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Abstract:  25 

  26 

Ecologists and evolutionary biologists are well aware that natural and sexual selection do not 27 

operate on traits in isolation, but instead act on combinations of traits. This long-recognized and 28 

pervasive phenomenon is known as multivariate selection, or – in the particular case where it 29 

favours correlations between interacting traits – as correlational selection. Despite broad 30 

acknowledgement of correlational selection, the relevant theory has often been overlooked in 31 

genomic research. Here, we discuss theory and empirical findings from ecological, quantitative 32 

genetic and genomic research, linking key insights from different fields. Correlational selection 33 

can operate on both discrete trait combinations and on quantitative characters, with profound 34 

implications for genomic architecture, linkage, pleiotropy, evolvability, modularity, phenotypic 35 

integration and phenotypic plasticity. We synthesize current knowledge and discuss promising 36 

research approaches that will enable us to understand how correlational selection shapes genomic 37 

architecture, thereby linking quantitative genetic approaches with emerging genomic methods. We 38 

suggest that research on correlational selection has great potential to integrate multiple fields in 39 

evolutionary biology, including developmental and functional biology, ecology, quantitative 40 

genetics, phenotypic polymorphisms, hybrid zones and speciation processes. 41 

  42 

  43 

 44 

 45 
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Organisms are functionally integrated adaptive systems, where interactions among traits make the 46 

whole more than the sum of its parts. How and why did such functional integration evolve, and 47 

what are the evolutionary consequences of genetic correlations between traits? These questions 48 

have occupied evolutionary biologists for decades, resulting in a rich but scattered scientific 49 

literature on topics such as modularity1, evolvability1–3, multivariate selection on trait 50 

combinations4–8 and the evolution of genetic correlation structure9–12. Early theoretical work by 51 

Cheverud4 and Lande13 predicted that genetic correlations between traits should become aligned 52 

with the direction of selection on trait combinations. This important insight made it possible to 53 

connect correlational selection (selection on trait combinations rather than traits in isolation; see 54 

formal definition in Box 1) to the field of evolutionary quantitative genetics, with its focus on 55 

genetic correlation structures. A central testable prediction was adaptive alignment between 56 

genetic correlations and the direction of correlational selection, although genetic correlations will 57 

also be influenced by other evolutionary forces (e.g. mutation and genetic drift) and ecological 58 

factors (e.g. fluctuating environmental conditions)9,10. 59 

  60 

Correlational selection forms a nexus between several traditionally separate research fields, 61 

including ecology and developmental biology (Fig. 1). Correlational selection links organismal 62 

level features, such as function and development, both to population phenomena such as 63 

modularity and genetic correlation structure and to underlying processes such as natural and sexual 64 

selection, which typically arise from interactions with mates, predators, mutualists or the abiotic 65 

environment (Fig. 2). These connections have not always been developed explicitly, with the result 66 

that whole research fields have largely remained separate, partly due to different terminologies. 67 

For instance, in a highly influential review about the evolution of modularity1, correlational 68 

selection was not explicitly mentioned, and instead the authors used the terms modular selection 69 
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and a modular trait architecture as an expected outcome of selection. Correlational selection can 70 

either strengthen or weaken correlations between traits, depending on ecological context. For 71 

instance, plant evolutionary biologists studying floral pollination syndromes have noted that 72 

mutualistic interactions between pollinators and plants may lead to adaptive de-coupling between 73 

vegetative and floral parts, resulting in strong intramodule correlations but weak correlations 74 

between modules14. Similarly, antagonistic interactions like predation can impose strong 75 

correlational selection on behavioural traits, leading to tighter phenotypic integration and adaptive 76 

multivariate phenotypic plasticity in stickleback fish15,16. Studies of the outcomes of artificial 77 

selection and domestication processes have also revealed that correlations between animal 78 

personality traits have sometimes become decoupled, compared to the ancestors where these traits 79 

were more strongly genetically correlated17. 80 

  81 

In light of the genomic revolution, time is now ripe to evaluate Cheverud4 and Lande13’s 82 

predictions about the evolution of genetic architecture and to ask: have they been confirmed or 83 

overturned by recent findings? In particular, are molecular signatures consistent with correlational 84 

selection having shaped the genomic architecture of organisms6,18 and promoting functional 85 

integration, e.g. through linkage or pleiotropy? Here, we review quantitative genetic theory and 86 

data on correlational selection and link these to the partly separate literatures on modularity and 87 

evolvability, as well as to recent genomic research. Our aim is to synthesize insights from these 88 

different fields and to point out new directions for future research at their intersections.  89 

  90 

Quantification and visualization of correlational selection 91 

  92 

The first quantitative treatment of correlational selection was provided by Lande and Arnold19 93 

(Box 1). These pioneers introduced statistical tools to measure selection on continuously 94 

distributed phenotypic traits by estimating selection coefficients that could be incorporated into 95 
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the equations for predicting evolutionary responses. Below we discuss the interpretations of those 96 

coefficients, and review the methods to estimate them.  97 

  98 

Individual fitness surfaces are often complex, but can be analyzed to reveal the operation of 99 

correlational selection (see definition in Box 1). Correlational selection is particularly likely when 100 

the fitness surface resembles a ridge that is not parallel to either trait axis (Fig. 3A), as this form 101 

of selection favors particular combinations of trait values over others and thereby selects for a non-102 

zero correlation between traits (Box 1). Correlational selection can also arise alongside disruptive 103 

selection, for example when the fitness surface resembles a valley which is not parallel with either 104 

trait axis (Box 1; Fig. 3). 105 

 106 

The measurement of correlational selection requires data on the fitness and trait values of multiple 107 

individuals (Fig. 3B). The major goals of such analyses are to visualize the fitness surface and 108 

estimate coefficients that describe it5. In empirical studies, the true surface is unknown, but we can 109 

deduce its properties by approximating the surface with simple functions. Quadratic surfaces are 110 

often used to estimate coefficients corresponding to linear selection (β) and nonlinear selection (γ) 111 

(Box 1)19. Unfortunately, it is difficult to visualize the fitness surface from the γ-coefficients alone. 112 

