
1.  Introduction
The term metabolism describes the carbon and energy transfer in, out, and within a living system, which 
may refer to the level of individual organisms as well as to the scale of entire ecosystems. In the aquatic 
environment, the functioning of ecosystem metabolism is often described by the rates of gross primary 
production (GPP) and ecosystem respiration (R), which together build the metabolic balance of a system, 
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metabolic estimates showing net autotrophy (NEP = GPP − R = 55 mmol m−2 day−1) over the sampling 
period and depth interval, with GPP (235 mmol m−2 day−1) exceeding R (180 mmol m−2 day−1). They 
also revealed significant temporal variability, with at least two short-lived blooms occurring during calm 
periods, and a vertical partitioning of metabolism, with stronger diel cycles and positive NEP in the upper 
∼10 m and negative NEP below, where the diel oxygen signal was dominated by internal motions. The 
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Plain Language Summary  Quantifying the rates of production and degradation of organic 
matter is of fundamental importance for understanding the cycling of carbon in lakes and for assessing 
and managing the health of these ecosystems. Owing to the increased availability of high-resolution 
sondes, this quantification is now frequently achieved by recording changes of oxygen concentration 
directly in free-water, allowing for an unprecedented temporal coverage. In small, shallow, productive 
lakes, the application of this method is relatively straightforward because oxygen changes driven by 
biological processes are larger than vertical transport. Instead, large, deep lakes host large-amplitude 
vertical motions, which can significantly impact the oxygen record, hindering the calculation of metabolic 
rates. In this study, we quantified the metabolism of Lake Geneva during the productive period of 
2019 with continuous oxygen measurements at different depths. To obtain reliable metabolic rates, we 
developed new analytical techniques allowing for the isolation of the biological signal. This study unveils 
the rich spatiotemporal metabolic dynamics of Lake Geneva, which would remain unnoticed with 
traditional sampling techniques, and provides new insights and mathematical tools for improving the 
application of the free-water oxygen technique in large and energetic systems.
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termed as net ecosystem production (NEP = GPP − R). Quantifying the magnitude and variability of these 
rates has been on the focus of aquatic research for nearly a century, in order to understand how carbon is 
transferred, processed, and allocated within the aquatic environment (Staehr, Christensen, et al., 2012). It 
is also instrumental for assessing the health of aquatic ecosystems suffering from anthropogenic pressures, 
such as eutrophication, and for monitoring their recovery when restoration measurements are applied.

For both monitoring and research purposes, metabolic rates have traditionally been quantified as the rate 
of change of dissolved oxygen (DO) in the aquatic solution or as the assimilation rate of isotopically labeled 
carbon (14C or 13C) into biomass in bottle incubations of natural water samples (Gaarder & Gran, 1927; 
Hama et al., 1983; Steeman Nielson, 1951). Alternatively, metabolic rates are obtained from in situ free-wa-
ter measurements of oxygen concentration using the so-called diel DO technique (Odum, 1956). This meth-
od relies on the light dependency of photosynthetic primary production to break down temporal changes 
of DO during daytime and nighttime into GPP, R, and NEP rates. In recent years, the use of the free-water 
technique has gained popularity owing to the increased availability of affordable and reliable sensors that 
allow for the acquisition of in situ DO measurements at high-temporal resolution from moored instruments 
(Marcé et al., 2016) and autonomous underwater vehicles (Briggs et al., 2018). These developments enable 
the quantification of metabolism with an unprecedented temporal coverage and resolution, fostering the 
development of an entire field of research around the diel oxygen technique (Cole et al., 2000; Gelda & 
Effler, 2002; Staehr & Sand-Jensen, 2007; Staehr et al., 2010).

In addition to the improved temporal coverage, a major advantage of free-water DO measurements over bot-
tle incubations is that the undesired effects of enclosing the plankton unnaturally in a small flow-limiting 
bottle (Quay et al., 2010) and associated error propagation can be avoided (Staehr, Christensen, et al., 2012). 
However, free-water measurements come with their own methodological challenges, as physical processes 
are blended with the biological imprint in the measured oxygen records (Antenucci et al., 2013; Dugan 
et  al.,  2016; Staehr et  al.,  2010). In stratified water bodies, the main physical terms contributing to the 
DO signal are the gas exchange of oxygen through the air–water interface, the vertical transfer of DO by 
turbulent diffusion, and the vertical dislocation of water masses by internal baroclinic motions (Coloso 
et al., 2008; Peeters et al., 2019; Valerio et al., 2019). In order to separate the physical and biological com-
ponents in the DO signal, the most common approach is to model the physical processes and subtract their 
contribution from the observations (Peeters et al., 2016; Staehr et al., 2010; Staehr, Christensen, et al., 2012). 
This approach, which is suited for physical processes that are tractable with relatively simple mathematical 
formulations, like air–water gas exchange, becomes of limited applicability for more unpredictable pro-
cesses like heterogeneous turbulent mixing (Coloso et al., 2011) and internal motions (Coloso et al., 2008).

Because most previous studies on lake metabolism have relied on DO readings from sensors located within 
the mixed layer, the parameterization of the gas transfer velocity has been a major concern regarding the un-
certainty of metabolic rate estimates (Cremona et al., 2014; Dugan et al., 2016; Hanson et al., 2008). Recent 
studies have extended the mixed layer approach to the entire water column and showed that metalimnetic 
and hypolimnetic processes are important for the whole-lake metabolism, particularly in clear-water lakes 
(Coloso et al., 2008; Giling et al., 2017; Obrador et al., 2014; Staehr, Christensen, et al., 2012). Quantifying 
metabolic rates below the mixed layer involves dealing with the more intricate signal of internal motions 
and turbulent diffusion. Although often uncertain, turbulent diffusion can be modeled by applying some 
reasonable estimate of the vertical diffusion coefficient derived from existing parameterizations (Hondzo 
& Stefan, 1993) or from the heat budget method (Powell & Jassby, 1974). Because turbulent diffusion is 
a continuous process acting in metalimnetic layers, it has been found that the metabolic calculations at 
the diel scale are often not very sensitive to this parameter (Giling et al., 2017; Obrador et al., 2014; Sadro 
et al., 2011).

The vertical dislocations caused by internal motions are challenging to model. In small lakes, they appear 
as high-frequency noise (a few minutes to a few hours) and can be filtered numerically (Batt & Carpen-
ter, 2012; Coloso et al., 2008; Obrador et al., 2014; Staehr, Testa, et al., 2012). The combination of numerical 
filtering and inverse modeling approaches to calculate metabolic rates is thus successful in small, weakly 
energized lakes, that is, exposed to light winds and featuring small vertical motions (Obrador et al., 2014; 
Phillips, 2020; Staehr, Testa, et al., 2012). However, as the lake size increases, the time scales of internal 
motions cover a broader range, including basin-scale seiches and waves, with time scales ranging from the 
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buoyancy period (a few minutes) to several days (Csanady, 1975). These motions potentially overlap with 
the diel frequency of GPP and cannot be treated as high-frequency noise, further challenging the calcu-
lation of metabolic rates. In the absence of a well-established method for dealing with this problem, the 
application of the DO diel method below the epilimnion of large lakes remains so far very limited (Giling 
et al., 2017).

In this study, we quantified lake metabolism from a 6-month, depth-resolved, oxygen data set collected on 
the large, deep, clear-water Lake Geneva (Switzerland–France). In order to obtain a meaningful estimate 
of metabolism in such a large lake, depth-resolved DO measurements were recorded in the upper 30 m 
with moored sensors during spring and summer 2019. Because of its large size, the time scales of internal 
motions overlap with the diel cycle, hindering the direct estimation of biological rates, particularly in the 
metalimnion. The main goals of this study are (1) to develop and test new methodologies that aim to dis-
entangle the biological signal from DO records in the presence of low-frequency, large internal motions and 
(2) to quantify the magnitude and the vertical and temporal variability of ecosystem metabolism in Lake 
Geneva during the summer productive season. We propose and evaluate the performance of two different 
approaches, applied in the frequency and time domain, respectively, to separate the biological from the 
physical signals. Both methods rely on the assumption that oxygen fluctuations due to lake internal mo-
tions are chiefly governed by vertical dislocations and, therefore, they must be correlated with temperature 
fluctuations.

2.  Methods
2.1.  Study Site

Lake Geneva is a 582-km2 large mesotrophic to eutrophic lake with mean and maximum depths of 154 and 
309 m, respectively. It is located at the border of Switzerland and France (46° 27 N, 6° 32 E) and consists 
of a large and deep main basin in its eastern part, and a small and shallower basin in the western part. The 
lake is oligo-monomictic and the thermal stratification persists from spring to late autumn and deepest 
seasonal mixing is reached in late winter (February). Complete turnover, however, only occurs about once 
every decade (Schwefel et al., 2016). The major tributary to the lake is the Rhône River, which is responsible 
for 70%–75% of the total inflow. It enters the lake at its eastern part and provides an annual mean discharge 
of ∼182 m3 s−1. About 250 m3 s−1 leave the lake at its outflow in the west, and the theoretical water resi-
dence time is estimated at ∼11 years. Due to its large size, the currents are affected by Coriolis force and 
the most energetic modes of internal motions are Poincaré waves in open waters (Lemmin, 2020; Lemmin 
et al., 2005) and Kelvin waves in nearshore regions (Bouffard & Lemmin, 2013), with periods of ∼16 h and 
∼4–8 days, respectively. The nearshore areas are also affected by coastal upwellings, which can persist for 
several days (Reiss et al., 2020).

