
1.  Introduction
Parameter estimation for numerical models can synthesize different types of information into a physically 
plausible narrative. This is of particular relevance for the discipline of hydrogeology, where informed man-
agement demands detailed knowledge of the system, but direct measurements of the relevant subsurface 
properties are scarce and often of limited spatial representativeness (e.g., Rubin, 2003). The process of infer-
ring subsurface properties from dependent information such as hydraulic head, chemical concentrations, 
or flow is known as inverse modeling (e.g., Carrera et al., 2005).

Unfortunately, as a consequence of the exceptional complexity of many hydrogeological systems (Figure 1), 
there usually exists more than a single plausible explanation for the observed data (Linde et al, 2015, 2017; 
Moeck et  al.,  2020). Variations in aquifer depth, sediment properties, atmospheric and hydrogeological 
forcing, anthropogenic influences, and complex geological features interact with each other and can cre-
ate similar hydraulic responses in different arrangements. The consequence of this has been summarized 
succinctly by Poeter and Townsend  (1994): “A true evaluation of the possible subsurface configurations 
and their impact on the decision at hand is the only honest approach to groundwater analyses.” and hence 
surmised that “The era of drawing conclusions on the basis of deterministic flow and transport models has 
come to a close.”

Where deterministic models only seek a single promising model configuration, stochastic approaches based 
on Bayesian statistics explore multiple alternative configurations at once. This process hopes to identify am-
biguities in order to endow model predictions with reliable uncertainty estimates. Unfortunately, 25 years 
later, Poeter and Townsend  (1994)'s prediction has yet to fully come to pass. While the need for proba-
bilistic groundwater models has been widely acknowledged (e.g., Cirpka & Valocchi, 2016; Renard, 2007; 
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Sanchez-Vila & Fernàndez-Garcia, 2016), the complexity of representing the hydrogeological system—and, 
by consequence, its uncertainties—remains an obstacle for the wide-scale adoption of Bayesian methods.

In Bayesian statistics, the plausibility of different narratives—as defined by model parameterizations—
is represented through probability density functions (pdf). Bayes' theorem formalizes the synthesis of a 
so-called posterior from initial belief (the prior) and new data (the likelihood). Since it has no analytical 
solution in the general case, its practical use often demands approximations and simplifications. Among 
the most elegant is Gaussianity, which permits an analytical solution provided that the numerical model 
is linear, and that all pdfs involved are Gaussian. This assumption underlies the popular Ensemble Kal-
man Filter (EnKF: Evensen, 1994, 2003), which has proven easy to implement and highly robust to small 
ensemble sizes. As a consequence, it quickly gained popularity in the hydrogeological community (e.g., 
Gu & Oliver, 2007; Hendricks Franssen et al., 2011; Keller et al., 2018; Reichle et al., 2002). Unfortunately, 
the assumption of Gaussianity implies both unimodality (there exists a single most probable solution) and 
full support (no solution is impossible). Both assumptions are potentially problematic: the former because 
it cannot adequately represent the existence of distinct, equivalent solutions in the form of Pareto fronts or 
separate probability modes; the latter for parameters with strict physical limits. While attempts have been 
made to relax these limitations, for example, through Gaussian anamorphosis (e.g., Schöniger et al., 2012; 
Zhou et al., 2011), the fundamental restrictions of the method remain. Recent developments in the field of 
transport methods (Spantini et al., 2019), however, suggest that nonlinear generalizations of the EnKF may 
be possible.
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Figure 1.  Complex and interacting aspects in a mountainous hydrogeological system. When the presence, properties, 
and extent of these aspects are not sufficiently quantified, they become sources of uncertainty for hydrogeological 
models.
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It may seem expedient, then, to turn our attention to more general approaches such as Markov Chain Monte 
Carlo (MCMC: e.g., Foreman-Mackey et al., 2013; Smith & Marshall, 2008) or particle filters (PF: e.g., van 
Leeuwen, 2009; van Leeuwen et al., 2019). These methods can theoretically approximate arbitrary distribu-
tions but suffer from practical limitations of their own. Fundamentally, both methods suffer in systems with 
high dimensionality, although the specific symptoms vary: MCMC methods often display large autocorre-
lations if the proposal distributions are not sufficiently well-tuned, which reduces the sample generation 
efficiency significantly. Possible remedies are found in Hamiltonian Monte Carlo (e.g., Betancourt, 2018), 
which exploit Jacobian information, or approaches like the affine-invariant ensemble sampler for MCMC 
emcee (Foreman-Mackey et al., 2013), which can restrict itself to a limited subspace. The ensembles of PFs, 
on the other hand, tend to quickly degenerate and collapse in high-dimensional systems (e.g., Arulampalam 
et al., 2002; Bengtsson et al., 2008), and may require pragmatic solutions which threaten to corrupt the in-
ference (Moradkhani et al., 2005; Ramgraber et al., 2019; Vrugt et al., 2013). As such, these computational 
limitations render both methods less efficient in systems with limited computational resources than com-
parable Gaussian-based approaches.

In search of a free lunch, we would desire an inference algorithm which combines the strengths of the 
above: the efficiency and robustness of the EnKF in face of small ensemble sizes, and the PF's/MCMC's abil-
ity to explore non-Gaussian distributions. Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016), 
a relatively recent development in the computational sciences, may be an interesting step in this direction. 
Based on variational inference (e.g., Blei et  al.,  2017), this method seeks to approximate the intractable 
posterior through an iterative series of transformations which gradually reduce the Kullback-Leibler diver-
gence (KLD) between the initial distribution and the posterior. Capitalizing on the concept of Kernelized 
Stein Discrepancy (KSD) (Chwialkowski et al., 2016; Liu et al., 2016), it yields a surprisingly simple gradi-
ent descent algorithm capable of iteratively transforming an arbitrary ensemble of particles into samples 
of the posterior. With a few small adjustments, we shall see that it can share the EnKF's ability to scale 
the complexity of the inference problem by restricting the analysis to a parameter-subspace whose dimen-
sionality depends on the number of available particles, while at the same time being able to approximate 
non-Gaussian distributions. In the following, we will rederive the algorithm, then propose adaptations and 
approximations required to render it tractable in practice. Afterward, we will demonstrate its performance 
in a simple, bimodal synthetic scenario, as well as in a highly complex prealpine catchment. Finally, we will 
discuss the results and provide an outlook for future research. First, however, we will present the nomen-
clature used in this study.

