e., with NA values when entering the
model) are not plotted. Gray horizontal lines indicate a prior-to-posterior shift of ±0.1. Boxes encompass the 75th and 25th percentiles
with the medians as horizontal bars and whiskers extending 1.5� the interquartile range.
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occurring taxa often had marginal posterior distributions for
preference parameters that were the same as the priors, which
was likely a result of the limited information content in the
biomonitoring data for rare taxa. For many of the more fre-
quently occurring taxa, the standard deviation of the mar-
ginal posterior probability distributions decreased, suggesting
that the current available knowledge on ecological preferences
was confirmed by independent biomonitoring data (Appen-
dix S3.1). For taxa with a relative frequency of occurrence
between 0.2 and 0.8, prior-to-posterior shifts for most eco-
logical preferences were larger compared with all other
taxa (Fig. 6A–E). Two examples of taxa with large prior-
to-posterior shifts were Nemoura minima and N. mortoni,
species with a relative frequency of occurrence of 0.31
and 0.50, respectively. Their general distributions across Swit-
zerland were represented well by model MS1 (Fig. 7A, B), as
also evidenced by the reasonable explanatory power of the
environmental factors (Dj

2 5 0.37 and 0.33, respectively)
andmodelfit (dj50.50 and0.59, respectively). Species-specific
temperature preferences were available in the databases and,
therefore, included in the model. The slightly narrower mar-
ginal posterior distribution compared with the prior con-
firmed the low suitability of very cold temperatures for N.
minima (Fig. 7A). By contrast, prior-to-posterior shifts sug-
gested a higher suitability of moderate temperatures for N.
minima (Fig. 7A) and of very cold conditions forN.mortoni
(Fig. 7B). Likewise, a narrower posterior distribution con-
firmed the high suitability of moderate flow velocities for
N. minima, despite this preference being phylogenetically de-
rived from other Nemoura species, but a prior-to-posterior
shift suggested a lower suitability of high flow velocities.

Based on our results, we compiled a list of 29 taxa with
a frequency of occurrence ≥0.15 for which model MS1 had
reasonable explanatory power (i.e., Dj

2 ≥ 0.2) and that dis-
played prior-to-posterior shifts exceeding 0.2 for a specific
ecological preference, mainly temperature and flow-velocity
Figure 7. Example results of HS-MSDM MS1 for 4 species. Maps show the distribution of the species: Nemoura minima (A), Nemoura
mortoni (B), Rhyacophila tristis (C), and Rhyacophila hirticornis (D), across Swiss rivers with presence (blue) and absence (red) observa-
tions. Point size increases with increased predicted probability of occurrence. Plots below the maps show the ecological preferences
of the species for temperature and flow velocity with prior information as red horizontal lines (and parameterized as gray shaded areas)
and posterior marginal parameter distribution in black, or colored for the 3 cross-validation runs. Note that some taxa have fewer data
points because of taxonomic mismatches in the data (see Methods: Invertebrate biomonitoring data).
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preferences but also saprobity, substratum, and 1 case of in-
secticide preferences (Table S3.2).
RQ3—Filling knowledge gaps
We were able to use the model to infer preference in-

formation for taxa with missing prior information (RQ3a).
In addition to the 6 taxa at taxonomic levels coarser than
family level, only few, primarily rare, taxa that were missing
prior knowledge about ecological preferences were included
in the model, assuming a uniform prior distribution (Ta-
ble 4). However, many taxa with ecological preference scores
that were derived from related taxa at genus or family level
were included in the model (Table 4). The average relative
frequency of occurrence of taxa with derived ecological pref-
erence scores in MS1 was below 0.2 for all ecological pref-
erences, although some taxa had high relative frequency of
occurrence (>0.5). One such example is R. tristis, which ob-
tained reasonable dj (0.68) and Dj

2 (0.25) statistics indicat-
ing good model fit and explanatory power given its relative
frequency of occurrence of 0.55 in model MS1, but which
derived all of its ecological preference scores from aggregated
information at the genus level. However, prior-to-posterior
shifts suggested lower values for cold and moderate tem-
peratures and higher values for warm temperatures (Fig. 7C),
indicating that this species differs in temperature preferences
from other Rhyacophila species. Other non-rare taxa with
reasonable model fit and explanatory power also derivedmost
of their ecological preference scores (except temperature
preferences) from related taxa at the genus level. These taxa
include: B. rhodani (however, we did not derive ecological
preferences on insecticide pollution), P. lateralis,N. mortoni,
and L. braueri (relative frequency of occurrence: 0.67, 0.53,
0.50, and 0.43, respectively; Appendix S2.1).