However, the surface can be visualized by plotting it (Box 1) or by conducting a canonical analysis 113 

that estimates the principal components (eigenvectors) of the surface (Box 1)5,7,8. Despite their 114 

simplicity, quadratic coefficients can describe a wide variety of surfaces5.  115 

 116 

When a quadratic surface does a poor job of approximating the actual fitness surface, the surface 117 

can be visualized using non-parametric methods20. These techniques can reveal multiple peaks and 118 

valleys in the fitness surface (Fig. 3), if they exist, whereas the quadratic approaches will always 119 

depict a smooth and simple relationship, regardless of the ruggedness of the underlying fitness 120 
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surface. However, non-parametric approaches have the shortcoming that they usually do not 121 

produce coefficients that are well-integrated into the equations of evolutionary change.  122 

  123 

Our understanding of the empirical importance of correlational selection has lagged behind our 124 

understanding of the prevalence and consequences of directional selection21, with only one meta-125 

analysis of correlational selection published to date22. There are good reasons to expect 126 

correlational selection in a wide variety of ecological circumstances, and it might be particularly 127 

strong when fitness is affected by biotic interactions, which can generate strong and chronic 128 

selection on trait combinations6. Intraspecific interactions that have been shown to result in 129 

correlational selection often involve sexual or social selection6. Prime examples include selection 130 

on signaling traits such as colour8,23,24 as well as selection on territorial behaviours,
 
which can 131 

favor genetic coupling between traits like aggression, dispersal and colonization ability25(Fig. 2). 132 

Interspecific interactions linked to correlational selection include predation based on colouration, 133 

morphology and behaviour traits15,26, herbivory on plants27 and mutualistic interactions between 134 

plants and their pollinators28. In many cases, the fitness surfaces are simple ridges or saddles, but 135 

sometimes the surface is more complex. Indeed, complex fitness surfaces could be common20. A 136 

priori we might expect to see multiple fitness peaks in organisms with discrete sympatric 137 

morphs6,8,26 or between ecotypes29 or newly formed species30.  138 

  139 

Evolution of genetic architecture in response to correlational selection 140 

  141 

Correlational selection is central to our understanding of how genetic architecture evolves. 142 

Correlational selection is also closely connected, albeit not identical, to the concept of fitness 143 

epistasis in evolutionary genetics31(Box 1). Importantly, although the single-generation effects of 144 

correlational selection on the genetic and phenotypic composition are readily understood, the 145 

transmission of these changes across generations is a complex theoretical and empirical issue.  146 
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 147 

To address how the effects of correlational selection are transmitted across generations, we must 148 

first define two parameters. The first is the additive genetic variance-covariance matrix (G), 149 

summarizing additive genetic variance for a set of traits9,10. The diagonal elements of G are the 150 

additive genetic variances, and the off-diagonal elements are additive genetic covariances (Fig. 151 

3C; see also Section 1 in Supplementary Material). Additive genetic variances and covariances 152 

describe patterns of trait inheritance, and depend on the frequency and effects of alleles. The 153 

additive genetic covariances are critical from a multivariate standpoint, because they describe the 154 

extent to which inheritance of different traits tends to be non-independent. In the bivariate case, G 155 

can be represented as an ellipse containing 95% of the genetic values of the individuals in a 156 

population32 (Fig. 3C). If two traits are strongly genetically correlated, the ellipse will be eccentric 157 

and oriented such that it is not parallel to either trait axis. That is, genetic covariances between 158 

traits result in directions of multivariate trait space with high (major axis of the correlation) and 159 

low (minor axis of the correlation) genetic variance, even if genetic variance is high in all 160 

individual traits33 (Fig 3). Importantly, the long-axis of the G-matrix (gmax) represents a genetic 161 

line of least resistance34, the direction in phenotypic space which harbors the most genetic variance 162 

and along which the population most easily evolves (see “Consequences for pleiotropy, 163 

evolvability, modularity and phenotypic plasticity”).  164 

   165 

Multivariate phenotypic effects of new mutations constitute a second set of key parameters, which 166 

are summarized in the mutational variance-covariance matrix (M)11,12. Theory often assumes that 167 

mutational effects are normally distributed. In the univariate case, when a locus affects only one 168 

trait, this distribution can be described by a mean and a variance, and if mutations are unbiased, 169 

the mean will be zero. In the multivariate case, some loci might be pleiotropic13, meaning that they 170 

affect more than one trait. In this case, the mutational effects are modeled as draws from a 171 

multivariate normal distribution. This distribution is described by mutational variances for each 172 
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trait (diagonal elements of M) and mutational covariances between traits (off-diagonal elements 173 

of M). Positive mutational covariances mean that a mutation tends to affect both traits in the same 174 

direction, whereas negative mutational covariances indicate that mutations tend to affect traits in 175 

opposite directions.  176 

 177 

Our analytical understanding of how correlational selection shapes the evolution of genetic 178 

variances and covariances comes from evolutionary quantitative genetic theory, particularly from 179 

the pioneering work by Russell Lande13,35,36, and Wagner and Altenberg’s2 ideas about how 180 

selection on pleiotropic patterns could lead to parcelation or integration between traits. Lande’s 181 

work suggested that inheritance should become aligned with the shape of the selection surface in 182 

well-adapted populations. Later, Cheverud used Lande’s model of selection on pleiotropic 183 

mutations to predict that genetic correlations should match functional interactions among traits4. 184 

