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Abstract 23 

Approximately 70% of the available water in the entire Tibetan Plateau is stored in glaciers. 24 
Understanding the impact of climate change on the glacier mass balance is crucial given that the 25 
Plateau is the “water tower” of East and Southeast Asia. However, the historical records of the 26 
glacier mass balance for the Tibetan Plateau are scattered and incomplete. In this study, we 27 
reconstructed the long-term glacier mass balance from 1975 to 2013 (the data can be downloaded 28 
at https://doi.org/10.11888/Glacio.tpdc.270382) using the field observations for seven major 29 
glaciers and corresponding meteorological data extracted from the GLDAS CLSM (Global Land 30 
Data Assimilation Systems based on the Catchment Land Surface Model) dataset. The effects of 31 
refrozen water and snow depth on the glacier mass balance was examined. In addition, the 32 
response of glacier mass balance to climate change was investigated. The results indicate that 33 
most of the glaciers experienced a mass loss during the study period. Large mass loss occurred in 34 
glaciers in the southeastern part of the plateau. The glacier in the northwestern part of the plateau 35 
(the Muztagh No.15 Glacier) shows a small mass gain. Regarding the mass components of the 36 
glacier mass balance, most mass balances are dominated by meltwater, while the Muztagh No.15 37 
has a component offset. Further analysis manifests that mass balances in the western glaciers 38 
heavily change to the change of moisture factor (precipitation), while for the eastern glaciers, 39 
mass balance changes respond strongly to the changes of heat factors (air temperature, net 40 
radiation). The differences in the mass balance changes are closely related to the westerlies and 41 
Indian summer monsoon. 42 

Keywords: glacier mass balance; refrozen water; climate change; Tibetan Plateau; snow depth 43 
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1 Introduction 45 

One of the topics focused on globally these days is the changing climate, and the 46 
associated dramatic and worldwide glacier retreat [Benn et al., 2017; Bolch et al., 2012; Garder 47 
et al., 2013; Kääb et al., 2012; Song et al., 2017]. As the Asian “water tower”, the Tibetan 48 
Plateau plays a significant role in the water supply for the downstream areas. The water volume 49 
stored in glaciers accounts for ~70% of the total water resources in the Tibetan Plateau [Yao et 50 
al., 2012]. Based on the Second Chinese Glacier Inventory dataset, the glacial area of the interior 51 
plateau and western China decreased by 9.5% (767 km2) and 18% (~9000 km2), respectively, 52 
between 2004 and 2011 compared with the 1970s [Guo et al., 2014; Wei et al., 2014]. However, 53 
most studies on the changes in the glacier mass balance and relevant influencing factors in the 54 
Tibetan Plateau were mainly carried out in situ [Liu et al., 2014; Wu et al., 2015] because of the 55 
serious scarcity of field measurements. Therefore, it is necessary to collect field data on glaciers 56 
and conduct large-scale studies. Because the observed glacier data are generally discontinuous, 57 
the reconstruction of long-term glacier data is important for understanding the changes over the 58 
years. 59 

It has been widely acknowledged that continuous warming is the main driver of the 60 
glacier mass balance change. Specifically, rapid warming has occurred in the Tibetan Plateau in 61 
the recent decades, not only with respect to the air temperatures (+0.036 °C/a during 2001-2012), 62 
but also related to the land surface temperature [+0.03 °C/a; Zhang et al., 2014a]. These rates 63 
represent approximately three times the global mean surface temperature increase from 1951 to 64 
2012 [0.02 °C/a; Field et al., 2014]. The accelerated glacier retreat and enhanced precipitation 65 
based on the continuous regional warming, have resulted in an increase in the lake numbers, 66 
expansion of lake areas [Zhang et al., 2014b], and rising lake levels [Zhang et al., 2011, 2013a]. 67 
Therefore, the risk of dam failure floods due to the increasing temporary formation of glacier 68 
lakes has significantly increased [Phan et al., 2012]. In addition, water vapor conditions in the 69 
Tibetan Plateau, changes in the rainfall to snowfall, and evaporation caused by the weakening of 70 
the Indian summer monsoon and westerlies have also been of major concerns, especially 71 
regarding their impacts on the glacier mass balance [Immerzeel et al., 2010; Kääb et al., 2012; 72 
Mölg et al., 2013; Murari et al., 2014; Qiu, 2008; Sun et al., 2018; Yao et al., 2012]. However, 73 
most studies of the relevant issues were primarily carried out in a qualitative way [Fujita, 2008; 74 
Murari et al., 2014], and the influences of the water vapor changes on the glacier mass balance 75 
were not quantified. This impedes the future prediction of the glacier mass balance under climate 76 
change. Therefore, a quantitative approach for the identification of the contributions of the two 77 
categories of variables related to water vapor (i.e., precipitation, evaporation) and heat (i.e., air 78 
temperature, solar radiation), to the glacier mass balance is needed. 79 