The shorelines of Lake Geneva are densely populated and to improve the lake water quality, phosphorous 
supply to the lake has been strictly regulated over the past 40 years. Following severe eutrophication in the 
1980s, the lake has ever since recovered and decreased its annual mean values of total phosphorous concen-
tration to current levels of 12 and 46 μg L−1 in the upper 0–30 m and in the lower 250–309 m, respectively 
(CIPEL, 2019). Photosynthetic production rates and phytoplankton biomass, however, did not follow their 
expected trends, and the temporal dynamics of algae blooms in Lake Geneva remain a highly debated top-
ic (Anneville et al., 2019; Tadonléké et al., 2009). For scientific purpose, a floating platform (LéXPLORE, 
https://lexplore.info) was installed in February 2019. This 100 m2 structure is located about 570 m off the 
northern lake shore, near the town of Pully, where the maximum water depth reaches 110 m (46° 30 N, 6° 
39 E).

2.2.  Moored Instruments

In order to monitor biogeochemical and physical dynamics in the productive surface layer (top 30 m), a 
sensor chain was installed next to the platform. Temperature, DO, and photosynthetically active radiation 
(PAR) were measured continuously from the sensor chain. Temperature was measured every minute by 
Minilog-II-T sensors (VEMCO, resolution 0.01°C) at every 2.5 m depth. PAR was measured every minute 
by six LI-COR sensors (LI-193 SA) located at 0.5, 2.5, 5, 10, 20, and 30 m depth. DO concentration and 
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saturation were measured every 5  min by seven optical sensors from different providers: two miniDOT 
sensors (PME) were placed at 0.5 and 30 m depth, one multiparameter sonde (EXO2, YSI) containing a 
DO sensor was attached at 2.5 m depth, two RBR-coda-ODO sensors were placed at 5 and 10 m, and two 
Aanderaa Oxygen optodes at 15 and 20 m depth. The YSI sonde and the RBR-coda sensors were equipped 
with automated wiper systems, that cleaned the sensor surface prior to each measurement, preventing bi-
ofouling. Furthermore, the YSI sonde and the miniDot at 0.5 m contained a copper shield for protection 
against biofouling. The calibration of the sensors was checked regularly during maintenance work (every 
4–6 weeks) by immersing the sensors together in 100% saturated water under controlled temperature con-
dition in the laboratory. Data were postcorrected for drift, when necessary, assuming linear drift between 
maintenance dates. Here, we focus on a data subset obtained during April 19 to October 7, 2019. Prior to the 
metabolic calculations, the mooring time series were averaged hourly and the DO data were interpolated in 
the same vertical grid as temperature.

2.3.  Microstructure and Conductivity-Temperature-Depth Profiles

Additional water properties down to 80–100 m depth were recorded approximately once per week using 
microstructure profilers. Three different instruments by Rockland Scientific Instruments (Canada) were 
used: two small self-contained microCTD profilers (SN310, SN158) and a VMP-500 (SN028). In addition to 
high-resolution microstructure sensors, all three profilers were equipped with accurate conductivity–tem-
perature–depth (CTD) and optical sensors for chlorophyll-a fluorescence and turbidity. Between March 
2019 and March 2020, a total of 401 profiles were collected from the LéXPLORE platform. Full-depth (down 
to ∼105 m) CTD profiles were carried out with a Sea&Sun CTD75M device, which includes the following 
sensors: TDI Pt100 (Temperature), seven-pole electrode conductivity cell, OxyGuard DO sensor, pH, Sea-
point turbidity meter, and Seapoint chlorophyll fluorometer. In total, 99 profiles were collected on a regular 
basis (first monthly until June 2019 and then weekly or biweekly) between February 2019 and April 2020.

2.4.  Meteorological and Hydrological Data

A Campbell Scientific Automatic Weather Station, installed on the LéXPLORE platform, recorded meteoro-
logical parameters in 10 min intervals since April 8, 2019. Variables recorded include air temperature, rela-
tive humidity, shortwave radiation, wind speed, wind direction, and atmospheric pressure. Radiative short-
wave and longwave heat flux calculations were performed using the method proposed in Fink et al. (2014), 
while turbulent fluxes for momentum and heat were computed following the similarity theory (Woolway 
et al., 2015; Zeng et al., 1998). Hourly values of temperature and flow of the Rhône River at the inflow were 
obtained from the station of Porte-du-Scex and provided by the Swiss Federal Office for the Environment 
(https://www.hydrodaten.admin.ch/en/).

3.  Determination of Metabolic Rates
3.1.  Rationale for the Correction of Baroclinic Vertical Dislocations

The main challenge we faced for the calculation of depth-resolved metabolic rates from high-frequency 
(DO) signals in this large lake was to filter out the physical contribution to DO variations due to internal 
motions. The main assumption underlying the two methods proposed below is that DO fluctuations due to 
internal motions are dominated by vertical (baroclinic) displacements, and consequently, they are correlat-
ed with temperature fluctuations as shown in this section.

Using a first-order Taylor expansion, the temperature fluctuations (T′(z, t) = T − 〈T〉, where 〈T〉 is the low-
passed temperature time series and represents a mean equilibrium value), at depth z and time t, caused by 
a vertical dislocation δ due to internal motions (IM) can be approximated by

  
 

IM( , ) .TT z t
z

� (1)
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The first-order approximation is adequate for temperature because it is a monotonic function of depth for 
almost the entire lake volume. The vertical dislocation can be estimated from a temperature record as




   
    

1

IM( , ) .Tz t T
z

� (2)

Similarly, also the DO fluctuations can be approximated by Taylor expansion. Because the DO profile is 
sometimes not monotonic (it usually exhibits maxima or minima in lakes), a second-order approximation 
may be more adequate in some cases:

      
   

 

2
2

IM 2
DO DODO ( , ) ( ) .z t

z z
� (3)

By introducing Equation 2 into 3 and rearranging, the DO fluctuations can be expressed as a linear (first-or-
der approximation) or quadratic (second-order) function of temperature fluctuations:

    2
IM 1 2DO ( , ) ( ) ,z t a T a T� (4)

where a1 and a2 are constants related to the ratio of mean temperature and oxygen vertical gradients. The 
two methods proposed here use this approximation to filter the DO signal in the frequency (scale-separation 
method) and time domains, respectively.

3.2.  Scale-Separation Method

3.2.1.  NEP From Fortnight-Scale DO Budget

In this first approach, which we call scale-separation method, we combined a fortnight-scale oxygen budget 
to derive NEP, with a spectral approach to remove the physical signal from the diel DO fluctuations and 
derive GPP and R. For the first step, we recovered the low-frequency seasonal DO signal and eliminated 
the oscillatory contribution of internal lake motions by low-pass filtering the temperature and DO records 
with a Gaussian filter with a time scale of 15 days. We consider that DO variations over these time scales 
are governed by the interplay between NEP, vertical turbulent diffusion, gas exchange with the atmosphere, 
and the intrusion of the well-oxygenated Rhône River into the lake thermocline during the stratified period 
(Halder et al., 2013). Due to this intrusion, and to the fact that surface waters leave the lake at the outflow, 
mass conservation imposes a continuous basin-wide hydraulic uplift.

Taking this into account, the seasonal NEP for a layer i = 1, … , N was computed as the residual between the 
rate of change of DO concentration on fortnight scales (∂DO/∂t) and the physical terms:

  


 

 


   


 

     
 

0.5 0.5 i
intr

1
0.5 0.5

Bottom Bottom

DO 1 1NEP F F DO

1 DO DO ,

i
i i i i

diff diffi i

i i
j i j i

i j j

Q
t V V

Q Q
V

� (5)

where the indices i ± 0.5 refer to the upper and lower edges of the layer and Vi is the layer volume (Vi = hiAi, 
where hi and Ai are the layer height and mean area, respectively). The layers were defined by the vertical 
position of the sensors, and i = 1 corresponds to the deepest sensor (30 m), and i = N is the surface layer. Qi 
is the intrusion flux into the layer i in m3 s−1. The second term on the right-hand side represents vertical tur-
bulent diffusion (including gas exchange and mixed layer deepening), the third term represents the oxygen 
supply due to convergence of river waters into the layer, and the fourth term is the vertical uplift induced by 
this convergence. DOintr is the oxygen concentration in the intruding riverine waters.

The total intrusion flow Q = ∑iQi was calculated by multiplying the river flow (QRhone) by a dilution co-
efficient γ, which represents the dilution due to entrainment of surface lake water as river water plunges 
into the thermocline. A representative dilution coefficient was estimated by comparing the isotherm, along 
which the intrusion was observed in a set of 141 turbidity profiles collected during summer, with the river 
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temperature (TRhone), assuming that the river density is dominated by temperature. By further assuming that 
the river entrains mixed layer waters (ML) by plunging, γ was calculated as


 

    
ML intr

ML Rhone
median 1.42,T T

T T
� (6)

where TML is the mixed layer temperature and Tintr is the temperature at the intrusion (turbidity maximum) 
at the time when the turbidity profiles were taken.

The inflow at each layer, Qi, was then determined by splitting the total inflow into the different layers and 
by taking the intrusion temperature at each time step into account, Tintr = γ−1 ⋅ (TRhone + (γ − 1) ⋅ TML). 
Finally, we assumed that river and mixed layer waters are approximately saturated in oxygen, and hence, 
DOintr = DOeq(Ti), which is the equilibrium oxygen concentration at in situ temperature, Ti. As an upper 
boundary condition, we assumed that surface waters leave the lake at the outflow. River flow and tempera-
ture data were smoothed similarly to the oxygen signal, and the splitting between temperature classes was 
done according to the spread of measured river temperature within the averaging time window.