Recently, this suggestion was extended to predict a three-way alignment among selection, 185 

inheritance and mutation12.  186 

  187 

How short term responses to correlational selection are transmitted across generations depends on 188 

the distribution of allelic effects and the persistence of selection. Correlational selection can create 189 

genetic correlation by promoting linkage disequilibrium between alleles that affect two different 190 

traits6. However, such changes are expected to be eroded rapidly due to recombination if selection 191 

is relaxed in subsequent generations6, suggesting that changes in genetic architecture due to this 192 

kind of correlational selection may be transient37, unless correlational selection is persistent6. More 193 

realistically, if correlational selection acts on traits whose expression is affected by alleles with 194 

pleiotropic effects, then correlational selection will alter the frequencies of those pleiotropic 195 

alleles. Therefore, the distribution of mutational effects has important consequences for the 196 

efficacy of selection on genetic covariances.  197 

    198 
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Two recent advances have increased our general understanding of the evolution of genetic 199 

architecture. First, increasingly powerful computer simulations have enabled researchers to 200 

explore the long-term effects of correlational selection and mutation on the evolution of genetic 201 

covariances9–12, expanding our knowledge beyond the case of mutation-selection balance under 202 

the classical infinitesimal model35,38. Second, a rapid increase in genomic data has provided 203 

insights into the empirical distributions of allelic effects in real populations. Combining both 204 

approaches provides exciting opportunities to understand how selection and genetics jointly shape 205 

the evolution of trait variation (see next section).  206 

    207 

Simulation-based studies have verified the prediction by Lande13  and Cheverud4 that selection 208 

will cause standing genetic variation to become aligned with the fitness surface9. For instance, if 209 

the fitness surface is ridge-shaped, then populations will tend to harbor more variation in the 210 

direction of phenotypic space aligned along the crest of the ridge and less variation perpendicular 211 

to the ridge. However, other factors also influence the genetic architecture of traits: genetic drift 212 

can cause G to fluctuate over evolutionary time9, a moving optimum stretches G in the direction 213 

of the movement10, Migration also increases the genetic variance in the direction of phenotypic 214 

space pointing toward the mean of the migrant source population in an island-mainland model39. 215 

Recently, it has also been emphasized that the mutational variance is aligned with the direction of 216 

phenotypic plasticity3,40, affecting both G and M. One interpretation of such alignment between 217 

plasticity and mutational variance is that developmental systems might respond similarly to 218 

environmental novelty as they do to genetic mutation40. Moreover, all else being equal, 219 

correlations in M should generate correlations in G, because standing genetic variation ultimately 220 

arises via mutation.  221 

    222 

Interestingly, influences between the fitness surface, G and M can flow in both directions. While 223 

M can influence the shape of G, the fitness surface in turn can shape both G and M11,12. Thus, if 224 
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the fitness surface is a ridge in phenotypic space (Fig. 3), selection will cause the long axis of G 225 

to align with the ridge. If such a selective regime is stable over evolutionary time, selection can 226 

cause alignment between the fitness surface, M and G12,41,42. Simulations show that evolution of 227 

the mutational distribution is especially plausible when different loci interact epistatically12. 228 

Recent progress in molecular biology, development and genomics suggests that such epistatic 229 

interactions are extremely common43. Epistasis can therefore permit the evolution of the 230 

mutational architecture because selection maintains variation at loci that have favorable 231 

interactions under the prevailing selection regime. 232 

  233 

A growing number of studies suggest that G can or has evolved in response to correlational 234 

selection (Fig. 2). For instance, Delph et al.44 imposed artificial correlational selection on 235 

combinations of male and female floral traits in the dioecious flower Silene latifolia (Fig. 2I) to 236 

test whether the between-sex genetic correlation was evolvable. High between-sex genetic 237 

correlations would potentially constrain the evolution of sexual dimorphism. Between-sex genetic 238 

correlations broke down after a few generations of selection44, however, suggesting that these 239 

correlations are due to linkage disequilibrium which is expected to break down rapidly under 240 

artificial correlational selection or recombination. In another plant study, however, genetic 241 

correlations were remarkably stable across several generations, suggesting that pleiotropy caused 242 

these correlations45. 243 

  244 

Genomic architecture of traits and consequences for multi-character evolution 245 

  246 

The development of next-generation sequencing (NGS) provides new opportunities to investigate 247 

correlational selection beyond what has been possible with classical quantitative genetics. 248 

Genomic data has allowed us to pinpoint the genetic basis and architecture of traits, to estimate 249 
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empirical distributions of allelic effects in real populations, to reconstruct the evolution of genome 250 

architecture relevant for trait evolution and to detect correlational selection from molecular 251 

footprints (Box 2).  252 

 253 

Recent studies using quantitative trait loci (QTL) mapping, genome-wide association studies 254 

(GWAS), and whole genome sequencing of population samples (Box 2), have revealed that most 255 

genotype-phenotype maps46 are complex. Most traits are determined by a large number of genes 256 

of small effect, consistent with the so-called ‘polygenic model’ of inheritance38 allowing efficient 257 

quantitative genetics modelling ignoring details of multilocus inheritance by assuming the 258 

infinitesimal model47. However, empirical effect sizes distributions are often exponentially 259 

distributed48,49 , with a few genes of major effect controlling a minority of traits for which the 260 

infinitesimal model is violated50 and which often have an important role in adaptation and 261 

speciation51,52. Molecular studies have further revealed that many functional genetic variants are 262 

pleiotropic and affect multiple traits53. Multiple-mapping approaches, enabling joint estimation of 263 

effects on multiple traits, hold great promise to further improve our understanding of pleiotropy54.  264 

Molecular studies have also revealed that epistasis is common55, with genotype-phenotype maps 265 

typically being highly nonlinear56, suggesting pervasive epistasis in genotype networks43. The 266 

importance of epistasis is controversial because linear quantitative genetic models are rarely 267 

improved by the addition of interaction terms57. However, genomic quantitative genetic studies 268 

that incorporate a more precise estimate of the shared proportion of genome have revealed that 269 

higher order variance components are not negligible58. Interestingly, a recent study of Timema 270 

stick insects has shown that correlational selection arose from fitness epistasis due to ecological 271 

factors (predation), in spite of the underlying traits (colour) having an additive genetic basis59.  272 

Reviewer
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 273 

These insights about the genetic architecture of traits have implications for the evolutionary 274 

response to correlational selection. One emerging insight from experimental evolution studies is 275 

that evolutionary changes in traits can often be achieved via many alternative "genomic solutions", 276 

suggesting important roles for redundancy and historical contingency in evolution60. Further, 277 

parallel evolution is often frequent for fitness itself, but less common for phenotypes, and less 278 

common still at the levels of genes or individual mutations61. For example, Therkildsen et al.62 279 

sequenced genomes of Atlantic silverside fish (Menidia menidia) selected for small and large size. 280 