The aim of this study is to quantify the impact of climate change on the glacial mass 80 
balance during 1975-2013 in the Tibetan Plateau. The detailed tasks are: a) construction of long-81 
term glacier data, and investigation of the response of the glacier mass balance to different 82 
factors; and b) quantification of the contribution of mass components to the glacier mass balance. 83 
Seven monitored glaciers in the Tibetan Plateau were selected for this study. 84 

 85 
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2 Data 86 

2.1 Glacier mass balance data 87 

Glacier mass balance data were collected from the World Glacier Inventory 88 
(https://nsidc.org/data/G10002/versions/1) [Dyurgerov et al., 2002, updated 2005] and Third 89 
Pole Environment Database (http://en.tpedatabase.cn/). The dataset includes the annual glacier 90 
mass balance (mm water equivalent, mm w.e., from Oct. to following Sep.). Enough mass 91 
balance data are only available for 7 of all 14 glaciers; therefore, these seven glaciers have been 92 
selected for the analyses. The seven selected glaciers roughly cover all glacier regions in the 93 
study area, except the southwestern Tibetan Plateau, and thus reflect the general conditions of 94 
glaciers in the Tibetan Plateau. Figure 1 shows the spatial distribution of the glaciers, including 95 

http://www.tpedatabase.cn/
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the Hailuogou, Parlung No.94, Qiyi, Xiaodongkemadi, Muztagh No.15, Meikuang, and NM551 96 
glaciers. 97 

 98 

99 

 100 

Figure 1. Spatial distribution of the selected seven glaciers in the Tibetan Plateau 101 
 102 
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 2.2 Meteorological data 103 

The meteorological data includes the daily precipitation flux (which is precipitation with the 104 
original unit of kg·m-2·s-1, and in the following application, the unit of precipitation is converted 105 
into mm w.e.), air temperature, evaporation, long-wave and short-wave radiation and snow depth 106 
of the entire Tibetan Plateau from 1975 to 2013 (study period of the above-mentioned glaciers). 107 
They have been obtained from the GLDAS CLSM 2.0 model outputs, which has been validated 108 
against previous studies over the study area [Bai et al., 2016; Zhong et al., 2011]. It is worthy to 109 
note that daily evaporation and daily snow depth data for the Muztagh No.15 Glacier are missing 110 
in GLDAS dataset. To compensate such a flaw, they are transplanted from the adjacent grid by 111 
the ratio of annual mean precipitation (the correlation coefficient of daily precipitation/air 112 
temperature between the grid in Muztagh No.15 Glacier and the selected adjacent grid is over 0.6 113 
passing the 0.05 significance level by t test [Cressie & Whitford, 1986].). The calculation was 114 
based on a mass balance year as above-mentioned (from Oct. to following Sep.). Accordingly, 115 
precipitation, evaporation, air temperature, long-wave and short-wave radiation were the daily 116 
sums within balance years. The snow depths were the daily averages within mass balance years. 117 
 118 

3 Methods 119 

3.1 Glacier mass balance equation 120 

To investigate the glacier mass balance in the Tibetan Plateau in the study period, we 121 
combined the approaches introduced by Fujita et al. [1996] and Huss et al. [2008] for the central 122 
Tibetan Plateau. Fujita et al.’s [1996] approach has been used in many studies [Farinotti et al., 123 
2012; Hock, 2005; Karner et al., 2013; Wadham & Nuttall, 2002]. It accounts for the refrozen 124 
water as a mass component affecting the balance.  Huss et al.’s [2008] research only considered 125 
accumulation and ablation. We combined the two approaches and used the following equation 126 
for the mass balance calculation of glacier: 127 

m ＝ Acc － Melt － E ＋ RW                                                 (1)
 128 

where Acc is the glacier accumulation which mainly comes from deposition of solid precipitation 
129 

during a certain period, and Melt expresses corresponding glacier melt. E is actual evaporation 
130 

on ice/snow surface, and RW represents refrozen water volume within the study duration. 
131 

(2)snow sPA Dcc r⋅ ⋅=
 

132 

where Dsnow is an adjustment coefficient reflecting the effect of spatial discrepancy in the snow 
133 

distribution to accumulation (Dsnow＝1 indicates no effect); rs represents the fraction of solid 
134 

precipitation, which linearly decreases from 1 to 0 corresponding to the air temperature ranging 
135 
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from (Tthr－1) to (Tthr＋1) ℃; and Tthr is the threshold air temperature used to distinguish snow 
136 

from rainfall, the value of which is 0 ℃ in this study [Hock, 1999]. 
137 

The melt equation for glacier [Hock, 1999] is: 
138 

( ) , 0
(3)