2.  Theory
2.1.  Nomenclature

In this study, we will use bold font to denote vectors or matrices and will refer to column vectors 
   Τ

1( [ , , ] )dθ  unless otherwise specified. The symbol θ denotes the vector of model parameters, and 
the variable x denotes model states. Data or observations are represented by y. Standard font (e.g.,  ) refers 
to scalar-valued variables. For functions, we shall refer to the function as an object by f , and to its output 
by  f θ . Functions with multiple arguments (e.g.,  ,k θ θ ), for which one argument is assumed fixed, are 
denoted by a dot in its arguments (e.g.,   ,k θ  for fixed θ ). θ refers to the norm and θ  to the absolute 
value of θ. Superscripts in parentheses  dθ  refer to the dth entry of θ. Capitalized roman normal symbols 
refer to integer variables: D to the dimensionality of parameter space (number of model parameters), O to 
the dimensionality of observation space (number of state observations), and N  to the number of particles 
(ensemble size).

2.2.  Stein Variational Gradient Descent

In the following, we will present the SVGD algorithm following the derivations outlined in Liu et al. (2016) 
and Liu and Wang (2016). In short, SVGD iteratively transforms samples of an arbitrary reference distri-
bution into samples of the posterior. This process may bear superficial similarity to filter techniques, but is 
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based on a crucial difference: instead of sequentially adding information through re-weighting steps (think 
treasure map: specifying the steps to the target one by one), it “homes in” on the posterior distribution iter-
atively (think navigation system: constantly reorienting itself toward the target).

The algorithm is based on an incremental particle flow, which iteratively transforms an ensemble of initial 
samples into posterior samples:

   
i i i i
       


T

1 1 1
� (1)

where the subscript i denotes the current iteration number,   is a small scalar increment, and  : D D   
is a vector field whose point wise evaluations  

1iθ  designate the flow direction for each particle.

This vector field  is the key ingredient of SVGD. As we shall see in the following, it can be found through 
a function optimization on the space of vector fields/infinitesimal transformations. We identify the in-
finitesimal transformation that maximally reduces the KLD to the target posterior. The associated vector 
field thus corresponds to the negative functional gradient of the KLD, and its norm defines a discrepancy 
measure called the KSD. The resulting equation for  is surprisingly simple, providing the particle flow 
directions for an infinitesimally small step toward the posterior distribution. However, in order to under-
stand the derivation of the algorithm, we must introduce the concept of a Reproducing Kernel Hilbert 
Space (RKHS).

2.2.1.  Reproducing Kernel Hilbert Spaces

RKHS are special, infinite-dimensional function spaces with several properties, which make them interest-
ing for functional optimization tasks—tasks, in which we want to find functions which fulfill certain re-
quirements. There are several different ways to define a RKHS . In this study, we adopt the definition used 
in Liu et al. (2016). This definition is based on the spectral decomposition of a positive definite, symmetric 
kernel    , : D Dk θ θ   . An example of such a kernel is the radial basis function (RBF) kernel:

 
 

   



 

2

2, exp
2

k
h

θ θθ θ ‖ ‖
� (2)

where 2h  is the kernel's bandwidth. Kernels can be regarded as similarity metrics between two particles 
θ and θ : if the particles are identical, the kernel yields 1, and the more different they are, the closer the 
kernel's output will be to 0. According to Mercer's theorem, any symmetric, positive semidefinite kernel is 
associated with an inner product on some Hilbert space , obtained through spectral decomposition of the 
Hilbert-Schmidt integral operator (e.g., Schölkopf & Smola, 2001; Werner, 2018):

     



  

1
, l l l

l
k e eθ θ θ θ� (3)

This expresses the kernel as an infinite series of orthonormal eigenfunctions le  and eigenvalues l. These 
eigenfunctions can be interpreted as an orthonormal basis spanning up an infinite-dimensional RKHS  
which comprises of linear combinations of its eigenfunctions    

  1l l lf f eθ θ  with 
  2
1 /l l lf  and 

an inner product 
    1, /l l l lf g f g  between  f θ  and    

  1l l lg g eθ θ . This also defines a norm 
f‖ ‖ where 

    2 2
1, /l l lf f f f‖ ‖  .

Equation 3 may then be interpreted as an inner product between two vectors  ,k θ  and  ,k θ  in . Since 
their embedding space  is infinite-dimensional, these vectors will have infinitely many entries:

       
    

Τ
1 1, , ,e ek θ θ θ� (4)

       
     
 

Τ
1 1, , ,e ek θ θ θ� (5)
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Why is this useful? In machine learning literature, particularly for classification tasks (e.g., support vector 
machines: Schölkopf & Smola, 2001), it is common to extract features (here:  l le θ ) from an input dataset 
(here: θ). The larger the amount of independent, extracted features, the easier the classification becomes. In 
a RKHS, the number of these features is infinite. And, if the only operation on these features required is an 
inner product, we need not even compute them—an evaluation of the kernel would yield the desired result. 
We can verify that an inner product between Equations 4 and 5 yields Equation 3, and retrieve one of the 
fundamental properties of a RKHS :

               
 

 
          

1 1
, , , , l l l l l l l

l l
k e e e eθ θ k θ k θ θ θ θ θ� (6)

For the purpose of functional optimization, we are interested in the functions defined in the RKHS.  con-
tains scalar-valued functions f  mapping from the parameter space ( : Df  ) which are constructed 
through linear combinations of its basis, the eigenfunctions:

   



 

1
l l

l
f f eθ θ� (7)

where lf  are arbitrary real scalars. These functions are uniquely defined by a vector  f  in 

    
    1 1/ , , /

T
f ff� (8)

and can be retrieved by taking an inner product with Equation 5 (replacing θ  with θ). This defines the 
RKHS's eponymous reproducing property:

         


 

 
        

1 1
, , l

l l l l
l ll

ff e f eθ f k θ θ θ� (9)

With the fundamentals of RKHS defined, let us proceed to the derivation of the algorithm.

