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Abstract

The nutritional diversity of resources can affect the adaptive evolution of con-

sumer metabolism and consumer diversification. The omega- 3 long- chain polyun-

saturated fatty acids eicosapentaenoic acid (EPA; 20:5n- 3) and docosahexaenoic 

acid (DHA; 22:6n- 3) have a high potential to affect consumer fitness, through their 

widespread effects on reproduction, growth and survival. However, few studies 

consider the evolution of fatty acid metabolism within an ecological context. In 

this review, we first document the extensive diversity in both primary producer and 

consumer fatty acid distributions amongst major ecosystems, between habitats and 

amongst species within habitats. We highlight some of the key nutritional contrasts 

that can shape behavioural and/or metabolic adaptation in consumers, discussing 

how consumers can evolve in response to the spatial, seasonal and community- 

level variation of resource quality. We propose a hierarchical trait- based approach 

for studying the evolution of consumers’ metabolic networks and review the evolu-

tionary genetic mechanisms underpinning consumer adaptation to EPA and DHA 
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INTRODUCTION

Studies of the adaptive evolution and diversification 
of consumers often focus on behavioural and mor-
phological traits associated with resource acquisition, 
such as consumption rates (Abrams, 2006; Wootton 
& Emerson, 2005), habitat selection (Abrams, 2007; 
Ravigne et al., 2009), prey selection (Abrams, 1999; 
Dudova et al., 2019; Sih & Christensen, 2001) and tro-
phic morphology (Wainwright & Price, 2016). However, 
the evolution of metabolic traits underlying a broad 
range of both catabolic and anabolic processes is also 
likely to govern the origin and maintenance of con-
sumer biodiversity (Braakman & Smith, 2012). This is 
partly because ecosystem-  and habitat- specific differ-
ences in resource quality can contribute to divergent 
selection and thereby influence the evolutionary pro-
cesses underlying ecological speciation and adaptive 
radiation (Nosil, 2012; Schluter, 2000). Considering 
both resource quantity and quality may help us un-
derstand additional metabolic and behavioural adap-
tations of consumers and their patterns of abundance 
and diversity (e.g., Agrawal, 2007; Kay et al., 2005; 
Lemaire et al., 2012; Lemmen et al., 2019). Moreover, 
key metabolic adaptations, such as the ability to syn-
thesise previously essential compounds (Drouin et al., 
2011; Matsushita et al., 2020), can generate ecological 
opportunities that enable consumer species to transi-
tion into novel adaptive zones (Simpson 1945; Simpson 
1953). For example, whilst colonising freshwater eco-
systems, multiple species and lineages of ancestrally 
marine fish have evolved the ability to synthesise fats 
that are comparatively scarce in freshwater food webs 
(e.g., Ishikawa et al., 2019; Matsushita et al., 2020).

In natural populations, consumers often face mis-
matches between the dietary supply of, and physiological 
requirements for, both inorganic elements (e.g., carbon, 
nitrogen and phosphorus; Elser et al., 2000a) and es-
sential organic compounds (e.g., amino acids, lipids 
and vitamins; Brett & Müller- Navarra, 1997; Toupoint 
et al., 2012; Wilder et al., 2013). Resource quality is in-
herently multidimensional and can include aspects of 
elemental composition (Elser et al., 2000a; Elser et al., 

2000b), ratios of macromolecules like carbohydrates 
and proteins (Raubenheimer & Simpson, 1998; Simpson 
& Raubenheimer, 1993) and concentrations of toxic 
compounds (Agrawal, 2007). There are several ways in 
which consumers have evolved in response to heteroge-
neity in the quality of available resources. Behavioural 
adaptations for the acquisition of limiting elemental nu-
trients range from moose selectively foraging in aquatic 
environments to obtain sodium (Belovsky, 1978) to in-
sectivorous birds eating eggshells from compost heaps 
as a source of calcium during egg formation (Dhont & 
Hochachka, 2001). Whilst inorganic elements and min-
erals are strictly essential nutrients that consumers must 
obtain directly from their diet, organic compounds can 
be either essential or substitutable depending on the abil-
ities of consumers to obtain them from other compounds 
in diet. This unique aspect of organic nutrients as well 
as toxins opens up additional avenues for metabolic 
adaptation. Nutritional regulation in the face of vari-
ation in the availability of organic compounds can in-
clude foraging behaviours such as consuming resources 
with complementary nutrients (e.g., Behmer et al., 2001; 
Dudová et al., 2019) as well as metabolic adaptations like 
breaking down proteins into sugars when carbohydrates 
are limiting (Thompson & Redak, 2000), repurposing 
dietary toxins for self- defense (e.g., Jønsson et al., 2008) 
or synthesising pigments from readily available dietary 
precursors (e.g., Badyeav et al., 2019).

In natural populations of consumers, metabolic phe-
notypes in general (Auer et al., 2016; Auer et al., 2015; 
Burton et al., 2011), and lipid phenotypes in particular 
(e.g., during migration in birds: McWilliams et al., 2004; 
Guglielmo et al., 2018), are important components of 
fitness variation. Lipids are fundamentally important 
for energy storage, cell membrane structure and cellu-
lar functions (Sunshine & Iruela- Arispe, 2017). Studies 
suggest that within lipids, the omega- 3 (n– 3) polyunsat-
urated fatty acids (PUFA), in particular alpha- linolenic 
acid (ALA; 18:3n- 3), eicosapentaenoic acid (EPA; 20:5n- 
3), and docosahexaenoic acid (DHA; 22:6n- 3), can be im-
portant for somatic development, especially for nervous 
and gonadal tissues (Arts & Kohler, 2009; Guo et al., 
2016a; Tocher et al., 2019), cognition (Cunanne et al., 

distributions. In doing so, we consider how the metabolic traits of consumers are 

hierarchically structured, from cell membrane function to maternal investment, 

and have strongly environment- dependent expression. Finally, we conclude with 

an outlook on how studying the metabolic adaptation of consumers within the 

context of nutritional landscapes can open up new opportunities for understand-

ing evolutionary diversification.
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2009; Hoffman et al., 2009; McCann & Ames, 2005), re-
production (Chen et al., 2012; Martin- Creuzburg et al., 
2009; Roqueta- Rivera et al., 2010; Sinendo et al., 2017) 
and survival (Fuiman & Perez, 2015; Kim et al., 2016; 
Matsunari et al., 2013; Mesa- Rodriguez et al., 2018; 
Twining et al., 2018).