0 , 0
M snow/ icef r I T T

Melt
T

+ ⋅ ⋅ >
=  ≤  

139 

where T is air temperature. fM is the melt-rate factor (mm/(℃·d)), and rsnow/ice is the factor 140 
reflecting radiation absorption for snow/ice (mm/(℃·d·W/m2)). Based on many previous 141 
studies [Stamnes et al., 2011; Arndt et al., 2017], the absorbed solar radiation into ice layer 142 
through snow surface increases with decreasing snow depth, causing larger glacier melt. In this 143 
study, the surface snow depth was considered in the fraction of the absorbed solar radiation for 144 

the underneath ice layer; rsnow was replaced by ’snow
d

er
S

 (e is uniform snow of 1 mm; Sd 145 

illustrates snow depth with the unit mm). I refers to net short-wave radiation directed toward 146 
glacier surface minus net long-wave radiation directed away from glacier surface. 147 

The refrozen water can be calculated using the following equation [Fujita et al., 1996]: 148 

0

( ) (4)
cz cRW k T z dz

L
ρ ⋅

= ⋅ ⋅∆∫
 

149 

where c refers to the specific heat of ice fixed at 2100 J/(kg·K), ρ indicates the density of ice and 
150 

equals 900 kg/m3, and ∆T(z) (℃) represents the increment of air temperature of snow/ice at 
151 

depth z (m) during a given period. Several previous studies [Greuell & Thomas, 1994; 
152 

Schwander et al., 1997] pointed out that ∆T(z) linearly varies with the depth z (m). The 
153 

parameter zc is the depth at which the mean air temperature is less than 0.1 ℃. In previous study 
154 

[Fujita et al., 1996], the value of zc was fixed at 20 m based on a thermal diffusivity for glacier 
155 

ice (1.16×10-6 m2/s). However, the previous study didn’t consider snow cover on glacier ice 
156 

surface. Relevant studies [Kang et al., 2008; Li et al., 2011] suggested that snow temperature in 
157 

the study area is generally lower than 0.1 ℃. Therefore, zc is replaced by a sum of snow depth 
158 

and 20 m in this study. The parameter k is the transfer coefficient from the potential refrozen 
159 

water to the actual refrozen water volume, which is an empirical coefficient related to the water 
160 

vapor condition over the study area obtained by Fujita et al. [1996]. Moreover, when the 
161 

calculated refrozen water is larger than the value of Melt in Eq. (3), the value of refrozen water 
162 

will be equal to Melt, otherwise, refrozen water is calculated by Eq. (4). 
163 

It should be noted that the air temperature is determined at a constant lapse rate, and the 
164 

precipitation is assumed to linearly increase with decreasing elevation (dP/dz). Among the 
165 

above-mentioned parameters, rice, r’snow, Dsnow, fM must be further determined by field data (the 
166 
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Shuffled Complex Evolution method developed at the University of Arizona (SCE-UA) was 
167 

applied in the parameter determination of this case study [Duan et al., 1994], for which the Nash-
168 

Sutcliffe coefficient of efficiency (NSE), relative error (Er), correlation coefficient (r), and 
169 

coefficient of determination (R2) were used as the criteria for assessing the model performance 
170 

[Liu et al., 2015]); the other parameters, including cref, Pref, zref, dP/dz, dT/dz, and Sd can be 
171 

predetermined. Because the parameter, Sd strongly depends on the air temperature state 
172 

compared with zero, the routine study period of one year is divided into two periods based on air 
173 

temperatures below and above 0 ℃, respectively. 
174 

 
175 

3.2 The response of glacier mass balance to climate change 176 

According to the above-mentioned description, mass balance can be denoted as the 
177 

function expression of m(P, T, I, Sd). When precipitation, air temperature, net radiation and snow 
178 

depth change at △P, △T, △I and △Sd, respectively, the corresponding mass balances are m(P＋
179 

△P, T, I, Sd), m(P, T＋△T, I, Sd), m(P, T, I＋△I, Sd) and m(P, T, I, Sd＋△Sd). To explore the 
180 

specific response of glacier mass balance change to the actual changes of different 
181 

meteorological factors, the expression as m(P＋△P, T, I, Sd)﹣m(P, T, I, Sd) is calculated as the 
182 

response of glacier mass balance change to change of precipitation for further analysis [Morris, 
183 

1991]. Similar, the expressions as m(P, T＋△T, I, Sd)﹣m(P, T, I, Sd), m(P, T, I＋△I, Sd)﹣m(P, 
184 

