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Abstract 26 

Parasites threaten all free-living organisms, including molluscs. Understanding the evolution 27 

of immune defence traits in natural host populations is crucial for predicting their long-term 28 

performance under continuous infection risk. Adaptive trait evolution requires that traits are 29 

subject to selection (i.e., contribute to organismal fitness) and that they are heritable. Despite 30 

broad interest in the evolutionary ecology of immune activity in animals, the understanding of 31 

selection on and evolutionary potential of immune defence traits is far from comprehensive. 32 

For instance, empirical observations are only rarely in line with theoretical predictions of 33 

immune activity being subject to stabilising selection. This discrepancy may be because 34 

ecoimmunological studies can typically cover only a fraction of the complexity of an animal 35 

immune system. Similarly, molecular immunology/immunogenetics studies provide a 36 

mechanistic understanding of immunity, but neglect variation that arises from natural genetic 37 

differences among individuals and from environmental conditions. Here, we review the 38 

current literature on natural selection on and evolutionary potential of immune traits in 39 

animals, signal how merging ecological immunology and genomics will strengthen 40 

evolutionary ecological research on immunity, and indicate research opportunities for 41 

molluscan gastropods for which well established ecological understanding and/or “immune-42 

omics” resources are already available. 43 

 44 

Keywords Gastropoda, heritability, immune function, immunocompetence, Lymnaea 45 

stagnalis. 46 

 47 
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1. Introduction 51 

Parasites [here referring to both micro- (e.g., viruses and bacteria) and macro-parasites (e.g., 52 

helminths)] present a severe threat to free-living organisms, including molluscs, by reducing 53 

their survival and fecundity. Such adverse fitness effects can, for example, influence the 54 

evolution of host life-histories (1, 2) and drive sexual selection (3, 4). Furthermore, if host 55 

individuals fail to resist infections and/or eliminate them after establishment, parasite 56 

prevalence in a host population may rapidly increase, eventually crashing it [reviewed in (5)]. 57 

Owing to complicated species interactions in natural communities, reduced host population 58 

density may have broad ecological consequences, for instance, by altering resource-consumer 59 

interactions, and also jeopardise vital ecosystem services [e.g., (6, 7)]. Moreover, although 60 

biomedical science has been able to eliminate several disease-causing agents (mostly viruses 61 

and bacteria), parasites are still one of the most common causes of death in humans and 62 

sources of economic loss in agriculture [e.g., (8, 9)]. The threat of disease is even expected to 63 

increase in the future because of continuous emergence of new disease-causing agents (10, 64 

11), the evolution of drug resistance [reviewed in (12, 13)], and biological invasions 65 

[reviewed in (14)]. Therefore, to create projections of the risks that parasites impose, a crucial 66 

element to understand is if and how host populations may evolutionarily adapt to parasitism. 67 

 Several factors are known to play essential roles in determining host susceptibility to 68 

infections, including host and parasite genetics [e.g., (15-17)], host gender [e.g., (2, 18)], host 69 

age [e.g., (19, 20)], host nutritional state [e.g., (21, 22)], host behaviour (23, 24), and 70 

environmental conditions [e.g., (25, 26)]. Many of these effects arise from differences in host 71 

immune function, which is the primary physiological barrier against infections [reviewed in 72 

(27)]. Therefore, understanding the outcomes of host-parasite interactions, and thus disease 73 

outbreaks in nature, requires detailed knowledge on the evolutionary responses of immune 74 

defence traits to parasite-mediated selection. The host immune function has recently become 75 
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an important research topic in several fields of ecology and evolutionary biology [see (28)]. 76 

