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We combine results of high-resolution microfluidic experiments with extensive numerical
simulations to show how the flow patterns inside a “swiss-cheese” type of pore geometry can
be systematically controlled through the intrinsic rheological properties of the fluid. Precisely,
our analysis reveals that the velocity field in the interstitial pore space tends to display enhanced
channeling under certain flow conditions. This observed flow “localization”, quantified by the
spatial distribution of kinetic energy, can then be explained in terms of the strong interplay
between the disordered geometry of the pore space and the nonlinear rheology of the fluid.
Our results disclose the possibility that the constitutive properties of the fluid can enhance the
performance of chemical reactors and chromatographic devices through control of the
channeling patterns inside disordered porous media.
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INTRODUCTION

Flow through porous media is of great interest in chemical engineering, physics, and biology [1–3].
Previous studies have shown that the disordered characteristics of the pore structure naturally leads to
heterogeneous flow patterns [4–8] and preferential channeling [9–11]. Understanding how to control
and manipulate these flow patterns can help to optimize catalysts [12, 13] or chromatographic devices
[14, 15], and allows to steer chemical reactions inside the porous medium itself [16–18].

In order to understand the physics of important problems like, for example, blood flow through
the kidney [19] or oil flow through porous rocks [20, 21], one must also consider the nonlinear
constitutive behavior of the fluids involved in these processes. Technological applications which
make use of non-Newtonian fluids are ubiquitous nowadays [22–25]. It is, for instance, the case of
shear-thinning solvents that are present in dropless paints [26], shear-thickening fluids being used as
active dampers [27] and hybrid fluids as components of enhanced body armors [28]. While
Newtonian flows in irregular media have been extensively investigated theoretically and
confirmed by many experiments, the study of non-Newtonian fluids lack a generalized
framework due to their diverse constitutive nature. Non-Newtonian flows through porous media
have mainly been studied theoretically [29, 30] and through numerical simulations [31, 32], where
the main focus of interest was to find non-Darcian models for the flow of generalized Newtonian
fluids [30, 33–37]. In the particular case of power-law fluids, it has been shown that, in spite of the
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nonlinear nature of the fluid’s rheology and the geometrical
complexity of the pore volume, the general behavior of the
system can still be quantified in terms of a universal
permeability extending over a broad range of Reynolds
conditions and power-law exponents [38].

However, quantitative experiments with non-Newtonian
materials which go beyond simple bulk measurements [39, 40]
are scarce [41] because the design of the experimental pore geometry
and the operating conditions need to be adjusted in order to match
the nonlinear constitutive regime of the fluid’s rheology. Here we
combine the results of microfluidic experiments [42] with fluid
dynamics simulations to demonstrate how the nonlinear rheological
properties of a fluid can be effectively exploited in order to control
the macroscopic transport properties of a flow through the external
operational flow conditions. These results have important
consequences for the design of chemical reactors and
chromatographic systems as well as for the enhancement of oil
recovery and transport in porous media in general.

Under steady-state conditions the motion of an
incompressible fluid through the interstitial space of a porous
medium is described by mass and momentum conservation,
respectively,

∇ · u � 0 (1)

9u · ∇u � −∇p + ∇ · T (2)

together with appropriate boundary conditions. The variables 9, u
and p are the fluid’s density, velocity and pressure, and T is the
deviatoric stress tensor which depends on the fluid’s rheology. For
many fluids, this constitutive relation is well described by a simple
linear rheology T � 2μE, where Eij � 1/2(zjui + ziuj) is the shear
strain rate tensor [43] and the proportionality constant μ defines
the kinematic viscosity. Examples of these so-called Newtonian
fluids are water, light oil and most diluted gases. However, many
fluids present in industrial products, biology and environmental
flows obey much more complex nonlinear constitutive laws [23,
25, 44]. These fluids are called non-Newtonian fluids. The
constitutive behavior of most non-Newtonian fluids can be
described by a generalization of the Newtonian relation, namely,

T � 2μ( _c)E (3)

Here the apparent viscosity μ( _c) is a nonlinear function of the
second principal invariant _c � ������

2E : E
√

of the shear strain rate
tensor E alone [43]. Examples of fluids—which are often called
generalized Newtonian fluids—are colloidal suspensions, protein
or polymeric mixtures, heavy petroleum, blood or debris flows,
only to mention a few [45–48].