T, I, Sd) and m(P, T, I, Sd＋△Sd)﹣m(P, T, I, Sd) are the response of glacier mass balance change 
185 

to changes of air temperature, net radiation and snow depth, respectively. 
186 

 
187 

4 Results 188 

4.1 Parameters for the glacier mass balance equation 189 

To reconstruct the long-term glacier mass balance of the selected glaciers, the 190 
corresponding parameters, including Dsnow, fM, r’snow and rice, were initially obtained by using 191 
SCE-UA method based on observations within the periods listed in Table 1. The results are 192 
shown in Table 2. The Dsnow values for most glaciers including Hailuogou, Parlung No.94, Qiyi, 193 
Meikuang and NM551 glaciers are less than 1, indicating the spatial distribution of the snow 194 
cover is against glacier mass accumulating. The negative effects in the NM551 and Hailuogou 195 
glaciers among are strongest. However, the Dsnow value for the Xiaodongkemadi and Muztagh 196 
No.15 Glacier are over 1, indicating that the distribution of the snow cover has a significant 197 
positive effect on its mass gain. In terms of the melt-rate factor fM, the values of the Hailuogou 198 
and NM551 glaciers are highest of 19.85 and 15.6 mm/(℃·d), respectively. The melt-rate of 199 
the Qiyi, Meikuang and Parlung No.94 glaciers are inferior at 10.27, 8.96 and 7.39 mm/(℃·d), 200 
respectively. The Muztagh No.15 glacier has the lowest value of 3.23 mm/(℃·d). 201 

To compare with the relevant studies, several degree-day factor results for the studied 202 
glaciers have been provided. For instance, Kayastha et al. (2003) found that in Xiaodongkemadi 203 
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glacier, degree-day factor ranged from 5.5 to 14.2 mm/(d·℃) at different elevations, which has 204 
a similar result with the value of 7.39 mm/(d·℃) for the whole glacier in this study. The 205 
degree-day factor in Qiyi glacier was within 4.9 to 9.4 mm/(d·℃) in July and August before 206 
2003, which being slightly lower than the result in this study with the value of 10.27 mm/(d·℃) 207 
for the entire glacier. Hailuogou was identified with the value of 5.0 mm/(d·℃) in degree-day 208 
factor at 3301 m in 1982, while this study gives the value of 19.85 mm/(d·℃). The difference 209 
might come from two aspects including the higher degree-day factor at a higher altitude and the 210 
melt-rate increasing during the recent three decades [Zhang et al., 2006]. 211 

The factor of radiation absorption on the ice surface is closely related to surface 212 
brightness. In particular, the ice with lower brightness has larger radiation absorption [Nolin & 213 
Payne, 2007; Schwikowski, 2011]. The largest radiation absorption on ice surface appears in 214 
Meikuang Glacier with the value of 0.00249 mm/(℃·d·W/m2), which may have the lowest 215 
surface brightness of ice. The values in Parlung No.94, Qiyi, Xiaodongkemadi and NM551 216 
glaciers are weaker ranging from 0.00112 to 0.00183 mm/(℃·d·W/m2). Moreover, in 217 
Hailuogou and Muztagh No.15 Glacier, the radiation absorptions on ice surface are lower than 218 
0.001 mm/(℃·d·W/m2) with comparably larger surface brightness of ice. Regarding the 219 
radiation absorption on the snow surface for the selected glaciers, the highest value was obtained 220 
for the Hailuogou Glacier (0.0351 mm/(℃·d·W/m2), which may explain why the highest 221 
melt-rate factor is bound in this glacier as mentioned earlier). The weaker radiation absorption on 222 
the snow surface is found in the Xiaodongkemadi Glacier with the value of 0.01943 223 
mm/(℃·d·W/m2). In addition, the values of radiation absorption on the snow surface for the 224 
other glaciers are in the range of 0.00073~0.00192 mm/(℃·d·W/m2). Relevant studies 225 
[Marshall & Oglesby, 1994; Schwikowski, 2011] manifested that radiation absorption of snow 226 
mainly depends on the age of snow. Based on these results of the parameter r’snow and rice, the 227 
comparison between the calculated and observed mass balances (listed in Table 1) is shown in 228 
Figure 2 (with and without considering the snow depth) and Figure 3 (with and without 229 
considering the refrozen water). The reconstructed mass balances are in good agreement with the 230 
measured data. The details will be shown in the following content. 231 

Table 1. Monitoring years for studied glacier stations 232 
Glacier station Monitoring years 

Hailoguo 1989-1993 
Parlung No.94 2005-2009 

Qiyi 1975-1977, 1984-1985, 2005-2008 
Xiaodongkemadi 1989-1998, 2005-2008 
Muztagh No.15 2001-2002, 2005-2012 

Meikuang 1989-1998 
NM551 2005-2013 

 233 

Table 2. Calculated parameters for the selected glaciers in the Tibetan Plateau 234 

Parameter Hailuogou Parlung No.94 Qiyi  Xiaodongkemadi Muztagh No.15 Meikuang NM551 

Dsnow 0.45 0.82 0.90 1.25 1.22 0.85 0.37 
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fM(mm/(
℃·d)) 19.85 7.83 10.27 7.39 3.23 8.96 15.60 

r’snow 0.03510 0.00137 0.00192 0.01943 0.00984 0.00097 0.00073 
rice 0.00087 0.00183 0.00140 0.00112 0.00055 0.00249 0.00125 

