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• Floodplain habitat complexity caused
high spatio-temporal microbial diver-
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• Experimental flood disturbance caused
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lead to an alternate microbial structure.
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River floodplains are spatially diverse ecosystems that respond quickly to flow variations and disturbance. How-
ever, it remains unclear how flow alteration and hydrological disturbance impacts the structure and biodiversity
of complexmicrobial communities in these ecosystems. Here, we examined the spatial and seasonal dynamics of
microbial communities in aquatic (benthic) and terrestrial habitats of three hydrologically contrasting (natural
flow, residual flow, hydropeaking flow) floodplain systems. Microbial communities (alpha and beta diversity)
differedmore amongfloodplain habitats than between riverinefloodplains.Microbial communities in all systems
displayed congruent seasonal effects. In the residual and hydropeaking systems, an experimental flood was re-
leased from a reservoir to mimic a natural high flow event causing hydromorphological disturbance. The exper-
imentalflood caused a temporary shift inmicrobial communities by releasingmicrobes from the reservoir aswell
as redistributing communities among floodplain habitats. The flood-mediated shift in community structures had
only a transient impact as pelagic bacteria did not persist within floodplain habitats over time after the flood.
More frequent pulse disturbances might lead to an alternate structure of bacterial communities in floodplains
over time.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Microbes play a key role in the functional ecology of aquatic-
terrestrial ecosystems, influencing biochemical and metabolic pro-
cesses, and nutrient cycling such as decomposition and mineralization
(Freimann et al., 2013; Hermans et al., 2020; Hotaling et al., 2017;
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Kaiser et al., 2016; Mayr et al., 2020). Microbial functioning in ecosys-
tems is determined by community assembly in relation to the
physico-chemical habitat template. Ecosystem landscapes comprise
inter-connected habitats that allow bacterial dynamics to be placed in
a metacommunity context. In this context, species sorting integrates
source-sink dynamics (i.e., mass effects), patch dynamics and neutral
processes in community assembly (Logares et al., 2013). In the context
of floodplain habitats, mass effects occur continuously (as long as hy-
drologic connectivity persists) with a downstream directionality.
Patch dynamics include the ability of species to disperse via the water
column from an upstream to a downstream habitat. This requires spe-
cies to becomewaterborn and to remain viable during transport. A suc-
cessful coloniser then can outcompete a less competitive species
present in a downstream habitat. The physico-chemical habitat tem-
plate provides niches where species sorting can occur. Neutral pro-
cesses, like speciation or demographic stochasticity, also influence
community compositionwithin a habitat. All thesemechanisms interact
with one another (Heino, 2013; Logue et al., 2011). How local bacterial
communities respond to changes in these drivers at the regional scale
likely depends on the relative strength of each process as well as intrin-
sic resistance and resilience properties. For instance, environmental
change and mass effects can be seen as press disturbances to local bac-
terial communities, whereas seasonal shifts in the habitat template and
periodic high flows can be considered pulse disturbances. How micro-
bial communities respond and integrate across disturbances is still in
debate (Febria et al., 2015; Shade et al., 2012; Zeglin, 2015).

Riverine floodplains are ideal model ecosystems to study microbial
(meta) community dynamics in the context of ecosystem structure
(habitat template), habitat linkages (ecohydraulics) and disturbance
(hydrology). In their natural state, floodplains represent a complex, dy-
namic mosaic of contrasting aquatic-terrestrial habitats shaped by nat-
ural flow and sediment regimes that incorporate flow and flood
pulses, ground/surfacewater exchange processes, and repeated erosion
and deposition of sediments and organic matter (Amoros and Bornette,
2002; Doering et al., 2011; Poff, 1997; Stanford et al., 2005; Tockner
et al., 2010; Wohl et al., 2015). Floodplain structural diversity along
with a variable hydrologic and sediment regime links ecosystem func-
tion across habitats (respiration, organic matter and nutrient turnover).
The coupling of aquatic-terrestrial habitats as well as ground-surface
water exchange fosters and sustains an exceptionally high functional
and biological diversity (Hauer et al., 2016; Tockner and Stanford,
2002; Ward et al., 1999) that is reduced with floodplain degradation
and habitat alteration.

The increasing human demand for energy often results in dam con-
struction that severely alters natural flow and sediment regimes in reg-
ulated rivers and subsequently degrades floodplain structure and
function (Zarfl et al., 2015). As such, altered flow and sediment regimes
downstream of reservoirs can directly impact floodplain habitats
(Doering et al., 2012; Garofano-Gomez et al., 2013; Graf, 2006), reduce
the abundance and distribution of species (Bunn and Arthington, 2002;
Carlisle et al., 2011; Gabbud et al., 2019; Young et al., 2011) and limit
functional processes (Aristi et al., 2014; Mbaka and Mwaniki, 2017;
Table 1
Definitions of floodplain habitats examined in this study.