Wewere able to usemodelsMS2 andMS3 to successfully
infer preferences for the environmental factor morphology
without using prior information (RQ3b).We classified 18 taxa
as sensitive to morphological conditions and 10 taxa as in-
sensitive (Table 5) based on the criterion that their mean pos-
terior ecological preference score for morphology was >0.55
or <0.45, respectively. For the other taxa, the marginal pos-
terior probability distribution was very similar to the prior or
the model performance was considered inadequate to make
a strong statement on morphological preferences (i.e., for rare
taxa with a relative frequency of occurrence <0.1 or for which
the explanatory power, Dj

2, of the model was <0.2).

RQ4—Effects of taxonomic resolution
The marginal posterior probability distributions of eco-

logical preference scores can differ between families and their
Table 4. Overview of the completeness of data on ecological preferences, including the relative frequency of occurrence
of taxa with missing affinity scores and the taxonomic level at which their ecological preferences were derived, which
were included in the HS-MSDM MS1 model.

Ecological
preference

Taxa with missing
affinity scores

Mean relative frequency
of occurrence of taxa with
missing affinity scores (±SD)

Taxa with prior
information derived
from genus level

Taxa with prior
information derived
from family level

Temperature 82 0.14 ± 0.22 34 28

Flow velocity 11 0.16 ± 0.28 131 6

Saprobity 37 0.14 ± 0.21 131 7

Insecticide pollution 11 0.16 ± 0.28 73 21

Substratum 11 0.16 ± 0.28 131 6
Table 5. Classification of taxa into sensitive and insensitive cat-
egories for morphology (mean posterior ecological preference
score for morphology >0.55 and <0.45, respectively, in models
MS2 and MS3). We excluded taxa with a relative frequency of
occurrence <0.1 and a D2 <0.2. Numbers following species names
indicate their relative frequency of occurrence in the full dataset
(MS2). Taxa with * obtained a relative frequency of occurrence
<0.1 and a D2 <0.2 in model MS2 but not in MS3.

Taxa sensitive to morphology Taxa insensitive to morphology

Baetis alpinus, 0.74 Amphinemura, 0.22

Baetis muticus, 0.47 Baetis lutheri, 0.12

Blephariceridae, 0.27 Ecdyonurus venosus, 0.17

Capnioneura nemuroides, 0.11* Elmidae, 0.53

Chloroperla susemicheli, 0.13* Gammaridae, 0.45

Drusus discolor, 0.50 Hydropsyche siltalai, 0.12

Ecdyonurus helveticus, 0.31 Paraleptophlebia
submarginata, 0.12

Epeorus alpicola, 0.16 Protonemura intricata, 0.14

Epeorus assimilis, 0.16 Rhyacophila tristis, 0.55

Habroleptoides confusa, 0.27* Tinodes, 0.21

Leuctra braueri, 0.43

Leuctra major, 0.17

Leuctra nigra, 0.28

Nemoura minima, 0.31

Nemoura mortoni, 0.50

Protonemura lateralis, 0.53

Protonemura nimborum, 0.13

Rhithrogena loyolaea, 0.23*
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corresponding genera and species, as shown by comparing
models MF1 andMS1. For example, the marginal posterior
probability distributions inferred from model MF1 for the
family Baetidae suggested a high preference for many of the
environmental conditions (exceptions were the very cold tem-
perature class, the xeno- and poly-saprobic classes, and the
substratum classes mud, roots-litter, and microphytes; Fig. 8).
By contrast, some of the individual species or genera obtained
markedly different ecological preference scores, as indicated
by their marginal posterior probability distributions inferred
with model MS1 (Fig. 8). For example, the results suggested
low preferences of Baetis lutheri for very cold and cold water
temperature classes and of B. alpinus for warm water tem-
peratures in contrast with the high preference across temper-
ature classes at the family level. The information content lost
from pooling individual species to family level was also re-
flected in the lower explanatory power of model MF1 as a
whole compared with model MS1 (Dj

2 5 0.148 and 0.183,
respectively; Table 3). Moreover, model MF1 had lower b
parameter values for temperature and flow velocity and
higher values for substratum than model MS1, indicating
that species (EPT in the BDM dataset) differ in their sensi-
tivity to these environmental factors compared with their
corresponding families.