Consumers likely face an allocation trade- off involv-
ing their enzymatic capacity to synthesise fatty acids, 
especially n- 3 long- chain PUFA like EPA and DHA, 
and their capacity to acquire fatty acids from dietary 
sources (Figure 1a). Indeed, the behavioural and met-
abolic strategies to meet fatty acid requirements vary 

F I G U R E  1  Consumers differ in their capacity to synthesise key fatty acids from precursors. Three of the major gaps in synthesis capacity 
(a) include: (1) conversion of saturated fatty acids (SFA), which may be derived from carbohydrates in diet, to the monounsaturated fatty acid 
(MUFA) oleic acid (18:1n- 9; OA) and then to the omega- 6 (n- 6) polyunsaturated fatty acid (PUFA) linoleic acid (18:2n- 6; LIN), (2) conversion 
of the n- 6 PUFA LIN and arachidonic acid (20:4n- 6; ARA) to the omega- 3 PUFA alpha- linolenic acid (18:3n- 3; ALA) and eicosapentaenoic 
acid (20:5n- 3; EPA), respectively and (3) conversion of the short- chain n- 3 PUFA ALA into the long- chain n- 3 PUFA EPA and docosahexaenoic 
acid (22:6n- 3; DHA). Within primary producers (a), vascular terrestrial plants are only capable of synthesising fatty acids up to ALA, whereas 
different species of algae and nonvascular terrestrial plants (e.g., mosses and liverworts) are also able to produce some EPA. Consumers (b– e) 
have evolved synthesis capabilities that differ based upon the availability of key fatty acids in their diets. Whilst some consumers (b) are capable 
of synthesising both short- chain and long- chain n- 3 and n- 6 PUFA from SFA and OA, others (c and d) require short- chain n- 3 PUFA from 
diet, and still others (e) must receive all key fatty acids directly from diet. Some animals, such as soil nematodes (b), consume PUFA- deficient 
resources like bacteria and organic matter and derive only SFA and OA from their diet, which they use as precursors to synthesise LA, ARA, 
ALA, EPA and DHA. Others, such as finches and other terrestrial consumers (c), consume resources like seeds that contain only SFA, OA and 
LIN, as well as resources like terrestrial insects that also contain ALA. They must therefore convert dietary LIN into ARA and dietary ALA 
into EPA and DHA. Still others, like Daphnia and other aquatic invertebrates (d), consume some resources that contain both short- chain and 
long- chain PUFA and are incapable of converting EPA to DHA, but are capable of synthesising EPA from DHA, such as from the Cryptophyte 
alga Cryptomonas, through the process of beta- oxidation (BETA). Finally, some animals, like tuna (e) and other carnivorous marine fishes, 
consume resources that contain the full set of key fatty acids, including both EPA and DHA, and are unable to perform any of the major 
synthesis steps in (A)
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widely across the tree of life (Figure 1). For example, 
detritivorous nematodes have a broad capacity to first 
synthesise saturated fatty acids (SFA) from dietary car-
bohydrates and subsequently convert SFA to monoun-
saturated fatty acids (MUFA) and eventually PUFA 
(Malcicka et al., 2018; Watts & Browse, 2002; Figure 1b). 
However, vertebrates and many major groups of inver-
tebrates lack the ability to convert MUFA such as oleic 
acid (OA) to n– 3 and n– 6 PUFA (Kabeya et al., 2018). 
Therefore, a finch consuming seeds that lack EPA and 
DHA must metabolically derive these compounds from 
dietary precursors like ALA through enzymatic conver-
sion processes, including desaturation and elongation 
(Figure 1c). Even, consumers that can synthesise some 
n- 3 long- chain (C≤20;LC- ) PUFA like EPA and/or DHA 
from the precursor compounds (e.g., ALA) may face high 
metabolic costs that manifest as reduced population 
growth rates. For example, Daphnia populations grow 
much slower (or not all) on a diet low in EPA and DHA 
(e.g., cyanobacteria) compared to a diet high in EPA and 
DHA (e.g., Nannochloropsis or Cryptomonas; Figure 1d; 
Martin- Creuzburg et al., 2009; Martin- Creuzburg & von 
Elert, 2009). Moreover, some species of obligate carni-
vores, such as cats and tuna (Figure 1e), are unable to 
convert short- chain (C18) into LC- PUFA and thus can 
only acquire EPA and/or DHA directly from their diet 
(Betancor et al., 2020; Rivers et al., 1975; Wang et al., 
2020).

At the base of food chains, there are two fundamen-
tal contrasts in n- 3 PUFA availability that are particu-
larly relevant for understanding how spatiotemporal 
variation of resource quality can influence consumer 
adaptation (Figure 2). First, aquatic primary producers 
often contain both EPA and DHA, whereas terrestrial 
primary producers typically only contain shorter- chain 
n- 3 PUFA, such as ALA (Colombo et al., 2017; Hixson 
et al., 2015; Twining et al., 2016a). As a result, terrestrial 
vertebrates, which all require EPA and DHA (Castro 
et al., 2016), are fundamentally more limited by dietary 
EPA and DHA availability than aquatic consumers 
and have evolved numerous adaptations to resolve this 
nutritional constraint. For example, some terrestrial 
vertebrates obtain EPA and DHA via conversion from 
precursors (e.g., Brenna, 2002; Raes et al., 2004) or se-
lective retention of these compounds from aquatic re-
sources (e.g., Broadhurst et al., 2002; Koussoroplis et al., 
2008). Second, within aquatic systems, primary produc-
ers in marine ecosystems have higher DHA content than 
in freshwater ecosystems (Figure 2). This DHA dispar-
ity has driven multiple independent cases of consumer 
metabolic evolution associated with the adaptation from 
marine to freshwater ecosystems (Ishikawa et al., 2019). 
More generally, such fundamental nutritional contrasts 
amongst ecosystems, as well as others occurring within 
ecosystems (e.g., amongst habitats, and prey species), 
can contribute to evolutionary trade- offs involving fatty 
acid acquisition and metabolism.

Previous work has documented how fatty acids vary 
in relation to ecosystem type, trophic level, taxonomy 
and foraging behaviour of species (e.g., Colombo et al., 
2017; Galloway & Winder, 2015; Guo et al., 2017; Hixson 
et al., 2015) but not how variation is important for un-
derstanding the prevailing diversity of consumer metab-
olism within and amongst species. Here, we review the 
distribution of ALA, EPA and DHA in both primary 
producers and consumers amongst major ecosystem (i.e., 
freshwater, marine and terrestrial), between adjacent 
habitats within ecosystems (e.g., nearshore- offshore and 
stream- forests) and amongst co- occurring prey species 
within habitats. We discuss how consumers can evolve 
in response to the spatial, seasonal and community- 
level variation of prey quality. In doing so, we consider 
how the metabolic traits of consumers are hierarchi-
cally structured, from cell membrane function to ma-
ternal investment, and how these traits have strongly 
environment- dependent expression. Finally, we discuss 
the evolutionary genetic mechanisms that underlie the 
adaptation of consumers to EPA and DHA limitation 
and how such metabolic evolution can be an important 
driver of consumer diversification in ecosystems.