Our analysis is based on experimental results from the setup
presented recently in Eberhard et al. [42]. Their main purpose
was to map the local viscosity of a non-Newtonian flow in a
porous microfluidic channel by means of a high-resolution
technique of image velocimetry, namely, Ghost Particle
Velocimetry (GVP) [49]. The geometry of the microfluidic
chip is shown in Figure 1. As non-Newtonian fluid we used a
0.5 wt% xanthan gum solution, which is a polysaccharide mainly
found in food industry [50] and enhanced oil recovery [22, 24]. It
has a shear-thinning rheology which changes its apparent

viscosity over several orders of magnitude. While polymeric
solutions often show viscoelastic behavior [51], the
concentration of xanthan gum in our experimental solution
was so low that no measurable elastic behavior could be
observed during the experiment. The rheology of xanthan gum
closely follows a Carreau model,

μC( _c) � μ∞ + (μ0 − μ∞)
(1 + [λ _c)2])1− n

2
(4)

approaching the viscosity of the solvent (water) μ∞ � 0.001 Pa · s
in the limit of very high shear [52]. Conversely, for low shear, Eq.
4 reduces to μC( _c) � μ0, corresponding to a constant viscosity
μ0 � 24 Pa · s. At an intermediate range of shear rates, the fluid
follows a power-law relation μ ∼ _cn− 1 with n � 0.3 in our specific
case. The remaining Carreau parameter λ � 50 s was determined
using a nonlinear least-square fit to the experimentally measured
values [42]. As shown in Figure 1, the experimental pore
structure consisted of a microfluidic device containing a quasi-
2D porous medium of size 30 mm × 15 mm and depth of 100 µm.
It contains pillars of radius 100 µm that are randomly allocated
and can overlap, forming a “swiss-cheese” pore geometry with
void fraction approximately equal to 0.8.

Figure 2 compares the velocimetrymeasurements obtained from
ref. 42 in a section of the mid plane of the microfluidic chip with
those obtained from numerical simulations calculated with exactly
the same pore geometry, fluid properties and flow conditions. More
precisely, the flow rates for the presented cases are qin � 0.05 µL/min
(Figure 2A) and qin � 5 µL/min (Figure 2B) for the xanthan case,
and qin � 5 µL/min for the measurement with water (Figure 2C).
The color scale has been normalized to the 95% quantile of the
velocity distribution to facilitate the comparison of the flow fields at
different flow rates. Although differences between the
experimentally measured and simulated velocity fields can be
visually detected, they are mostly local and could be explained by
the natural difficulties of exactly reproducing in the mathematical
model the detailed features of the flow, the fluid rheology, and the
flow operational conditions. To perform numerical simulations, the
computational mesh was generated by capturing the two-

FIGURE 1 | Sketch of the experimental setup showing the whole pore
geometry together with the simulated flow field in the mid plane for the non-
Newtonian case at qin 5 µL/min. The porous region is L 30 mm long, B 15mm
wide and has a height of h 100 µm. The radius of the circular pillars is also
100 mµ. The gray shaded region marks the part of the porous device where
the experimental flow velocity measurement has been performed.
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dimensional technical drawing of the device geometry into Ansys’
meshing module [53]. In the horizontal plane, we first created an
unstructured quadrilateralmeshwith an average cell size of ≈ 2 μm2.
The three-dimensional structure was obtained by extruding ten
vertical layers, resulting in a computational mesh composed of
approximately 30 million unstructured hexahedral cells
(corresponding to roughly 20 µm3/cell), which was then
imported into Ansys FluentTM [53]. Non-slip boundary
conditions were applied on all solid walls of the microfluidic
chip, which is a reasonable assumption on surfaces without
hyper-hydrophilic coatings and at scales much larger than the
polymer coil size [54]. The fluid was injected via a constant
velocity inlet corresponding to the inflow rate reported in the
experiment. The density of the non-Newtonian fluid used in the
computational simulations matches exactly the experimental
value of the xanthan solution, namely, ρxan � 1.0 g/cm3. As for
the rheology of the fluid, we used Eq. 4 to interpolate the local
viscosity values obtained from the independent rheometer
experiments [42]. Finally, the steady-state flow solution in
terms of the velocity and pressure fields was calculated using
a second-order integration scheme and convergence was
achieved if the residuals reached a threshold of 10− 6.

In order to check the variability of our results with respect to the
disorder level of the pore space, numerical simulations have also
been performed with three additional realizations of the swiss-
cheese geometry, but keeping the same physico-chemical properties
of the fluid, operational parameters of the flow, and boundary

conditions. Considering the independence of the rheometry and
velocimetrymeasurements, the excellent agreement between results
from the numerical model and experiments (Figures 2A–C) clearly
demonstrates the global consistency of our methodological
approach. In order to highlight the differences between the
Newtonian and non-Newtonian flows and the tendency for
stronger localization in the non-Newtonian flow, we show in
Figure 3A the contour plot of the ratio between the local
velocity magnitudes measured with the xanthan solution and
water normalized by their respective mean velocities. In both
cases, the applied flow rate was set to qin � 5 µL/min.