This development has given rise to the interdisciplinary field of ecological immunology [or 77 

ecoimmunology; see (29)] that has proven to be highly useful when investigating the 78 

evolution of host immune defence traits in natural systems [reviewed in (30)]. That research 79 

can be expected to be of great help when evaluating the role of evolution in determining 80 

future disease outbreaks. 81 

Ecological immunologists typically focus on quantitative immune defence traits such 82 

as the amount of end products of immune cascades that are controlled by several genes. This 83 

approach is chosen because many immunological processes, especially in invertebrates, 84 

consist of traits that are not strictly specific to certain parasites (31) and are likely to evolve 85 

through selection on additive genetic variance [e.g., (32-34)] rather than frequency-dependent 86 

selection [reviewed in (35)]. Adaptive evolution of quantitative traits requires that phenotypic 87 

trait variation reflects fitness variation (i.e., traits are subject to natural selection) and that it is 88 

at least partly heritable (i.e., traits show additive genetic variation; 36). In this article, we 89 

briefly review earlier empirical work on both natural selection on and genetic variation in 90 

immune defence traits across animal systems to present the general state of research in the 91 

field. Then, we discuss how we believe the recent development in the fields of genomics and 92 

transcriptomics could support future investigations in the evolutionary ecology of host 93 

immune activity. Lastly, we review the state of research focusing on the evolution of immune 94 

activity in molluscs and propose how the rapidly expanding genomics and transcriptomics 95 

resources in this group of organisms [see e.g., (37-39)] could be of great help strengthening 96 

future ecoimmunological research. 97 

 98 

2. Natural selection on immune activity 99 
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The first requirement for adaptive evolution of a phenotypic trait is that it is subject to natural 100 

selection. From the potential forms of selection on quantitative traits [see (36)], positive 101 

directional (i.e., the highest trait values lead to the highest fitness) and stabilising selection 102 

(i.e., intermediate trait values lead to the highest fitness) are considered most relevant for 103 

immune traits. First, since the function of the immune system is to prevent and eliminate 104 

infections by harmful (i.e., virulent) parasites, a strong immune system can be assumed to 105 

increase fitness and evolve as a response to parasitism [e.g., (40, 41)]. However, the immune 106 

defence is typically energetically costly to maintain and use [reviewed in (42, 43)], which can 107 

lead to trade-offs between immune function and life-history traits [e.g., (44, 45)], as well as 108 

between different immunological mechanisms (32). Therefore, strong immune defence (and 109 

subsequent low parasite abundance) does not necessarily lead to the highest fitness. In fact, 110 

theoretical models predict host immune function to evolve under stabilising selection when 111 

immune activity is costly to maintain and use [reviewed in (46)]. Contrary to the theoretical 112 

predictions, empirical studies that are mainly conducted using birds (a few studies exist on 113 

mammals, reptiles and insects) typically suggest positive directional selection on immune 114 

function through its positive effects on survival and fecundity [reviewed in (46)]. A few 115 

studies report stabilising or even negative directional selection on immune defence traits (47-116 

50). Owing to the predicted costs associated with immune function (see above), evidence for 117 

positive directional selection is surprising and may arise from challenges to identify and 118 

measure appropriate parameters of host immune function as well as fitness components. 119 

The above studies on natural selection on immune function typically focus on 120 

measuring the end products of one or a few immunological cascades [but see (51)]. However, 121 

the immune system is formed from several different components that are effective against 122 

different types of parasites [reviewed in (27, 52)]. For example, the immune system of the 123 

fruit fly shows specific responses towards Gram-positive bacteria, Gram-negative bacteria 124 
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and fungi [e.g., (53, 54)], and similar specificity has been seen in other taxa [e.g., (38, 55)]. 125 

Additionally, immunological pathways consist of several steps (recognition, signalling, 126 

effectors) that are crucial for successful immune responses, and different components and 127 

steps of the immune response may be traded-off with different physiological, life-history 128 

and/or immune defence traits [see (32, 38, 56, 57)]. Furthermore, the activity of different 129 

immunological mechanisms, their relative contribution to a successful defence, and the costs 130 

related to high immune activity may vary over space and time. This variation could depend 131 

on, for example, infection risk in the environment, the type of parasites the hosts are exposed 132 

to, and environmental conditions that determine the expression of trade-offs (46). These 133 

factors make predicting evolutionary forces that shape immune function in natural 134 

populations very difficult when only a narrow subset of immune traits is examined to quantify 135 

selection. Therefore, although ecoimmunological studies can give detailed estimates about the 136 

evolution of specific immune traits, they are not as successful at providing a general 137 

understanding of the evolution of immune activity at the level of the whole immune system. 138 