Despite highly parallel phenotypic changes and several parallel allele frequency shifts in growth-281 

related genes, genomic adaptation in one line was contingent on the presence of a large inversion 282 

with moderate phenotypic effect62. On the other hand, pleiotropy, functional constraints and the 283 

presence of major effect loci may limit the number of redundant genomic solutions  in response to 284 

correlational selection63. For example, threespine stickleback adapting to freshwater habitats show 285 

highly repeatable evolution at a pleiotropic major effect locus64,65.   286 

  287 

Correlational selection changes the genetic covariances among traits and thereby ultimately shapes 288 

the evolution of genome architecture. Although many different mechanisms underly genetic 289 

covariances66, the two basic causes are linkage disequilibrium and pleiotropy38. Linkage 290 

disequilibrium captured by physical linkage is one genomic cause of trait correlations, in which 291 

recombination is suppressed in heterochromatic regions, in genomic rearrangements, on sex 292 

chromosomes, or due to a high density of transposable elements67. For example, Choudhury et al.68 293 

sequenced 304 Arabis alpina genomes, and found that the S-locus supergene responsible for strict 294 

outcrossing was in a linkage disequilibrium block that included high levels of polymorphic 295 

transposable elements. Genomic rearrangements such as gene duplications, translocations, 296 



13 

chromosomal fusions or inversions can also maintain linkage disequilibrium, due to disrupted 297 

meiotic chromosome pairing reducing recombination or the joint forces of physical linkage and 298 

selection69–71. Linkage disequilibrium may be preserved in deep evolutionary time, forming so-299 

called ‘supergenes', some of which might resemble sex chromosomes69,72–74 (Fig. 4A). There are 300 

several empirical examples of how co-selected complex trait combinations, bound to supergenes, 301 

cause behavioural and morphological differences between discrete morphs with different 302 

reproductive tactics (Fig. 4B)72–74. For example, a recent study in the heterostylic plant genus 303 

Primula revealed the build-up of an S-locus supergene controlling style, anther and pollen grains 304 

via gene duplications and neofunctionalization75. 305 

 306 

Even in the absence of physical recombination suppression, genetic covariances among traits can 307 

arise through linkage disequilibrium between loci6. Such linkage disequilibrium can potentially be 308 

maintained by assortative mating among individuals with the same correlated trait combinations76 309 

and by strong divergent or disruptive selection favoring several correlated trait optima within6,77 310 

or between populations78. Correlational selection can also theoretically lead to speciation through 311 

reinforcement of assortative mating by the evolution of genomic coupling between preference and 312 

trait loci, even if they are  initially unlinked6,76,79. There are several examples of ecotype or species 313 

pairs where inter-chromosomal linkage disequilibrium is maintained either by strong selection80 314 

or a combination of strong selection and assortative mating81, with some studies demonstrating 315 

genomic coupling between unlinked preference and sexually-selected trait loci76.  316 

 317 
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Genomic tools in combination with quantitative genetic approaches also enable us to obtain better 318 

estimates of G (Box 2)58,82. In addition, comparisons between the genetic variances and 319 

covariances of M (the mutation matrix) and G (the matrix of standing genetic variation) can reveal 320 

the presence of correlational selection and how it operates during the organismal life-cycle and 321 

shapes both mutational pleiotropy and pleiotropy of the standing genetic variation83–85 (Box 2). 322 

Mutation accumulation experiments (MA) have revealed strong mutational pleiotropy85–87 and 323 

have indicated that correlational selection on such pleiotropy leads to a reduction in the 324 

corresponding genetic correlations in G83(Box 2). Thus, correlational selection might operate 325 

against mutational pleiotropy, resulting in a discrepancy between M and G. Consequently, 326 

spontaneous and positive mutational correlations among traits could largely be maladaptive and 327 

reflect the input from mutation-selection balance86. This contrived example underscores the point 328 

that correlational selection can not only strengthen adaptive genetic correlations among traits, it 329 

can also weaken and break up maladaptive genetic correlations44,83 330 

 331 

Finally, genomic information from several populations can be used to address how multiple traits 332 

co-evolve, using information from a coancestry matrix, which can be estimated with a handful of 333 

marker loci88. Csilléry et al.89 recently used such an approach and found evidence for correlated 334 

character evolution in the timing and growth rate across 16 silver fir (Abies alba) populations. 335 

While this methodology is limited to describing the average effect across all causal loci, such 336 

approaches could enable us to describing the genomic architecture of trait correlations in terms of 337 

individual loci, their physical distribution across the genome, and their effect sizes90. 338 

 339 

Consequences for pleiotropy, evolvability, modularity and phenotypic plasticity 340 

  341 

The intuition that pleiotropy slows and constrains evolution was well articulated by Orr91, who 342 

updated Fisher’s classical geometric model92 to show that phenotypic complexity slows adaptation 343 
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when pleiotropy is universal. However, this link between pleiotropy and constraints on 344 

evolvability - the ability of a population to respond to selection93,94 - has recently been challenged. 345 

First, pleiotropy may be largely confined within functional, integrated trait modules46, allowing 346 

traits in separate modules to adapt semi-independently2. That is, as predicted by Cheverud, 347 

correlational selection will select for congruent phenotypic covariances4,13. Moreover, individual-348 

based simulations with divergent multivariate directional selection, pushing groups of traits in 349 

opposite directions, showed that phenotypic variation can indeed evolve to become more 350 

modular95. Increased modularity may also evolve when environmental fluctuations favour new 351 

combinations of conserved functions96 or when selection across multiple environments favors the 352 

expression of partially overlapping sets of genes97 . While these studies suggest that circumstances 353 

favoring high evolvability can drive the evolution of modularity, theory has also shown that highly 354 

integrated and pleiotropic genetic architectures can have high evolvability93. There is still 355 

considerable room for development of theory to predict when we expect modularity to emerge as 356 

a solution to adaptive challenges (Section 2 in Supplementary Material). 357 

  358 

A common feature for the evolutionary origin of modularity is directional selection, though 359 

modularity can also evolve as a consequence of selection for robustness to environmental 360 

perturbations98, and merely adding selection to models with universal pleiotropy does not produce 361 

stable variational modules99. The responsiveness of modularity to directional selection also limits 362 

its use as a predictor of long-term evolutionary responses, perhaps explaining why functional 363 

modularity is only a modest predictor of co-evolutionary rates of evolution among genes100. 364 