Habitat Definition

Floodplain forest Predominantly terrestrial habit
Island Predominantly terrestriala habi

channel water or exposed grav
Open gravel bars Predominantly terrestriala area
Main channel Lotic water body with upstream
Side channel Lotic water body with at least u

gravel sediments pebble or fine

a Terrestrial can become partly or completely aquatic habitat during hydrological variations

2

Sabater et al., 2018). Dams also act as physical barriers that restrict the
exchange, dispersal and migration of material and organisms (Grill
et al., 2019; Nilsson et al., 2005).

Over the last 20 years,mitigation policies have been implemented to
restore the character of natural flow and sediment regimes in regulated
rivers and floodplains. In particular, implementing high flows or man-
aged floods (i.e., the controlled release of water from reservoirs to
mimic the natural flow and sediment regime) is becoming a common
management action to improve structural and functional conditions
below dams (Gillespie et al., 2015; Konrad et al., 2011; Olden et al.,
2014; Robinson et al., 2018; Yarnell et al., 2020). Although the response
of regulated rivers to managed high flows and floods has been exam-
ined, most studies have focused on physical, biological and functional
properties of higher organisms such as invertebrates and fish
(Gillespie et al., 2015; Olden et al., 2014; Robinson et al., 2018). Further,
most microbial assessments within river floodplains have focussed on
either aquatic (Besemer et al., 2005; Freimann et al., 2013; Mayr et al.,
2020; Nogaro et al., 2013) or terrestrial components of the floodplain
(Argiroff et al., 2017; Samaritani et al., 2017; van Leeuwen et al.,
2017). Only a few studies in stream networks demonstrated that the
connectivity of microbial communities among terrestrial and aquatic
ecosystems is of importance for overall microbial structural dynamics
(Hassell et al., 2018; Hermans et al., 2020). To our knowledge, no inte-
grative studies on aquatic and terrestrial microbial communities and
their response toflowdisturbance andmitigationmeasures in regulated
floodplain rivers have been conducted to date.

The present study compared microbial communities in aquatic-
terrestrial habitats of three hydrologically contrasting (natural flow, re-
sidual flow, hydropeaking flow) floodplain reaches over 1.5 years by
community profiling using terminal-restriction fragment length poly-
morphism (T-RFLP). This was combined with examining the impact of
a single experimental flood on microbial communities in different hab-
itats of the residual and hydropeaking reach during the study period.
The primary objective of the study was to compare the spatial and tem-
poral variation of microbial communities among different floodplain
habitats that included riparian forests, islands, open gravel bars, main
channels and side channels (Table 1) in each reach. Due to the large var-
iation in floodplain habitat characteristics, e.g., aquatic sediment vs. ter-
restrial soils and hydrological regimes, we predicted significant
differences in microbial communities across space and time. The results
were then used as baseline information for a second objective to assess
the impact of the single experimental flood on microbial communities
in the two hydropower (residual and hydropeaking) impacted flood-
plain reaches. We expected that flood disturbance would induce
short-term changes in microbial communities in floodplain habitats in
both reaches due to physical disturbance and sediment transport from
the upstream reservoir and potentially influence community assembly
in floodplain reaches and habitats over time. Specifically, we predicted
more pronounced variation in the microbial community by flooding in
the residual reach due to legacy effects of stable hydrological conditions
compared to the hydropeaking reach with strong and frequent hydro-
logical variations.
ata, characterized by developed soil and vegetation.
tat with different vegetation stages. These habitats are surrounded by
el, and are characterized by sandy and pebble substrata and developed soil.
characterized by exposed gravel deposits.
and downstream connections, characterized by coarse permeable gravel sediments.
pstream connection to the main channel, characterized by coarse permeable
substrata.

and floods.
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2. Material and methods

2.1. Study floodplains

The study floodplains are located on the Sarine and Sense rivers, two
prealpine rivers in northern Switzerland (Fig. 1). The Sarine is 126-km
long and drains a catchment of 1893 km2. Mean elevation of study
reaches was 575 m and annual precipitation 1075 mm. Upstream of
Rossens dam (in operation since 1948), water is abstracted for hydro-
power production. Below the dam, an 13-km long floodplain reach
experiences residual flow (2.5–3.5 m3/s during the year). Downstream
of this reach, water used for hydropower production (hydropower
plant Hauterive) is released into the river again, resulting in a 8-km
reach influenced by hydropeaking (daily flow increases up to
95 m3/s). The Sense is about 35-km long and drains a catchment of
435 km2. Mean elevation of the study reach was 810m and annual pre-
cipitation 1345 mm. It is one of the most natural rivers in the region; it
Fig. 1. Map of the study reaches and location of sampling sites. Left: Sarine residual flow (S
hydropower plant Hauterive (water release). Orange circle marks the sampling site for sedim
rectangles indicate sampling sites (n = 3 per reach) including sampled habitats floodplain f
north. Orthophoto: Swissimage Geodata © Swisstopo.