The diffusive fluxes at the interfaces i ± 0.5 located below the mixed layer depth were calculated as




   
 



0.5
0.5 0.5 0.5 DOF ,

i
i i i
diff A

z
� (7)

where Ai±0.5 is the lake area at the interfaces, κ is a turbulent diffusion coefficient, and 


DO

z
 is the DO ver-

tical gradient, calculated by centered differences. The turbulent diffusion coefficients were diagnosed by 
applying the heat budget method (Powell & Jassby, 1974) in the same fashion as Equation 5, including the 
effects of penetrative shortwave radiation and river intrusion. The budget was calculated with the smoothed 
temperature mooring time series but, in order to close the budget, the heat transfer below the deepest sensor 
was also quantified. For this purpose, a composite smooth temperature field was constructed below 30 m by 
applying a similar smoothing procedure to 401 deep temperature profiles collected from the platform with 
a CTD probe and the microstructure profilers.

As a boundary condition at the air-lake interface (N + 0.5), the diffusive flux was equated to

   0.5 air lake N
0 0 eqF F (DO DO ),N N

diff wA A k� (8)

where A0 is the lake surface area and kw is a parameterized piston velocity calculated using the surface-re-
newal model by Soloviev et al. (2007), which includes the contribution of wind stress, thermal convection, 
and bubbles to gas exchange. In order to assess the uncertainty associated with the spread of kw among the 
available parameterizations (Dugan et al., 2016), a set of parameterizations including the most popular ones 
was tested. The air-lake fluxes were calculated with nonsmoothed values of DO concentration and instanta-
neous kw, and smoothed afterward. Turbulent fluxes Fdiff between the air-lake interface and the base of the 
mixed layer were interpolated linearly in depth for each time step, assuming instantaneous homogenization 
within the mixed layer.

A mixed layer deepening (i.e., entrainment) term was also added to the diffusive flux when a deepening of 
the mixed layer was observed. Considering that a mixed layer deepens from j

mixh  at time step j to 1j
mixh  at time 

step j + 1, the maximum entrainment flux is

    
 max DO DOF ,

Δ

j ent
jML ML

ent MLV
t

� (9)

where  DO j
ML is the volume-weighted mean DO concentration in the mixed layer at step j, j

MLV  is the mixed 
layer volume at the same time step, and Δt is the time interval between the two steps. The mean DO concen-
tration in the mixed layer after entrainment was calculated as
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

    
   1

DO DODO ,
j j j j

ent ML ML TH TH
ML j

ML

V V
V

� (10)

where TH stands for thermocline, which represents the water volume comprised between j
mixh  and 1j

mixh , and, 
hence, its volume was  1j j j

TH ML MLV V V . The entrainment flux is maximal at the bin interface located at j
mixh  

and set to decrease linearly toward the surface and 1j
mixh .

3.2.2.  Spectral Isolation of the Diel Signal

The budget analysis allows the quantification of a seasonal-scale NEP, that is, the fortnight balance be-
tween GPP and R. However, to disentangle these terms, it is necessary to resolve the day-night oxygen 
cycle, in which the effect of respiration can be isolated since photosynthesis is only active during daytime 
(Odum, 1956). We propose a spectral approach to isolate the biological DO signal from physical advection. 
The spectral approach was introduced by Cox et al. (2015), who determined GPP and R from the amplitude 
of a DO signal at the diel frequency calculated in the frequency domain. However, with this method, the 
long-term effect of oxygen accumulation due to NEP is implicitly removed, because the differences in the 
amplitude of the signal during day and night are not recovered but, at best, modeled by a prescribed func-
tion (Cox et al., 2015). This problem is solved in our approach by recovering NEP from the fortnight-scale 
budget. The newly proposed spectral method yields an estimate of the daily R, and GPP is subsequently 
computed using the budget-derived NEP as GPP = NEP + R (R is defined positive).

Furthermore, the possible contamination of the diel amplitude by physical signals was not considered by 
Cox et al. (2015) and is addressed here. The removal of the effect of baroclinic motions was performed with 
basic spectral analysis techniques (Welch,  1967) in four steps: (i) removal of the fraction of the oxygen 
variability coherent with temperature variability (Levine & Lueck, 1999), (ii) removal of a spectral baseline 
around the diel frequency, (iii) rejection of data segments where the decontaminated spectrum is lower than 
1.5 times the baseline, and (iv) rejection of the data segments where the diel oxygen increase preceded the 
light increase by more than 2 h. R rates were finally computed by integrating the denoised spectra around 
the diel frequency. These calculations were done for each time step (1 h) over 256-datapoint (∼11 days) 
overlapping segments of DO data at different depths. The details of this procedure are outlined in the sup-
porting information S1.

3.3.  Diel Method With Time Domain Correction

Alternatively, we introduce a simpler method in which DO variations due to vertical dislocations induced 
by baroclinic motions are filtered directly in the time domain. With this approach, we could apply the clas-
sical diel method (Odum, 1956) directly to a DO signal from which the signature of internal motions has 
been removed. To do so, the DO records at different depths were split into 24 h segments. For each day, we 
calculated daily mean temperature and DO profiles (〈T〉, 〈DO〉) and the T′ and DO′ anomalies with respect 
to the mean profiles. Then, DO′ was fitted against a second-order polynomial of T′ (Equation 4) for each lay-
er, in order to model the fraction of the DO variability that can be explained by vertical dislocations ( 

IMDO ).  
A clean DO signal for each day and depth was then obtained as      clean IMDO DO DO DO . Within 
each day, the hourly change of DOclean presumably driven by biological production/consumption (hourly 
NEP, which we denote as nep) was calculated by subtracting the gas exchange and vertical diffusion terms 
according to Equations 5, 7, and 8. Because the fortnight-scale budget indicated that the river contribution 
and mixed layer deepening are minor (see Section 4) we ignored these terms here, and the hourly nep for a 
layer i reduced to

  
  


0.5 0.5cleanDO 1 F F .

i
i i i

diff diffinep
t V

� (11)

An inverse modeling approach, applied to 24 h segments of nep, was used to determine the daily rates of 
GPP and R based on a fit to the light and temperature profiles following Hanson et al. (2008) and Obrador 
et al. (2014). The determination coefficient (R2) of the DO′ signal fit to Equation 4 was used to reject data 
segments dominated by physical noise (i.e., with R2  >  0.75). For these segments, and for days yielding 
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negative values of GPP or R, we set GPP = NEP (R = 0) when NEP > 0 and R = |NEP| (GPP = 0) when 
NEP < 0, where NEP was calculated by averaging Equation 11 over 24 h. This was done to ensure that the 
oxygen mass is conserved and that the relation between the three metabolic rates (NEP = GPP − R) is al-
ways consistent. The details are outlined in the supporting information S2.

4.  Results
4.1.  Overview on the Data Set

The temperature and oxygen records unraveled the underlying dynamics during the measurement period, 
which corresponded to the productive season of Lake Geneva (April–October 2019) (Figure 1). Until mid-
May, the water column was weakly stratified with surface temperature exceeding by 2°C the temperature at 
30 m (∼8°C), and the mixed layer was highly dynamic indicating variable and sometimes vigorous mixing 
conditions (Figure 1a). From mid-May on, net warming of the water column occurred and near-surface 
temperature increased up to a maximum of ∼25°C in mid-August, increasing water-column stability. The 
mixed layer depth became shallow varying between 0.5 m (depth of the upper sensor) and 7 m. It was par-
ticularly shallow during the last 2 weeks of May, the last week of June and in mid-July, indicating highly 
stable conditions. Since mid-August, mixed layer temperatures decreased steadily to ∼17°C at the end of the 
sampling period. After mid-September, the mixed layer depth began to fluctuate significantly and showed 
a net deepening.

Oxygen concentrations showed a net decrease at all depths over the sampling period (Figure 1b). DO re-
mained oversaturated in the top 20 m and undersaturated below by up to ±4 mg L−1 (Figure 1c). On shorter 
time scales, an initial decrease in DO concentration and saturation in the top 15 m up to mid-May was 
followed by a fast increase during the following 2 weeks. Thereafter, mixed layer DO concentrations de-
creased faster than in layers immediately below, and a subsurface oxygen maximum (with oversaturation of 
4 mg L−1, Figure 1c) developed during the three stable periods with a shallow mixed layer. These maxima 
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Figure 1.  Hourly time series of mooring measurements of temperature (a, T), dissolved oxygen (b, DO), and dissolved oxygen anomaly with respect to 
concentration at saturation (c, DO − DOsat). Hourly mixed layer depth (calculated as the depth where temperature exceeds the value at 0.5 m by 0.2°C) is shown 
as a black line. The gray line in (c) represents the zero saturation isoline. Power spectra of the DO as a function of sensor depth are shown in (d). The spectrum 
of the time-integral of air-lake oxygen flux (black line) is shown for comparison. The slanted black solid line represents the characteristic slope of the internal 
wave continuum spectrum ∼f−2. The periods of the Kelvin and inertial waves are indicated as vertical lines. The shaded area indicates periods around the diel 
cycle (18–28 h).
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persisted over a few days but were eroded as soon as the mixed layer reached their depth. Our interpretation 
is that they develop due to accumulation of biologically produced oxygen in a stable thermocline, isolated 
from the atmosphere. Below 15 m depth, undersaturation gradually strengthened over the summer period, 
as a result of respiration.