Another potential explanation for this pattern is that functional and variational modularity only 365 

partially overlap. Empirical evidence of co-expression of genes is strong101, but whether these co-366 

adapted gene modules are organized as variational modules is controversial. Some studies using 367 

transcriptional data showed that genetically correlated transcripts tend to share developmental 368 

pathways, reflecting transcriptional modules that are mostly enriched with functionally related 369 
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genes102,103, whereas other studies could not find significant overlap between gene expression and 370 

functional groupings104. Modular functional capacities do not require structural modularity105, and 371 

modularity at the level of gene regulation may better predict evolvability106. The mismatch 372 

between variational modules and functional gene groupings can complicate the semi-independent 373 

evolution of phenotypic modularity.  374 

  375 

Multivariate perspectives show that additive genetic variation within populations is distributed 376 

very unevenly across traits, with some linear combinations of traits accounting for most of the 377 

variance (i.e., gmax), while other trait combinations are associated with very little variance33. This 378 

pattern can stem from genetic variation being funneled through a few central developmental 379 

pathways, mediated by few developmental genes of large effect107. There has been considerable 380 

interest in gmax, (see section “Evolution of genetic architecture in response to correlational 381 

selection”) because it can either facilitate or bias evolutionary responses to selection depending 382 

on its alignment to the selective surface108. Additive genetic variance is determined by the effects 383 

and frequencies of contributing alleles, and at the genomic level, the initial response to selection 384 

should be dominated by loci with relatively high intra-locus variance and large effect. Although 385 

genomic studies, such as GWAS, have a tendency to detect loci with high frequencies of minor 386 

alleles and larger effects109, empirical evidence of the contribution of variants to additive genetic 387 

variance points to mostly rare variants with mainly small but highly pleiotropic effects110. If gmax 388 

reflects the most common empirical pattern, selection aligned with gmax should promote adaptation 389 

through minor allele frequency changes at many loci111. 390 

 391 

The mere presence of additive genetic variation is not sufficient to predict evolutionary outcomes, 392 

as the response to selection depends on the orientation of selection relative to the distribution of 393 

genetic variation94,112. Only a few studies have measured both multivariate linear and quadratic 394 

selection and the distribution of genetic variation for those phenotypes. These studies typically 395 
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demonstrate relatively low genetic variance in the multivariate trait combinations associated with 396 

fitness variation, which slows down phenotypic evolution113. However, the causes of low genetic 397 

variance for multivariate phenotypes currently under selection, and thus the longer-term 398 

consequences of the covariance patterns, remain poorly resolved33. 399 

 400 

Because there is substantial genetic variance in other directions of trait space besides gmax, changes 401 

in the orientation of selection could result in relatively unbiased, rapid, adaptation94. Moreover, 402 

pleiotropy can be context-dependent101,114, meaning that apparent pleiotropic constraints may shift 403 

in novel environments or evolve through epistatic interactions. For instance, changes in the 404 

selective environment could remove bias by changing the orientation of genetic variation40, 405 

potentially through context-dependent pleiotropic effects of alleles114, or through rapid evolution 406 

of G, which might be particularly likely if trait covariances are generated through opposing 407 

pleiotropic effects across contributing loci93. For example, a recent experimental study in yeast 408 

demonstrated that while alleles had pleiotropic effects on two life-history traits, variation in effects 409 

across environments resulted in genetic correlations ranging from -0.5 to +0.5115. Finally, 410 

mutational pleiotropy is only one of several factors influencing standing genetic variation, which 411 

also depends on multivariate selection and linkage disequilibrium. 412 

  413 

The relationship between how genetic variance changes across contexts and how phenotypes 414 

respond to the environment directly (i.e., phenotypic plasticity) can determine the longer-term 415 

outcomes of correlational selection. A recent meta-analysis of published estimates of G and plastic 416 

responses to novel environments suggested that multivariate phenotypic plasticity might 417 

correspond to axes of genetic variation associated with substantial standing genetic variation40. 418 

This study and theory3 suggest that bias in evolutionary response generated through G can become 419 

recapitulated through phenotypic plasticity. Clearly, more work is needed to understand how 420 
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environmental and genetic information are interpreted through the developmental systems (Section 421 

2 in Supplementary Material). 422 

 423 

Conclusions 424 

  425 

Here, we have re-visited the early suggestions by Cheverud and Lande that correlational selection 426 

can shape genetic and phenotypic architecture in light of the recent genomic revolution. These 427 

early insights are consistent with increasing empirical evidence of genomic coupling and 428 

recombination suppression that could have arisen by correlational selection, although direct 429 

evidence for this process, in most cases, lacking. A remaining challenge is therefore to integrate 430 

organismal-level research on correlational selection on phenotypes with genomics and 431 

developmental biology. Below, we point to some promising new avenues for future integrative 432 

research in this exciting area.  433 

 434 

First, despite empirical evidence that correlational selection can build up or eliminate genetic 435 

correlations between co-selected traits (Fig. 2), our knowledge of the mechanistic (i.e. genomic 436 

and developmental) underpinnings of such changes is still limited. To what extent are such changes 437 

caused by transient changes in linkage disequilibrium or the evolution of adaptive pleiotropy, and 438 

what is the relationship between modularity and correlational selection? We are only just 439 

beginning to understand the genomic mechanisms involved in adaptive recombination suppression 440 

caused by correlational selection, including the roles of supergenes69,71, structural genomic 441 

rearrangements70 such as gene duplications, chromosomal fusions or inversions and other 442 

mechanisms including TEs67,68. Promising future research directions in the study of the genomic 443 

consequences of correlational selection are to use genomic tools to study how correlational 444 

selection might lead to the gradual buildup of supergenes75 and how such selection might operate 445 

on mutational pleiotropy across the organismal life-cycle, using a combination of mutation 446 
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accumulation (MA) experiments, quantitative genetics and quantification of gene expression 447 

changes during ontogeny83,83,85–87 448 

  449 

Second, the relationship between phenotypic plasticity and correlational selection is largely 450 

unknown. The traditional perspective has been that correlational selection would primarily shape 451 