3

lacks large dams and has a natural flow and sediment regime (Hettrich
et al., 2011). The geographical location, hydromorphological character-
istics and flow regime of the three reaches - Sarine residual flow (SR),
Sarine hydropeaking (SH) and Sense (SN) are shown in Figs. 1 and
2A–C. All three reaches comprise typical floodplain components, includ-
ing floodplain forests, islands, open gravel bars, side channels, and a
main channel (Table 1). Habitat components were categorized based
on our previous studies (see Bodmer et al., 2016; Doering et al., 2011).

2.2. The experimental flood

An experimental flood was released from Rossens dam on 14–15
September 2016. Discharge at the dam was sequentially increased
from 3.5 m3/s (residual flow) to a maximum of 194.6 m3/s. In total,
9.5 million m3 of water was released over the course of 36 h leading
to sediment transport and hydrological connection among floodplain
habitats in SR and SH (Fig. 2D).
R) including Rossens dam (water abstraction) and Sarine hydropeaking (SH) including
ent drift samples during the experimental flood. Right: Sense natural flow (SN). White

orests, islands, open gravel bars, main and site channels. Flow direction is from south to

Image of Fig. 1


Fig. 2.Mean daily discharge (m3/s) in the residual flow (A) and hydropeaking reach (B) of the Sarine floodplain and the natural flow reach (C) of the Sense floodplain for the years 2015
and 2016. Box plots show 25th and 75th percentile, median (straight line in the box), mean (dotted line), whiskers (90th and 10th percentiles). Red triangles lines show the sampling
dates. D) Discharge (m3/s) during the experimental flood event of September 2016 at the drift sampling site (Fig. 1). Red dots represent drift sample times. Discharge data for the
Sarine were obtained from the hydropower company Groupe-e, for the Sense from the gauging station “Thörishaus – Sensematt” (ca. 20 km downstream of the Sense reach; Swiss
Federal Office of the Environment).
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2.3. Microbial sampling protocol

Sediment samples for analysis of microbes as well as abiotic sedi-
ment properties were collected as three composite samples each from
floodplain forests, islands, open gravel bars, and side and main channel
habitats at each sampling site (n = 3 per reach). Replicated samples
(n = 3 per habitat type and sampling site) were collected seasonally
from summer 2015 to autumn 2016 and two weeks after the experi-
mental flood (n = 7) in all three floodplain reaches (SR, SH, SN) (see
Fig. 1). For each sample, the upper ~10 cm of streambed sediments
and soil was removed to avoid samplingmicrobial communities associ-
ated with bentic biofilm or plants. Sediment samples were mixed and
sieved through an 8 mm and 2 mm sieve. Sediments <2 mmwere sep-
arated for DNA extraction and for nutrient analysis using sterile 50 ml
falcon tubes. Sediments <8 mm (~1000 g) were stored in plastic bags
for analysis of total organic matter content, water content and grain
size distribution. All samples were transported in a cooling box to the
laboratory. Samples for DNA extraction and nutrient analysis were
stored at −20 °C, and the other samples (<8 mm sediments) at 4 °C
until processing. Sediment temperature at each sampling site wasmea-
sured with a temperature needle probe (Multi-Thermometer DT-300,
VOLTCRAFT, Switzerland) and averaged for each habitat.

Within 12 h from sampling, the water content (percentage water of
sediment sample) was determined from sediments <8 mm by
4

weighing, drying at 105 °C for 24 h and reweighing. To determine or-
ganic matter content, between 500 and 800 g of sediment was dried
at 105 °C for 24 h, weighed, combusted at 500 °C for 3 h, and reweighed
as ash free dry mass (AFDM) kg−1 dry weight. Combusted sediments
were used to quantify grain size distribution of each sample using sieves
(Retsch GmbH, Germany; mesh sizes 0.063, 2, 4, 8 mm). Total nitrogen
and total carbon content of collected sediments (<2 mm) were mea-
sured and analysed by combustion using a Carbon-Hydrogen-Nitro-
gen-Analyzer (TrueSpec CHN Makro Analyser, Leco, USA).