2.2.2.  Deriving the Algorithm

SVGD is derived from a metric called KSD (Chwialkowski et al., 2016; Liu et al., 2016)  ||q p  between 
two probability distributions q and p. This metric yields a measure of discrepancy between the two distri-
butions, provided that we have an ensemble of samples from q and are able to evaluate the gradient of the 
logarithm of p at least pointwise. In our application, q will always be some intermediate distribution from 
which we assume our samples are drawn, and p will be the target posterior.

   





         

2
|| max traceq pq p 


θ A θ� (10)

In Equation 10, qθ  refers to the expectation under the assumption that the particles θ are sampled from 
q,   is a vector field on parameter space, representing an infinitesimal transformation, and pA  is a linear 
operator:

              
Τ

logp pθ θA θ θ θ θ� (11)

where             

Τ
1/ , , / D

θ θ θ  denotes the partial derivative operator evaluated at θ. We have provid-

ed a detailed derivation of Equation 10 in Appendix S1 (Supporting Information). The challenging part in 
Equation 10 is the functional optimization, specifically the need to find the vector field  which maximizes 
the violation of Stein's identity. Fortunately, this is where the properties of the RKHS prove advantageous. 
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If we assume the family of functions   are the functions we can define in a RKHS (Equations 8 and 9), the 
functional optimization in Equation 10 has a closed-form solution:

        
       , log ,q k p kθ θ θθ θ θ θ θ θ� (12)

We have rederived this solution in detail in Appendix S2. The vector-valued function  defines a vector 
field over the parameter space D , and assigns to each position a D-dimensional vector or direction which 
maximizes the violation of Stein's identity.

SVGD exploits this information to implement a particle flow which gradually transforms the distribution 
q into the distribution p, the posterior. It can be shown (Liu & Wang, 2016), that for invertible transforma-
tions the directions   θ  of the vector field  correspond to the steepest descent directions of the KLD. We 
have rederived this for the reader's convenience in Appendix S3. Using the transformation in Equation 1, 
we establish an iterative particle flow through parameter space. The steepest descent directions   θ  are 
obtained by taking an ensemble approximation of Equation 12:

       


       1

1 , log ,
N

j
k p k

N j θ j θ jj jθ θ θ θ θ θ� (13)

where we have slightly adapted the notation of Equation 12. The only expensive variable to evaluate is the 
gradient of the logposterior at the particle positions   log pθ jj θ . In general cases, where no analytic form 
for the logposterior or its derivative are available, we must resort to approximations of this gradient. We will 
investigate a few approaches toward this end in the following section.

3.  Algorithmic Approximations

3.1.  Posterior Gradient    log p 

While it is in principle possible to approximate   log pθ θ  directly from logposterior estimates, it may not 
always be advantageous to do so. If the logprior is differentiable, we can limit the approximation to the gra-
dient of the loglikelihood or even just the Jacobian matrix, thus avoiding unnecessary approximation error. 
Toward this end, we can reformulate Bayes' Theorem to calculate the logposterior gradient as

         log | log log |f f fθ θ θθ y θ y θ� (14)

where    | :f pθ y θ  is the posterior pdf,  f θ  the prior pdf, and  |f y θ  the likelihood. Since the logpri-
or gradient is often available in closed form, we are left with finding the loglikelihood gradient. If we assume 
multivariate Gaussian likelihoods, we have:

 
 

   


 
    

 

Τ 11 1| exp
22 det

sim simO
f Σ

Σ
y θ y y y y� (15)

where O is the number of observations (the dimensionality of observation space), 1Σ  is the inverse of the 
O O error covariance matrix Σ, and y and simy  refer to the 1O  vectors of observed and simulated states. 

We note that if the errors are assumed fully or block-wise independent, Σ may reduce to a diagonal or block-
wise matrix, which can speed up the inversion significantly. If we first take the logarithm and then the 
partial derivatives, we obtain:

      Τ 11log |
2 sim simf Σθ xy θ y y y� (16)
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where,  simx y  is a O D matrix composed of the partial derivative of each simulated state (corresponding 
to each row 1, ,O) with respect to each parameter (corresponding to each column 1, ,D). We simulate the 
states with a numerical model which takes as input parameters θ:

 simy θ� (17)

where, we simplified notation slightly by implying that the model simulates the observed states directly. 
In practice, the model would generate the full state space (i.e., a time series of water table fields), and we 
would extract only the relevant dimensions/entries—for example, at the locations of observation wells at 
certain times. Plugging this into Equation 16 and defining the Jacobian     

Τ
θJ θ θ  (a D O matrix), 

we obtain:

        
Τ 11log |

2 obsf Σθ y θ J θ y θ� (18)

As such, we can obtain the logposterior gradient with local approximations of the Jacobian matrix.

3.2.  Jacobian Matrix    

The computational bottleneck for the solution of Equation 18, and by extension Equation 13, is the Jacobian 
 J θ , an O D matrix, which is not generally available in closed form. Some recent developments like auto-

matic differentiation (e.g., Margossian, 2019) hold promise for future applications, but are model-intrusive 
and not yet widely supported.

Instead, we can explore nonintrusive approximations of the Jacobian. The standard numerical approach 
consists of perturbing the parameter vector θ by a small increment along each dimension, then filling 
the Jacobian matrix with the resulting two-point (or three-point) finite difference derivatives (e.g., Wendt 
et al., 2009). While this numerical differentiation can yield very precise approximations, it quickly becomes 
computationally unfeasible for models with many parameters: To obtain the set of local Jacobians, we would 
have to run the model   1N D  times (or  2 1N D  times for three-point derivatives) in each iteration. For 
complex, computationally demanding models, we generally cannot afford more than N  model evaluations.