genetic correlation structure, by either strengthening or weakening genetic correlations between 452 

traits4,6,44. Research on stickleback fish has found that predation results in changed phenotypic 453 

correlation structures15, but some of these phenotypic changes might reflect multivariate 454 

phenotypic plasticity rather than changes in genetic integration16. How genetic covariances and 455 

multivariate phenotypic plasticity jointly evolve under correlational selection is therefore a largely 456 

unexplored research area with great potential16,40. More generally, since correlational selection in 457 

the past might have shaped either phenotypic or genetic correlations (or both), it leaves an 458 

evolutionary “memory” of past selective environments116 which can reveal itself in the form of 459 

alignment between the selective surface, P, G and M12,41,42. 460 

  461 

Third, the importance of correlational selection in speciation and macroevolution is largely 462 

unknown, despite early work on evolutionary allometry and the idea of evolution along “lines of 463 

least resistance”34,117. Recent research on shape-size allometry118, brain-body size allometry119 and 464 

metabolic allometry120 have revealed that allometric relationships are not static evolutionary 465 

constraints, but can be altered by selection. Specifically, correlational selection could maintain 466 

adaptive allometric slopes, either due to internal causes related to deleterious pleiotropy118 or 467 

because external ecological factors make certain slopes more beneficial than others119,120.  468 

  469 

Finally, we also see a great potential for research on the genomic consequences of correlational 470 

selection in the fields of animal and plant domestication17, and in the context of dispersal strategies, 471 

social behaviours and personalities16,25,121. Humans might have consciously or unconsciously 472 
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either eliminated or strengthened genetic correlations between traits during domestication of plants 473 

and animals, through artificial correlational selection on suites of traits, which in some cases has 474 

led to adaptive introgression back into wild relatives122. One result of domestication is the 475 

formation of suites of co-inherited traits with distinct genomic signatures17. In natural populations, 476 

co-adaptation between social behaviours and dispersal121 could frequently have been driven by 477 

correlational selection, resulting in increased genetic integration25. Artificial correlational 478 

selection to either strengthen118 or eliminate genetic correlations44 is a promising experimental 479 

approach in this context. 480 

 481 

 482 

 483 

 484 

 485 
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Box 1: What is correlational selection? 844 

  845 

Correlational selection involves several interrelated concepts. Here, we define the most important 846 

terms. 847 

  848 

The individual fitness surface 849 

Imagine a function relating an individual’s trait values to that individual’s expected lifetime fitness 850 

(Fig. 3). Supposing fitness depends on two traits, we can depict the fitness function as a three-851 

dimensional surface. The two horizontal axes represent trait values and elevation represents 852 

fitness. Fitness peaks and valleys represent regions in trait space with high and low fitness, 853 

respectively. Such a surface will reveal regions where favorable trait combinations produce high 854 

fitness, as well as unfavorable trait combinations that confer low fitness. Individual fitness surfaces 855 

can take almost any shape, including single-peaked surfaces, multi-peaked surfaces or ridges (Fig. 856 

3), and can involve any number of traits.  857 

 858 

Brodie’s pioneering study26 of coloration and behavior in garter snakes provided one of the first 859 

empirical examples of how such individual fitness surfaces can illustrate correlational selection in 860 

a natural population (see inset). A snake’s color pattern could be either blotched or striped. 861 
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Moreover, snakes either crawled in a straight line or reversed directions repeatedly when evading 862 

predators. Striped snakes had higher fitness when they fled predators in a straight line, whereas 863 

blotched snakes had higher fitness when they reversed directions. Therefore, survival depended on 864 

the interaction between two types of traits – colour and behavior – rather than on single traits. 865 

Interestingly, colouration and behavior were also genetically correlated with each other123, 866 

providing empirical support for the prediction4,13 that correlational selection can promote and 867 

maintain genetic correlations.  868 

 869 

An operational definition of correlational selection 870 

Correlational selection occurs when the relationship between an individual’s trait value and 871 

expected fitness for one trait depends on that individual’s trait values for other traits, and direct 872 

selection acts in such a way as to establish or maintain genetic and hence phenotypic correlations 873 

among traits6. One way to think about correlational selection is to imagine slicing the fitness 874 

surface parallel to one of the trait axes. If the slices differ in shape as we proceed along the fitness 875 

surface (Fig. 3A), then fitness is the result of interactions between traits.  876 

  877 

Lande and Arnold19 showed that correlational selection could be measured by using simple 878 

regression approaches. If we assume that traits have a multivariate normal distribution, then the 879 

fitness surface can be estimated by a regression of the form (in the bivariate case): 880 

 881 

𝑤(𝑧1, 𝑧2) =  𝛼 + 𝛽1𝑧1 + 𝛽2𝑧2 + 1

2
𝛾11𝑧1

2 + 1

2
𝛾22𝑧2

2 + 𝛾12𝑧1𝑧2 + 𝜀,          (1) 882 

  883 

where α is an intercept, 𝑧1 and 𝑧2 are trait values, and 𝜀 is a residual term. The parameters 𝛽1 and 884 

𝛽2 are the linear selection gradients, which estimate directional selection on each trait. The matrix 885 

of quadratic selection coefficients 𝜸 = [
𝛾11 𝛾12

𝛾12 𝛾22
] estimates stabilizing, disruptive and 886 
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correlational selection. The diagonal elements of 𝜸 measure quadratic selection on each trait (i.e., 887 

stabilizing or disruptive selection), whereas the off-diagonal elements represent correlational 888 

selection. Thus, non-zero off-diagonal elements of 𝜸 constitute evidence of correlational selection. 889 

 890 

Fitness epistasis and epistatic selection 891 

Much of the fitness variation in complex phenotypic traits originates from allelic variation at 892 

individual loci, each with small fitness effects. Favourable trait combinations at the organismal 893 

level often also reflect favourable allelic combinations at separate sets of loci. At the genomic 894 

level, correlational selection occurs when the fitness effects of a particular locus depend on the 895 

genotype at another locus or, more generally, depend on the genetic background. This situation is 896 

often described as fitness epistasis or epistatic selection and is likely to have a big impact on 897 

genome evolution6,18.  898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 
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Box 2. Methods to study genomic signatures of correlational selection 912 