DISCUSSION
This study demonstrated that the integration of prior

knowledge and independent biomonitoring data in an HS-
MSDM can lead to realistic predictions of macroinvertebrate
occurrences for many taxa with frequencies of occurrence
between 0.2 and 0.8. We took advantage of the information
content within both data sources to examine and extend
current knowledge on ecological preferences. Both the fre-
quency of occurrence of taxa and taxonomic resolution of
the data played important roles in the ability to update prior
knowledge on ecological preferences through confrontation
with independent biomonitoring data. For rare taxa, there was
limited information (i.e., few presence data points) in the bio-
monitoring data. Hence, the ability to improve predictions
on the occurrence of rare species by integrating prior knowl-
edge is particularly valuable because these species could be
useful bioindicators when their spatial rarity is linked to pref-
erences for specific environmental factors. Likewise, the unique
ecological preferences of individual species deserve close
Figure 8. Comparison of the marginal posterior distributions of the habitat suitability parameters (sr) for temperature (T), flow ve-
locity (v), saproby (sap), insecticides, and substratum (subst) for the family Baetidae (model MF1, black line) with the individual spe-
cies from the same family (model MS1, colored lines) for species with a relative frequency of occurrence >0.05. The prior distribution
of the family is shown as gray shaded area. The prior distributions of the species are given as colored areas if they deviate from the
prior distribution of the family. If species-level prior distributions are the same as the family level, they are not shown (i.e., they are
the same as the gray shaded area). The x-axis shows the parameter value (between 0–1) and the y-axis shows the probability density
(between 0–1). Numbers in the legend indicate the relative frequency of occurrence.
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attention in biomonitoring programs, which our study high-
lights by showing improved predictions with increased taxo-
nomic resolution.

RQ1—Relative influence of ecological preferences
Species distribution models often use a set of variables

that simplify reality to describe and predict spatial patterns
(Elith and Leathwick 2009, Guisan et al. 2013). Previous
studies have aimed to increase the realism and reliability of
such models by including processes such as biotic interac-
tions, dispersal limitations, or temporal dynamics (Guisan
and Zimmermann 2000). In the current study, we aimed to
increase the mechanistic foundation of species distribution
models by explicitly including relationships between spe-
cies occurrences and ecological preferences for several envi-
ronmental factors. This was done by including habitat suit-
ability functions into the structure of the HS-MSDM and
integrating existing knowledge on ecological preferences of
individual taxa as prior parameter values for these habitat
suitability functions.

The importance of each environmental factor included
in the HS-MSDMmodel is affected by the range of the en-
vironmental conditions covered by the monitoring data as
well as the strength of the taxa’s ecological preferences for
each environmental factor. For instance, rivers sampled in
the BDM program are spread across a broad elevation gra-
dient (minimum5 200 m a.s.l., maximum5 2630 m a.s.l.),
corresponding to a large temperature range. This tempera-
ture gradient offers a wide niche axis along which taxa could
diverge, and, indeed, ecological preferences for temperature
had the highest influence in explaining the observed occur-
rence patterns. Associations between temperature and spatial
patterns in macroinvertebrate taxa relative abundance and
density have also been observed at a smaller scale within in-
dividual river catchments in the Swiss Plateau (Robinson
et al. 2014), further suggesting an influence of temperature
on assemblage structure of lotic macroinvertebrates. Eco-
logical preferences for saprobic conditions, the 2nd-most in-
fluential environmental factor in the model, confirm that
many taxa display strong ecological preferences for specific
saprobic conditions (Schmidt-Kloiber and Hering 2015) and
that saprobic conditions play an important role in determin-
ing the composition of macroinvertebrate assemblages. This
ecological preference is influential despite improvements in
reducing organic matter pollution in rivers in Switzerland
(Hering et al. 2012), and few of the BDM sampling sites fell
in the extreme xeno- and poly-saprobic classes.
RQ2—Confronting existing knowledge of ecological
preferences with data

The HS-MSDM provides a systematic framework that
can be used to confront available information on ecological
preferences of individual taxa with independent data. A com-
parison of the marginal prior and posterior parameter distri-
butions for taxa with sufficient model performance can help
identify taxa for which experts should consider revising pref-
erence information in databases. We propose a 2-step pro-
cess: 1) model cross validation, which tests the predictive
performance and explanatory power of the model, and 2)
ecological expert review of the proposed changes, consid-
ering knowledge about the ecology of the taxa and the in-
herent uncertainty within the modeling process (Vermeiren
et al. 2020).