H ETEROGEN EITY OF FATTY 
ACID DISTRIBUTION IN NATU RE: 
IM PLICATIONS FOR CONSU M ERS

Primary producers vary widely in their fatty acid com-
position across ecosystems (Figure 2a– c), but there are 
some stark contrasts within and amongst ecosystems 
(Table S1). For example, vascular land plants, such as an-
giosperms and gymnosperms, often contain little to no 
n- 3 LC- PUFA, whereas aquatic algae, such as diatoms 
and cryptophytes, are often laden with both EPA and 
DHA (Figure 2a– c). However, a number of nonvascu-
lar and semi- aquatic plants, such as mosses, do contain 
EPA (e.g., Kalacheva et al., 2009; Figure 2b). Terrestrial 
primary producers also contain significantly more ALA, 
the precursor to EPA and DHA, compared to marine 
primary producers (Figure 2a; Table S1). In addition 
to these patterns with n- 3 PUFA, terrestrial primary 
producers typically contain a higher proportion of n- 6 
PUFA, such as linolenic acid (LIN; 18:2n- 6), relative to 
n- 3 PUFA (e.g., ALA), compared to aquatic primary pro-
ducers (Hixson et al., 2015), but the reasons for this are 
unclear. One possible explanation for these patterns in 
primary producers is the higher susceptibility of PUFA 
with more double bonds, and LC- PUFA in particular, to 
peroxidation (Halliwell & Gutteridge, 1985; Møller et al., 
2007; Mueller, 2004), which is likely a greater risk for 
primary producers in terrestrial environments. Another 
important and well- documented pattern is that marine 
primary producers have a significantly higher percent-
age of fatty acids as EPA compared to either freshwater 
or terrestrial primary producers (Figure 2b and Table S1) 
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as well as significantly more fatty acids as DHA com-
pared to terrestrial primary producers (Figure 2c and 
Table S1). The reasons for this pattern are also unclear 

but might be partly due to EPA and DHA conferring 
protection against high salinity (Jiang & Chen, 1999; Sui 
et al., 2010). Differences between marine phytoplankton 

F I G U R E  2  Marine, freshwater and terrestrial organisms differ in their fatty acid composition, especially in terms of the omega- 3 
polyunsaturated fatty acids (PUFA) alpha- linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These 
ecosystem- based differences are most pronounced in (a– c) primary producers but also occur amongst (e and f) higher- order consumers. (a– c) 
Vascular terrestrial primary producers contain only the shorter- chain omega- 3 PUFA ALA, whilst aquatic primary producers, as well as a few 
nonvascular terrestrial primary producers like Bryophytes, also contain the longer- chain omega- 3 PUFA EPA and/or DHA. (d– f) Consumers 
contain more EPA and/or DHA than primary producers from the same ecosystem but also exhibit differences based on both ecosystem (e.g., 
terrestrial versus marine mammals and terrestrial versus freshwater insects) and trophic position (e.g., fish versus insects or Cladocerans)

0 20 40 60 0 20 40 60 0 20 40 60

Freshwater

Marine

Terrestrial

0 20 40 60 0 20 40 60 0 20 40 60

Aves

Mammalia

Amphibia

Actinopterygii

Chondrichthyes

Asteroidea

Ophiurodea

Holothuroidea

Insecta

Branchiopoda

Hexanauplia

Malacostraca

Bivalvia

Gastropoda

Cephalopoda

Clitellata

Polychaeta
Polychaete Worms

Clitellate Worms

Snails, Slugs

Mussels, Scallops, Oysters, etc

Amphipods, Shrimp, Crabs, etc

Copepods

Cladocerans, Fairy Shrimp

Insects

Sea Urchins

Sea Cucumbers

Brittle Stars

Sharks, Skates, Rays

Amphibians

Mammals

Birds

ALA (% of FA) EPA (% of FA) DHA (% of FA)

Marine
Freshwater
Terrestrial

(a) (b) (c)

(d) (e) (f)

0



1714 |   
THE EVOLUTIONARY ECOLOGY OF FATTY- ACID VARIATION: IMPLICATIONS FOR 

CONSUMER ADAPTATION AND DIVERSIFICATION

communities, which are dominated by higher EPA and 
DHA taxa- like diatoms and coccolithophores (e.g., Brun 
et al., 2015), and freshwater phytoplankton communities, 
which often support substantial populations of green 
algae and cyanobacteria (Reynolds et al., 2002), which 
contain ALA, but typically have negligible amounts of 
EPA and DHA (Twining et al., 2016a), are also likely 
responsible for differences in fatty acid composition 
amongst aquatic ecosystems.

Within ecosystems, the distribution of fatty acids of 
primary producers is typically attributed to both spe-
cies differences (Taipale et al., 2013) and environmental 
conditions (Lang et al., 2011). For example, EPA and 
DHA are very abundant across several major groups of 
Eukaryotic algae (Mühlroth et al., 2013) but are absent 
in Cyanobacteria (Twining et al., 2016a). However, the 
composition and content of fatty acids can also be highly 
variable amongst closely related species and individuals 
of the same species (Charette & Derry, 2016; Galloway 
et al., 2012; Lang et al., 2011; Taipale et al., 2013), possibly 
due to the strong influence of environmental conditions 
(Lang et al. 2011), such as light, nutrients and tempera-
ture. LC- PUFA molecules in general are particularly un-
stable due to the susceptibility of their multiple double 
bonds to oxidation and attack by reactive oxygen species 
(Shchepinov et al., 2014). For instance, high tempera-
tures increase reaction rates, such that LC- PUFA like 
EPA and DHA degrade faster in warm environments 
(Hixson & Arts, 2016). In addition, phospholipids with 
double bonds, such as those found in PUFA, may help 
cells maintain membrane fluidity at lower temperatures 
(homeoviscous adaptation; Feller et al., 2002; Sinensky, 
1974). Thus, it may be beneficial for organisms to have 
more LC- PUFA when it is colder and more costly for 
them to protect LC- PUFA when it is warmer. In algae, 
n- 3 LC- PUFA content is often negatively correlated with 
both temperature (Hixson & Arts, 2016) and light lev-
els (Amini Khoeyi et al., 2012; Hill et al., 2011) and is 
also influenced by inorganic nutrient concentration (e.g., 
Guschina & Harwood, 2009; Piepho et al., 2012). At con-
stant temperature and light levels, phosphorus limita-
tion, for example, can decrease overall lipid content but 
increase n- 3 LC- PUFA production, possibly reflecting 
the need to store lipids until growth conditions improve 
(Guschina & Harwood, 2009). However, when light, tem-
perature and nutrients are simultaneously manipulated, 
fatty acid responses can be highly variable across species 
and systems (e.g., Cashman et al., 2013; Guo et al., 2016b; 
Piepho et al., 2012).