  913 

Genomics can inform quantitative genetics 914 

Due to the highly polygenic nature of most traits, quantitative genetics is a pragmatic method to 915 

predict short term evolutionary change in phenotypes58. Genomic tools can however be integrated 916 

with quantitative genetics methodology to expand our understanding38,58,82. For example, the so-917 

called GBLUP approach82 allows the pedigree-relatedness matrix of an “animal model” to be 918 

replaced by a marker-based relatedness matrix to infer genetic variances and covariances, i. e. G. 919 

By accurately determining the proportion of genome shared, such genomic approaches may 920 

improve the estimates of G compared to using pedigree data alone, where relatedness is based on 921 

a shallow pedigree124.  922 

 923 

Genomic approaches can also provide information about mutation rates of SNPs and indel variants, 924 

thereby improving our understanding of the role of mutation rates in evolution125 and the 925 

importance of mutational pleiotropy and M-matrix evolution83–85. Of particular interest is the 926 

effects of new mutations on genetic variances and covariances, i. e. M83–85. A promising approach 927 

is the combination of mutation accumulation experiments (MA) with estimates of M and G85–87. 928 

Studies on MA-lines have revealed strong mutational pleiotropy across the transcriptome85. Such 929 

strong mutational pleiotropy in M contrasts with weaker pleiotropy in G, suggesting that 930 

correlational selection operates against maladaptive strong mutational covariance, which results in 931 

a weakening of pleiotropy during the course of the life cycle83,84.   932 
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 933 

To quantify outcomes of correlational selection, we need to identify the genetic loci under such 934 

selection. Traditionally, this has been achieved by quantitative trait loci (QTL) mapping, admixture 935 

mapping and genome wide association studies (GWAS)126 which have limited power to detect 936 

small effect size genes. Newer approaches map pleiotropy by simultaneously associating genomic 937 

loci with multiple traits54 and can also detect epistatic interactions using machine learning 938 

algorithms127. 939 

 940 

Detecting the genomic signatures of correlational selection 941 

Correlational selection could potentially be inferred from signatures of selective sweeps at loci 942 

under strong selection128 or, for highly polygenic traits, allele frequency shifts that are not 943 

explainable by genetic drift90,129. Selection on polygenic traits often leads to small frequency 944 

changes in many genes, which is more difficult to detect129. Since correlational selection favors 945 

certain allele combinations, one outcome is deviations from Hardy-Weinberg equilibrium and the 946 

build-up of linkage disequilibrium between alleles at unlinked loci, detectable both across 947 

individuals and between age classes within populations. Genomic data may also indicate whether 948 

recombination suppression leading to trait correlations67, such as in supergenes or genomic 949 

rearrangements, has been favored by correlational selection. On longer time scales, genomic data 950 

can reveal how such supergenes are gradually built up and assembled via gene duplications and 951 

neofunctionalization 75. Experimental assays such as introgression lines130 or reciprocal crosses of 952 

diverged lineages131 can be used to confirm whether combinations of alleles or genomic regions 953 

are under correlational selection. Evolve and re-sequence experiments comparing populations 954 

Reviewer
Cross-Out
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before and after selection132, or studies of allele frequency time series during an experiment133 can 955 

give further, detailed insight into allelic interactions and both genomic and phenotypic responses 956 

to experimentally imposed selection62,134. 957 

  958 

Bridging the genotype-phenotype-fitness map 959 

Ideally, the genotypic and phenotypic levels should be studied alongside the adaptive 960 

landscape108,135 and integrated into a genotype-phenotype-fitness map. This integration has been 961 

achieved for very few non-model organisms such as threespine stickleback29, Bahama pupfish30 962 

and Tinema stick insects59 in which the fitness landscape was mapped experimentally with 963 

information about the genomic architecture of traits. Experimental field studies on fitness epistasis 964 

in natural populations combined with genomic data is a promising integrative approach to detect 965 

the genomic consequences of correlational selection59.  966 

  967 

  968 
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Legends to figures 969 

 970 
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Figure 1. The scope of correlational selection and its links to different fields in evolutionary 971 

biology. Correlational selection is relatively well-understood statistically and theoretically (Box 972 

1), but we still do not know its prevalence in natural populations and the extent to which it has 973 

shaped genome evolution in diverse organisms. In a few cases, correlational selection has been 974 

studied and documented in natural field populations and in laboratory artificial experimental 975 

studies (Fig. 2). The main effects of correlational selection are to strengthen or reinforce 976 

phenotypic and/or genetic correlations between traits6,22,23,26, which may be governed by separate 977 

sets of loci, or to break up non-adaptive or maladaptive genetic correlations, such as between the 978 

sexes44. These effects of correlational selection on phenotypic and potentially also genetic 979 

correlation structure have consequences for several organismal-level phenomena that are of great 980 

interest in evolutionary genetics and developmental biology. These include G-matrix evolution, 981 

phenotypic plasticity, modularity, evolvability and phenotypic integration (upper part of figure), 982 

as discussed in this review. Theory suggests that correlational selection at the organismal level can 983 

potentially drive the downstream evolution of genomic architecture4,6,18 (lower part of figure), 984 

although here our knowledge is more limited. Correlational selection could preserve adaptive 985 

genetic correlations between traits that are governed by different sets of loci by suppressing 986 

recombination rates, thereby maintaining inversion polymorphisms and other structural genomic 987 

variation that is often associated with balanced genetic polymorphisms (Fig. 4). In addition, 988 

correlational selection could lead to adaptive pleiotropy, such as during range expansions when 989 

populations are far away from their adaptive peaks136, and could shape patterns of epistasis 990 

between loci12. Finally, correlational selection is likely to be involved in local adaptation, if 991 

different sets of character combinations are favoured in different abiotic137 or biotic 992 
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environments27,28, but the consequences for speciation and other aspects of macroevolution remain 993 

largely unexplored.  994 

  995 

  996 
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997 

Figure 2. Phenotypic and quantitative genetics studies on organisms and traits in which 998 

correlational selection has experimentally been demonstrated or inferred in the field or in 999 

the laboratory. A. Northwestern garter snake (Thamnophis ordinoides). B. Side-blotched lizard 1000 