Samples used to characterize the transport of microbes during the ex-
perimental flood were taken in the main channel of SR around 11 km
downstream of Rossens dam. Sampling was carried out using a drift net
(400 μm) just before the flood (BF; n = 2), during the ramping phase
(DF1; n = 14), and during the peak (discharge above 140 m3/s) and
down-ramping phase (DF2; n = 14)(Fig. 2D). We pooled the peak and
down-ramping phase samples in the statistical analysis as they showed
little structural shift over time. Flow velocity (MiniAir2, Schiltkknecht
AG, Switzerland) in front of the net and exposure time for each sample
was measured to calculate the volume of water filtered during a sample.

2.3.1. Genetic analysis of microbes (T-RFLPs)
The microbial assemblage in each sample (n = 316, some habitats

had less than 3 samples collected) was analysed using T-RFLP. Total ge-
nomic DNA of each sediment sample was extracted using a PowerLyzer

Image of Fig. 2
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PowerSoil DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA,
USA) following the suppliers protocol. The partial 16S rRNA gene was
amplified by PCR using the fluorescently labelled primers 8F_Red (5′-
AGA GTT TGA TCC TGG CTC AG-3′) with fluorophore AT565 and
534R_Green (5′-ATT ACC GCG GCT GCT GGC-3′) with fluorophore
AT532 (Microsynth AG, Balgach, CH) using standard conditions (Innis
and Sninsky, 1990). PCR amplification was verified by gel electrophore-
sis. The PCR productwas end-treated to correct for the effect of overhang-
ing ends (Egert and Friedrich, 2005). PCR products were cleaned using a
Millipore MultiScreen PCR μ96 filter plate (Merck KGaA, Darmstadt,
Germany) and resuspended in 25 μl ddH2O. Purified PCR amplicons
were digested using the restriction enzyme AluI (Promega, WI, USA) as
prescribed by the manufacturer. From each digestion product, 1 μl was
mixed with 18.65 μl formamide and 0.35 μl GS LIZ 600 Size Standard
(Thermo Fisher Scientific™, MA, USA), denatured and analysed on an
ABI 3500 capillary sequencer (Thermo Fisher Scientific).

2.4. Data analysis

T-RFLP profiles were analysed using GeneMapper® Software 5
(Applied Biosystems). Terminal restriction fragments (TRFs) between
40 and 500 bp were included in the analysis. Further data processing
was carried out using the software T-REX (Culman et al., 2009). The soft-
ware filters noise over true peaks (Abdo et al., 2006). Peak alignmentwas
also performed in T-REX using the approach of the T-Align software
program (Smith et al., 2005). Data analysis was conducted in R version
3.4.3 using the vegan, tsne and igraph packages, and Cytoscape version
3.6.1 (RCoreTeam, 2018; Shannon et al., 2003). Differences in alpha diver-
sity between dates and floodplains were tested by non-parametric
Kruskal-Wallis test followed by Dunn's test if models were significant
(Hollander and Wolfe, 1973). Beta diversity within floodplains among
seasons was assessed by multivariate homogeneity of groups' dispersion
and differences tested as mentioned above (Anderson et al., 2006).

Strength and congruence in temporal assemblage shifts between the
different floodplains were analysed by non-metric multidimensional
scaling (NMDS). Absolute TRFLP frequencies were Hellinger trans-
formed prior to analysis. Generalized additive models (GAMs) of log
or logit (for percentage values) transformed environmental variables
were fitted onto the NMDS to assess their potential influence on assem-
blage structure (Wood, 2003). Permutational multivariate analysis of
variance (PERMANOVA) models were used to assess factors (i.e.
floodplain, season, habitat) driving differences in community assembly
within and between combinations of floodplains (Anderson andWalsh,
2013). Several models were built with significant terms being tested by
Benjamini Hochberg p-value corrected pairwise PERMANOVAs. To sup-
port PERMANOVA outcomes, a factor fitting for floodplain, season and
habitat was performed on the NMDS. Stochastic neighbor embedding
(t-SNE) was used to visualize trajectories of bacterial communities
from the flood (sites SR, SH) in relation to the reference floodplain
(SN) (Maaten and Hinton, 2008). Perplexities were chosen according
to pseudo-Bayesian Information Criterion (Cao and Wang, 2017).

Flood effectswere examined further by constructing occurrence net-
works incorporating samples taken before, during and after the flood.
The main goal was to see how OTUs (Operational Taxonomic Units)
linkage to habitats (i.e., number of network edges) change due to the
flooding. The presence and absence of edges during the time continuum
gives us insight into mass effects and their long-term impact on bacte-
rial communities. The networks were merged with co-occurrence
networks based on Pearson correlations (non-sparse OTUs, Benjamini-
Hochberg adjusted p-values <0.01 and 0.7 correlation cut-off). These
networks depict OTUs that are found commonly together and therefore
define core communities that were either found in the water column or
the floodplain habitats. The definition of this core community is linked to
the between habitat similarity (for land-born bacteria) and a permanently
transported lotic community. Non-randomness of the Pearson networks
were tested by comparing the networks to 10,000 random Erdös-Réyni
5

networks with similar numbers of edges and nodes (Ju et al., 2014;
Weiss et al., 2016) (Supplementary Table S1). Ultimately, the networks
allowed us to quantify the impact of the flood on the spatio-temporal dy-
namics of bacterial communities induced by the experimental flood.