In consumers, the composition of fatty acids reflects 
the dietary sources of lipids (e.g., ecosystem origin, prey 
availability; e.g., Hiltunen et al., 2019), the capacity of 
consumers to metabolise different fatty acids (Figure 2; 
Guo et al., 2017; Hixson et al., 2015) and organ- specific 
fatty acid requirements (Ebm et al., 2021). Insect spe-
cies with an early aquatic life stage often contain more 
EPA than those that are exclusively terrestrial (Twining 

et al., 2018) and are thus important sources of EPA for 
riparian insectivores, such as Eastern Phoebes (Sayornis 
phoebe) (Twining et al., 2019). Many consumers acquire 
PUFA from multiple ecosystems in order to meet their 
own nutritional requirements. For example, mamma-
lian carnivores can forage on aquatic resources to help 
increase their intake of DHA relative to linolenic acid 
(18:2n- 6; LIN), which is an abundant n- 6 PUFA in ter-
restrial primary producers (Koussoroplis et al., 2008). 
Migratory consumers can accumulate EPA and DHA 
from ecosystems rich in these compounds and use them 
for reproduction and offspring provisioning in more 
EPA-  and DHA- depauperate ecosystems (e.g., salmon 
migrating from the ocean to freshwater streams; Heintz 
et al., 2004). Indeed, many species that experience wide 
temporal variation in resource quality often exhibit ei-
ther plasticity (e.g., Katan et al., 2019) or genetic adap-
tation (Ishikawa et al., 2019) associated with fatty acid 
metabolism.

Within ecosystems, consumers often experience 
contrasting distributions of FA when foraging across 
multiple adjacent habitats. Within lakes, for example, 
ecotypes of Eurasian perch (Perca fluviatilis) are known 
to specialise on either littoral macroinvertebrates, which 
are DHA- poor, or pelagic zooplankton, which include 
species (e.g., copepods) that are DHA- rich (Figure 3a). 
Intriguingly, in spite of the fact that DHA is higher in pe-
lagic prey, littoral perch typically have higher DHA than 
pelagic perch. This might indicate that perch can thrive 
on a low- DHA diet (Scharnweber et al., unpublished), 
via preferential DHA retention (e.g., Heissenberger 
et al., 2010; Hessen & Leu, 2006) and/or DHA synthesis 
from precursors like ALA (e.g., Bell et al., 2001; Buzzi 
et al., 1996). In terrestrial systems, Tree Swallows vary 
widely in their access to emergent aquatic insect prey 
(McCarty & Winkler, 1999; Michelson et al., 2018; 
Stanton et al., 2016), which contain substantially more 
EPA than terrestrial prey (Twining et al., 2019; Twining 
et al., 2018; Figure 3b). Controlled diet studies show that 
Tree Swallow chicks, which are inefficient at synthesis-
ing EPA and DHA from ALA (Twining et al., 2018b) 
grow faster, are in better condition and have increased 
survival when they consume either more aquatic insects 
or diets containing more EPA and DHA (Twining et al., 
2016b). Because nest sites vary considerably in their dis-
tance to aquatic ecosystems, adults might trade- off food 
quality with quantity when provisioning their young. 
Although unexplored, this trade- off could select for in-
creased efficiency of ALA to EPA and DHA conversion 
in populations that breed in drier, upland habitats that 
have a lower availability of high- quality emergent fresh-
water insect prey.

Contrasting distributions of fatty acids can, in some 
cases, drive adaptive population divergence of consum-
ers. For example, urban and rural populations of Great 
Tits (Parus major) differ not only in their diet (Andersson 
et al., 2015) and their fatty acid composition (Andersson 
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et al., 2015; Isaksson et al., 2017) but also in their expres-
sion of the Elovl and Fads genes (Watson et al., 2017), 
which code for the enzymes used to convert ALA and 
LIN to n- 3 and n- 6 LC- PUFA, respectively. Specifically, 
rural tits have higher plasma EPA content whilst urban 
tits have plasma higher in arachidonic acid (ARA, 20:4n- 
6) content (Andersson et al., 2015; Isaksson et al., 2017). 
The n- 3 LC- PUFA have anti- inflammatory properties 
whilst n- 6 LC- PUFA, which are synthesised from their 
shorter- chain n- 6 precursor through the same pathway 
as n- 3 PUFA, have pro- inflammatory properties (Calder 
et al., 2002). Urban tits experience greater oxidative 
stress than do rural tits (Isaksson et al., 2017; Watson 
et al., 2017) and also express Elovl and Fads at lower rates 
compared to rural tits (Watson et al., 2017). Thus, urban 
tits appear to suppress the production of both n- 3 and 
n- 6 LC- PUFA in order to reduce inflammation and oxi-
dative damage in a more stressful environment (Watson 
et al., 2017).

TH E N ETWOR K A N D 
H IERARCH ICA L STRUCTU RE OF 
FATTY ACID TRA ITS
The above examples illustrate the varied ways in which 
consumers can adapt to the heterogeneous distributions 
of ALA, EPA and DHA in nature (Figure 2), including 
via the evolution of capacity for biosynthesis of EPA and 
DHA and/or the foraging behaviours underlying the di-
etary acquisition of EPA and DHA. In light of this com-
plexity, we suggest an integrative approach that includes 
both investigating the individual enzymes and processes 
involved in fatty acid synthesis within the metabolic 

network (Figure 4 and Table 1) and situating these fatty 
acid synthesis traits within a hierarchical structure of 
functional traits leading to fitness variation (Figure 5 
and Table 2).

Although all organisms share core metabolic pro-
cesses for fatty acid synthesis (Figure 4), consumer 
species vary widely in capacity to convert: (1) MUFA 
to PUFA (Module C, Figure 4), (2) n– 6 to n– 3 PUFA 
(Module D, Figure 4) and (3) C18 n- 6 and n- 3 PUFA 
to LC- PUFA (Modules E and F, Figure 4) based upon 
the presence and activity or expression levels of par-
ticular enzymes and genes. SFA, such as stearic acid 
(18:0), can be synthesised de novo through the fatty acid 
synthase ( fasn) and SFA elongase system (Module A, 
Figure 4). Stearoyl- CoA desaturase (Scd) can then in-
troduce a double bond at the Δ9 position of the fatty 
carbon chain, producing MUFAs, such as oleic acid 
(OA, 18:1n- 9) (Module B, Figure 4). All eukaryotes, in-
cluding animals, appear to be able to synthesise OA. 
In contrast, the biosynthesis of PUFA with multiple 
double bonds, like linoleic acid (LIN; 18:2n- 6) from 
MUFA (OA; Module C, Figure 4), only exists in a lim-
ited number of consumers with the methyl- end (ωx) 
desaturase, Δ12 desaturase (Blomquist et al., 1991). In 
addition, most consumers neither possess the related 
methyl- end desaturase enzyme (Δ15 desaturase) that is 
necessary to produce ALA from LIN nor the Δ17 and 
Δ19 desaturases to produce n- 3 LC- PUFA from their 
n- 6 LC- PUFA counterparts (Module D, Figure 4). The 
methyl- end desaturases were historically thought to 
exist only in plants, algae, protists, fungi and a nem-
atode (i.e. Caenorhabditis elegans), but a recent study 