 235 

 236 

 237 
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 238 

 239 

Figure 2. Mass balance calculation with and without consideration of snow depth over the 240 
selected seven glaciers 241 

 242 
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 243 

 244 

 245 
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 246 

Figure 3. Mass balance calculation with and without refrozen water over the selected seven 247 
glaciers 248 

4.2 Influences of the snow depth and refrozen water on the glacier mass balance 249 

This study explicitly considers the influences of the snow depth on the radiation 250 
absorption on the snow cover in the calculation of the meltwater volume. To identify if this 251 
consideration improves the accuracy of the mass balance calculation, the calculated mass balance 252 
obtained with and without considering the snow depth were compared. The comparison results 253 
are shown in Figure 2. It is apparent that the measured and calculated mass balances obtained by 254 
considering the snow depth are in better agreement, especially for the Qiyi, Xiaodongkemadi and 255 
Meikuang glaciers. The coefficients of determination [Liu et al., 2015] for the Qiyi, 256 
Xiaodongkemadi and Meikuang glaciers were improved to 0.97, 0.98 and 0.96 when considering 257 
the snow depth compared with values of 0.78, 0.80 and 0.83, respectively, obtained without 258 
considering the snow depth. The results suggest that the accuracy of the mass balance 259 
calculations for the selected glaciers in the Tibetan Plateau can be improved by considering the 260 
snow depth when calculating the meltwater volume. Hence, the following analyses are based on 261 
the inclusion of the snow depth. 262 

To examine the importance of refrozen water for the net mass balance, calculations of the 263 
glacier mass balance with and without refrozen water were compared based on the field 264 
measurements for the seven selected glaciers, as shown in Figure 3. Similar to the consideration 265 
of snow depth in the mass balance calculation, the results obtained by considering refrozen water 266 
in the whole period for the studied glaciers are in better agreement with field measurements than 267 
the corresponding results ignoring the refrozen water, particularly for the Muztagh No.15 glacier. 268 
Specifically, the mass balance difference between the calculated values and field measurements 269 
for the Muztagh No.15 glacier was significantly reduced after considering the refrozen water 270 
with the coefficient of determination from 0.55 to 0.88. The value for the Meikuang Glacier has 271 
also been largely improved, which is from 0.69 without considering the refrozen water to 0.90 272 
with the consideration of refrozen water. In addition, in the Qiyi, Hailuogou and 273 
Xiaodongkemadi glaciers, the gaps between the calculated values and field measurements have 274 
also been reduced after considering the refrozen water with the coefficients of determination 275 
from 0.72, 0.75 and 0.76 to 0.87, 0.88 and 0.91, respectively. Furthermore, it is observed that 276 
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most mass balances are underestimated without including the refrozen water. According to 277 
another investigation [Ageta & Kadota, 1992; Braithwaite & Zhang, 1999; Fujita, 2008], such 278 
underestimations always occur at the years of more precipitation and low temperature, in other 279 
words, mass balances in the years with climate conditions for having more refrozen water tend to 280 
be underestimated without considering the refrozen water. With regards to few overestimated 281 
glacier mass balances, they are caused by the underestimation of meltwater because of lower-282 
calculated radiation absorbption rate on both snow and ice surface. Therefore, further analysis 283 
will be based on the results with the consideration of refrozen water in the glacier mass balance 284 
calculation. 285 
  286 

4.3 Reconstruction and analyses of the long-term glacier mass balance 287 

The glacier mass balance is the combined result of the accumulation, meltwater, refrozen 288 
water volume and evaporation, and the reconstructed time series from 1975-2013. The annual 289 
means of the different mass components of the glacier mass balance for the seven selected 290 
glaciers are shown in Figure 4 and Table 3. All glacier mean annual mass balances during 1975-291 
2013 are negative, except the Muztagh No.15 Glacier with the value of approximately 0.75 mm 292 
w.e. In the Muztagh No.15 Glacier, there is an obvious component offset between the mass gain 293 
components (accumulation and refrozen water) and the mass loss component (melt water). In 294 
other words, the mass gain components and the mass loss component tend to balance each other. 295 
This is consistent with the study by Holzer et al. [2015] who also pointed out that recent 296 
measurements performed at the Muztagh No.15 Glacier show a slight mass gain. In addition, the 297 
largest mass loss in annual mean mass balance appears at the NM551 Glacier with the value of 298 
﹣724.3 mm w.e., in which the meltwater (﹣1196.56 mm w.e.) plays a dominant role. The 299 
weaker mass loss happens in the Xiaodongkemadi Glacier with the value of ﹣315.05 mm w.e. in 300 
the annual mean mass balance during the study period, in which the meltwater is also the main 301 
component. The Hailuogou and Parlung No.94 glaciers have the similar values in the annual 302 
mean mass balance with the values of ﹣237.81 and ﹣212.80 mm w.e., respectively. The annual 303 
mean mass balance in the Qiyi Glacier was found of ﹣158.35 mm w.e. with the primary 304 
component of ﹣503.84 mm w.e. in the meltwater. Moreover, the Meikuang Glacier was 305 
calculated of smaller mass loss with the value of ﹣67.14 mm w.e. in the annual mean mass 306 
balance from 1975-2013, in which the component offset was also observed between the mass 307 
gain components (accumulation and refrozen water with the annual mean of 210.32 and 353.76 308 
mm w.e., respectively) and the mass loss component (meltwater with the annual mean of 309 
﹣625.97 mm w.e.).  310 