3. Results

3.1. Seasonal and spatial patterns in microbial communities

In the following section, we refer to the PERMANOVA models and
their pair-wise PERMANOVA post-hoc tests presented in Supplemen-
tary Table S2.1. The conclusions drawn are the synthesis of the marked
significant terms and term interactions and are also presented as take
homemessages in Supplementary Table S2.1. Models were built for sin-
gle reaches and the combination among them. In general, seasonal ef-
fects influenced the community structure greater than habitat type
among floodplain reaches, whereas habitat type influenced communi-
ties within each floodplain system (see r2 and F-values, Supplementary
Table S2.1). This finding was supported by the factor fittings on the
NMDS as well (season: r2 = 0.34, p < 0.001; habitat: r2 = 0.04, p <
0.01; floodplain: p> 0.05, see Fig. 3 and Supplementary Table S2.2). In-
deed, seasonal shifts in community assembly were roughly congruent
among floodplain reaches with all seasons being distinct from one an-
other within each floodplain (PERMANOVAs, p < 0.05, see Supplemen-
tary Table S2.1 for specific PERMANOVA model outcomes for specific
reaches; Fig. 3A). Further, microbial communities mostly differed
among floodplains within a particular season, except that SR and SH
were similar in seasons S15, S16 (both summer) and W16 (winter), and
SN was similar to SH and SR in seasons W16 and A16 (autumn)
(p<0.05, see specific PERMANOVAmodels in Supplementary Table S2.1).

Habitat types differed in assemblage composition depending on the
floodplain, although differences were mostly evident between terres-
trial and aquatic habitats in the different floodplains. For instance, side
channel habitats differed from island and riparian forest habitats at SR,
and island habitat differed frommain channel and open gravel bar hab-
itats at SH. Communities also differed between riparian forest habitat
and main channel and open gravel bar habitats at SH. Lastly, island
and riparian forest habitats differed from main channel, side channel
and open gravel bar habitats at SN (PERMANOVA, p < 0.05). When
the whole data set was taken into account, bacterial communities
were similarly structured between island and riparian forest habitats
as well as amongmain channel, side channel and open gravel bar habi-
tats (PERMANOVA: p< 0.01). GAMs of grain size (0.063mm) explained
around 18%, temperature around17% and of N around 14% of the assem-
blage variability (Fig. 3B; see Supplementary Table S3 for the analysis of
the environmental variables).

Alpha diversity differed seasonally and with similar patterns among
floodplain reaches over time (Fig. 4A). Seasons W16 and AF1 had the
highest alpha diversity at all floodplains, whereas season A16 had the
lowest alpha diversity (Kruskal-Wallis, p < 0.001, Supplementary
Fig. S1C). In general, riparian forest and island habitats had higher
alpha diversity than open gravel bar and side channel habitats among
floodplains and seasons (Kruskal-Wallis, p < 0.01, Supplementary
Fig. S1A). There was no consistent diversity pattern among habitats
within a floodplain or season (see point distribution in Fig. 4A “Alpha
Diversity”). Beta diversity showed similar seasonality among flood-
plains (Fig. 4B). Season AF1 (after flood) had the lowest beta diversity
for all floodplains (Kruskal-Wallis, p < 0.001, Supplementary Fig. 1D).
Beta diversity was lowest for island and riparian forest habitats relative
to main channel, side channel and open gravel bar habitats among
floodplains (Kruskal-Wallis, p < 0.001, Supplementary Fig. 1D).

3.2. Effects of the experimental flood

The experimental flood had a subtle impact on the regulated flood-
plains SR and SH (Fig. 5). Both floodplains had similar assemblage
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structures before the flood (i.e., season S16) that were comparable to
the reference floodplain SN. Microbial communities collected in trans-
port showed a shift in structure before the flood (BF samples) from
those during the ramping phase (DF1), likely due to microbial input
from reservoir sediments being released during the flood. Microbial
communities in transport then became more similar to those present
6

in floodplain habitats during the peak and down-ramping phase of the
flood (DF2) because of hydrologic connectivity (mixing) among flood-
plain habitats. Shortly after the flood (season AF1), SR and SH again
had microbial communities that were similar to SN (Fig. 5A, B). In gen-
eral, microbial communities following the flood were similar to those
found among floodplain habitats for the respective season before the

Image of Fig. 3
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flood. Further, alpha diversity in SR and SH slightly increased after the
flood as was observed in SN (Fig. 4A).