F I G U R E  3  (a) The prey of Eurasian perch vary widely in their docosahexaenoic acid (DHA) content, both within and between habitats. 
Pelagic perch consume prey with much higher DHA content (e.g., copepods and fish), whereas littoral perch consume large amounts of DHA- 
poor macroinvertebrates. (b) Tree Swallows forage on insects originating from both aquatic and terrestrial habitats, but emergent aquatic 
insect prey tend to have higher eicosapentaenoic acid (EPA). Some EPA- poor taxa- like Hymenoptera and Thysanoptera are readily available 
in the environment, whereas other high- EPA taxa- like Ephemeroptera, Trichoptera and Odonata are scarce (bars denote habitat availability). 
All of the rare aquatic prey are preferentially selected by Tree Swallows, relative to the more EPA- poor (points reflect variation in dietary 
proportions). Perch prey and diet data are from Chaguaceda et al., (2020) and Tree Swallow prey and diet data are from McCarty and Winkler 
(1999) and Twining et al., (2018)
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suggests that this gene family also occurs in cnidari-
ans, additional nematode species, lophotrochozoans 
(molluscs, annelids and rotifers) and arthropods (cope-
pods and at least two species of insects) (Garrido et al., 
2019; Kabeya et al., 2018; Kabeya et al., 2020). A much 
greater number of consumers, ranging from molluscs 
and some arthropods (Monroig & Kabeya, 2018) to 
chickens (Boschetti et al., 2016; Gregory & James, 2014) 
and humans (Leonard et al., 2002; Nakamura & Nara, 
2004), are able to elongate and desaturate n- 6 and n- 3 
C18PUFA into corresponding n- 6 and n- 3 LC- PUFA 
(Modules E and F, Figure 4) using front- end desatu-
rases as well as fatty acid elongases (elongation of very 

long- chain fatty acids protein, Elovl), suggesting that 
these pathways have evolved multiple times.

In light of the complexity of fatty acid metabolic net-
works, identifying a set of modules and component traits 
can be a useful approach. As illustrated in Figure 4, we 
identify six core modules based on synthesis capacities 
(Figure 4a– f and Table 1A) and further break these down 
into constituent traits that define the reaction rates be-
tween specific FA substrates and products (e.g., ALA 
to EPA conversion capacity and efficiency, Table 1B). 
There is value to such simplifications because they reveal 
broad- scale patterns in metabolic capacity across the 
tree of life. However, there is also substantial pleiotropy 

F I G U R E  4  A simplified fatty acid network including the following modules: (a) de novo synthesis of saturated fatty acids (SFA) via fatty 
acid synthase and a SFA elongase (b) conversion of SFA to monounsaturated fatty acids (MUFA) via Δ9 stearoyl- coA desaturase, (c) conversion 
of the MUFA oleic acid (18:1n- 9, OA) to the n- 6 PUFA linoleic acid (18:2n- 6, LIN) via Δ12 methyl- end desaturase, (d) conversion of omega- 6 
PUFAs like LIN and arachidonic acid (20:4n- 6, ARA) to the omega- 3 PUFAs ALA (18:3n- 3) and to EPA (20:5n- 3) via the Δ15 and Δ17 omega 
desaturases respectively, (e) conversion of LIN to n- 6 LC- PUFAs by front- end desaturases and PUFA elongases (f) conversion of ALA to n- 3 
LC- PUFAs by front- end desaturases and PUFA elongases. Note that Beta- oxidation process (a multi- enzyme reaction) is also required to 
synthesise some LC- PUFA including DHA
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in that single genes that can modify the activity of numer-
ous reaction rates across the overall metabolic network 
(Table 1B). For example, in many teleosts, Fads2 gene 
products can influence conversion rates of LIN to a se-
ries of n- 6 LC- PUFA, including ARA (Figure 4, Module 
E), as well as ALA to a series of n- 3 LC- PUFA, includ-
ing EPA and DHA (Figure 4, Module F). Nevertheless, 
treating both modules and their component pathways as 
metabolic traits permits us to document heritable vari-
ation within metabolic network modules (Box 1) and to 
identify both the ecological and genetic mechanisms un-
derlying their adaptation. This is an important step for 
understanding the complex evolution of metabolic net-
works (Melián et al., 2018; Olson- Manning et al., 2012; 
Watson et al., 2014) and the role that nutritional metab-
olism plays in evolutionary diversification more broadly.

The metabolic traits (i.e., traits related to fatty acid 
synthesis as well as fatty acid retention and oxidation) 
we summarise in Table 1 are also embedded within a hi-
erarchy of other potentially fitness- relevant consumer 
traits (Table 2). Natural selection acts upon the heritable 
intraspecific metabolic traits in the context of other sub-
ordinate and emergent functional traits in the hierarchy 
(Figure 5; Henshaw et al., 2020; Laughlin et al., 2020). 
Where there is a heritable basis for metabolic traits, there 
is the potential for adaptive evolution of consumer me-
tabolism in response to natural selection. Such evolution 
might involve fatty acid synthesis and internal regulation 
and/or behavioural traits related to resource acquisition 
(e.g., selective foraging) and/or life history traits (e.g., mi-
gration and phenology) (see references for Table 2 and 

Figure 5). Metabolic traits related to nutrient processing 
might evolve independently, or as a correlated response 
to other heritable traits, and culminate in changes in 
physiological performance, immunocompetence and 
cell membrane fluidity (Table 1 and Figure 5). Such trait 
change has the potential to influence numerous pro-
cesses ranging from those affecting individual molecules 
to those affecting an individual's lifetime reproductive 
Darwinian fitness (Table 2 and Figure 5).

EVOLUTIONARY GEN ETIC 
M ECH A N ISMS OF 
M ETA BOLIC A DAPTATION

When consumers experience selection for EPA and DHA 
synthesis, they can increase enzymatic activity with three 
different types of genetic processes: (1) gene copy num-
ber increases, (2) enzymatic activity changes by amino 
acid substitutions and (3) regulatory mutations that in-
crease transcription rates (Figure 6a). These three mech-
anisms differ in their effect sizes and pleiotropy (i.e., the 
number of phenotypic traits influenced by the gene). 
Copy number increases may have the strongest effects 
on metabolic processes like fatty acid synthesis (Loehlin 
et al., 2019; Loehlin & Carroll, 2016) but are also likely 
to have pleiotropic effects on other metabolic processes. 
This is because an increase in copy number may affect 
expression in multiple tissues throughout different on-
togenetic stages (developmental pleiotropy) and/or they 
may change the amounts of other organic compounds 

F I G U R E  5  Hierarchical structure of interrelated functional fatty acid traits that can influence fitness. Shifts in traits (z; yellow boxes) 
involving foraging behaviour, lipid status and nutritional metabolism enable a consumer to alter performance (f, green boxes) in terms of 
physiological condition and vital rates, which influence fitness (w, blue box)
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TA B L E  2  Types of intraspecific fatty acid traits that occur along alternative pathways to influence individual fitness components (Figure 5)

Pathway to optimal 
organismal omega−3 
fatty acid content Type of functional trait Examples Reference(s)

Subordinate traits

Pathway 1: individual- level intracellular fatty acid conversion and regulation

Fatty acid metabolic traits
(Figure 4)
T1: fatty acid synthase
T2: SFA elongase
T3: stearoyl- CoA desaturase
T4: omega desaturase
T5: Front- end desaturase
T6: PUFA elongase
T7: Beta- oxidation genes