Including prior knowledge on ecological preferences into
species distributionmodels can lead to good predictive per-
formance, even for relatively rare taxa (Vermeiren et al.
2020). Results fromourmodel cross validation confirma good
predictive performance formany taxawith a relative frequency
of occurrence between 0.2 and 0.8 and even for some taxa
with a relative frequency of occurrence down to 0.1 (Fig. 4A–
D). The biomonitoring datasets we used contained a large
number of spatially rare taxa (65% of taxa in dataset S were
present in <5% of the samples), as is often the case for macro-
invertebrate assemblages (Nijboer and Schmidt-Kloiber 2004,
Arscott et al. 2006). Because only few presence data points
are normally available for rare taxa, biomonitoring data do
not contain enough information to infer a narrow marginal
posterior probability distribution, especiallywhenprior knowl-
edge is also lacking. The moderate explanatory power of the
model across thewhole assemblage reflects, in part, the diffi-
culty of representing the distribution of rare taxa.

A prior-to-posterior shift towards increased ecological
preference scores (or lowered sensitivity for insecticide pol-
lution) suggests that a taxon can occur under environmental
conditions that were thought to be unsuitable and provides
an indication to reconsider current knowledge. By contrast, a
shift to lowered ecological preference scores (or higher sensi-
tivity for insecticide pollution) may also be the result of con-
founding factors, which could restrict a taxon from occur-
ring under certain combinations of environmental conditions
despite its tolerance to a specific condition. Overall, in our
study, we learned most about preferences for temperature
and flow velocity, as indicated by the higher average prior-
to-posterior shifts of these ecological preferences compared
with others (Fig. 6A–E).

Our results indicate that the Spear classification of spe-
cies being sensitive or insensitive to insecticide pollution,
used for bioindication with the Spear index (Liess et al. 2008),
is a reliable source of prior information to predict the dis-
tribution of taxa. We observed only few prior-to-posterior
shifts in ecological preference for insecticide pollution and
instead often observed a reduced uncertainty of the ecolog-
ical preference knowledge (i.e., a narrower posterior proba-
bility distribution compared with the prior). The few large
prior-to-posterior shifts we observed were for taxa that lacked
species-specific knowledge. In such cases our model might
offer an opportunity to learn about sensitivity to insecticides.
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For example, the large prior-to-posterior shift observed for
the caddisfly genus Tinodes, classified as sensitive in the Spear
database (Liess et al. 2008), may imply either that some spe-
cies of this genus are less sensitive than others or that this
genus is generally less sensitive to insecticides than previously
thought. Similarly, for the caddisfly species Ecclisopteryx
madida (relative frequency of occurrence: 0.11; insecticide
pollution shift: –0.10), the Spear classification was derived
from other species of the same family because of missing
species-specific information. The lowered sensitivity suggested
by the HS-MSDM indicates a difference in the sensitivity
of this species compared with other taxa of the same fam-
ily, which consists of a large number of different genera and
species. More accurate data regarding insecticide pollution,
instead of the currently available rough estimate based on
wastewater and agricultural land-use inputs, would further
increase our ability to learn from the inference.

Based on our results, we compiled a list of 29 taxa (Ap-
pendices S3.2, S3.3) for which we suggest that ecological
preference information in the databases should be reexam-
ined by experts because these taxa displayed large prior-to-
posterior shifts. Such shifts may illustrate imperfect infor-
mation in the ecological preference databases or show the
effects of deriving information from phylogenetically related
taxa that do not have exactly the same preferences. In both
cases, we recommend a revision or extension of ecological
preference information.

RQ3—Filling knowledge gaps
Despite the high cost and required level of expertise, con-

ducting biomonitoring and synthesizing ecological knowledge
in databases at the most detailed taxonomic level possible
is highly valuable for improving our ecological understand-
ing and predictive capacities. For example, for R. tristis and
Rhyacophila hirticornis (relative frequency of occurrence of
0.55 and 0.22, dj of 0.25 and 0.40, Dj

2 of 0.68 and 0.27, re-
spectively), we derived prior knowledge on their ecological
preferences by pooling scores from taxonomically related spe-
cies within the genus Rhyacophila. Nonetheless, both species
showed large prior-to-posterior shifts for someecological pref-
erence scores, which differed between the 2 species (Fig. 7C,
D). For example, the prior-to-posterior shifts suggested higher
ecological preference scores for warm (R. tristis) and very cold
(R. hirticornis) temperatures as compared with the prior dis-
tributions that were phylogenetically derived.