To further examine flood effects on microbial assemblage structure,
we analysed the OTU presence/absence matrix in conjunction with co-
occurrence patterns (Fig. 6, Supplementary Fig. S2, Supplementary
7

Information - Cytoscape file). Different potential source/sink processes
were found that influenced assemblage composition over time (Supple-
mentary Table S4). Presented here are mean percentage values related
to the total OTUswithin floodplains SR and SH as both showed identical
process patterns (see Supplementary Fig. S2). Here, OTUs were
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categorized as being aquatic or terrestrial. Some 10.8% of the OTUswere
part of the Pearson correlation-based co-occurring “core” communities
thought to originate from reservoir water washed into habitats and be-
come partially established (i.e., larger number of edges connected to BF
than to habitats in S16)(Supplementary Table S4). These core OTUs
showed a high number of connections to habitats in season AF1, but de-
creasing connections in season A16. This result indicates a transient im-
pact of reservoir water core OTUs on microbial communities in
downstream habitats. Further, some OTUs were present only in trans-
port (in BF but not in season S16, 8.8% of all OTUs), thus likely originat-
ing from reservoir water. These OTUs did not colonize any floodplain
habitat following the flood (2.6% of all OTUs in SR and SH, respectively),
and 4% of reservoir water OTUswere found infloodplain habitats in sea-
son AF1. However, some 2.2% of OTUs originating from reservoir water
were able to persist in SR and SH (i.e., seasons AF1 and A16).

Some 10.5% of OTUs appeared to originate from reservoir sediments,
as their signature was present in DF1 and DF2, but not in BF. Of these
OTUs, 7.9% were transiently present and 1.6% persisted for a longer pe-
riod, whereas only 1% were detected later in A16 but not directly AF.
There were 8.7% aquatic and 10.9% reservoir sediment specific OTUs
that were not detected in floodplain habitats at any date. Around
13.8% of the detected OTUs belonged to terrestrially derived microbes
observed in seasons S16, AF1 and A16. Their signature was partially
present in transport samples at BF and increased during DF1 and DF2,
indicating washout from floodplain habitats during flooding (see Sup-
plementary Table S4 and Cytoscape file). Another 18.2% of the OTUs
were found in transport (present in BF), but 14% persisted until season
A16 and 4.2% disappeared after season AF1. Further, 12.1% of the terres-
trial OTUs were in transport during DF1 and DF2 with 9.7% of these
found during seasons AF1 and A16, and 2.4% absent after season AF1.
Lastly, 5.7% of detected OTUs were found during a specific season in
some habitats and were not detected in transport before and during
the flood. Only 0.8% of detected OTUs were in specific floodplain habi-
tats before and after the flood without being found in transport.

4. Discussion

4.1. Variation in microbial communities across space and time

Flow and sediment regimes (timing, frequency, magnitude and du-
ration) have been shown to impose strong ecosystem constraints on
fish, invertebrates, microbes as well as ecosystem functions (Foulquier
et al., 2013; Langhans et al., 2006; Poff et al., 1997; Rees et al., 2006;
Robinson and Uehlinger, 2008). Mechanistically, these regimes intro-
duce different hydrologic connectivity and disturbance patterns in flu-
vial landscapes. High flows, whether natural, experimental or
generated by hydropeaking with repeated peaks and hydrologic con-
nectivities between floodplain habitats, should cause convergence in
microbial communities across habitats. For example, directed mass ef-
fects as well as frequent disturbance during high flows should lead to
homogeneous microbial communities following an event as shown for
macroinvertebrates (Chanut et al., 2019). Further, terrestrial inputs of
organic matter constituents such as DOM into river channels is greatest
during high hydrologic connectivity periods (Vazquez et al., 2011) and
correlated with bacterial abundance (Caillon and Schelker, 2020). For
macroinvertebrates, constant low flow conditions lead to a shift in hab-
itat conditions and community composition (Bunn and Arthington,
2002). This result suggests that microbial communities may vary sub-
stantially among floodplain ecosystems in relation to local hydrology,
specifically river floodplains experiencing residual flows, hydropeaking
flows, natural flows and experimental flooding.
Fig. 5. t-Distributed stochastic neighbor embedding (t-SNE) plot of the bacterial community st
flood, DF= During flood, AF= After flood). Residual flow (A) and hydropeaking (B) are comp
symbols and colors, respectively. The time trajectory of the communities is depicted as an arro
perplexity hyperparameters are given.
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An important finding was that seasonal changes in microbial com-
munities superceded any floodplain differences related to hydrology
in all three floodplain reaches (Sarine residual flow-SR, Sarine
hydropeaking-SH, Sense natural-SN). This seasonal shift in assemblage
structure is likely linked to changes in key environmental drivers such
as temperature, precipitation and nutrient levels (Garcia-Pichel et al.,
2013; Nielsen et al., 2010; Staley et al., 2015). Indeed, assemblage vari-
ability was related to seasonal changes in temperature. Further, nitro-
gen concentration also influenced communities across seasons. The
assemblage relations with environmental drivers across seasons corre-
spond to other studies in streams (Hassell et al., 2018; Staley et al.,
2015). Furthermore, aquatic-terrestrial floodplain studies examining
ecosystem functions such as sediment respiration (Doering et al.,
2011), bacterial abundances and enzyme activities (Bodmer et al.,
2016), and electron transport system activities (ETSA) (Mori et al.,
2017; Simcic et al., 2015), indicate the importance of season and habitat
specific properties on floodplain dynamics. In contrast to the seasonal
changes that are mirrored in temperature and N levels, there was a
local and temporally stable component, i.e., grain size distribution,
that we detected as a habitat specific community filter.