Castro et al. (2012)
Castro et al. (2016)
Kabeya et al. (2018)
Boyen et al. (2020)

Pathway 2: individual- level organismal resource acquisition and life history

Behavioural acquisition traits

Selective Foraging Behaviour Between prey items within an ecosystem:
Calanoid copepods
Rainbow trout
(Oncorhynchus mykiss)
Between seasons within an ecosystem 

European whitefish
(Coregonus lavaretus)
Tuatara
(Sphenodon punctatus)
Between ecotypes within an ecosystem:
Killer whales
(Orcinus orca)
Threespine stickleback
(Gasterosteus aculeatus)
Between ecosystems:
Eastern Phoebes
(Sayornis phoebe)

Eglite et al. (2019)
Roy et al. (2020)
Keva et al. (2019)
Cartland- Shaw et al. (1998)
Herman et al. (2005)
Hudson et al. pers, comm.; Daneau- 
Lamoureux pers. comm.
Twining et al. (2019)

Consumer Trophic Position Ontogeny in Eurasian perch
(Perca fluviatilis)
Dietary plasticity in larval anurans

Chaguaceda et al. (2020)
Whiles et al. (2010)

Life history traits

Body size Freshwater calanoid copepods
Round gobies and
(Neogobius melanostomus)
Monkey gobies
(Neogobius fluviatilis)

Charette and Derry (2016)
Ghomi et al. (2014)

Maternal investment
-  Egg Composition 

(maternal effects)
-  Milk Composition

Daphnia egg composition
Tropical nudibranch egg composition
(Aeolidilla stephanieae)
Mammalian milk composition

Schlotz et al. (2013)
Leal et al. (2012); Leal et al. (2013)
Brenna et al. (2009);
Hibbeln et al. (2019);
Muhlhausler et al. (2011)

Migration Migratory songbirds
Migratory bats
Southern hemisphere humpback whales
(Megaptera novaeanglidae)

Pierce et al. (2005); Pierce and 
McWilliams (2014)

McGuire et al. (2013)
Waugh et al. (2012)

Phenology Colorado potato beetles
(Leptinotarsa decemlineata)

Clements et al. (2020)

Hibernation Black bears
(Ursus americanus)
Yellow- bellied marmots
(Marmota flaviventris)

Iverson and Oftedal (1992)
Hill and Florant (1999)

Dormancy & diapause Harpacticoid copepods (Heteropsyllus 
nunni)

Lepidopterans

Williams and Biesiot (2004)
Vukašinović et al. (2015); Hemmati 

et al. (2017)

(Continues)
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Pathway to optimal 
organismal omega−3 
fatty acid content Type of functional trait Examples Reference(s)

Morphology (consumer 
feeding traits)

Threespine stickleback Hudson et al. pers. comm.; Daneau- 
Lamoureux et al. pers. comm.

Influenced by both Pathways 1 and 2

Lipid traits

Total lipids Fairy shrimp
(Chirocephalus diaphanus)
Euphausiids
(Meganyctiphanes norvegica)
Calanoid copepods (Diaptomus kenai)

Bocca et al. (1998)
Mayzaud et al. (1999)
Butler (1994)

Lipid classes (e.g., TAGs, 
polar lipids)

Euphausiids Saito et al. (2002)
Mayzaud et al. (1999)

Fatty acid content:
SFA (e.g., 16.0, 18.0)
MUFA (e.g., OA)
PUFAs (e.g., LA, ALA)
LC- PUFA (e.g., DHA)

Daphnia EPA content
Copepod DHA content
Sex- specific differences: Daphnia
Tuatara
Southern humpback whales

Hessen and Leu (2006); Wacker 
and Martin- Creuzburg (2007); 
Sperfeld and Wacker (2012)

Charette and Derry (2016)
Martin- Creuzburg et al. (2018)
Cartland- Shaw et al. (1998)
Waugh et al. (2012)

Body condition indexes
-  weight to length
-  fat mass

Tree Swallows (Tachycineta bicolor)
Humans
(Homo sapiens)
Round gobies and Monkey gobies

Twining et al. (2016)
Tan (2014); Elias and Innis (2001)
Ghomi et al. (2014)

Physiological traits

Cell membrane fluidity Eastern newt (Notophthalmus viridescens)
Humans and Roundworms
(Caenorhabditis elegans)

Mineo et al. (2019)
Ruiz et al. (2019)

Mitochondrial function Ground squirrels
Red- winged Blackbirds (Agelaius 

phoeniceus)
Humans

Gerson et al. (2008)
Price et al. (2018)
Herbst et al. (2014)

Inflammation Immune system performance in Wolf 
spiders

Daphnia
Largemouth bass
(Micropterus salmoides)

Fritz et al. (2017)
Schlotz et al. (2012)
Schlotz et al. (2013)
Schlotz et al. (2016)
Zhou et al. (2020)

Buoyancy Calanoid copepods
(Calanoides acutus)

Pond and Tarling (2011)

Metabolic Rate and Exercise 
Performance

Thirteen- lined Ground Squirrels
(Spermophilus tridecemlineatus)
White- throated Sparrows
(Zonotrichia albicollis)
Yellow- rumped Warblers
(Setophaga coronata)
Atlantic salmon
(Salmo salar)
Mammals

Gerson et al. (2008)
Price and Guglielmo (2009)
Dick and Guglielmo (2019)
McKenzie et al. (1998)
Ruf et al. (2006)

Pathway products: Individual- level fitness component traits

Growth Daphnia
Tree Swallows
Eastern Phoebes
Freshwater fish

Brett and Müller- Navarra (1997); 
Müller- Navarra et al. (2000); Ilić 
et al. (2019)

Twining et al. (2016)
Twining et al. (2019)
Glencross (2009);
Zhou et al. (2020)
Lundova et al. (2018)

TA B L E  2  (Continued)
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produced as by- products when enzymes are multifunc-
tional (biochemical pleiotropy) (Figure 6b). Pleiotropic 
changes may be neutral, favourable or unfavourable 
with respect to fitness. For instance, because n- 3 and n- 6 
fatty acids are elongated and desaturated via the same 
metabolic pathway (Figure 4), increased fatty acid de-
saturase and/or elongase activity may result in increased 
production of both n- 3 or n- 6 LC- PUFA, depending on 
the relative availability of n- 3 and n- 6 precursors. Amino 
acid substitutions generally have even more pleiotropic 
effects than copy number increases (Carroll, 2005), but 
their effect sizes are reported to be smaller in some cases 
(Loehlin et al., 2019). Regulatory mutations may have 
relatively strong effects (Loehlin et al., 2019) and enable 
tissue-  or ontogenetic stage- specific expression but may 
still be biochemically pleiotropic. Importantly, these 
three types of mutations often occur together. After gene 
duplication, these mutations can diverge in both func-
tional amino acid sequences and expression patterns 
(Lynch, 2007; Ohno, 1970), becoming more specific (neo- 
functionalisation) and thus reducing pleiotropic effects 
whilst still having strong effect sizes (Figure 6c).