 The recent development in transcriptomics [see (58, 59)] provides excellent 139 

opportunities to overcome the above-mentioned challenges when investigating the evolution 140 

of organisms’ immune activity. In general, trait evolution may depend more strongly on 141 

variability in gene expression than on variation in protein-coding sequences (60, 61). In fact, 142 

the genetic basis of transcription, and its evolution under natural selection is well 143 

demonstrated in yeast [e.g., (62, 63)], fruit fly [e.g., (64, 65)], and fish [e.g., (66, 67)]. For 144 

instance, a study on killifish Fundulus heteroclitus identified 13 genes with variation in 145 

transcription among natural populations that indicate thermal adaptation across a latitudinal 146 

gradient (66). Such studies show that gene expression can be a meaningful predictor of 147 

individuals’ performance and could be used in the quantitative genetic (i.e. statistical genetic) 148 

framework as a “phenotype” [reviewed in (68)]. 149 
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Transcriptomics has become especially fruitful in evolutionary ecology at the era of 150 

the rapid development of high-throughput gene expression analysis technologies. Currently, it 151 

is possible to measure the transcription of numerous genes selected across the whole genome 152 

in a very cost and time-efficient manner [e.g., (69)]. In ecological immunology, this allows 153 

using expression levels of a broad range of genes that cover different immunological 154 

pathways and steps of immunological cascades (i.e. recognition, signalling, effectors) to 155 

comprehensively quantify the ‘immune phenotypes’ [sensu (70)] of individuals. However, 156 

ecoimmunological research is still rarely conducted at the gene expression level. So far, 157 

condition dependence of immune activity (71), genetic specificity between hosts and parasites 158 

(72), and immune priming (73, 74) have been investigated by quantifying transcription in 159 

bumblebee and red flour beetle. Those studies have hugely benefitted from the detailed 160 

examination of different components of the host immune system provided by transcriptomics 161 

technologies. To our knowledge, however, gene expression analysis has not been incorporated 162 

in earlier studies on natural selection on immune function. 163 

 164 

3. Evolutionary potential of immune activity 165 

The second requirement for adaptive trait evolution is that the traits under selection can 166 

respond to it. Specifically, fitness-related traits need to show heritable genetic variation [see 167 

(36)]. Therefore, understanding the genetic architecture of and the extent and type of genetic 168 

variation in phenotypic traits is indispensable for understanding their evolution (75). In fact, if 169 

and how natural populations can evolutionarily respond to natural selection is one of the main 170 

topics in current evolutionary ecological research. Estimating quantitative genetic parameters 171 

such as additive genetic variance and covariance of traits is an efficient approach for testing 172 

whether or not natural populations can evolve through adaptation, and how fast this process 173 

can be [reviewed in (76, 77)]. This is especially important because in many systems, natural 174 
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populations do not respond to the observed selection, or their responses differ from the 175 

predictions based on selection [e.g., (78, 79)]. The above approach is highly relevant also in 176 

the case of immune defence traits. However, despite wide interest on the evolutionary 177 

potential of immune traits [e.g., (15, 32, 34, 80)] this information is mostly lacking from 178 

natural populations [but see (81-84)]. The scarcity of such knowledge prevents predicting the 179 

evolutionary responses of host defences to parasitism. 180 

 One main reason for the poor understanding of the evolutionary potential of defence 181 

against parasites is that earlier genetic research on immune function has been largely divided 182 

into two separate fields, molecular immunogenetics and quantitative genetics. Molecular 183 

immunogenetics focuses on describing genetic mechanisms underlying the structure and 184 

functioning of individual components of the immune system from a medical perspective. 185 