The HS-MSDM can be applied to derive ecological pref-
erence scores when prior information is lacking for all taxa
in the model. Model MS2, for example, obtained good over-
all performance and included morphology, an environmental
factor for which no single, uniquely linked ecological pref-
erence was available (Table 3). Moreover, results of mod-
els MS2 and MS3 indicated that 18 sensitive taxa, especially
those with relatively high relative frequency of occurrence,
such as B. alpinus, Baetis muticus, D. discolor, L. braueri,
N. mortoni, and P. lateralis, can be expected to respond to
morphological alterations (Table 5). This information could
be useful for monitoring the success of restorationmeasures,
although the multiple criteria integrated into the Swiss mor-
phological assessment might obscure a direct causal identi-
fication of why a species might be more or less sensitive.
RQ4—Effects of taxonomic resolution
Because of resource constraints, a lack of taxonomic ex-

pertise at species level for some taxa (including missing de-
termination keys for species-level identification), or the lower
error rates that can be achieved for coarser-level identifica-
tion, monitoring is sometimes conducted at a coarse taxo-
nomic resolution (Stucki 2010). Nonetheless, our results for
EPT taxa at family level or coarser resolution gave poorer
model fit and prediction than results at species level (Table 3;
MF1 vs MS1). These results confirm that ecological prefer-
ences can be variable among species within the same genus
or family and that the information content of biomonitoring
data is highest at the finest taxonomic resolution (Schmidt-
Kloiber and Nijboer 2004, Serra et al. 2016).

For taxa where species-level data on ecological prefer-
ences is already available, such as the EPT taxa in this study,
our modeling approach can help identify specific bioindicator
species within a family. This was the case for common fam-
ilies that consist of species that differ in their ecological pref-
erences including Baetidae, Heptageniidae, Limnephilidae,
Nemouridae, Perlodidae, Rhyacophilidae, and Taenioptery-
gidae. For common taxa that are currently resolved to a coarser
level than family in the BDM dataset, such as nematodes and
oligochaetes, the model has a low explanatory power, even
though it is known that these taxa can be useful bioindicators
at a finer taxonomic resolution (e.g., Vivien et al. 2016, Höss
et al. 2017). Also, for common non-EPT families, such as the
dipteran families Chironomidae, Limoniidae, Simuliidae, and
Empididae, a finer taxonomic resolution would be expected
to lead to better explanatory power of themodel and stronger
inference regarding ecological preferences, even though this
could not be tested in the present study. In contrast, for the
taxa Cnidaria, Hymenoptera, and Lepidoptera, which have
few presence data points in the biomonitoring data, finer tax-
onomic resolution would likely not lead to a higher informa-
tion content in the data.

Further research directions
Further interdisciplinary collaboration, particularly be-

tween scientists developing databases and those developing
models, will be beneficial for both model and database devel-
opment. We propose that for some species displaying large
prior-to-posterior shifts, particularly the list of 29 taxa iden-
tified in our study (Table S3.2), current ecological knowl-
edge in databases be revised. Prior-to-posterior shifts, how-
ever, could be caused by diverse reasons that might require
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multidisciplinary attention to investigate. Reasons for prior-
to-posterior shifts include deviations in interpretation of
affinity scores in the databases and their conversion to eco-
logical preference scores for modeling, biased estimates of
environmental conditions (which often need to be modeled
themselves), and regional differences in ecological prefer-
ences for thesametaxa(e.g.,duetoadaptationorsub-species
with different preferences). Moreover, discrepancies in the
predicted and observed distribution of taxa may relate to ob-
servational errors in biomonitoring data and additional con-
founding environmental or anthropogenic factors or processes
(e.g., dispersal limitations or historic and random events;
Chave 2004, Van de Meutter et al. 2007, Kozak et al. 2008,
HilleRisLambers et al. 2012, Cadotte and Tucker 2017) that
are currently not included in the model. The modeled dis-
tribution of N. minima and N. mortoni across Switzerland
(Fig. 7A, B), for example, showed some false positive loca-
tions where our model predicted presence but none was
observed. An investigation of what sets these specific loca-
tions apart could offer insight to additional factors influenc-
ing occurrence, which provides an example of the potential
synergy between modeling-based and field-based ecology.