Community assembly was generally consistent among habitat types
at the three study floodplain reaches. For instance, alpha diversity was
highest in terrestrial floodplain habitats (riparian forest, islands),
whereas beta diversitywas lowest. A higher alpha diversity in terrestrial
soils compared to aquatic sediments also has been shown for a New
Zealand stream catchment (Hermans et al., 2020). The locally diverse
(alpha diversity) but relatively homogeneous distribution (beta diver-
sity) of microbial communities opposes the less diverse but more
patchy distribution of communities in more aquatic floodplain habitats
(gravel bars, main and side channels). Habitat conditions and poten-
tially high functional redundancies of microbes likely influence assem-
blage similarity within and among terrestrial floodplain habitats
(Allison and Martiny, 2008; Louca et al., 2018). Habitats with coarse
sediments, e.g., gravel bars, are generally harsh for microbe develop-
ment due to frequent physical disturbance from high flows but also be-
cause of high temperature variation. Here, increased carbon or nitrogen
availability is most likely associated with vegetated areas and often are
patchy in distribution. It has been shown that such habitats harbormore
functionally specialized communities, thus variation in composition at a
small scale can be expected (Freimann et al., 2013; Malard et al., 2002).
Indeed, sediment properties of floodplain habitats differed among study
floodplains, reflecting the differences in hydrology that ultimately influ-
encedmicrobial communities in the different habitats within the differ-
ent floodplains. Alternatively, the lack of a strong floodplain-specific
assemblage structure might be coupled to biological buffering mecha-
nisms. A previous study in an alpine floodplain found that only around
5% of assemblage composition was explained by hydrologic connectiv-
ity, whereas bacterial function measured in terms of enzymatic activi-
ties explained up to 40% (Freimann et al., 2015). The results suggest
that local communities might display high functional redundancy.
Thus, this redundancy causes them to be less influenced by hydrological
differences among floodplains that reflects differences in solutes, or-
ganic matter concentrations, and dispersal dynamics.

4.2. Mass effects in community assembly in relation to experimental
flooding

Mass effects in microbial communities have been shown important
in coupled lake-streamsystems (Adams et al., 2014) via inputs of terres-
trialmicrobes into freshwaters (Hassell et al., 2018; Ruiz-Gonzalez et al.,
2015). Headwaters of streams are considered reservoirs affecting
ructure before, during and after the flood event (S = Summer, A = Autumn, BF = Before
ared to the natural floodplain. Habitat types and specific seasons are depicted by different
w. Colored ellipses show the positioning of the seasonal clusters for a specific reach. T-SNE
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downstream microbial communities (Besemer et al., 2013). Longitudi-
nal connectivity is a primary driver of microbial distribution and abun-
dance in rivers and streams. Hydrologic transport directly affects
microbial composition and frequent dispersal from source habitats
into recipient habitats can influence local species pools (Hassell et al.,
2018; Ruiz-Gonzalez et al., 2015).We found a core aquatic microbial as-
semblage that was present in both terrestrial and aquatic habitats at the
residual and hydropeakingfloodplains. This core assemblage likely orig-
inated upstream from the reservoir and influenced downstream habi-
tats through a continuous mass effect. However, this core assemblage
had little influence on local community assembly over the longer
term, apparently being overridden (outcompeted) by internal habitat
communities. This relation is supported by the low presence of this
10
core community after the experimental flood, although a strong mass
flux of the core assemblage into downstream habitats occurred.
Adams et al. (2014) found that mass fluxes across habitats are impor-
tant during significant hydrologic exchange, although species sorting
predominately structured communities between exchange events.
They also found that transplanted local communities were equal or
less productive, depending on their origin. Nevertheless, up to 11% of
the detected OTUs were in an interactive state between the water col-
umn and floodplain habitats in this study. Importantly, a microbial
mass flux between floodplain habitats and river water was present in
the residual-flow floodplain. This continuous microbial influx from up-
stream likely enhances the homogenization of communities among
floodplain ecosystems.