In addition to these general patterns, the temperature and DO signals showed very large variability in a 
broad range of time scales from hours to days (Figures 1a and 1b), due to a combination of biological and 
physical processes, including advection by internal motions and the episodes of mixing and restratification 
at the surface. The variance of the DO power spectra at different depths decreased with increasing frequen-
cy (Figure 1d). However, a peak around a period of ∼24 h indicative of biological production and respiration 
was observed for all sensors, even as deep as 30 m. Lower frequencies correspond to basin-scale motions, 
including upwelling events and Kelvin waves with frequencies of 3–4  days during stratified conditions 
(Bouffard & Lemmin, 2013). For example, up to seven successive passages of Kelvin waves were recorded at 
the end of September and beginning of October 2019 as large displacements in the isolines of temperature 
and oxygen below 15 m (Figures 1a and 1b). At subdaily scales, a smaller peak was observed just above the 
inertial period (∼16 h) possibly related to Poincaré waves (Lemmin, 2020). For higher frequencies, the inter-
nal wave continuum with a characteristic slope of f−2 was observed (Figure 1d). The vertical displacements 
due to internal motions were ubiquitous during the sampling period and characterized by a root mean 
square ranging between 2 and 10 m (Figures 1 and S2). Occasionally, they reached very large values of up 
to 20 m or more during energetic periods, like during an upwelling in mid-May. Such large displacements 
could obviously bias the calculation of metabolic rates if the DO signal was not corrected properly.

4.2.  Seasonal NEP Calculation

The contribution of biological and physical processes in the seasonal evolution of oxygen (Figure 1; and see 
smoothed DO evolution in Figure S3) was disentangled with the mass balance approach. Other than air–gas 
exchange, the main physical terms considered are turbulent diffusion (including mixed layer entrainment) 
and the intrusion of the Rhône River into the thermocline and the subsequent induced hydraulic uplift. 
The drivers of those terms, vertical turbulent diffusivity (KT) and Rhône River inflow (Q), are depicted in 
Figures 2a and 2b. Vertical turbulent diffusivities were larger from April to June (∼10−4 m2 s−1) and low-
est in July and August (<10−5 m2 s−1), while intermediate values were found in September and October 
(∼10−5 m2 s−1). From mid-May, the Rhône River intruded into the metalimnion (∼15 m depth) and supplied 
relatively cold and oxygenated water into a layer that deepened and sharpened progressively as stratification 
increased. Maximum local Q values of ∼400 m3 s−1 were found between 10 and 15 m depth by early July, 
when the river inflow reached its seasonal maximum (Figure 2b).

The contribution of the physical processes to the variation in DO concentrations (Equation 5) is shown 
in Figures 2c–2f. On a fortnight time scale, the rates of change of DO with time ranged between −1.5 and 
1.2 mmol m−3 day−1 but were negative most of the time, except in the upper layers by the end of May and 
August (Figure 2c). Thus, some important details in the DO variability, such as accumulation below the 
mixed layer at the end of June, were lost due to the temporal smoothing. Shorter smoothing windows 
would partially solve this problem but introduce too much noise from advective processes, increasing the 
uncertainty in the derived NEP rates. We concluded that 15-day smoothing was the best compromise be-
tween removal of the undesired physical noise and preservation of the biological footprint. The turbulent 
diffusion term showed a broader range of values (up to ±30 mmol m−3 day−1) and was always divergent 
(negative) in the upper 10 m, whereas convergence (positive values) prevailed below (Figure 2d). The con-
tribution of entrainment to the diffusive term was overall small (Figure S4), due to the shallow and weakly 
variable mixed layer depth during the summer period. The Rhône intrusion caused DO changes of up to 
10 mmol m−3 day−1 in the metalimnion (Figure 2e). The uplift term showed an opposite pattern due to up-
ward oxygen transport (Figure 2f). Because oxygen concentration was not far from equilibrium at the river 
intrusion depth (Figure 1c), the miss-balance between the two terms was small.

The diagnosed NEP rates indicated a vertical partition of the lake metabolic balance into two layers. A 
positive NEP prevailed in the top ∼10 m with typically increasing values toward the surface and maxima of 
∼25 mmol m−3 day−1 (Figure 3a). Below ∼10 m, a negative NEP dominated, despite some localized positive 
values at the beginning of the measurement period in mid-April. A compensation depth of zc = 8.75 m was 
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determined, defined as the depth where the temporal mean NEP had a value of zero. The compensation 
depth was shallower than the euphotic depth (defined by 1% light), which varied between 15 and 20 m, 
indicating that, although photosynthesis is still possible at low light levels, heterotrophic respiration was 
dominant below zc. Mean summer NEP in the top 0–8.75 m layer was 69 ± 18 mmol m−2 day−1 (±standard 
deviation). In the deeper layer, mean NEP equaled −13.6 ± 5.8 mmol m−2 day−1. The depth-integrated NEP 
averaged 56 ± 18 mmol m−2 day−1, showing that autotrophy dominated the metabolic balance over the top 
30 m of Lake Geneva in summer 2019.

The integration of the DO budget terms in the production-dominated (z < zc) and respiration-dominat-
ed (z > zc) layers allows to assess the different contributions to the budget and their temporal variability 
(Figures 3b and 3c). In the upper layer, NEP varied weakly throughout the season, with a minimum of 
50 mmol m−2 day−1 in early May and several slight local maxima of 90–100 mmol m−2 day−1 in late May, 
mid-July, and late August (Figure 2a). Air-lake gas exchange, averaging −65 ± 22 mmol m−2 day−1, was by 
far the dominant term, especially since the mixed layer became largely supersaturated during the first NEP 
maximum by late May. The turbulent diffusion term was important until mid-June (∼20 mmol m−2 day−1), 
when diffusivities were large, and surface exchange was weaker (Figure 2b). Downward diffusion through 
the compensation depth averaged −8.0 ± 7.8 mmol m−2 day−1 and was the second most relevant term in the 
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Figure 2.  Decimal logarithm of vertical turbulent diffusivity (KT) diagnosed from the heat budget (a), Rhône River intrusion inflow (Q) (b), and divergence 
terms in the dissolved oxygen budget (Equation 5): concentration rate of change (c), vertical turbulent diffusion plus mixed layer entrainment (d), Rhône 
intrusion (i.e., horizontal convergence, e), and basin-scale hydraulic uplift induced by the river intrusion (f). The solid black line represents the mixed layer 
depth and the white lines indicate the zero isolines.
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budget. The entrainment term (Equation 9) contributed little to the turbulent flux. The net rate of DO con-
centration change averaged −3.1 ± 3.7 mmol m−2 day−1, representing a minor compensation to the effect of 
the two dominant terms. The net effect of the Rhône intrusion and hydraulic uplift was very small because 
of the mutual compensation of the convergence and uplift terms.

In the respiration-dominated layer (z > zc), negative NEP was maximal in June at −25 mmol m−2 day−1 (Fig-
ure 3b). In this layer, the main contribution to the diagnosed NEP was the negative rate of change during this 
period, which averaged −9.8 ± 3.1 mmol m−2 day−1. The layer received oxygen from above due to turbulent 
diffusion (8.0 ± 7.8 mmol m−2 day−1), but this process also transferred oxygen downward across the lower 
edge of the layer (−3.1 ± 7.8 mmol m−2 day−1), with a resulting net supply of 4.9 ± 6.2 mmol m−2 day−1, 
representing the second most important contribution to the diagnosed negative NEP. This contribution was 
important before mid-June and smaller thereafter (Figure 3c). Again, the net contribution by the Rhône 
intrusion and uplift was small (−1.2 ± 0.9 mmol m−2 day−1) due to mutual compensation. However, in this 
case, it was not entirely negligible and represented about 10% of the diagnosed respiration rate.

4.3.  Frequency Domain Diel Method

Figure 4 shows GPP and R rates diagnosed with the spectral method. Both metabolic rates typically decreased 
with depth. Mean GPP rates were maximal (30 mmol m−3 day−1) at the location of the two upper-most sen-
sors at 0.5 and 2.5 m depth (Figures 4b and 4c) and then declined strongly to ∼7 mmol m−3 day−1 at 10 m 
depth. Below, GPP decreased to a lower degree reaching ∼1 mmol m−3 day−1 at 30 m. Respiration rates 
were also maximal at the two upper-most sensors (18 mmol m−3 day−1) and decreased with depth but not as 
sharply as GPP rates, to ∼8 mmol m−3 day−1 at 10 m. However, R was slightly stronger than GPP in the deep-
er layers, as dictated by the negative NEP computed with the budget approach. According to the prescribed 
criteria, the diel biological cycle stood above other sources of variability in ∼80% of the segments recorded 
in the upper 5–10 m. Below, the physical signal became more dominant, and at 20–30 m depth, only ∼20%, 
of the segments showed a defined diel peak.

Mean depth-integrated GPP down to 30  m was 236  ±  118  mmol  m−2  day−1, most of which 
(184 ± 114 mmol m−2 day−1) corresponded to depths shallower than the compensation depth (zc = 8.75 m), 
and a smaller fraction (22%) took place below (53 ± 47 mmol m−2 day−1). Ecosystem respiration was also 
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Figure 3.  Net ecosystem production (NEP) of oxygen diagnosed from the oxygen budget (a), depth-integrated terms (mmol m−2 day−1) of the oxygen budget in 
the production-dominated layer (z < zc = 8.75 m, b), and in the respiration layer (zc < z < 30 m, c). Displayed terms are net ecosystem production (NEP, green), 
rate of change of DO concentration (∂DO/∂t, black), turbulent diffusion through zc (Diffusion/Diff. above, blue solid), diffusion through 30 m (Diff. below, blue 
dashed, only in c), the net effect of Rhône intrusion and uplift (red), mixed layer entrainment (brown), and air-lake exchange (purple). Mixed layer (solid) and 
euphotic (dashed, 1% incident light) depths are shown in panel (a). DO, dissolved oxygen.
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dominated by the upper layer (115 ± 101 mmol m−2 day−1), but it was more evenly distributed vertically, as 
the lower layer contributed with 66 ± 49 mmol m−2 day−1, representing 37% of the total respiration in the 
upper 30 m (181 ± 108 mmol m−2 day−1).