Table 3. Different mass components of glacier mass balance on averages during 1975-2013 for 311 
the selected glaciers (unit: mm w.e.) 312 

Glaciers Mass balance Accumulation Refrozen water Melt water Evaporation 

Hailuogou ﹣237.81 9.19 188.97 ﹣435.99 ﹣0.01 

Parlung No.94 ﹣212.80 127.90 268.08 ﹣594.36 ﹣14.42 

Qiyi ﹣158.35 62.68 293.69 ﹣503.84 ﹣10.88 

Xiaodongkemadi ﹣315.05 168.09 208.69 ﹣691.76 ﹣0.06 
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Muztagh No.15 0.75 432.61 184.89 ﹣605.15 ﹣11.60 

Meikuang ﹣67.14 210.32 353.76 ﹣625.97 ﹣5.25 

NM551 ﹣724.30 124.85 377.64 ﹣1196.56 ﹣30.94 
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 313 

 314 

 315 

 316 

      317 

Figure 4. Reconstructed mass balance, accumulation, melt water and refrozen water volume and 318 
evaporation for the selected seven glaciers over the Tibetan Plateau from 1975 to 2013 319 

 320 

To analyze the trend in the annual glacier mass balance, accumulation, refrozen water, 321 
glacier melt, and evaporation of the selected glaciers, the Mann-Kendall method [Gocic & 322 
Trajkovic, 2013] was applied. The results are shown in Figure 5. The figure shows that the 323 
meltwater of all glaciers have a decreasing trend on an annual scale, especially that of the Qiyi, 324 
NM551, Hailuogou, Meikuang and Parlung No.94 glaciers. In the other two glaciers including 325 
the Muztagh No.15 and Xiaodongkemadi glaciers, non-significant trend in mass balance may 326 



Journal of Geophysical Research: Atmospheres 

 

partly come from the strong component offset effect between the mass loss and gain components 327 
as above mentioned. Similar results have been obtained in other studies [e.g., Pu et al., 2005]. 328 
Due the meltwater is the key component in the mass balance for all glaciers, the trends in the 329 
annual mass balances are consistent with the corresponding trends in the meltwater. With respect 330 
to the changes of the refrozen water of the selected glaciers, the trends for most glaciers are non-331 
significant, while the NM551 Glacier was found of significantly decreasing trend in the refrozen 332 
water from 1975 to 2013. Similar, only the evaporation of the NM551 Glacier shows a 333 
significant increase. 334 

 335 

 336 
Figure 5. Trends of reconstructed mass balance and several mass components for the studied 337 
seven glaciers during 1975-2013 338 
Note. The color bar represents the statistical variable (Z) by Mann-Kendall non-parameter test [Gocic and 339 
Trajkovic, 2013], which are marked as “+”, “+**”, “﹣” and “﹣**” when 0<Z<1.96, Z>1.96, ﹣1.96<Z<0, Z<﹣340 
1.96 showing non-significant increasing tendency, significant increasing tendency, non-significant decreasing 341 
tendency and significant decreasing tendency, respectively. 342 

 343 

4.4 The response of the glacier mass balance to climate change 344 

To analyze the resultant mass balance changes, changes of meteorological factors are 345 
calculated at first. The results for all glaciers are shown in Table 4, in which the change of each 346 
meteorological factor within balance years from 1975 to 2013 is calculated from the product 347 
between the slope (mm/a) by the Mann-Kendall method [Gocic & Trajkovic, 2013; Atta-ur-348 
Rahman & Dawood, 2017] and the number of year (39 a). As for precipitation, the 349 
Xiaodongkemadi and Muztagh No.15 Glacier have a decreasing trend with changes of ﹣30.186 350 
and ﹣325.806 mm, respectively, while in the other glaciers, precipitation increased during the 351 
study period. In particular, the Qiyi and Meikuang Glacier have comparably larger increase with 352 
the changes of 29.874 and 58.695 mm, respectively. Changes of air temperature and net radiation 353 
for the studied glaciers are all positive. In terms of air temperature, the Muztagh No.15 Glacier 354 
has the highest change at 1.911 ℃. Besides, changes of the Hailuogou, Parlung No.94, Qiyi, 355 
Meikuang and NM551 Glacier are within 1.131~1.794 ℃. Similar to change of precipitation, air 356 
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temperature of the Xiaodongkemadi also has the lowest change with the value of 0.585 ℃. 357 
Regarding change of radiation, comparably larger change occurs in Hailuogou and Muztagh 358 
No.15 Glacier with values of 1.443 and 1.326 W/m2, respectively. The changes for the smaller 359 
two glaciers including the Meikuang Glacier and NM551 Glacier are lower at 0.546 and 0.429 360 
W/m2. Moreover, the Xiaodongkemadi and NM551 Glacier show a decreasing trend in snow 361 
depth within balance years from 1975-2013, while snow depths in the other glaciers are found of 362 
increasing trend. Specifically, the change of the Qiyi Glacier is largest with the value of 2.262 m, 363 
while the changes of the other glaciers are within 0.117~0.624 m. 364 