As such, we may wish to estimate the Jacobian directly from the ensemble, using only the N  model evalua-
tions   θ . One such approach has been used by Chen and Oliver (2013) and White (2018), approximating 
the Jacobian based on prior and model error information, and each ensemble member's deviation from the 
mean. This approach can be useful in many applications, but is unfortunately based on the assumption of 
Gaussianity, and thus squanders the non-Gaussian properties which motivated our exploration of SVGD in 
the first place. Pulido et al. (2019) suggest an alternative approach which defines the observation operator 
(analogous to our model ) in a RKHS, then shifts the derivative operator to the kernel:

     


  
1

,
N

n
kn θ nJ θ θ θ θ� (19)

This approach can also be interpreted as the derivative of a RBF approximation with vector-valued coef-
ficients   nθ . A similar expression can also be obtained by replacing the   nθ  with a vector of coef-
ficients determined to ensure the RBF interpolation reproduces the model output surface exactly at the 
particles. This approach can be very useful, but has a few potential caveats:

First, RBF approximations taper off toward zero when moving away from the ensemble (  


lim , 0k nθ
θ θ ), 

which is undesirable for variables with nonzero limits. This can be addressed by pretreating the data with a 
deterministic, differentiable routine such as multilinear regression, then interpolating only the residuals. A 
second issue is that a particle's local derivatives are informed exclusively by its neighbors, since the kernel 
derivative evaluated at its own center is zero (   , 0kθ θ θ ). This can be problematic for remote or isolat-
ed particles. Similarly, the indirect nature of an RBF interpolation's derivatives does not exploit gradient 
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information between the particles. The result depends critically on the 
chosen bandwidth (e.g., Mongillo, 2011) which can render the approach 
less robust than desired.

Consequently, we propose a different ensemble-based approximation, 
endeavoring to retain the localization of Pulido et al. (2019)'s approach 
while exploiting relative differences between the particles:

J 
 

 

 

 
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n
m

N
m n

m n

m n

m n

m
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N
   

    
    


    






1

 

 

 

 

 
n

m n



� (20)

where P is the expected rank of the Jacobian (usually either the D or 
 1N , whichever is smaller). The sum's first fraction is the normalized 

vector from particle nθ  to particle mθ  in observation space, the second 
fraction the scalar gradient between observation- and parameter-space, 
and the third fraction the normalized vector in parameter space. We can 
simplify this to:

        


  
 




Τ

21

N m n m n
n

m m n

P
N

θ θ θ θ
J θ

θ θ

 

‖ ‖
� (21)

The factor /P N  is composed of the arithmetic average's normalization 
constant (1 / N) and a correction factor for the fact that each vector con-
tributes at most one rank to the Jacobian (P). In linear systems, Equa-
tion 21 should converge against the correct Jacobian for  N  and 

an isotropic particle arrangement. In nonlinear systems, we further need the assumption that m n‖ ‖θ θ  
is infinitesimally small, or a localization term which restricts the contributions of far-away particles  
(    0m m nw for ‖ ‖θ θ ):

� (22)

� (23)

where mw  is some normalized, distance-based weight, for example, obtained through a kernel nkθ . In prac-
tice, these assumptions will not generally be met. Possible consequences are that the Jacobian matrix may 
be biased if the parameter space vectors are not directionally isotropic, and the magnitude of the derivatives 
may be erroneous if the system is nonlinear and the particles are spaced too far apart. However, comparing 
this approach to a RBF interpolation, we found that it performed more robustly with regards to different 
bandwidth sizes and nonsmooth conditions for the synthetic test case presented in Section 4. A small code 
example comparing both approaches is provided in Appendix S6. Pseudo-code for the Jacobian approxima-
tion is provided in Figure 2.

3.3.  Gradient Descent Algorithm

For an efficient inference with SVGD, we not only require the descent directions   θ  (Equation 13), but 
also an adaptive scheme to adjust the step-size  . If the step-size is too small, the algorithm may require too 

        


  
 



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θ θ θ θ

J θ
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Figure 2.  Pseudo-code for the Jacobian approximation used in this study. 
Without additional model runs, evaluations of the Jacobian are only 
possible at the particle positions.
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many iterations to be useful. If the step-size is too large, the algorithm 
may overshoot, start oscillating, and fail to locate a high-probability re-
gion at all. As such, we would like to adjust the step-size dynamically.

Many such algorithms exist. Methods like adaptive moment estimation 
(ADAM: Kingma & Ba, 2015) or adaptive subgradient methods (AdaGrad: 
Duchi et al., 2011) have proven successful for optimization in machine 
learning algorithms, being capable of dynamically adjusting the gradient 
descent to improve efficiency. Unfortunately, they often employ individ-
ual step-sizes for each parameter space dimension or otherwise alter the 
gradient vectors at each position through momentum. While using these 
algorithms can be justified in practice (see, e.g., Liu & Wang, 2016), we 
construct an alternative descent algorithm for this study which abides by 
the assumption of a scalar, uniform   at each iteration:

� (24)

� (25)

This step-size update algorithm does not affect the gradient direction but 
may require some explanation to become intuitive. It requires two hyper-
parameters: an acceleration rate   1, and a similarity cutoff  0 1. 
At each iteration, the previous step-size 

i1
 is rescaled by a factor (Equa-

tion 25) corresponding to the ensemble mean of all acceleration propos-
als ,i na  (Equation 24). These acceleration proposals are composed of two 
terms: the first term compares the directions of two subsequent descent 
vectors, proposing acceleration if the directions are sufficiently similar 
and deceleration if they are not; the second term compares the norm of 
two subsequent descent vectors, proposing deceleration if the norm (and 
thus velocity) of the vector increases.