Regarding the temporal variability, depth-integrated GPP rates were lowest (∼100 mmol m−2 day−1) at the 
beginning (before mid-May) and at the end of the sampling period (end of September), with volumetric 
rates ≲10 mmol m−3 day−1 throughout the water column (Figures 4a and 4b). Maximum GPP rates co-
incided with the DO accumulation observed at the end of May and mid/end of June. For these periods, 
depth-integrated rates were 400–600 mmol m−2 day−1, and volumetric rates in the shallower sensors ex-
ceeded 100 mmol m−3 day−1, while at 5 m depth GPP decreased already down to ∼30–40 mmol m−3 day−1.

4.4.  Time Domain Diel Method

Prior to calculating metabolic rates using the classical diel method, the oxygen time series were denoised 
in the time domain. The denoising procedure involves removing the fraction of the DO signal that can be 
ascribed to vertical dislocations for each day and sensor, which was obtained by fitting the DO fluctuations 
to a second-order polynomial of temperature fluctuations (see Section 2). This is illustrated for a couple 
of T and DO data segments collected on April 22 at 20 m depth (Figure 5). This figure shows that the DO 
fluctuations can be strongly linked to physical processes which, in this case, explained more than 86% of the 
oxygen variance, even if the signal had the appearance of a diel biological cycle. By applying the correction 
to the DO record, the cycle pattern completely disappears (Figure 5c), indicating that biological processes 
played indeed a minor role in this data segment. The variable imprint of internal motions in the DO diel var-
iability throughout the record is illustrated by the determination coefficient of the polynomial fit (Figure 6). 
The variance explained by the temperature fluctuations was low (R2 < 0.5, most of the time) in the upper 
2–3 sensors (<10 m), where primary production was found to be larger. For deeper layers, this contribution 
increased significantly, and baroclinic motions very often dominated (R2 > 0.8) the DO variations. This is 
consistent with the results from the spectral method indicating only small GPP and few occurrences of diel 
cycles in this depth range.

Metabolic rates derived from the denoised DO signal also showed a mostly depth-decreasing distribution but 
less sharp compared to the spectral method (Figures 7 and 8). Time-mean GPP (and NEP) decreased with 
depth from 22 mmol m−3 day−1 (13 mmol m−3 day−1) in the two upper-most sensors to 2–3 mmol m−3 day−1 
(0 to −1 mmol m−3 day−1) below 20 m (Figure 8b). The sharp decrease took place between 2.5 and 10 m 
depth (Figure 8b). In contrast, the R profile was less variable over depth, and mean R values ranged between 
3 and 10 mmol m−3 day−1 with a weak maximum located at 5 m depth (Figure 8b). Consistently with the 
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Figure 4.  Gross primary production (GPP), respiration (R), and net ecosystem production (NEP) estimates computed 
with the scale-separation method (seasonal DO budget plus spectral diel method): (a) integrated values in the depth 
range of 0–30 m, (b) depth-resolved GPP values, and (c) time-mean profiles. Mixed layer (solid) and euphotic (dashed, 
1% incident light) depths are shown in panel (b). The percentage of segments where the diel cycle was detected 
according to the prescribed criteria (i.e., “good” segments) is shown as gray steps in (c). DO, dissolved oxygen.
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weaker vertical gradients in GPP and R rates compared to the spectral method, the distribution of the frac-
tion of segments, where a diel cycle was detected according to the prescribed criteria (R2 < 0.75, GPP, R > 0), 
was also flatter (Figure 8b). Below 15 m, the proportion of “good” segments was very similar for both meth-
ods (∼20%), but they were less frequent in the upper layers (∼40% for the time domain method, compared 
to 80% with the spectral method, Figure 4). This different depth distribution was due to the detection of 
anomalous cycles, where diagnosed GPP was negative (dark gray steps in Figure 8b), as the fraction of seg-
ments showing weak correlation with temperature (R2 < 0.75, light gray steps) closely tracked the vertical 
distribution of good segments of the spectral method (Figure 4c).

Mean depth-integrated GPP down to 30 m was 234 ± 100 mmol m−2 day−1 (±standard deviation of the 
weekly means). Most of this production (154  ±  80  mmol  m−2  day−1) corresponded to depths shallower 
than the compensation depth (zc = 8.75 m), and a smaller fraction (34%) corresponded to deeper layers 
(80  ±  35  mmol  m−2  day−1). The proportion of deep GPP (34%) was slightly larger in comparison with 
the spectral method (22%), while the overall GPP was similar. Mean NEP in the upper 30 m depth was 
55 ± 44 mmol m−2 day−1, of which 66 ± 40 mmol m−2 day−1 corresponded to the depth range above the 
compensation depth and −11 ± 42 mmol m−2 day−1 below. These results are consistent with the scale-sep-
aration method.

Regarding temporal variability, maximal GPP (and R) rates were found 
in the upper 10  m and from mid-May to mid-August (Figures  7a,  7b, 
and  8a), with a large maximum at the end of May (weekly mean 
depth-integral of ∼600  mmol  m−2  day−1) and a less pronounced peak 
(∼400 mmol m−2 day−1) at the end of July. On the other hand, NEP calcu-
lated with the time domain diel method (Figure 7c) resolved more tem-
poral variability compared to the budget method, but it was also noisier, 
particularly below 10 m, where significant high-frequency variability was 
observed. Periods of positive NEP extending beyond the photic zone are 
probably not realistic and result from physically driven variability at time 
scales longer than 24 h.

4.5.  Sensitivity of the Metabolic Rates Estimates

4.5.1.  Seasonal Budget

The seasonal oxygen budget analysis revealed the crucial role of air-lake 
gas exchange in the upper productive layer, being by far the largest term 
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Figure 5.  Implementation example of the fitting procedure to remove the contribution of internal displacements to the 
DO signal. Data are for April 22 at 20 m depth. (a) Quadratic fit of DO′ against T′, (b) temperature time series, and (c) 
raw (solid) and corrected (dashed) DO time series. DO, dissolved oxygen; T, temperature.

Figure 6.  Determination coefficient (R2) of the daily second-order 
polynomial fit of DO′ against T′ (Equation 4). DO, dissolved oxygen; T, 
temperature.
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Figure 7.  Time series of depth-resolved (a) gross primary production (GPP), (b) respiration (R), and (c) net ecosystem 
production (NEP) estimates computed with the time domain diel method. Weekly averaged mixed layer and euphotic 
depths are shown as a black solid and dashed lines, respectively.

Figure 8.  (a) Weekly mean of depth-integrated (0–30 m) and (b) time-mean profiles of GPP, R, and NEP derived from 
the time domain diel method. The percentage of segments where the diel cycle was detected according to the prescribed 
criteria (i.e., “good” segments) is shown as gray steps in (b). Results from the scale-separation method are shown as 
dashed lines for comparison. GPP, gross primary production; R, respiration; NEP, net ecosystem production.
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in the budget and making the diagnosed NEP rates very dependent on its accurate quantification. However, 
gas exchange is rarely measured directly and Dugan et al. (2016) showed that different parameterizations of 
the piston velocity (kw) based on wind speed and other meteorological values can produce diverging results. 
For the previous analysis, we have chosen to use the parameterization proposed by Soloviev et al. (2007), 
which is based on well-established physical theories describing the renewal of the near-surface layer (Lorke 
& Peeters, 2006) and includes the non-interfacial exchange driven by wave-generated bubbles (Woolf, 1997). 
Here, we assessed the uncertainty in the derived NEP by resolving the oxygen budget using a set of the most 
popular piston velocity parameterizations in lake studies (Table 1). Piston velocity, oxygen flux, and NEP 
varied between 3.7 and 9.8 cm h−1, 41 and 114 mmol m−2 day−1, and 46 and 119 mmol m−2 day−1, with 
a mean variability of ∼40% around the respective mean values (5.5  cm  h−1, 61.8  mmol  m−2  day−1, and 
66.8 mmol m−2 day−1). The Vachon and Prairie (2013) parameterization stands out as it produced kw and 
flux values about twofold larger than the other formulations. By excluding this formulation, the relative 
errors reduced down to the order of 10%. Due to the unrealistically high kw yielded by this model, it is not 
considered in the following discussion.

4.5.2.  Frequency Domain Diel Method

Contrary to NEP, GPP was only weakly sensitive to the choice of the piston velocity parameterization as the 
relative error of the different parameterizations was only 3.7% (Table 1). In turn, GPP estimates were highly 
sensitive to the different steps performed to remove physical contribution to the DO signal. This filtering 
was performed in four different steps, as described in Section 2 and in supporting information S1. In Table 2, 
we show how time-mean, depth-integrated GPP rates vary as the filtering steps are applied.

Before any filtering, the mean GPP rate integrated down to 30 m was 601 mmol m−2 day−1, which is more 
than twice the final value. Step (i) consisted in removing the fraction of oxygen variance correlated with 
temperature variance. This first step reduced the unfiltered depth-integrated GPP by 29%. After step (i), we 
found the DO spectra still showing significant variance around the diel frequency, even in the absence of 
a clear 24 h peak. This imperfect removal of the physical signal can be due to the statistical uncertainty of 
the method as well as to any DO variation that is not linearly correlated with temperature, that is, related 
to nonmonotonous vertical gradients and horizontal heterogeneities. To overcome this deficiency, we per-
formed step (ii) in which we removed the spectral baseline around the 24 h period. With this procedure, 
we found that in 28.3% of the data segments the diel peak was actually not larger than the background, and 
GPP rates were reduced by 32.2%.