Image of Fig. 6
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Therewas a continuous input of a core terrestrial assemblage (14%of
all detected OTUs) into the water column independent of the study
floodplain. During the flood, there also was an increased signature of
other habitat specific OTUs in the water column, indicating that aquatic
and terrestrial habitats were hydrologically connected. Hydrological
transport occurs in many organisms and was expected (Rohl et al.,
2018). However, these microbes could not establish over the long
term, likely due to habitat filteringmechanisms in the different habitats
(Adams et al., 2014). Interactions among microbes also have been
shown to constrain specific taxa (species sorting) in a similar way as
habitat filtering (habitat template) (Hall et al., 2018). It was shown for
macroinvertebrates that a single flood typically affects taxon richness
immediately after a flood with quick recovery to pre-flood conditions
after a few weeks (Robinson and Uehlinger, 2003; Robinson and
Uehlinger, 2008). Although we found short-term effects of the flood
on community assembly due to enhanced hydrologic connectivity,
there was no clear long-term effect. The results suggest that seasonal
and local habitat conditions override flood-induced mass effects
among floodplain habitats. The proposed legacy effect of the different
and contrasting hydrological variations in the different floodplain
reaches was not found.

4.3. Ecological implications of altered hydrology and experimental floods

River impoundment has been shown to impact natural flow and
sediment regimes, resulting in altered hydrologic connectivity and
associated biotic and abiotic conditions in downstreamwaters. Contem-
porary water legislation is driving increasing interest among environ-
mentalists and water resource managers regarding how these impacts
can be mitigated in regulated rivers. The different hydrology among
our study floodplains had little influence on local microbial communi-
ties. This finding suggests that the relatively large range of flowmagni-
tudes and frequency types led to similar microbial communities across
study floodplains.

The application of high flows or managed floods (i.e., the controlled
release ofwater from reservoirs tomimic the naturalflowand sediment
regime) is becoming a common management action to improve envi-
ronmental conditions below dams (Gillespie et al., 2015; Konrad et al.,
2011; Olden et al., 2014; Robinson et al., 2018). Most of these studies
assessed flood effects on fish and invertebrates, but no study examining
microbial response has been conducted to date. Major flood events are
severe pulse disturbances in rivers. How microbial communities re-
spond to such disturbances is paramount in fluvial ecology as they are
primary players in the functioning of ecosystems. Disturbance events
such as floods can directly affect biotic communities or alter the envi-
ronment, subsequently affecting biotic communities. Community stabil-
ity is a consequence of resistance and resilience to disturbance along
with time since disturbance (Shade et al., 2012). Further, ecosystem
performance can be altered by disturbance induced biodiversity change
(Naeem et al., 1994).

The degree of change in biotic communities, in general, following
flood disturbance is inherently linked to microbial dynamics as well.
This study provided information on microbial communities in river
floodplain habitats under different hydrological regimes as well as
local responses to an experimental flood. The results suggest that
flood disturbance has a transient effect on microbial communities
among floodplain habitats. The temporal input (mass effect) of
microbes among floodplain habitats and potential changes in physico-
chemical habitat characteristics (i.e., organic matter inputs) was
buffered so that the effected floodplains became similar to the natural
floodplain. The results suggest that microbial communities show high
redundancy among floodplains under different hydrologies and in re-
sponse to high flow events, a finding in contrast to other biotic commu-
nities in regulated rivers.

We note that the herein used T-RFLP technique mainly mirrors the
most abundant members of a microbial community. Therefore, this
11
study provides a rather broad scale picture of the microbial dynamics.
This implies that some less pronounced effects might have been over-
seen. Such small effects still can add up to importance on the ecosystem
scale and should thus been incorporated in future studies. The use of
next-generation sequencing of amplicons in combination with
metagenomics can shed more light also on the functional part of this
story. Overall, microbes serve as the processing and conversion base
for most nutrients in ecosystems (Findlay, 2010; Madsen, 2011), thus
it is imperative to understand microbial community assembly within
fluvial landscapes under various environmental change scenarios. We
conclude that additional research is needed to confirm and add general-
ity to our research findings.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.147497.
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