The response of the glacier mass balance of the studied glaciers to change of 365 
meteorological factors, including the precipitation, air temperature, net radiation and snow depth 366 
from 1975 to 2013 was analyzed based on the method in 3.2. The results are displayed in Table 367 
5, from which the positive response of glacier mass balance change to change of precipitation 368 
and snow depth can be observed, vice versa for the other two factors. On the one hand, the mass 369 
balances in the Hailuogou, Qiyi, Xiaodongkemadi, Meikuang and NM551 Glacier show a 370 
decrease, so the increment of mass balances corresponding to their increasing precipitation/snow 371 
depth in the Hailuogou, Qiyi and Meikuang Glacier contribute comparably less than the decline 372 
of mass balances corresponding to the increasing air temperature/net radiation. The responses of 373 
mass balance change to changes of both air temperature and net radiation in the most western 374 
Muztagh No.15 Glacier are weakest, while the response of mass balance change to change of 375 
precipitation is strongest among the studied glaciers. However, the inferior smallest Meikuang 376 
Glacier has comparably higher response of mass balance change to changes of different 377 
meteorological factors, especially the increasing precipitation, air temperature and snow depth. 378 
In the inferior largest Parlung No.94 Glacier, the responses of mass balance change to changes of 379 
air temperature and snow depth are highest among the selected glaciers with the values of ﹣380 
779.472 and 875.96 mm, respectively. In addition, the response of mass balance change to the 381 
change of net radiation is highest in the largest Hailuogou Glacier than the other selected 382 
glaciers. On the other hand, the responses of glacier mass balance change to changes of air 383 
temperature and snow depth are generally greater than the other two meteorological factors, 384 
except for the Muztagh No.15 Glacier. Liu and Liu (2015) found similar phenomenon in the 385 
Tianshan Mountains (on the north of Qinghai-Tibetan Plateau). In general, the response of 386 
glacier mass balance change to moisture factor (precipitation) increases from east to west, and 387 
from south to north. In terms of the responses of glacier mass balance change to heat factors (air 388 
temperature, net radiation) are larger in the eastern glacier. Strangely, the spatial pattern in the 389 
response of glacier mass balance change to change of snow depth is similar to the two heat 390 
factors (air temperature, net radiation), which could be resulted in the significant influences of 391 
heat factors on the change of snow depth (Deng & Zhang, 2018). 392 

Table 4. Change of each meteorological factor during 1975-2013 393 

Glaciers Change of P (mm) Change of T (℃) Change of I (W/m2) Change of Sd (m) 

Hailuogou 7.995 1.404 1.443 0.156 

Parlung No.94 5.304 1.794 1.014 0.624 

Qiyi 29.874 1.131 0.741 2.262 

Xiaodongkemadi ﹣30.186 0.585 0.741 ﹣0.624 
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Muztagh No.15 ﹣325.806 1.911 1.326 0.117 

Meikuang 58.695 1.248 0.546 0.273 

NM551 17.043 1.794 0.429 ﹣0.663 
Note. P, T, I and Sd represent precipitation, air temperature, net radiation (short-wave radiation minus long-wave 394 
radiation) and snow depth, respectively. 395 

Table 5. Response of glacier mass balance to change of each meteorological factor during 1975-396 
2013 (unit: mm) 397 