ANALYSIS

The channeling effect present in the flow fields shown in Figure 2
can be statistically quantified in terms of their spatial
distributions of kinetic energy e∝ |u|2. This is performed here
in terms of a measure utilized in previous studies on localization
of vibrational modes in harmonic chains [55], namely, the
participation number Π defined as,

Π � 1
V
(∫

Ω
edω)

2

/∫
Ω
e2dω (5)

where the total volume of the fluid in a domain is given by
V � ∫Ω1dω. Thus the participation ratio varies between Π � 1,

FIGURE 2 |Comparison of the experimentally measured [42] and simulated velocity fields in the mid plane of the porous device for the two non-Newtonian cases at
(A) qin 0.05 µL/min, (B) qin 5 µL/min, and for the Newtonian case (C). Note the different velocity ranges between (A–C). For comparison, the color scales has been
normalized to the 95% quantile of the velocity distribution.
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corresponding to a limiting state of equal partition of kinetic energy
(e(x) � const · ∀x ∈ Ω) and the valueΠ ≈ 0 for a sufficiently large
system (V →∞), indicating strong localization, namely, the
presence of intense channeling effects in the flow field [56]. For
reference, the Reynolds number is defined here as,

Re ≡
vdp
μ∞

(6)

where v is the mean velocity at the entrance of the pore zone and
dp is the diameter of the solid obstacles. Figure 3B shows how the
participation ratio obtained with our computational model varies
as a function of Reynolds number. The thick black curve is
obtained by averaging the results from the pore geometry used
in the microfluidic experiment (dark gray) with four additional
realizations of the “swiss-cheese” pore geometry (light gray
markers) having the same porosity. The spread of the markers
therefore gives a good indication for the statistical variability of
the participation ratio for different pore geometries. The values of
the participation ratios obtained from the two experimentally
measured velocity fields are marked with yellow and blue stars,
respectively, and are in good agreement with the numerical
calculations.

At low Reynolds numbers, the participation ratio is practically
constant at Π ≈ 0.6, similar to a Stokes flow with fixed viscosity
μ � μ0 � 24 Pa · s. By increasing the flow rate, the local shear within
the interstitial pore space also generally increases to eventually reach
a point where its range of variability overlaps with the range in
which the rheology of the xanthan gum solution follows a power-
law behavior. At this point, the local viscosity spans over a wide
range of values, leading to a drop in the participation ratio by almost
20% at a Reynolds numbers around Re � 3 × 10− 4.

Interestingly, while the absolute value of the participation
ratio varies slightly from realization to realization, the location
of the participation ratio minimum is determined by the fluid’s
rheology and does not seem to be influenced by the details of the
pore geometry. More precisely, we find for the two
experimentally measured velocity fields a participation ratio
of Π � 0.556 for qin � 0.05 µL/min and Π � 0.520 for qin � 5 µL/
min. For the simulations, the mean participation ratios averaged
over four realizations yield Π � 0.582 ± 0.002 for qin � 0.05 µL/
min andΠ � 0.525 ± 0.002 for qin � 5 µL/min. The participation
ratios of the two simulations which share the same pore
geometry as the experimental setup are Π � 0.582 (qin �
0.05 µL/min) and Π � 0.528 (qin � 5 µL/min). After reaching

FIGURE 3 | (A) Contour plot of the ratio between the local velocity magnitudes measured with the non-Newtonian (xanthan) and Newtonian (water) fluids,
normalized by the corresponding mean velocities in the observation mid planes, both obtained at qin 5 µL/min. (B) Participation ratio as a function of Reynolds number.
Gray markers label the participation values obtained from the simulations of four different realizations of the pore structure. The realization which corresponds to the
experimental device is marked in darker gray. The black solid line was obtained by averaging the four realizations of the “swiss-cheese” pore geometry. The
participation ratio calculated from the experimentally measured velocity fields of the xanthan gum solution at qin 0.05 µL/min and qin 5 µL/min are labeled with yellow and
blue stars, respectively.
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the minimum, where the flow is most heterogeneously
distributed in the porous medium, the participation ratio
increases again as the flow rate pushes the fluid’s rheology
beyond the power-law regime, ultimately approaching the
flow pattern of water. In this limiting case, the Newtonian
behavior is recovered, but inertial effects on the flow should
prevent the participation ratio to reach the same value obtained
for very low Reynolds numbers, namely, Π ≈ 0.6.

A question that naturally arises is how rheology influences
the flow’s heterogeneity in space. At low and high Reynolds
number, the Carreau fluid has an almost constant viscosity
equal to the low and high shear limits μ0 � 24 Pa · s and μ∞ �
0.001 Pa · s, respectively. In the intermediate regime, however,
the local viscosity covers a broad spectrum of values [42]. In
this case, both experimental and simulation results reveal that
the interplay between the disordered geometry of the pore
space and the fluid rheology leads to a larger flow
heterogeneity and therefore to a stronger localization pattern.

CONCLUSION

It is well accepted that flow and transport processes in porous
media are fundamentally controlled by the complex interplay
between the fluid and the pore space structure. Here we showed
that these processes can be tailored by tuning the rheology of the
fluid. Precisely, the heterogeneity of the pore scale structure of the
medium causes a high variability of shear rates that, when
matched with the nonlinear viscosity window of the non-
Newtonian fluid, can substantially enhance macroscopic
properties of the system like the participation ratio. These
effects may be exploited to improve filters and catalysts or to
enhance chemical reactions by spreading the transported
chemicals more uniformly throughout the pore space. In

particular, localization should have a deleterious influence on
the effectiveness of catalysts subjected to flow, for example, in
a packed bed chemical reaction. Precisely, the preferential
channeling at the minimum of the participation number
should be avoided to maximize the activity of the surface area
available for reaction in the system.
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