For the first part, we exponentiate   by the inner product between 
the normalized current descent direction      

, ,/i i n i i nθ θ‖ ‖ and the 
normalized previous descent direction      

   1 1, 1 1,/i i n i i nθ θ‖ ‖. This 
compares the similarity of both vectors and accelerates or slows the 

descent accordingly. Since a naïve inner product would only stop accelerating for turns sharper than 
90°—and we may want to stop accelerating long before that—the second hyperparameter   is subtract-
ed from the inner product. A cutoff of   0.75, for example, restricts acceleration to a cone of about 
40° around the previous vector. For the second part, if the norm of the descent algorithm is increasing  
(      

  1 1, ,i i n i i n‖ ‖ ‖ ‖θ θ ), the step-size should be reduced proportionally to reduce the risk of shooting 
past the optimum if the descent direction remains the same.

3.4.  Pseudo-code

To summarize the algorithmic approximations used in this study, pseudo-code for the algorithm is provided 
in Figure 3.

4.  Synthetic Test Case
4.1.  Setup

To illustrate the practical capabilities of SVGD, we first consider a simple synthetic test case. Toward this 
end, we construct a numerical hydrogeological model with a single parameter informing the uncertain path 
of a high-conductive paleo-channel in a two-dimensional, unconfined setting. This setup is illustrated in 
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Figure 3.  Pseudo-code of the SVGD algorithm used in this study. Step 3 
can be replaced if other methods for obtaining the Jacobian are available. 
Steps 4.2 to Step 6 may be replaced if a different Gradient Descent method 
is used.
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Figure 4. The system is defined as steady-state. Flow is driven by uniform recharge of 810  m/s over the 
model domain and drains to the southern fixed-head border. All other borders are assumed no-flow. Hy-
draulic conductivities of the background and paleo-channel are defined as 610  and 410  m/s, respectively. 
Specific yield was set to  0.15yS , and the top and bottom elevation of the aquifer were set to 10 and 10 m. 
The model parameter  0 1a  defines the start- and endpoint of a spline tracing the paleo-channel. The  
true solution is assumed to be  0.15a , and the prior ensemble is sampled from a beta distribution with 
parameters   , 2. Observations are collected in three wells along the central north-south axis with an 
observation standard deviation of   0.025 m. The model is implemented in MODFLOW 6 (Langevin 
et al., 2017) using the Python interface FloPy (Bakker et al., 2016).
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Figure 4.  Conceptual render (a), conceptual sketch (b), true hydraulic conductivity field (c), and resulting true hydraulic head field (d) of the simple synthetic 
test case.
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We would like to draw attention to the fact that the setup of this scenario is symmetric with respect to the 
central north-south axis. As such, we would expect that there are two functionally indistinguishable solu-
tions to the inference problem:  0.15a  and  0.85a . We test the algorithm with an ensemble of  100N  
particles, 100 iterations, an initial step-size of 

i,0

4
10  , an acceleration rate of   1.5, and a similarity 

cutoff of   0.75. The kernel bandwidth was set to the mean distance to the  25k th nearest neighbor 
during each iteration.

4.2.  Results

Results of the inference process are illustrated in Figure 5. The posterior parameter field (Figures 5a and 5b) 
reveals that the expect bimodal uncertainty structure was successfully recovered by the algorithm: roughly 
half the ensemble places the channel at  0.15a , the other half at  0.85a . If this were a real scenario, 
this ambiguity could be resolved with additional geological information, or a new observation well located 
to the left or right of the mirror axis. Stream plots of specific discharge for the synthetic reference and the 
ensemble posterior mean are illustrated in Figures S1 and S2, respectively.

To test if the algorithm truly converged against the posterior, we compare the posterior ensemble against 
results obtained from a emcee (Foreman-Mackey et al., 2013) chain (Figure 5g, background). The emcee 
chain was obtained with 100 walkers and 445 jumps each, after removing the burn-in. Figure 5f verifies that 
SVGD seems to not only identified the correct posterior location, but also its spread.

5.  Case Study
5.1.  Site Description

For the real test case, we focus on the Kempt valley in Switzerland, a small pre-alpine catchment located 
about 10 km east of the city of Zurich. Within the valley lies the city of Fehraltorf, surrounded by pastures. 
The valley is characterized as follows:

•	 �Geology: The aquifer layout is highly heterogeneous, shaped by alpine geology and postglacial sedimen-
tology. Multiple electric resistivity tomography campaigns failed to delineate the aquifer bottom, and the 
prevailing gravelly sediments preclude direct push coring past a depth of approximately 7 m. Geological 
maps and indirect information suggest north-eastern and south-western plateaus or banks or imperme-
able material (Figure 6a).

•	 �Hydro(geo)logy: The groundwater table is generally shallow, sometimes ponding during spring or af-
ter large precipitation events. Consequently, large swathes of the valley are artificially dewatered with 
tile drainages. The central Kempt stream is only perennial past the city of Fehraltorf, where it is sus-
tained by a local wastewater treatment plant (WWTP), drainage channels, and multiple culverted creeks 
(Vögeli, 2018). Upstream of Fehraltorf, the creek is called Luppmen and controlled almost exclusively by 
groundwater. The groundwater table in the catchment is highly seasonally variable, particularly during 
the simulated drought year of 2018.

•	 �Infrastructure: Due to the shallow groundwater table, the urban drainage network beneath Fehraltorf 
(Figure 6c) is partially submerged and substantial groundwater infiltration is known to occur. We fur-
ther know the extraction rates for two municipal pumping stations near the southern edge of the city 
(Figure 6e). The agricultural estates in the catchment and an industrial greenhouse vegetable farm have 
concessions for ground- and river water extraction, but unfortunately no quantitative rates were availa-
ble for either. Consequently, we neglected these potential sinks in the model.