Glaciers Mass balance 
change to P change 

Mass balance 
change to T change 

Mass balance 
change to I change 

Mass balance 
change to Sd change 

Total mass 
balance change 

Hailuogou 0.69 ﹣177.05 ﹣163.12 287.30 ﹣52.18 

Parlung No.94 0.99 ﹣779.472 ﹣97.34 875.96 0.14 

Qiyi 6.28 ﹣604.16 ﹣49.94 317.64 ﹣330.18 

Xiaodongkemadi ﹣12.55  ﹣219.48 ﹣24.42 ﹣222.41 ﹣478.86 

Muztagh No.15 ﹣132.76 ﹣42.83 ﹣16.35 200.88 8.94 

Meikuang 15.21 ﹣692.95 ﹣28.74 706.45 ﹣0.03 

NM551 1.98 ﹣190.72 ﹣16.02 ﹣188.57 ﹣393.33 

 398 

5 Discussion 399 

5.1 Importance of including the snow depth and refrozen water in the mass balance 400 
calculation 401 

As Figure 2 shows, the snow depth affects the mass balance calculation. The albedo is 402 
one of the most important factors affecting the meltwater volume. Less albedo on the ice surface 403 
induces more glacier melt. Ignoring the snow depth can cause the overestimation of the glacier 404 
melt. Refrozen water also plays a role in the mass balance calculation, as shown in Figure 3. 405 
Fujita et al. [1996] also reported that refrozen water is very important for the mass balance of 406 
glaciers in the Tibetan Plateau. The refrozen water has two sources: refreezing of capillary water 407 
in the snow layer and water percolating from the snow layer into the cold snow. Ignoring the 408 
refrozen water can lead to underestimations of the mass balance. 409 

 410 

5.2 Disparities in the changes in the mass balance among different glaciers 411 

The responses of glacier melt to climatic conditions in the Tibetan Plateau are strongly 412 
related to the climatic zones, which are mainly influenced by the Indian summer monsoon and 413 
winter westerlies [He et al., 2003]. The impact is based on the special geographic location and 414 
topographical conditions. For example, the Muztagh No.15 Glacier in the westernmost part of 415 
the Tibetan Plateau is mainly influenced by the westerlies and is partly influenced by Asian 416 
summer wind, which could be one of the dominant reasons for the component offset resulting in 417 
a mass gain. In general, the responses of glacier mass balance change to moisture factor 418 
(precipitation) and heat factors (air temperature, net radiation) behave differently. Stronger 419 
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response of glacier mass balance change to change of moisture factor is bound in the western 420 
glacier, while the responses of glacier mass balance change to heat factors show greater for the 421 
eastern glaciers. The potential causation is the spatial pattern of water moisture and heat energy 422 
formed by the surrounding atmospheric circulations [Zhu et al., 2018]. In addition, the negative 423 
response of mass balance to precipitation increase may be resulted from the changing 424 
precipitation seasonality [Yang et al., 2013]. However, the spatial distribution in the response of 425 
glacier mass balance change to change of snow depth is similar to the two heat factors (air 426 
temperature, net radiation), which could be resulted in the significant effects of heat factors on 427 
the change of snow depth [Deng & Zhang, 2018].  428 

 429 

5.3 Limitations of the study 430 

The biggest limitation of this study is the small amount of observed data, which does not 431 
allow the proper calibration of the parameters necessary for the mass balance equations. This 432 
may to some extent affect the accuracy of the reconstructed mass balance series. The data 433 
available for the validation are also inconsistent, complicating the evaluation of the mass balance 434 
reconstructed for several glaciers. Another limitation related to the data scarcity is that the period 435 
have not been divided into different periods in this study to explore the responses of the mass 436 
balance to climatic factors. In addition, the limited data also lead to an uneven distribution of the 437 
selected glaciers; no glacier in the southwestern Tibetan Plateau was selected for this study. 438 
Hence, more field observation data should be collected and remote sensing images should be 439 
used in future studies to obtain the required information and improve the accuracies of glacier 440 
mass balance quantifications. 441 
 442 

6 Conclusions 443 

The long-term mass balance from 1975 to 2013 has been reconstructed for seven glaciers 444 
in the Tibetan Plateau and the effects of the snow depth and refrozen water on the mass balance 445 
calculation were analyzed. In addition, the response of the mass balance to different 446 
meteorological factors at the seven studied glaciers was analyzed and the internal patterns were 447 
further explored. The major findings can be summarized as follows: 448 

(1) Most of the studied glaciers experienced a mass loss during the past four decades. 449 
However, a slight mass gain was determined in the Muztagh No.15 Glacier with a strong 450 
component offset between mass gain and loss components. Regarding the mass components of 451 
the mass balance for the residual glaciers, meltwater is the dominant component. 452 

(2) Regarding the changes in the glacier mass balance and mass components, the mass 453 
balance and meltwater are significantly decreasing excluding the Muztagh No.15 and 454 
Xiaodongkemadi glaciers with a strong component offset. In the smallest NM551 Glacier, the 455 
significantly decreasing and increasing trends in refrozen water and evaporation also made a big 456 
contribution to the decreasing mass balance. 457 

(3) In terms of the response of the glacier mass balance to climate change, the greater 458 
response of mass balance change to change of moisture factor (precipitation) is found in the 459 
western glaciers, while for the eastern glaciers, mass balances change largely to the changes of 460 
heat factors (air temperature, net radiation). 461 
  462 
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