(Uta stansburiana). C. Australian fruit fly (Drosophila serrata). D. Western bluebird (Sialia 1001 

mexicana). E. Dark-eyed junco (Junco hyemalis). F. Guppy (Poecilia reticulata). G. Three-spined 1002 

stickleback (Gasterosteus aculeatus). H. Fire pink (Silene virginica). I. White campon (Silene 1003 

latifolia). Correlational selection has been demonstrated and quantified for a number of different 1004 

traits, including both discrete colour polymorphisms6,8,23,26 (A, B, F) and continuous, quantitative 1005 

characters15,24,25,28,44,94 (C, D-E, G-I), both in animals and in plants. The ecological causes and 1006 

selective agents driving such correlational selection have been shown to be predators (A,G), 1007 

interspecific mutualists such as pollinators (H) and conspecific interactions, especially under 1008 

sexual selection (B-C, E-F). In some of these studies, the phenotypic traits that were found or 1009 

implicated to be under correlational selection were also genetically or phenotypically correlated 1010 
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with each other (A-B, D-E), suggesting that correlational selection can build up, promote or 1011 

strengthen genetic integration between the traits in question. Conversely, artificial correlational 1012 

selection has been demonstrated to be efficient in breaking up an intersexual genetic correlation in 1013 

at least one case (I). Finally, traits that have been found to experience correlational selection 1014 

include visual colouration traits (A,B,E,F), chemical communication traits (C), behavioural traits 1015 

such as dispersal, aggression and personality (D,G) and structural traits such as size and shape (H). 1016 

Photo credits: A: Butch Brodie. B. Barry Sinervo. C-I: Public domain. C. Antoine Morin: 1017 

https://www.eurekalert.org/multimedia/pub/94488.php. D. Wikimedia Commons: 1018 

https://en.wikipedia.org/wiki/Dark-eyed_junco#/media/File:Dark-eyed_Junco-27527.jpg E. 1019 

Wikimedia Commons (Ken Thomas): https://commons.wikimedia.org/wiki/File:Dark-1020 

eyed_Junco-27527.jpg F. Kimberly Hughes/Nature: 1021 

https://www.nature.com/articles/nature12717/figures/1?draft=collection 1022 

G. Wikimedia Commons (Piet Spaans): 1023 

https://commons.wikimedia.org/wiki/File:GasterosteusAculeatusMaleHead.JPG 1024 

H. Wikimedia Commons (Eric Hunt): 1025 

https://en.wikipedia.org/wiki/Silene_virginica#/media/File:Silene_virginica_Arkansas.jpg 1026 

 I. Wikimedia Commons (Walter Siegmund): 1027 

https://en.wikipedia.org/wiki/Silene_latifolia#/media/File:Silene_latifolia_9631.JPG 1028 
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Figure 3. Illustration of correlational selection, along with important parameters used to 1034 

quantify it and determine how its effects are carried across generations. A. Example fitness 1035 

surfaces for hypothetical traits 𝑧1 and 𝑧2 (top row) and conditional fitness curves for 𝑧1 given fixed 1036 

values of 𝑧2 (colored lines in both rows). A. When selection is additive, the fitness effects of 𝑧1 1037 

are independent of the value of 𝑧2. The conditional fitness curves are then identical aside from 1038 

their height above the trait axes (bottom row, left of the dashed line). Under correlational selection, 1039 

in contrast, the fitness effects of 𝑧1 depend on 𝑧2, and so the shape of the conditional fitness curves 1040 

changes with value of 𝑧2 (bottom row, right of the dashed line). B. Estimation of multivariate 1041 

fitness surfaces from samples of individual trait values, 𝑧1 and 𝑧2, and relative fitness, 𝑤. The true 1042 

fitness surface (first column) is unobservable but can be sampled by measuring the relative fitness 1043 

of individuals in a population (second column). The true surface can then be estimated via 1044 

quadratic regression (third column) or by non-parametric smooth splines (fourth column). See 1045 

Section 3 in Supplementary Material for full details. C. The 𝑮-matrix (orange, left) is the variance-1046 

covariance matrix of additive genetic effects (i.e. breeding values) for a multivariate phenotype. 1047 

The 𝑴-matrix (blue, right) is the variance-covariance matrix of additive mutational effects. Points 1048 

represent individual breeding values (orange) and additive mutational effects (blue) respectively. 1049 

If the distribution of point values is multivariate normal, it can be summarized via an ellipsoid. 1050 

The principal axes of the ellipsoid (crossed lines) align with the eigenvectors and their lengths are 1051 

proportional to the square roots of the eigenvalues. The major axis, associated with the largest 1052 

eigenvalue, indicates the direction of maximum additive genetic or mutational variance. 1053 

  1054 

  1055 
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 1056 

Figure 4. Examples of genomic trait architectures that might reflect past or ongoing 1057 

correlational selection. We focus here on empirical examples where multiple loci are involved in 1058 

the adaptive traits in question, as these reflect the most challenging situations to maintain adaptive 1059 

genetic correlations between traits, due to the eroding effects of recombination when traits are 1060 

governed by multiple unlinked loci. However, we underscore that correlational selection could 1061 

equally well lead to the evolution of adaptive pleiotropy136 as an alternative mechanism to maintain 1062 

adaptive genetic correlations between traits. A. A complex mating polymorphism in male ruff 1063 

(Philomachus pugnax) reproductive tactics involves multiple correlated morphological and 1064 

behavioral traits, and the different character combinations in the male morphs are preserved 1065 

because of the lack of recombination between different loci that are held together in a single large 1066 

chromosomal inversion73,74.B. Assortative mating maintains linkage disequilibrium between 1067 

unlinked color pattern loci under correlational selection in Heliconius butterfly species, facilitated 1068 

by tight linkage between preference and trait loci on one chromosome76. C. In a multifarious 1069 

selection experiment on threespine sticklebacks (Gasterosteus aculeatus), the predicted 1070 

phenotypic changes in multiple traits were caused by widespread underlying genomic changes that 1071 

could potentially be attributed to correlational selection for different character combinations in the 1072 

different phenotypes134. 1073 