Examples of all three types of genetic mechanisms can 
be found within the evolution of fatty acid metabolism. 
Copy number variation in fatty acid desaturase (Fads) 
genes is widely observed in vertebrates (Castro et al., 
2012). For instance, Ishikawa et al., (2019) recently found 
that freshwater threespine stickleback have increased 
Fads2 copy number and thus greater capability to syn-
thesise DHA, thereby overcoming the nutritional con-
straints of freshwater ecosystems. However, increased 
expression of Fads2 also results in increased production 
of n- 6 LC- PUFA, such as ARA, in sticklebacks, thus 
demonstrating a biochemical pleiotropic effect (Ishikawa 
et al., 2019). In humans, regulatory mutations are known 
to underlie adaptation to low EPA and DHA diets 
(Fumagalli et al., 2015; Tucci et al., 2018; Ye et al., 2017). 
Derived alleles with higher Fads1 expression appear to 
have enabled humans to survive better on cultivated, ter-
restrial plant- derived and n- 3 LC- PUFA- deficient diets, 

allowing them to expand their distribution (Ameur et al., 
2012; Fumagalli et al., 2015; Tucci et al., 2018). In con-
trast, human populations that consume EPA-  and DHA- 
rich diets with high amounts of fish and meat have the 
ancestral haplotypes (Amorin et al., 2017). Amino acid 
changes that alter enzymatic functions can also help con-
sumers adapt to diets that vary in EPA and DHA con-
tent. For example, although zebrafish (Danio rerio) have 
just one copy of Fads2, they have high Δ5 and Δ6 desatu-
rase activities as a result of amino acid changes in Fads2 
(Hastings et al., 2001). Neo- functionalisation following 
duplication appears to be a common genetic process 
(Ohno, 1970; Zhang, 2003). In fishes, for instance, the 
acquisition of Δ4 activity occurred in one copy of Fads2 
after gene duplication (Li et al., 2010; Morais et al., 2012; 
Oboh et al., 2017). Multiple genetic mechanisms enabling 
n- 3 LC- PUFA synthesis may arise during diversification 
when species colonise nutritionally novel environments. 
For example, Matsushita et al., (2020) found that three 
species of freshwater flatfish, which were ancestrally 
marine, each used distinct genetic mechanisms to ac-
quire DHA synthesis ability, including gene duplication 
and neofunctionalisation, enabling them to synthesise 
DHA from ALA in freshwater environments. Further 
genetic analysis of variation in fatty acid metabolism 
across a greater diversity of taxa will help us to under-
stand which mechanisms are the most prevalent and how 
mechanisms differ in their effect sizes and pleiotropy on 
fatty acid adaptive landscapes.

Metabol ic  adaptat ion and consumer 
d ivers i f icat ion

The network structure of fatty acid metabolism, includ-
ing the modularity and degree of pleiotropy, has impor-
tant consequences for understanding how organisms 
evolve and diversify over time. For instance, whilst the 
primary photosynthetic pathways of plants are highly 
conserved, some of their components have diversified 

Pathway to optimal 
organismal omega−3 
fatty acid content Type of functional trait Examples Reference(s)

Development Mammalian brain development
Avian embryonic development

McNamara and Arsch (2019)
Pappas et al. (2007)

Reproduction Freshwater calanoid copepod fecundity
Daphnia fecundity
Eurasian perch gonad size

Charette and Derry (2016)
Sperfeld and Wacker (2012); Ilić et al. 

(2019)
Scharnweber and Gårdmark (2020)

Survival Tree Swallow fledge success
Sterlet survival
(Acipenser ruthenus)

Twining et al. (2018)
Lundova et al. (2018)

Note: Full references are listed in our supporting information.

ALA, alpha- linolenic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; 
SFA, saturated fatty acid.
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Box 1 Why the genetics of adaptation matters for the evolutionary ecology of fatty acids.

QUANTITATIVE GENETIC VIEW OF ADAPTATION

Quantitative genetics models generally assume that traits are continuous, normally distributed and controlled 
by many genes with small effects. In a model with a single trait, selection moves the trait distribution according 
to the breeder's equation: Response to selection (R) is a product of heritability (h2) and selection differential (S) 
(Lynch & Walsh, 1998). Any heritable traits can evolve in response to selection. In cases in which multiple traits 
are genetically correlated, selection on one trait can bias the evolution of another genetically correlated trait, 
and the evolutionary trajectories on adaptive landscapes can be biassed by a genetic variance- covariance matrix 
(G- matrix; Lande & Arnold, 1983; Schluter, 1996; Schluter, 2000). Although quantitative genetics models are 
helpful to predict short- term evolution of highly polygenic traits, genomic studies of fatty acid composition have 
often identified loci with moderate to large effects (Cesar et al., 2014; Horn et al., 2020; Lemos et al., 2016; Lin 
et al., 2018; Xia et al., 2014), suggesting that an alternative view of the genetic basis of adaptation may be more 
useful in some cases.

GENOMIC VIEW OF ADAPTATION

Recent advances in genomic technologies have improved our ability to elucidate the genetic details of adapta-
tion. For instance, studies have helped document how aspects of genetic architecture, such as the number, ef-
fect sizes, pleiotropy, linkage and genomic location of adaptive loci, can influence the speed and reversibility 
of adaptive evolution (Barton & Keightley, 2002). Such studies also aim to identify causative genes. For in-
stance, animal breeding studies have sought to identify genes and quantitative trait loci that control the fatty 
acid composition of meat (e.g., Kelly et al., 2014; Zhang et al., 2016). However, even when a locus with a major 
effect is identified, this does not necessarily indicate the presence of a single causative gene. Furthermore, 
even when a causative gene is identified, it does not necessarily mean that a single mutation causes the altera-
tion of the gene function (Bickel et al., 2011; Stern & Frankel, 2013). Therefore, an additional goal of genetic 
adaptation studies is to identify specific causative mutations (Lee et al., 2014; Remington, 2015). For exam-
ple, Fads2 duplication in freshwater species derived from marine ancestors allows them to synthesise more 
n- 3 LC- PUFA (Ishikawa et al., 2019). When adaptation occurs via standing genetic variation, it may not be 
necessary to further dissect it into the levels of individual mutations for predicting how adaptation proceeds. 
This is because such adaptation occurs by replacement of already- existing alleles with tightly linked adaptive 
mutations (Barrett & Schluter, 2008). However, to understand adaptation by de novo mutations, it is essential 
to determine the number and nature of responsible causative mutations (Stern & Frankel, 2013). For example, 
the bab locus explains over 60% of phenotypic variance of pigmentation in Drosophila, but each single SNP 
explains only 1% (Bickel et al., 2011). Similarly, different Fads1 and Fads2 gene variants in humans explain 
between 1% and 28.5% of the variation in the PUFA content of blood phospholipids (Schaeffer et al., 2006). 
Once causative mutations that alter fatty acid synthesis are identified, it is then possible to determine whether 
adaptive evolution has occurred through a few large steps or multiple small steps (Orr, 2005).