Step (iii), which imposed a minimal signal-to-noise ratio of 1.5 in the 24-h band, increased the number of 
segments where the diel signal was considered as nondetectable to 48% of the total, and the GPP rates were 
reduced by an additional 8%. Finally, segments where the DO signal presented an anomalous timing (oxy-
gen increase during the night, see Figure 9) were removed during step (iv), increasing the number of bad 
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Parameterization kw (cm h−1) Fair-lake (mmol m−2 day−1) NEP (mmol m−2 day−1) GPP (mmol m−2 day−1)

Soloviev et al. (2007) 5.8 ± 5.9 65 ± 22 69 ± 18 236 ± 120

Read et al. (2012) 4.9 ± 4.5 55 ± 19 60 ± 15 227 ± 116

Cole and Caraco (1998) 3.7 ± 2.2 44 ± 17 49 ± 16 217 ± 117

Crusius and Wanninkhof (2003) 5.1 ± 9.5 52 ± 19 57 ± 18 224 ± 116

Wanninkhof (1992) 3.9 ± 6.8 41 ± 15 46 ± 15 212 ± 180

Vachon and Prairie (2013) 9.8 ± 5.8 114 ± 43 119 ± 39 284 ± 131

Mean 5.5 ± 2.0 62 ± 25 67 ± 25 233 ± 24

(Excluding Vachon 4.7 ± 0.8 51 ± 8 56 ± 9 223.0 ± 8.2)

Relative error 36.4% (16.6%) 39.6% (16.3%) 36.7% (15.0%) 10.2% (3.7%)

Note. Mean ± standard deviation for the sampling period (April 19 to October 4, 2019) are reported. NEP and GPP are integrated in the production layer, 
z < zc = 8.75 m, where zc is the compensation depth, and down to 30 m, respectively. Mean and standard deviation of the different models are shown in the last 
row. Relative errors were calculated as the ratio of the standard deviation and the mean values for all the different parameterizations.

Table 1 
Air-Lake Oxygen Fluxes and Diagnosed Depth-Integrated NEP and GPP Using Different Parameterizations for the Piston Velocity, kw
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segments to 58% of the total, and decreasing the integrated GPP rates by an additional 10%. The reduction of 
GPP rates with the different steps was always largest in the deeper layer (8.75–30 m), where biological rates 
were weaker and the signature of vertical advection more prominent. At the end of the filtering process, 
GPP rates integrated in this depth range (52 mmol m−2 day−1) were a factor of 5.6 smaller compared to the 
initial value (297 mmol m−2 day−1), while the reduction in the upper layer was much smaller (factor of 1.7).
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Correction GPP (0–30 m) GPP (0–8.75 m) GPP (8.75–30 m) % discarded

Spectral diel method

None 601 ± 242 304 ± 181 297 ± 104 0

(i) 424 ± 174 (−29%) 237 ± 143 (−22%) 187 ± 59 (−45%) 0

(i, ii) 287 ± 130 (−32%) 196 ± 120 (−18%) 92 ± 49 (−51%) 28

(i, ii, iii) 263 ± 124 (−8%) 190 ± 118 (−3%) 73 ± 49 (−20%) 48

(i, ii, iii, iv)* 236 ± 118 (−10%) 184 ± 114 (−3%) 52 ± 47 (−29%) 58

(i, ii, iii, iv)† 250 ± 139 (+6%) 197 ± 137 (+7%) 52 ± 47 (0%) 59

Time domain

No filter 476 ± 160 224 ± 123 251 ± 77 40

Filter, 2 1.00maxR 326 ± 120 (−31%) 178 ± 49 (−20%) 148 ± 41 (−41%) 44

Filter, 2 0.75maxR * 234 ± 100 (−28%) 154 ± 80 (−14%) 80 ± 35 (−45%) 68

Filter, 2 0.50maxR 193 ± 81 (−17%) 133 ± 65 (−13%) 61 ± 29 (−24%) 80

Filter†, 2 0.75maxR 239 ± 97 (+2%) 159 ± 77 (3 + %) 80 ± 35 (−45%) 68

Note. The % reduction with respect to the previous step is given in parentheses. The percentage of segments that were 
discarded according to the different criteria is also indicated. Mean daily GPP values and standard deviation are given 
in both cases. For the time domain method, the standard deviation is calculated from weekly GPP means, in order to 
be comparable with the spectral method. 2

maxR  is threshold for the determination coefficient of the fit between DO 
and temperature anomalies. If R2 exceeded the critical values, we considered that physical process dominated DO 
variations at daily scale and that the diel method could not be applied. The selected methods, for which the main 
results are shown in the figures and described in the manuscript, are marked with a *. The results indicated with a † 
correspond to the sensitivity test where the temperature-correlation correction (step i in the frequency domain) was 
not implemented for the two upper-most sensors located at 0.5 and 2.5 m depth. In this case, the percentage of change 
indicated in parentheses corresponds to a comparison with the base case indicated with a *.

Table 2 
Sensitivity of Time-Mean Depth-Integrated GPP Rates (mmol m−2  day−1) Calculated With the Spectral and Time 
Domain Methods to the Steps Performed in Order to Remove the Physical Signal (Section 2 and supplementary 
information)

Figure 9.  Phase difference (in hours) between the oxygen and light signals at the diel frequency range computed from 
the cospectrum of both variables. A positive phase difference means that the oxygen signal lags behind the light signal, 
as expected if oxygen accumulation is due to photosynthesis.
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A potential limitation of the proposed method, particularly step (i), is that it is sensitive to any correlation 
between the temperature and oxygen even if it is not driven by vertical dislocations, potentially resulting 
in spurious overcorrection. This could be the case of the upper-most layer (0.5 m), where the temperature 
also displays a diel cycle as a consequence of direct solar heating (Figure S5). To evaluate the associated 
error, we performed a sensitivity test where the correlation correction (step i) was performed for all but the 
two upper-most sensors (0.5 and 2.5 m, respectively). This resulted in a GPP increase by 6%–7%, which is 
a relatively minor error considering the overall impact of the corrections described above. This is coherent 
with the weak correlation between T and DO for these sensors (Figure 6), indicating that, even though the 
T and DO diel signals could resemble each other, they are driven by different processes, such that they are 
not as tightly correlated as when both are driven by internal dislocations.

4.5.3.  Time Domain Diel Method

In the time domain method, the average depth-integrated GPP equaled 476 mmol m−2 day−1 prior to the 
filtering steps, which is twice as large as the final value reported above (234 mmol m−2 day−1). As for the 
spectral method, GPP was more sensitive to the correction below the compensation depth. Without cor-
rection, deep GPP would have been 3 times larger (251 mmol m−2 day−1). Other than filtering, we further 
discarded data by considering that the diel method was not applicable when the DO signal was dominat-
ed by physical variability, that is, when the correlation between DO′ and T′ exceeded a certain threshold 
(R2 = 0.75). By including this correction, we reduced the overall depth-integrated GPP by 28% from 326 to 
234 mmol m−2 day−1. Again, the correction was stronger below the compensation depth with a 45% reduc-
tion. The threshold for R2 is somewhat arbitrary and the optimal value is difficult to choose objectively. A 
more restrictive limit of 50% would further reduce the overall GPP by 17% and the deep GPP by 24%. The 
number of anomalous diel cycles (computed GPP or R < 0) was remarkably high, ∼40%, before filtering the 
physical signal, but the filtering procedure did not reduce those anomalies. By filtering and restricting the 
diel calculations to R2 < 0.75, the number of usable segment decreased further, and 68.0% of them were dis-
carded. Finally, a sensitivity check, during which the correlation correction was only applied below 2.5 m, 
indicated that the overcorrection of the DO signal due to daytime heating could result in a underestimate 
of GPP rates by 2%–3%.

Overall, this sensitivity analysis highlights the need for removing the influence of baroclinic motions in the 
DO signal to compute metabolic rates. The rates computed with both the spectral and time domain methods 
could be significantly overestimated if the signal was not sufficiently corrected, particularly in the metal-
imnion, where the biological signal is weak and internal motions are large. Furthermore, it shows that the 
parameterization of the gas exchange velocity is the key source of uncertainty for the estimation of NEP at 
seasonal scales.

5.  Discussion
5.1.  The Imprint of Internal Baroclinic Motions

We analyzed 172 days of depth-resolved high-resolution observations of DO concentration in the large and 
deep Lake Geneva with the aim of evaluating the metabolic balance of the lake at different depths during 
the stratification season. Isolating metabolic processes in the DO signal requires that physical processes 
are filtered out or modeled and subtracted using mass balance approaches (Staehr, Testa, et al., 2012), in 
order to derive GPP, R, and NEP from the diel signal (Staehr et al., 2010). Previous studies investigating 
vertical heterogeneities in lake metabolism dealt mostly with three physical processes: air-lake exchange 
through the lake surface into the epilimnion, changes of the mixed layer depth exchanging water between 
the epilimnion and metalimnion, and turbulent diffusion across the mean gradient in the metalimnion and 
hypolimnion (Coloso et al., 2008; Giling et al., 2017; Obrador et al., 2014; Staehr, Testa, et al., 2012).