•	 �Boundary conditions: Located in a headwater catchment, we expect that the valley receives significant 
inflow from the surrounding hillslopes (Figure 6f). We did not explicitly simulate these hillslopes, in-
stead delineating six upslope catchments based on topographic information. These upslope catchments 
form the basis of conceptual models with uncertain extent and temporal dynamics which define the 
time-variable inflow into the central model. Vertical recharge is applied without delay and estimated 
from the difference between precipitation measurements within Fehraltorf and spatially averaged meas-
urements of actual evapotranspiration in surrounding stations.
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Figure 5.  Results for the SVGD algorithm applied to the simple model: the left column shows the mean and standard 
deviation of hydraulic conductivity (a and b) and simulated head (c and d) at the end of the inference process. The right 
column illustrates the prior ensemble (e), the particle trajectories through the iterative process (f), and the resulting 
posterior ensemble (g).
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Figure 6.  Approximate aquifer topology (a), tile drainage, open and culverted streams (b), extent of urban drainage network (c) and urban area (d), location of 
pumping and observation wells (e), and upslope contributing areas (f).
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We simulate the drought year of 2018 (Bader et al., 2018), during which groundwater extraction and use 
had to be restricted due to an exceedingly low water table. We initialize the model with a 7-month spin-up 
period starting 1 June 2017, following a steady-state simulation with average meteorological conditions. We 
assimilate hydraulic head data from a number of observation wells (Figure 6e) as well as estimates of sewer 
infiltration rates, that is, groundwater entering the sewers through deteriorated pipes and joints, obtained 
by a flow component separation (Becker et al., 2012) of distributed in-sewer flow rate measurements (Blu-
mensaat et al., 2020a).

5.2.  Model Setup

We implement the numerical model in MODFLOW 6 (MF6: Langevin et al., 2017) using FloPy (Bakker 
et al., 2016). This framework permits a Newton-Raphson formulation for unstructured grids, which is 
more resilient to the drying of model cells. Furthermore, its modular structure and mover package per-
mit the representation of the complex interactions of the stream, canalization, drainage system, and 
groundwater. Capitalized three-letter acronyms in the following paragraph refer to the respective MF6 
packages.

We tessellated the model domain with a single layer of 4079 hexagonal prisms. The depth of the aquifer 
bottom is defined by four parameters which specify the elevation of four masks: the northwest-to-southeast 
gradient, the north-eastern plateau, and the south-western plateau (Figure 6a). Hydraulic conductivity is 
extrapolated through inverse distance weighting (Shepard, 1968) from 30 nodes. Tile drainages, the culvert-
ed creeks, and the urban drainage network are implemented as drainage elements (DRN), whose flows are 
diverted to their respective outflow points in the Luppmen through the mover (MVR) package. The con-
ductance of the sewer pipes (hydraulic conductivity × cross-sectional area ÷ thickness) is extrapolated from 
10 nodes, and implemented as a “pre-conductance” (hydraulic conductivity ÷ thickness), to be multiplied 
by the sewer pipes' surface area in order to yield the element's conductance. Where streams (Figure 6b) are 
open, their bed elevation has been measured, where they are culverted, their elevation has been extrapolat-
ed. The tile drainages were assumed to be located 0.75 m below the surface. The two nonculverted streams, 
Luppmen (main stream from SE to NW, Figure 6b) and Wildbach (northernmost stream, from NE into 
Luppmen, Figure 6b) are represented with the surface flow routing (SFR) module, which permits exchange 
with groundwater in both directions. The riverbeds' hydraulic conductivity was set to 510  m/s, the riverbed 
thickness to 30 cm, and its width to 3 m (Luppmen) or 1.5 m (Wildbach). Their Manning's coefficients are 
adaptable parameters. Direct runoff due to surface sealing in the urban areas is represented through a 35% 
flat recharge reduction. Infiltration into the sewer pipe network is consider in two ways: infiltration into 
storm sewers, and infiltration into the combined sewer system. The former is routed directly into adjacent 
surface waters (small creeks and the river Luppmen). The latter is used for inference against an estimated 
fraction of the total wastewater treatment plant (WWTP) inflow. The total WWTP outflow (in terms of 
volume balancing essentially the same as the WWTP inflow)—simulated groundwater infiltration plus do-
mestic wastewater component—is routed into the Luppmen.

Recharge is estimated from the difference of average precipitation measurements around Fehraltorf (Blu-
mensaat et  al.,  2020b) and a spatially averaged evaporation estimate from Meteoswiss  (2020). Since the 
groundwater table is shallow and the time steps are coarse—set to 3 h each—we assumed instantaneous 
recharge within the valley. Recharge on the hillslopes is routed into the valley through time-variable in-
flow boundaries (Figure 6f) according to a simple, conceptual forcing model (Figure 7). This forcing model 
multiplies each timestep's raw recharge estimate with each boundary's upslope area (delineated based on 
topography) and a recharge multiplier. The latter is intended to compensate for potential deviations of the 
unknown groundwater catchment from the topographic catchment, bias in the recharge estimate, as well 
as unknown sinks or sources along the hillslopes. The resulting volumetric flux is then distributed among 
the subsequent timesteps according to an exponential distribution, whose extent is defined by a second pa-
rameter, the recharge delay. This parameter is intended to represent unresolved surface- and groundwater 
flow processes along the hillslope and controls the flashiness of the inflow. The temporally distributed volu-
metric flux components are then added to a new volumetric flux time series, and the process is repeated for 
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the next timestep. Once the new time series is assembled, the volumetric 
fluxes are distributed spatially across the respective boundary's inflow 
cells (Figure 6f).

In total, the numerical model features  61D  uncertain parameters. The 
initial ensemble for these parameters is generated by sampling the priors 
in Table 1. For practical use in the numerical model, some of these pa-
rameters (hydraulic conductivity nodes, aquifer bottom elevation nodes, 
and forcing model parameters) are first converted into grid parameters 
using deterministic preprocessors.

5.3.  Algorithmic setup

We test the SVGD algorithm with two different ensemble sizes: an en-
semble size of  30N  and an ensemble size of  100N . Considering 
the parameter space dimensionality of, the former scenario is restricted 
to exploring a subspace, while the latter scenario should have access to 
full parameter space. Consequently, we will focus on the  100N  in the 
discussion of the results, as this scenario avoids the risk of misinterpret-
ing optimization results. In both scenarios, we iterated 100 times. The 
required simulation time was about 30 h for the  30N  scenario, and 
about 102 h for the  100N  scenario.