Such information has, of course, important implications in the society, but they rarely shed 186 

light on ecological and evolutionary relevance of immune function. The latter is because those 187 

studies are typically conducted using specific strains of model organisms for biomedical 188 

research and do not consider natural genetic variation [e.g., specific mouse strains (85, 86)]. 189 

Quantitative genetic studies, on the other hand, examine genetic variation by focusing on 190 

natural populations or at least laboratory stocks that originate from the field. However, many 191 

quantitative genetic studies also are limited to laboratory conditions owing to the need for 192 

controlled breeding designs that estimate quantitative genetic parameters such as heritability 193 

(i.e., the proportion of trait variation arising from breeding values) and genetic correlation. 194 

Such studies are especially common in invertebrates [e.g., (32-34)]. 195 

 The main limitation of breeding designs conducted under laboratory conditions is that 196 

the estimated quantitative genetic parameters may not reflect their actual values under natural 197 

conditions. This discrepancy is likely because, for example, trait heritability and genetic 198 

correlations often depend on the environmental conditions under which they are estimated 199 
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[reviewed in (87, 88)]. Dependence on environmental conditions is because several 200 

environmental factors such as resource availability and ambient temperature can affect 201 

variation in trait values among individuals, as well as the expression of trade-offs. Therefore, 202 

quantitative genetic studies are most useful in study systems in which social pedigrees over 203 

many generations are available from natural populations [mainly mammals and birds; 204 

reviewed in (89)]. To our knowledge, such studies on immune defence have been conducted 205 

only in Soay sheep (84) and a few bird species [e.g., (81-83)]. The rarity of such studies is 206 

likely to be because collecting pedigree data in natural populations is always demanding and 207 

practically impossible in many study systems (e.g., invertebrates). Furthermore, similarly to 208 

the studies on natural selection on immune activity described above, quantitative genetic 209 

studies on immune function focus on a few phenotypic immune traits that reflect the amount 210 

of end products of immune cascades [e.g., (32-34)]. Thus, quantitative genetic studies are 211 

often not successful at predicting the evolution of the immune system as a whole and would 212 

greatly benefit from the integration of transcriptomics to expand the collection of measured 213 

immune traits at the gene expression level. To our knowledge, such an analysis on the genetic 214 

architecture (i.e., variance components) of the expression of several immune traits has not 215 

been conducted. 216 

 In the field of quantitative genetics, interest in using genomics tools when examining 217 

heritability of phenotypic traits is currently increasing. Utilising genomics methods allows, 218 

for instance, genotyping of individuals with high marker density across the whole genome 219 

[e.g., SNP genotyping using SNP chips or restriction site-associated DNA sequencing (RAD-220 

seq), (90, 91)] to estimate relatedness among individuals in natural populations. The 221 

advantage of these methods is that they measure the realised genomic relatedness based on the 222 

proportion of genome identity-by-state between all pairs of individuals. Such estimates can 223 

differ significantly from the expected values of identity-by-descent provided by pedigrees 224 
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(92). These methods have been used to improve the available pedigree information, for 225 

example, in the great tit (93, 94) and Soay sheep (95, 96) populations when calculating 226 

quantitative genetic parameters for morphological and life-history traits. The obtained genetic 227 

data has proven to be highly useful by improving parameter estimates when compared with 228 

those that utilise only pedigree information (95, 97, 98). Additionally, RAD-seq data has been 229 

used to estimate the heritability of body mass in roe deer without any pedigree information 230 

(99). However, only one study on Soay sheep (84) has focused on immune traits by utilising a 231 

high-density SNP chip to build a genomic relatedness matrix for quantitative genetic analyses. 232 

It is, however, important to note that heritability estimated via SNP data is expected to be 233 

lower than narrow-sense heritability calculated, for example, from pedigree data. This 234 

difference is because of the imperfect tagging of the causal variants by SNPs. Because SNP 235 

genotyping typically focuses on common alleles (> 1% frequency), SNP heritability does not 236 

capture the contribution of rare SNPs to trait variation (100). 237 

The above genotyping approaches provide additional opportunities for more detailed 238 

investigation of the genetic architecture of the examined traits. For instance, marker-based 239 

partitioning of phenotypic trait variation across chromosomes helps to estimate whether the 240 

traits of interest are polygenic or not (93, 94, 96, 101). If the contribution of different 241 

chromosomes on trait heritability depends on their size, the trait should be polygenic. 242 