The analysis of our mooring records revealed instead that a large fraction of the temperature and oxygen 
variability was driven by internal motions (Figure 1), which caused transient vertical displacements as large 
as several meters (>10 m during energetic periods). During most of the season, the mixed layer was shallow 
(<5 m), or even nonexistent. Both temperature and oxygen displayed strong vertical gradients throughout 
the sampling interval (0–30  m), and the vertical dislocations advected these gradients past the sensors, 
causing large temporal variations. We estimated that internal motions caused a substantial fraction (60%) 
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of the diel DO variability. This fraction increased with depth from 40%–50% in the upper 10 m, to 70%–80% 
in the range of 20–30 m depth. A similar pattern of increasing distortion of the biological DO signal by in-
ternal motions with depth was observed in previous studies, due to the light dependency of photosynthesis 
and the larger stratification in the metalimnion compared to the epilimnion (Coloso et al., 2008; Obrador 
et al., 2014). However, those studies were carried out in shallow, small, and more productive lakes, where 
internal motions have relatively short periods of a few hours (Staehr, Testa, et al., 2012) and can easily be 
removed (Coloso et al., 2008). In addition, the biological diel signal in metalimnetic waters of these lakes 
is sufficiently large and represents a larger fraction of the observed variability (Obrador et al., 2014, up to 
>50%). Due to the large size of Lake Geneva, the temporal scales of internal motions spanned a broad range 
from several days to a few minutes, and the vertical extension of the dislocations was much larger, impeding 
the estimation of metabolic rates with the classical approach, particularly at greater depths.

5.2.  Seasonal Net Ecosystem Production

In order to recover biological rates from such an intricate signal, we adopted the strategy of separating 
the time scales in which we computed the different metabolic rates. Because daily NEP depends on a fine 
miss-balance between GPP and R, that is, it depends on the oxygen accumulation over the course of 1 day, 
its calculation is extremely sensitive to the presence of physical processes affecting the oxygen signal at 
(sub)daily scales. Due to the presence of Kelvin waves (Bouffard & Lemmin, 2013) and upwelling events 
(Reiss et al., 2020), the internal motions affected the DO signal at time scales of up to 1 week or more. For 
this reason, we used a mass balance approach applied to a 15-day smoothed DO signal to evaluate NEP on 
these time scales, which are much longer than the usually employed diel method, but allow obtaining a 
robust measure of the net lake metabolism on the seasonal scale. NEP was found to decrease with depth, 
shifting from net autotrophy in the upper ∼10 m (the compensation depth was 8.75 m), to net heterotrophy 
below. The photic layer depth varied between ∼12 m in midsummer and ≳20 m in spring and early-fall 
but was generally deeper than the compensation depth, indicating that respiration dominated over gross 
production in the lower photic zone, despite the availability of light. A similar result was found for the 
oligotrophic Emerald Lake (California; Sadro et al., 2011), while in more productive lakes the shift to net 
heterotrophy is often found deeper, closer to the base of the photic zone (Obrador et al., 2014).

The two layers differed not only in the net metabolic balance but also in the main physical terms contrib-
uting to the oxygen budget. The mass balance in the net autotrophic shallower layer was largely governed 
by gas exchange, which represented 90% of the computed NEP, whereas in the net heterotrophic layer, the 
largest terms were the net oxygen decrease in time (72% of the computed net respiration) and turbulent 
diffusion (36% of the computed net respiration). For the productive layer, these results indicate that the 
accumulation of oxygen by photosynthesis during the summer season in Lake Geneva is balanced by a net 
transfer to the atmosphere in time scales of a few days, preventing a seasonal accumulation. Several instanc-
es of short-lived subsurface oxygen maxima at ∼5 m depth were observed during summer and spring after 
periods of several days of a persistently shallow mixed layer (Figure 1b). However, these maxima persisted 
only for a few days, as they were eroded by entrainment during episodes of mixed layer deepening. Hence, 
the overall temporal trend indicated rather a net decrease in oxygen concentration in the upper layer of 
−3.1 mmol m−2 day−1, which represents a small fraction (<5%) of the computed NEP rate.

The net seasonal oxygen concentration decrease could at least partially be driven by the net warming of the 
upper layer between April and October. The mean net oxygen flux driven by the seasonal warming can be 
estimated according to Keeling et al. (1993):

     
   

 
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where Fheat(z = 0) − Fheat(z = zc) is the net heat flux warming the autotrophic layer from the surface to the 
compensation depth (zc). The term 




satDO
T

 represents the derivative of the DO saturation curve as a func-

tion of temperature. The good match between the oxygen rate of change and thermally driven flux suggests 
that the relatively small oxygen concentration decrease is driven by warming, whereas the bulk of the gas 
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exchange is coupled to net photosynthesis. The implications of this observation are twofold. On one side, it 
designates the possibility of estimating net summer ecosystem production with an accuracy of up to 10% by 
quantifying the surface oxygen flux alone. The downside of it, however, is that the computed NEP is very 
sensitive to the gas exchange calculation, in particular to the choice of the piston velocity model. Indeed, we 
found a large spread among the NEP estimates derived from different parameterizations. NEP in the upper 
autotrophic layer ranged between 46 and 69 mmol m−2 day−1 depending on the gas exchange model used 
(i.e., ∼15% variation).

Net ecosystem respiration between zc and 30 m depth during the sampling period (13.6 mmol m−2 day−1) 
represented only a small fraction (∼20%) of the positive NEP in the productive layer. Hence, the net meta-
bolic balance of the upper 30 m was positive, and amounted to 32–56 mmol m−2 day−1, depending on the 
gas exchange model used. Considering 172 sampling days, and an oxygen to carbon molar ratio of 138:106 
for both photosynthesis and respiration (Redfield, 1958), this is equivalent to a net carbon accumulation (or 
export) of 50–89 g C m−2 per productive season between 0 and 30 m depth (or 73–110 g C m−2 between the 
surface and zc). However, this depth range does not account for the full heterotrophic lake metabolism, as 
hypolimnetic oxygen depletion is also observed in the deeper part of Lake Geneva (Schwefel et al., 2018). 
By applying the mass balance budgeting approach to deep oxygen profiles collected with the CTD probe, we 
found that the seasonal ecosystem respiration between 30 and 100 m depth was 23.2 mmol m−2 day−1, or 37 
g C m−2 (Figure S6). The total ecosystem respiration (13.6 + 23.2 = 36.8 mmol m−2 day−1) is in very good 
agreement with the mean summer areal hypolimnetic remineralization derived from depletion rates in the 
historical time series (Schwefel et al., 2018; Steinsberger et al., 2020, 2021).

Even when accounting for hypolimnetic respiration down to 100 m, an excess of organic matter production 
of 13–52 g C m−2 was found over the productive period. This organic matter is possibly accumulated in 
the water column in the form of suspended or dissolved matter, or in the sediments, and it could in part 
be remineralized during the winter season. Sediment oxygen demand and the flux of reduced substances 
out of the sediment, due to oxic and anoxic respiration, respectively, have been found to contribute with 
∼10 mmol m−2 day−1 to summer hypolimnetic oxygen depletion (Schwefel et al., 2018). If sediment remin-
eralization rates are comparable in winter and summer, this process could contribute to close the budget by 
consuming ∼15 g C m−2 of organic carbon during the winter season. Net organic carbon burial in the sedi-
ments (11–20 g C m−2; Loizeau et al., 2012; Randlett et al., 2015; Span et al., 1990) and winter water-column 
respiration could well account for the remaining miss-balance. Hence, our summer NEP value is consistent 
with independent estimates based on hypolimnetic oxygen depletion and sedimentation rates.

5.3.  Gross Primary Production and Respiration

In order to estimate the rates of GPP and R, we built upon the classical diel method that relies on the fact 
that photosynthesis is only active during the day, while ecosystem respiration is active during both day and 
night (Odum, 1956). The different timing of the two opposing processes creates a diel fluctuation of oxygen 
concentrations that can be used to infer GPP and R. We first removed the influence of internal motions 
on the DO signal around the 24 h period, for which we explored two different approaches in the time and 
frequency domain, respectively. Both approaches were based on the notion that the DO fluctuations must 
be correlated to temperature fluctuations if both are due to vertical dislocations caused by baroclinic lake 
motions.

Both methods yielded a consistent estimate of the mean depth-integrated (0–30 m) GPP rate for the produc-
tive season of ∼235 mmol m−2 day−1 (equivalent to 370 g C m−2 during the sampling period) and produced 
comparable vertical profile shapes, in which GPP decreased over depth. Furthermore, both method results 
display a similar temporal variability at the seasonal scale, with higher integrated rates between June and 
August and lower rates in spring and toward fall. However, some differences between both methods were 
also observed. The vertical decrease in GPP was sharper for the spectral method, for which 22% (52 mmol  
m−2 day−1) of the integrated GPP took place below zc, instead of 34% (80 mmol m−2 day−1) for the time domain 
method. This difference is larger for respiration. Respiration below zc represented 36% (66 mmol m−2 day−1) 
of the total according to the spectral calculation, in comparison with 56% (103 mmol m−2 day−1) derived in 
the time domain. In addition, some details of the temporal variability were captured differently with the two 
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methods, in particular, the near-surface productivity peak at the beginning of July, found with the spectral 
method, was weaker when computed in the time domain.