Box 1 Figure: Relationship between enzymatic activity and fitness in two different environments (left) and a 
trajectory of adaptive walk (grey arrow) biassed by G- matrix on a two- dimensional adaptive landscape (right). 
Px, precursor of fatty acid X; Py, precursor of fatty acid Y; Plus (+), the adaptive peak
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widely, culminating in lineage- specific pathway regula-
tion and structure (Maeda, 2019). As a consequence of 
network structure, evolutionary changes at early steps 
within photosynthesis can have more substantial effects 
on final products than those that occur in later steps 
(Kacser & Burns, 1981; Olson- Manning et al., 2012; 
Wright & Rausher, 2010). In consumers, the evolution 
of nutritional metabolic networks has allowed them 
to utilise new resources or synthesise essential organic 
compounds that were previously required from diet 
(Borenstein et al., 2008; Wagner, 2012). Within a line-
age, species can differ in the number and connectivity of 
modules in metabolic networks as well as in synthesis ac-
tivities across the network. The evolution of carotenoid 
networks in birds, for example, has led to considerable 
variation in the structure (i.e., gain and loss of modules) 

and connectivity of functional modules (Morrison & 
Badyaev, 2016) and, interestingly, has been implicated 
in the diversification of avian color patterns (Badyaev 
et al., 2019a).

In the 1940  s, Simpson posited that species could 
enter new ‘adaptive zones’ (Simpson, 1945; Simpson, 
1953) via specific events, including dispersal into new 
habitats, extirpation of predators, or through ‘key in-
novations’, namely, those that relax or fundamentally 
change the prevailing environmental sources of natu-
ral selection (Miller, 1949; Rabosky, 2017). Since then, 
there has been an accumulation of evidence for rapid 
phenotypic evolution over short time scales (Carroll 
et al., 2007), with perhaps some of the best examples 
of this phenomenon coming from range- expanding 
species (Miller et al., 2020). During colonisation, 

F I G U R E  6  Relationship between genetics and ecology illustrated on fatty acid adaptive landscapes. (a) Different genetic mechanisms 
underlying increases in metabolic enzymatic activities. The arrow thickness indicates the gene expression levels. Grey circles and yellow 
asterisks indicate enzymes with ancestral and new functions, respectively. (b) Effects of mutations on the metabolic pathways. Because of a 
pleiotropic effect of the enzyme, both metabolic pathways can be influenced. Font sizes reflect the amounts of synthesised fatty acids X and Y. 
Px, precursor of fatty acid X; Py, precursor of fatty acid Y. (c) Adaptive (black) or nonadaptive walks (gray) on two different types of adaptive 
landscapes. The X and Y axes indicate the levels of fatty acids X and Y. Plus (+) indicates the adaptive peak. In Environment A, simultaneous 
increases of fatty acids X and Y are favoured. In Environment B, however, only an increase in fatty acid X but not fatty acid Y is favoured
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consumers often encounter new food resources and 
undergo shifts in their trophic niche, culminating in 
the evolution of associated behavioural, morpholog-
ical and physiological traits (Des Roches et al., 2016; 
Herrel et al., 2008; Leaver & Reimchen, 2012; Renaud 
et al., 2018). For instance, changes in jaw morphology 
(Burress et al., 2020), gut length (Davis et al., 2013) or 
even microbiome community composition (Rennison 
et al., 2019) can evolve rapidly, allowing consumers to 
profit from novel resources and persist in habitats that 
were previously suboptimal. Individuals from range- 
edge and range- core populations also frequently differ 
in patterns of gene expression and metabolism (Rollins 
et al., 2015; Van Petegem et al., 2016). Recent studies 
suggest that metabolic traits may be also under strong 
selective pressure, particularly when the colonising 
consumer is faced with a novel resource environment, 
such as when marine consumers invade freshwater 
ecosystems (e.g., Ishikawa et al., 2019; Matsushita 
et al., 2020).

Whilst microevolutionary dynamics might shape 
the existing structure or control of metabolic net-
works (Figures 4 and 5), large structural changes in 
the network itself, such as the internalisation of an 
external dependency (e.g., the ability to synthesise a 
formerly essential dietary fatty acid), might present 
a species with novel ecological opportunity. In other 
words, the evolution of fatty acid metabolism might 
afford species new opportunities to exploit novel re-
sources (e.g., terrestrial plants containing only ALA) 
and allow them to persist and diversify in ‘adaptive 
zones’. For example, freshwater threespine stickle-
back and freshwater f latfish have both reduced their 
external dependency on DHA- rich resources, which 
are limited outside of marine habitats (Figure 3a), by 
increasing their endogenous conversion rates from 
ALA to DHA, a key innovation. Similarly, when feed-
ing on a low DHA diet, Arctic charr from subalpine 
freshwater systems endogenously converted up to 25% 
of ALA to DHA, which is a much higher conversion 
than that previously documented in marine fishes 
(Murray et al., 2015). Badyaev et al. (2019a) propose 
that such evolution in the control of metabolic net-
works is fundamentally associated with macroscale 
patterns of species diversity. Specifically, local met-
abolic adaptation can culminate in shifts in network 
topologies, potentially opening new opportunities for 
evolutionary diversity (Badyaev, 2019b). Currently, 
this is unexplored in the context of fatty acid metab-
olism, but there is considerable potential to do so in 
light of the heterogeneity of FA within and amongst 
ecosystems (Figure 2), variation in genes related to 
fatty acid synthesis across consumers, the fitness 
relevance of FA acquisition, retention and synthe-
sis traits and examples of key innovations facilitat-
ing consumer diversification (Ishikawa et al., 2019; 
Matsushita et al., 2020).

CONCLUSION

There is a global metabolic network available for ani-
mals (Borenstein et al., 2008), and we are still in the 
early stages of uncovering how this network is struc-
tured across the animal tree of life (Figures 1 and 4 and 
Table 1) and how it is mechanistically linked to fitness 
variation of consumers (Table 2 and Figure 5). Empirical 
studies have documented substantial variation in the 
fatty acids of organisms, structured both within and 
amongst ecosystems and amongst prey communities, 
which creates ample opportunities for the evolution of 
consumer behaviour and metabolism. Whilst numerous 
studies have documented consumer as well as producer 
fatty acid content or composition, relatively few studies 
have explored the degree to which internal regulatory 
and synthesis processes versus diet drive this variation 
in nonmodel consumer taxa and fewer still have linked 
nutritional metabolism to consumer fitness variation in 
natural settings. However, there is growing evidence for 
evolutionary diversification in the primary nodes and 
controls of the fatty acid metabolic network (Figure 4). 
We suggest that researchers take an integrative approach 
that includes examining nutrition as an agent of natural 
selection acting on both behavioural foraging and meta-
bolic traits, which are embedded in a trait hierarchy lead-
ing to fitness. Studying such metabolic diversity across 
multiple scales (Figures 4 and 5) will allow us to under-
stand more broadly how consumers evolve traits related 
to both resource acquisition and metabolism and how 
they invade new environments and diversify (Figure 6).
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