However, if only one chromosome (not necessarily the largest) explains most of the trait 243 

heritability, then the trait is likely to be determined by a small number of genes with large 244 

effects. Furthermore, identifying candidate loci underlying phenotypic trait variation [e.g., 245 

using genome-wide association studies (GWAS), (102)] allows examining covariation in their 246 

phenotypic effects (103). Because of these advantages, the interest in using methods like 247 

GWAS in natural populations of wild species is increasing in the field of quantitative genetics 248 

[e.g., (96, 104, 105)]. In our opinion, however, the greatest benefit of “molecular quantitative 249 
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genetics” is that it enables studies on natural populations of invertebrates and plants that are 250 

currently severely underrepresented in this field owing to the lack of social pedigree 251 

information [see (89)]. 252 

 253 

4. Natural selection on and evolutionary potential of immune activity in molluscs 254 

In molluscs, natural selection on immune activity has been examined in the great pond snail, 255 

Lymnaea stagnalis. In a field study by Langeloh et al. (106), snails from a genetically diverse 256 

laboratory stock were maintained in enclosures in a lake for several weeks. The stock 257 

population experimental snails originated from was initiated by interbreeding individuals 258 

from several natural populations to increase genetic and phenotypic variation among 259 

individuals because snail populations in the field often show low genetic diversity (107). This 260 

way, the risk of limited phenotypic variation preventing the detection of stabilising selection 261 

aimed to be minimised [see (46)]. Over the course of the study, snails’ immune activity 262 

[antibacterial activity and phenoloxidase (PO)-like activity of haemolymph], as well as fitness 263 

components such as survival and fecundity, were followed. The results indicated positive 264 

directional selection on antibacterial activity and stabilising selection on PO-like activity. This 265 

finding is interesting by suggesting that the activity of different components of the snail 266 

immune system may be independently subjected to selection owing to differences in their 267 

importance for snails defences under certain conditions and/or trade-offs with other traits that 268 

are relevant for fitness. In this case, for instance, contrasting fitness functions may arise from 269 

possibly higher fitness costs of high PO-like activity that is a component of oxidative 270 

defences that potentially induce higher self-damage (108) than antibacterial activity. The 271 

variation in selection on the examined immune traits calls for simultaneous examination of a 272 

broader range of different immunological mechanisms. 273 
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 To enable such work at the gene expression level, L. stagnalis has recently been 274 

subjected to extensive transcriptome sequencing (109). That work has provided a broad 275 

picture of the immune system of this species and identified multiple targets for future 276 

ecoimmunological work. Transcriptomes were sequenced from individual snails exposed to 277 

various immune activation treatments (wounding, injection of bacteria cells, injection of 278 

trematode-infected snail tissue from other individuals) and environmental changes (elevated 279 

temperature, resource limitation). This approach allowed the identification of components of 280 

the immune system that respond to different immune challenges/environmental conditions. 281 

For instance, bacterial challenge activated Toll-like receptor (TLR) signalling pathway, 282 

signalling through cytokines, antibacterial defences through cytolytic β pore-forming toxins, 283 

and melanisation-type reaction (109). Similarly, exposure to protein extracts from trematode 284 

parasites increased the gene expression of some components of the TLR signalling pathway 285 

and melanisation-type reaction. Additionally, apart from immune challenges, altered 286 

temperature and resource availability modified the expression levels of cytokines and 287 

effectors contributing to antibacterial defence (109). These findings indicate a potentially 288 

important role of these components in the snail immune system against parasites and 289 

pathogens, as well as in determining context-dependence of immune activity. 290 

However, by nature, many components of the invertebrate innate-type immune system 291 