5.4.  Results

The simulated states at the observation wells and the urban drainage net-
work for the posterior ensemble of the  100N  scenario are illustrated in 
Figure 8, for the prior ensemble and the scenario  30N  in Figures S3 
and S4. Improvements to the simulated hydraulic heads are significant, 
reducing the root mean square error (RMSE) from a prior average of 
312 cm down to a posterior average of 30 cm (Figure 9) for the scenario 

 100N , and from 322 cm down to 39 cm for the scenario  30N  (Fig-
ure S4). Proportionally, bias is reduced even further, from a prior mean of 
207 cm down to a posterior mean of only 4 cm in the case of  100N , and 
from 201 to 2 cm for  30N . The slightly elevated RMSE contrasted by 
very low bias suggests that the residual error is rooted in model structural 
deficiencies.

We expect a significant impact from such model deficiencies since we 
only employed a single prescribed head boundary at the outflow. Conse-
quently, all hydraulic head fluctuations within the model domain must 
be created by the model itself, instead of being partially inherited from 
the dynamics of a hypothetical upslope prescribed head boundary. The 
simulated and observed hydraulic heads seem to support this interpre-
tation (Figure 8). The model successfully recreated the yearly dynamics 
in most wells, but we can observe varying patterns between them, often 
with errors which may have a plausible model-structural explanation:

Observations at wells C2 and P08 (Figures 8a and 8d), for example, barely 
fluctuate over the year and retain a relatively steady water level. This sug-
gests that both wells are subjected to some form of stabilizing influence, 
likely a perennial drainage effect. Both wells are located adjacent to the 
river Luppmen and the urban drainage network, and their similar eleva-
tion—matching the observed water tables—makes either feature a plau-
sible stabilizing influence.
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Figure 7.  Illustration of the forcing model. For each timestep and 
boundary, recharge estimates are multiplied by its area and a multiplier. 
The resulting volumetric flux is then distributed to subsequent timesteps 
according to an exponential distribution scaled by a recharge delay 
parameter. Finally, the distributed fluxes of each time are added up to yield 
the volumetric boundary inflow, distributed across its inflow model cells.
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Parameter Prior Limits Transforma�on

Name Note Pdf type or or Min Max Shi� Scale

Recharge delay A-F Beta 5 7 +0.01 +0.99 +0 × 3

Recharge mul�plier A-F Normal 0 1 −5 +5 +0 × 0.05

River flow frac�on B, D Beta 3 3 +0.01 +0.99 +0 × 1

Manning’s coefficient LP/WB Beta 3 5 +0.01 +0.99 +0.01 × 0.08

Canaliza�on pre-conductance map 1 Beta 2 5 +0.01 +0.99 −7 × 7

Aquifer bo�om eleva�on map 2 Normal 0 1 None None See map 2 See map 2

Hydraulic conduc�vity map 3 Normal 0 1 −3 +3 −4 × 0.5

Specific yield None Beta 5 15 +0 +1 +0 × 0.5

Map 1: Interpola�on of canaliza�on pre-conductance Map 2: Interpola�on and shi�/scale of aquifer topology Map 3: Interpola�on of hydraulic conduc�vity

Note. Capitalized letters in the note column correspond to boundaries, LP refers to Luppmen, WB refers to Wildbach. Colored regions in map 1 and map 3 
illustrate influence areas of different nodes. The ring above the north-eastern plateau in map 2 marks the mean of its slope orientation.

Table 1 
Model Parameters, Priors and Limits

Figure 8.  Posterior simulated (greyscale) and observed (red) hydraulic heads (a–m) and canalization groundwater infiltration (n) with model error at the end 
of simulation period for  100N . Prior results are illustrated in Figure S5.
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The inference favored increasing the canalization's leakiness near both wells (Figure  10g), possibly be-
cause the Luppmen's riverbed conductance was assumed spatially uniform and hence did not allow for 
local adjustments. However, groundwater infiltration into the sewer network (Figure 8n) is consistently 
overestimated—compared to estimations based on in-sewer flow observations—which could suggest that 
the river has a larger role to plays in the stabilization of P08 and C2.

Wells F4, P02, P09, and P28 to P31 (Figures 8b, 8c, 8e, 8j–8m) feature similar yearly trends, recovered to var-
ying degrees of fidelity: A steady water table decrease by up to 3 m from January to September, followed by 
a steep rebound in late autumn. While the water table drop is reproduced faithfully, its rebound is underes-
timated in all wells. A possible explanation is the omission of agricultural water extraction. The rebound in 
autumn is likely a composite effect of direct recharge and the deactivation of irrigation systems, the latter of 
which is unrepresented in the model. This suggests the model compensated for the omission of agricultural 
extraction during the main vegetation period through other means.

The patterns in the remaining wells are somewhere between the two sets discussed above. P13 (Figure 8f) 
is located in an agricultural area with tile drainages and diverges from the observed water tables only from 
May onwards. The remaining wells (P25-P27, Figures 8g–8i) are located in the urban area of Fehraltorf and 
feature fluctuations which the model cannot seem to fully recreate.

Overall, it seems our prior parameter assumptions resulted in an initial overestimation of water tables, 
which SVGD corrected by reducing hydraulic conductivities (Figure 10c) relative to the prior, particularly 
near the center of the catchment. Individual changes to parameter uncertainty for the scenarios  100N  
and  30N  are illustrated in Figures S13 and S14, and posterior and prior cdfs relative to a Gaussian ref-
erence are illustrated in Figures S15–S18. The model simulates groundwater ponding in the initial steady-
state spin-up period near the southern and western edges of the valley (Figure  10a). This may not be 
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Figure 9.  Posterior overall root-mean square error (a) and bias (b) for the hydraulic heads, the mean norm of the KLD gradient (c) and the log-likelihood (d) 
across the algorithm's iterations. For better visualization, the y-axis scale is reset every 20 iterations for the scenario  100N .
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unrealistic, as both areas feature tile drainages, which indicate historical issues with ponding groundwater. 
Particularly in the southern region, we have some evidence for ponding: a naturally marshy, extensively 
drained forest, and a small airfield whose runway is often closed during spring due to swampy grassland 
conditions.