We anticipate several reasons behind these differences. First, the higher GPP/R rates below zc derived from 
the time domain method occur in a depth range where only a small number (∼20%) of 24 h segments display 
a detectable diel cycle. In order to ensure the conservation of oxygen mass in the cases where no diel cycle 
was detected, we prescribed GPP = NEP (R = 0) when NEP > 0, and R = |NEP| (GPP = 0), when NEP < 0. 
In the spectral method, we used the NEP derived from the fortnight budget, and the effect of internal mo-
tions was effectively removed at all time scales, whereas for the time domain method, we used the mean 
NEP in the 24 h denoised segments. The latter estimate is susceptible of containing baroclinic noise at lower 
frequencies; indeed, NEP estimated with this method is much more variable in the net heterotrophic layer 
compared with the scale-separation spectral method: the coefficient of variation (CV = standard deviation/
seasonal mean) of the depth-integrated NEP was of 1,320% with the time domain method, versus 42% with 
the spectral method. This noise results in a bias of the GPP/R rates toward high values. The scarcity of ob-
servable diel cycles below the upper, most productive layers suggests that the diel method might not be the 
most appropriate approach to estimate net heterotrophic metabolism in the metalimnetic and hypolimnetic 
deep layers of lakes, especially if internal motions affect the DO signal. The metalimnetic and hypolimnetic 
oxygen depletion depends on nonlocally produced matter, sinking from upper layers, which decouples R 
from GPP spatially and explains why respiration can occur in the absence of diel oxygen cycles. Therefore, 
the imprint of ecosystem respiration is rather manifested as a seasonal decrease in oxygen concentration, 
partially balanced out by turbulent diffusion. In this sense, the seasonal NEP budget provides a more robust 
estimate of respiration in the deep layers where GPP is very low.

The lower shallow GPP rates computed with the time domain method, particularly during the early-July 
bloom, cannot be explained by the removal of physical noise, which represents a small fraction of the bio-
logical signal in this depth range. Instead, they can be linked to the timing of the diel DO signal in relation 
to the light cycle within the upper layers. The spectral analysis revealed a rather small phase difference 
between both signals in the upper sensors, of typically less than 2 h (Figure 9). This implies that oxygen 
increases as irradiance increases during the morning, it peaks at noon and decreases over the afternoon and 
evening even if light is still available, but little further decrease is observed during the night (see an example 
for the July bloom in Figure S7). The diel approach is based on the assumption that oxygen is produced as 
long as there is light (see Equation 7 in supporting information S2) and that R during the night is equal to 
R during the day. As a consequence, a phase difference between the DO and light signal of ∼6 h is required 
for the method to provide nonzero values of the metabolic rates. The physiological mechanism causing 
the unexpected timing for the DO accumulation requires further investigation. It could be related to pho-
toinhibition of the shallow communities exposed to high irradiance levels around noon (Platt et al., 1980) 
and to the possible enhancement of respiration during daytime (McNair et al., 2013; Pace & Prairie, 2005; 
Tobias et al., 2007). If photoinhibition is important, the GPP and R rates derived with the diel method are 
likely an underestimate, even when using a nonlinear light dependency in the photosynthesis model, which 
accounts for light saturation but not photoinhibition (Hanson et al., 2008). The spectral computation has 
weaker constrains regarding the timing of the DO signal (we only required the phase difference to be posi-
tive, or more exactly, >−2 h) and possibly produces more reliable estimates of metabolic rates for diel cycles 
with anomalous timing.

5.4.  GPP Comparison With Previous Estimates

Primary productivity in Lake Geneva has been monitored for decades using bottle incubations of water 
samples collected biweekly or monthly at a fixed, central station (SHL2), following the 13C/14C methods 
(Anneville & Pelletier, 2000; Tadonléké et al., 2009). More recent estimates derived from the combination of 
remotely sensed optical water properties and a bio-optical model allow for a better spatiotemporal resolu-
tion of productivity patterns, including short-lived and spatially localized blooms (Soomets et al., 2019). The 
annual production of organic carbon derived from bottle incubations averaged 280 ± 76 g C m−2 year−1 for 
the period 1971–2005 (Tadonléké et al., 2009). A similar value of 302 ± 20 g C m−2 year−1 was found for the 
period 2003–2011, both with bottle incubations and remotely sensed data (Soomets et al., 2019). Our esti-
mate of GPP for the productive season of 2019 is somewhat larger (370 g C m−2), even if it does not consider 
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wintertime GPP. According to Soomets et al. (2019), wintertime productivity rates are about half of sum-
mertime values, so that their productivity values for the stratified season would correspond to about ∼200 
g C m−2. Hence, our GPP is close to twice as large as the previous estimates. However, these observations 
were carried out 10 years ago and before and may not be directly comparable to our observations due to 
interannual or long-term variations. For a closer examination, we directly compared 13C PP measurements 
acquired during our sampling period with weekly averages of GPP derived from the spectral and time do-
main methods (Figure S8). This comparison shows that our in situ estimates are generally larger by about a 
factor of 2 or more during the most productive periods, although they tended to converge toward fall, when 
the productivity was lower. Overall, mean summer productivity from the bottle incubation profiles equaled 
170 g C m−2 , which is about half of the in situ estimates for the corresponding weeks.

Disagreement between in situ and in vitro productivity estimates has been found in several previous studies 
in lakes (Lauster et al., 2006; Melack, 1982) and ocean (Williams et al., 2013). These differences could in 
part be related to the higher temporal resolution of sonde-derived data, which allow capturing short-lived 
blooms missed by the biweekly sampling (Soomets et al., 2019). However, during the most productive pe-
riods, the in vitro estimates were generally below the weekly standard deviation of the in situ estimates 
(Figure S8), suggesting that there might be other reasons for systematic bias beyond temporal resolution. 
Melack (1982) and Lauster et al. (2006) suggested that pelagic sonde measurements may implicitly include 
the contribution of littoral productivity. Our sampling point was at a 570-m horizontal distance from the 
lake shore, but the lake slopes are steep in the area, and there are no shallow areas displaying significant 
benthic production nearby. Therefore, the signal of littoral productivity would have to propagate from dis-
tant areas in significantly less than 24 h in order to be recorded as a diel DO fluctuation, which is highly 
unlikely due to the large lake size. Nevertheless, Soomets et al. (2019) found a significant heterogeneity in 
pelagic productivity in Lake Geneva. The SHL2 sampling point, where water samples are collected, is locat-
ed in the center of the main lake basin, which features slightly weaker productivity than the lake average 
(Soomets et al., 2019), although this is insufficient to account for a twofold difference (Kiefer et al., 2015).

As an alternative justification, it must be noted that in vitro and in situ methods are inherently different 
and they capture different components of the planktonic metabolism. First of all, in vitro measurements 
involve enclosing the planktonic community in a small volume, which may be problematic to extrapolate to 
the system level (Schindler, 1998). In addition, respiratory processes are accounted for differently. While in 
the diel in situ method, respiration is removed from the diel NEP value in order to obtain a GPP estimate, 
the incubation method measures the net fixation of carbon into particulate organic matter over a few hours 
of incubation (Perga et al., 2015). Although part of the heterotrophic community composed of larger organ-
isms is excluded due to the small sample size, respiration by autotrophs (and possibly small heterotrophs) 
still occurs within the bottles (Marra, 2009), and the derived rates should be interpreted as a measure of net 
primary production (NPP, i.e., GPP minus R by autotrophs), and hence it is expected to be smaller than GPP 
(Bender et al., 1987; Briggs et al., 2018; Marra, 2009; Pei & Laws, 2013). Furthermore, because only particu-
late carbon is measured, the exudation of recently fixed dissolved organic carbon (DOC) is also not quanti-
fied in the 13C/14C method (Marra, 2009). Excretion of DOC is typically low in freshwater ecosystems (∼15%; 
Baines & Pace, 1991); however, it may account for as much as 50% of carbon fixation in oligotrophic condi-
tions (Fouilland & Mostajir, 2010; Morana et al., 2014), such as those experienced in Lake Geneva, where 
inorganic phosphorous concentrations are drawn down to the detection limit (Tadonléké et al., 2009).

6.  Conclusions
In conclusion, we found that DO measurements, recorded in a large and deep lake at multiple fixed depths, 
were highly affected by internal motions. However, our methods proved to be useful in removing the phys-
ical signal at different frequencies and to reveal the underlying metabolic dynamics. We isolated a distinct 
temporal pattern of productivity with two major bloom phases occurring during the middle of summer, 
which remained rather unnoticed in the traditional biweekly monitoring data set. Discrepancies in method 
results (i.e., from time domain, spectral-domain, and bottle incubation methods) require further investiga-
tion and might be resolved when metabolic rates are linked together with their environmental drivers. The 
interpretation of field observations in the light of ecological plankton models offers interesting possibilities 
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to disentangle the existing complex interplay between the environmental drivers and lake metabolism (Kr-
ishna et al., 2021).

The results presented here can provide practical guidelines on expectations and sensitivities for researchers 
aiming to quantify vertically resolved metabolism, particularly in large energetic lakes with large verti-
cal (baroclinic) dislocations of isolines. First, they highlight the importance of oxygen exchange with the 
atmosphere, not only at daily scales but, more importantly, for the quantification of seasonal-scale NEP. 
Observational, direct quantification of air-lake gas fluxes is limited, and the existing parameterizations can 
yield scattered results. Further research effort is clearly required on this topic. We also showed that the 
diel-scale approach is likely not optimal for quantifying heterotrophic metabolism in metalimnetic and 
hypolimnetic layers, where ecosystem respiration can occur in the absence of distinct diel oxygen cycles. 
Instead, longer integration time scales were shown to produce more robust estimates. Finally, the methods 
proposed for filtering the signal of internal motions could be widely used in future studies as they rely on 
fundamental dynamical considerations and they are relatively simple to implement, particularly in the time 
domain. Although the more complex spectral approach performed better in our case, both methods are es-
sentially equivalent, and the performance of the time domain method could be improved by increasing the 
length of the data segments over which it is applied, achieving a better removal of low-frequency motions 
and increased statistic significance of the metabolic model fit.

Data Availability Statement
The CTD and weather station data sets are available at https://www.datalakes-eawag.ch/. The temperature, 
PAR, and oxygen mooring data and the computed rates can be downloaded from https://drive.switch.ch/
index.php/s/atGN0s2DCW2QDaZ.
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