show largely constant, unchanging levels of activity. Nevertheless, those components can be 292 

important determinants of the hosts’ capacity to resist infections, thus contributing to 293 

organismal fitness. If such immunological mechanisms show high among-individual variation 294 

in natural populations, they could be subject to strong natural selection. Detecting variation in 295 

gene expression that arises through causes such as genetic background and/or physiological 296 

condition of individuals is, however, easily overlooked in typical RNA-seq studies that aim to 297 

expose study organisms that are as genetically homogeneous as possible to highly controlled 298 
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experimental treatments. To be able to detect such among-individual variation in immune 299 

activity, L. stagnalis transcriptomes (109) were specifically sequenced using a genetically 300 

diverse laboratory population of snails [see (106)]. Interestingly, the results indicated high 301 

among-individual variation in the expression levels of many components of the snail immune 302 

system, including non-self recognition, signalling through TLR pathway and cytokines, 303 

components of the production of reactive oxygen species (ROS), factors regulating apoptosis, 304 

and effectors representing antibacterial defence and melanisation-type reaction (109). In 305 

addition to immunological mechanisms that showed clear responses to immune challenges 306 

(see the previous paragraph), immune factors with high among-individual variation in gene 307 

expression should be included in future ecoimmunological studies on this species. For 308 

instance, cage experiments, similar to Langeloh et al. (106) that estimate snail fitness under 309 

(semi)natural conditions in the field, but employ targeted molecular assays (microarray or 310 

qRT-PCR) to quantify immune activity across a broad range of different immune defence 311 

factors at the gene expression level would allow comprehensive examination of selection on 312 

snail immune phenotypes. 313 

 Earlier work examining the amount of within-population genetic variation in parasite 314 

resistance and immune activity in molluscs is slightly more abundant than the work on natural 315 

selection on defence traits that was described above. For example, Grosholz (16) examined 316 

genetic variation in the resistance of a bivalve mollusc Transennella tantilla against trematode 317 

parasites under field conditions. By maintaining individuals from laboratory cultured maternal 318 

sibships in field enclosures, he demonstrated significant family-level variation in parasite 319 

resistance. Similar variation has been seen in the susceptibility of L. stagnalis snails to 320 

trematode cercariae in laboratory exposures (110). In L. stagnalis, also family-level variation 321 

in immune activity (antibacterial activity and PO-like activity of haemolymph) has been 322 

demonstrated under laboratory conditions using both maternal sibships (80, 111) and full-sib 323 
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families (112, 113). Although the conducted studies demonstrate the role of within-population 324 

genetic variation in determining susceptibility to infections and the strength of the immune 325 

defence, the fact that they are limited to comparisons among maternal sibships and full-sib 326 

families prevents their use in disentangling the actual genetic mechanisms that determine 327 

variation (e.g., additive vs. dominance variance) and means that the results can be confounded 328 

by parental effects [but see (112)]. Therefore, the studies conducted on molluscs cannot 329 

estimate the evolutionary potential of the immune defense traits/parasite resistance based on 330 

narrow-sense heritability that is defined by breeding values. 331 

 Recent and ongoing work on the genomics of L. stagnalis may provide great 332 

opportunities to utilise the tools of molecular quantitative genetics when examining variation 333 

in immune activity in natural snail populations under field conditions. Currently, a draft 334 

genome of L. stagnalis is available (114), and this species has been successfully used in a 335 

RAD-seq study to identify the chirality-determining locus in which the restriction enzyme 336 