6.  Discussion
In summary, the inference results of SVGD were promising, returning the true posterior in the synthetic test 
case, and yielding substantial improvements in terms of predictive error for the application to a truly com-
plex case study. In the latter scenario, the observed states did not always remain within the error bounds, 
which suggests both structural model inadequacy and an underestimation of the model error. We identified 
some potential sources of this error—the omission of agricultural irrigation, and imperfect representation 
of canalization and riverbed drainage—which could be revised in a future iteration of the conceptual mod-
el. Other structural changes, such as grid discretization in the third dimension and the consideration of an-
isotropy and more realistic heterogeneity patterns for hydraulic conductivity might further improve model 
fidelity. The SD of the model error is a parameter which could also be inferred, although we note that this 
would complicate the derivative of the loglikelihood gradient (Equation 18). A further interesting addition 
would be the consideration of temporal correlation in the model error covariance matrix, which may pre-
vent the strong tapering of the posterior in the real test case. Alternative approaches to prevent posterior 
tapering in scenarios with vast amounts of observations might be found in the adoption of signature-based 
likelihoods.

As far as the inference itself is concerned, SVGD successfully recovered the synthetic bimodal posterior—a 
nigh-impossible task for nonlocalized methods based on the assumption of Gaussianity. In the real test case, 
no exhaustive reference solution was available. Results for the  30N  scenario were promising despite the 
fact that the Jacobian approximation was rank-deficient. While we acknowledge that it may be potentially 
dangerous to restrict parameter inference to a subspace, computational limitations often demand working 
within such restrictions. This ability to recover at least simplified uncertainty estimates in settings with 
inevitably insufficient computational resources constitutes, in our opinion, one of the main advantages of 
the EnKF and is shared by our ensemble-based gradient estimation for SVGD. As far as the method itself 
is concerned: a recent study in geophysics (Zhang & Curtis, 2020) also successfully validated SVGD against 
Hamiltonian Monte Carlo in a system with fewer particles than dimensions.
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Figure 10.  Posterior parameters and hydraulic head at the final iteration for  100N . The two rows illustrate mean (a, c, e, and g) and SDs (b, d, f, and h) 
of hydraulic head in the initial steady-state simulation period (a and b), hydraulic conductivity (c and d), aquifer bottom elevation (e and f), and canalization 
conductance (g and h). Recharge parameters are illustrated in Figure S7, and the corresponding prior fields are illustrated in Figures S8 and S9. Results for the 
scenario  30N  are shown in Figures S10–S13.
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Despite the promising optimization performance, this algorithm comes at a computational price: the ne-
cessity to iterate requires resimulating the full observation history for each particle during every iteration, 
whereas filter methods like the EnKF must only simulate the model history once for each particle (albeit 
separated into distinct assimilation time steps). However, it may not be necessary to iterate for as long as 
we did in our test cases—toward the end of the iteration period, improvements were only minor. Further-
more, since the algorithm is embarrassingly parallel, it should be readily compatible with high-performance 
computing. Consequently, it may accommodate even more complex or computationally demanding model 
architectures. We remain confident that performance can be improved further with adjustments to the 
gradient descent algorithm.

7.  Conclusions
In this study, we employed the SVGD algorithm of Liu and Wang  (2016) and proposed adaptations 
for its practical application to non-Gaussian parameter inference in hydrogeological models. Toward 
this end, we proposed a computationally inexpensive, localized, ensemble-based approximation of the 
Jacobian. This matrix is used for the calculation of the logposterior gradient, and possibly the greatest 
computational obstacle to the implementation of SVGD. We also proposed a simple gradient descent 
algorithm, which optimizes the algorithm's computational efficiency by adapting the descent step size 
dynamically.

We then illustrated the performance of the algorithm in two test cases: a synthetic model with an intuitive 
solution, and a complex model based on a real field site with nontrivial, nonlinear parameter interac-
tions. Results in both cases were promising. Our application in the synthetic test case successfully con-
verged against the bimodal reference solution obtained by MCMC, iteratively evolving a unimodal prior 
into a bimodal posterior. While no reference solution was available for the real test case, inference results 
were promising as well, significantly reducing simulation error and bias, with the residual error likely 
being based on model structural inadequacy. Throughout, the algorithm retained uncertainty without the 
need for artificial variance inflation, a challenge for PF (e.g., Ramgraber et al., 2019, 2020) or the EnKF 
(Anderson, 2007).

A limitation of this algorithm is its restriction to smooth probability distributions with at least convex sup-
port, a weakness shared with other gradient descent algorithms and the EnKF. For the inference of structur-
al uncertainty of geological facies, it may be necessary to employ an auxiliary parameterization which per-
mits a smooth or convex supported pdf first (e.g., Hu et al., 2013; Ramgraber et al., 2019). A further potential 
source of error may be found in our ensemble-based Jacobian approximation. While our synthetic example 
converged successfully and optimization results were promising in both test cases, we cannot guarantee that 
this approximation proves adequate in all cases.

For future research, we are optimistic that the experimentation with other gradient descent algorithms 
could improve the efficiency of the SVGD algorithm even further. Alternative Jacobian approximations, 
particularly those obtained with automatic differentiation, seem a promising way to improve the fidelity 
of practical applications of SVGD and constitute an important avenue for future research. Alternatively, 
using the unnormalized logposterior estimates at the particles to approximate the logposterior gradient di-
rectly could also be an interesting research direction. Other fascinating research directions could be found 
in the related field of transport maps (e.g., El Moselhy & Marzouk, 2012; Marzouk et al., 2017; Spantini 
et al., 2018) which construct the transformation functions explicitly. In conclusion, we believe that SVGD is 
a highly promising and relatively easy-to-use (although not necessarily easy-to-derive) tool for non-Gauss-
ian parameter inference in hydrogeological systems, and that a strong case could be made for its use in 
complex models with weak claim to Gaussianity.

Data Availability Statement
The data and codes accompanying this manuscript are available under https://doi.org/10.25678/00035V.
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