Further development of HS-MSDMs will benefit from in-
creased alignment in the way affinity scores are presented
across databases and how they are mathematically formu-
lated in models. Continued input and efforts by taxonomists
and ecologists to extend current ecological preference data-
bases will also provide more complete data and support more
accurate modeling. For example, an extended temperature
database (Halle et al. 2016) could improve model perfor-
mance by preventing the need to derive temperature prefer-
ence data for some individual taxa from taxonomically re-
lated taxa, as was done in this study. Additionally, in our
study we selected 1 ecological database for each specific eco-
logical preference, but an alternative strategy would be to
merge prior information from multiple ecological databases
to maximize the available prior information. Preference in-
formation is often delineated based on a process of literature
review and expert opinion (Schmidt-Kloiber and Her-
ing 2015, Serra et al. 2016), which pools information from a
large range of sources and geographic areas. Also, ecological
preference data is often represented categorically, which fa-
cilitates comparisons across taxa. However, definitions of
environmental conditions delineating class boundaries may
sometimes be fuzzy. Moreover, the way ecological prefer-
ences are derived from ecological databases, normalized, and
transformed into a habitat suitability function, like in the
HS-MSDMmodeling process, leaves room for increased un-
certainties in model outputs. For example, the temperature
preference scoreswithin the database forCentroptilum luteo-
lum were 0 for very cold, 1 for cold, 3 for moderate, 2 for
warm, and 4 for eurytherm (where the eurytherm class does
not correspond to a specific temperature interval but, rather,
represents the ability of a taxon to occur at a wide range of
temperatures). However, because the eurytherm tempera-
ture class obtained the maximum score of 4, this resulted—
after normalization and integration into a habitat suitability
function (which integrated the eurytherm class into the scores
of the other classes; Appendix S1.3, S1.4)—in a prior distribu-
tion that predicted high suitability across all temperature
classes. The posterior distribution, showing a lowered suit-
ability for very cold and cold classes, matched more closely
with the original scores given in the freshwaterecology.info
database for these classes, which illustrates the challenge of
interpreting and integrating preference information into a
mathematical framework.

A good coverage of all environmental factors, including
coverage of different combinations of environmental factors
that often naturally co-occur, is difficult to achieve in bio-
monitoring data unless it is accounted for in the site-selection
strategy. Saprobic conditions, for instance, often reflect an
elevational gradient. Rivers of higher elevation tend to be-
long to the oligosaprobic class and those of lower elevation
to the beta-mesosaprobic class, which is largely because sapro-
bity naturally increases from source to mouth. Even though
we avoided including strongly correlated environmental fac-
tors in our model, such naturally occurring patterns are hard
to avoid. For example, sampling in the BDM biomonitoring
program is organized along a regular grid spread across Swit-
zerland, independent of patterns in environmental factors.
The identification and inclusion of additional sites that lead
to a better coverage of all combinations among environmen-
tal factors, especially the inclusion of sites with low tempera-
ture and higher saprobic values or higher insecticide pollu-
tion, would help resolve potentially confounding effects.

Another challenge in building species distributionmodels
for biomonitoring data is variable selection, which needs to
include consideration of uncertainty and multi-collinearity
in environmental factors. The 6 environmental variables con-
sidered in this study are known to affect macroinvertebrate
distributions and to vary across Switzerland, including across
the Swiss Plateau and the Alps. Inclusion of additional fac-
tors in the model, such as hydrological regime and availabil-
ity of different food sources, could add additional explanatory
power, yet their inclusion needs careful consideration. Factors
that require estimation, such as the 4 environmental factors
we estimated for this study, add uncertainty to model re-
sults. For example, stream water temperature was modeled
from indirect variables, which themselves include uncer-
tainty. The application of improved temperature measuring
systems (e.g., low-cost, remote, environmental sensor plat-
forms; Lockridge et al. 2016) or models would increase the
reliability of temperature predictions in future modeling ef-
forts. For environmental factors with partly overlapping infor-
mation content (e.g., substratum and morphological assess-
ment), the inclusion of both factors influences the strength
of the response to each factor compared with a model that
includes only 1 of them. Modeling efforts should consider
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such multi-collinearity during variable selection by, for ex-
ample, considering statistical techniques for variable selec-
tion and the ecological importance of each factor.

Our model-based approach to revise and complement
ecological preference information by confronting it with in-
dependent biomonitoring data can be transferred to other
organism groups for which ecological preference informa-
tion and biomonitoring data exist. Our results show that the
model works best for taxa with an intermediate frequency
of occurrence, roughly between 0.2 and 0.8. Rare taxa can
still be included in the model, but a high explanatory power
of the model cannot be expected for rare taxa, and, there-
fore, model outputs will not reveal as much about their eco-
logical preferences.
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