SbfI produced 52,124 candidate loci (115). This study, however, utilised paired-end 337 

sequencing and did not report how many of the candidate loci are located in physical 338 

proximity. Strong linkage between loci could significantly reduce the number of independent 339 

markers that can be used when building a genomic relatedness matrix. Nevertheless, the 340 

obtained number of loci should generate a sufficient marker density considering the genome 341 

size of 1.19 Gb of L. stagnalis (116) for molecular quantitative genetic analyses (i.e., 342 

estimation of trait heritability, chromosome partitioning analysis). The number of 343 

polymorphic marker loci provided by RAD-seq may, however, vary among snail populations 344 

depending on their genetic polymorphism. For example, preliminary results from a study of L. 345 

stagnalis populations in northern Switzerland that used the same SbfI enzyme with single-end 346 

sequencing recovered 7407 marker loci, many without any polymorphism, so that the number 347 

of polymorphic sites varied between 1456 and 2689 per population (personal observations). 348 
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This result calls for the use of a more flexible double-digest RAD-seq approach in which 349 

different combinations of restriction enzymes are used to yield a greater number of markers 350 

(91). 351 

 352 

5. Opportunities and challenges in ecoimmunology across molluscan gastropods 353 

The scope of previous work on natural selection on and evolutionary potential of immune 354 

defence traits in molluscs is narrow due to reliance on L. stagnalis. Also, the development of 355 

omics resources (including annotation and expression profiling of immune genes) for this 356 

species is recent and still partly underway (109). The increasing use of next-generation 357 

sequencing has begun to unlock other gastropod species as potential targets for 358 

ecoimmunological research by providing useful, and in some cases, well-developed genomics 359 

resources (117). From the angle of gastropod immunogenomics, Biomphalaria glabrata is the 360 

most intensively studied species with a relatively well-annotated reference genome (37). 361 

However, research on B. glabrata mainly focuses on understanding the molecular 362 

mechanisms that determine its, and other Biomphalaria species (118), 363 

resistance/susceptibility to Schistosoma mansoni, a trematode parasite that is a global human 364 

health problem (119). The “omics”-level work on the immune function of B. glabrata (120) 365 

has revealed commonalities of the general molluscan defence system when compared to other 366 

taxa. These include, for instance, the roles of lectins in non-self recognition, TLR signalling 367 

for immune regulation, and antimicrobial proteins and ROS production by haemocytes to 368 

eliminate pathogens. Although lineage-specific differences occur, for example, between 369 

prosobranch and heterobranch snails and even between closely related families like 370 

Planorbidae and Physidae (121), work on B. glabrata provides a useful resource to support 371 

ecoimmunological studies in other taxa. Research on B. glabrata also aims to identify targets 372 

in snail biology that may help to develop control measures of this species in nature to reduce 373 
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human exposure to schistosomes. That effort logically calls for combining molecular 374 

immunology with field ecology and requires ecoimmunological investigations. 375 

The New Zealand mud snail, Potamopyrgus antipodarum, is another good candidate 376 

for studies combining immunogenomics and ecology in gastropods. Longstanding studies on 377 

this species as a model for the evolutionary maintenance of sexual reproduction have 378 

motivated intensive examination of its transcriptomes, with a strong focus to characterise the 379 

immune system (39, 122). With a well-established understanding of the ecology of this 380 

species, P. antipodarum offers an excellent opportunity for combining field ecology and 381 

immunogenomics to extend the use of this model beyond the current focus on maintenance of 382 

sex. Furthermore, the development and expansion of genomics resources render additional 383 

gastropod species as potential candidates for ecoimmunological research. This includes, for 384 

example, the periwinkle Littorina littorina, whose immunity system is extensively 385 

characterised [e.g., (123, 124)] and Physella acuta, a freshwater snail for which current 386 

resources include a draft genome assembly and RNAseq-based characterisation of immunity 387 

(125). Therefore, we believe that the opportunities of merging immunogenomics with 388 

ecological research can provide exciting new insights into the evolution of immune function 389 

across multiple gastropod species. 390 

 Results considering the variation in immune activity, its genetic basis and fitness 391 

consequences need, however, to be interpreted cautiously, especially when the examined 392 

immunological mechanisms are inducible. For example, in the most commonly used 393 

ecoimmunological model species L. stagnalis, both phenotypic immunological assays (126) 394 

and transcriptome data (109) indicate increased immune activity after an immune challenge in 395 

certain components of defence. Furthermore, environmental conditions such as food 396 

availability and temperature influence snails’ immune function [e.g., (80, 109, 111)]. Such 397 

effects may lead to temporal variation in immune activity at an individual level, which can 398 
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hinder detecting the quantitative genetic basis and/or fitness consequences of among-399 

individual variation in immune function when, for example, field-collected individuals are 400 

used. Therefore, the infection status (e.g., trematode infections) and resource level (e.g., fat 401 

content) of snails should be examined simultaneously with their immune activity if possible. 402 

Examining exposure to all relevant parasite types is, however, unrealistic in most studies. 403 

Furthermore, detecting parasite exposures that did not lead to an infection, but that activated 404 

the immune system are virtually impossible to quantify. Therefore, the components of the 405 

innate-type immune system of molluscs that show largely constant levels of activity may be 406 

the most suitable for the evolutionary analyses suggested in this article. Transcriptome 407 

profiling of L. stagnalis has revealed multiple immunological mechanisms with high among-408 

individual variation without indication of responses to immune activation or environmental 409 

factors [e.g., components of non-self recognition, TLR signalling, ROS production, 410 

antibacterial activity (109)]. Those mechanisms serve as promising candidates for future 411 

research. Similar opportunities can be expected in other invertebrates that lack adaptive 412 

immunity of vertebrates with the highest potential for induced responses. 413 

 414 

6. Conclusions 415 

While biomedical science has successfully eliminated several disease-causing agents (mostly 416 

viruses and bacteria), parasites are still one of the most common causes of death in humans 417 

and crop species, thus causing severe economic losses [e.g., (8, 9)]. Furthermore, the 418 

continuous emergence of new disease-causing agents (10, 11), the evolution of drug 419 

resistance [reviewed in (12, 13)], and biological invasions [reviewed in (14)] increase the 420 

disease risk now and in the future. Several molluscs transmit harmul parasites such as the 421 

human blood fluke (S. mansoni) in tropical regions (119, 127), and liver fluke (Fasciola 422 

hepatica), fish eye flukes (Diplostomum spp.), and bird schistosomes (Trichobilharzia spp.) 423 
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that cause swimmer’s itch in temperate regions [e.g., (128-130)]. Therefore, an essential 424 

element when creating projections of disease risks is to understand if and how natural host 425 

populations may evolutionarily adapt to parasitism. 426 

Adaptive evolution of quantitative traits such as many components of parasite 427 

resistance and immune function requires that traits are subject to selection (i.e., contribute to 428 

organismal fitness) and that they are heritable (i.e., show additive genetic variance) [see (36)]. 429 

Despite broad interest in the evolutionary ecology of immune activity in animals, the 430 

understanding of selection on and evolutionary potential of immune defence traits is not 431 

comprehensive. For example, empirical studies typically do not support theoretical 432 

predictions of immune activity being subject to stabilising selection [reviewed in (46)]. We 433 

propose that this discrepancy may be because ecoimmunological studies that mostly examine 434 

one/few immunological mechanisms cover only a fraction of the complexity of an animal 435 

immune system. The same mostly holds for molecular immunology/immunogenetics studies 436 

that also neglect variation in immune activity that arises from genetic variation among 437 

individuals and from environmental conditions. We believe that “merging” ecological 438 

immunology, genomics and transcriptomics is necessary to fill these knowledge gaps and 439 

combine formerly separated field of ecological and molecular/genetic immunology. We see 440 

this approach highly promising in various taxa of molluscan gastropods that are already used 441 

as model systems in ecological and evolutionary research (e.g., L. stagnalis, P. antipodarum), 442 

molecular immunology (e.g., B. glabrata, L. stagnalis) and genomics (e.g., B. glabrata). 443 

Combining the knowledge and tools across the disiplines in these model species should allow 444 

examining evolution of immune activity while simultaneously covering the immune system as 445 

a whole and considering ecologically relevant genetic background and environmental 446 

conditions. Only then can evolutionary processes in natural populations be thoroughly 447 

estimated. 448 
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