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Summary	

	

	
While	 antibiotics	 are	 a	 mainstay	 of	 contemporary	 medicine,	 many	 basic	

questions	 about	 how	 they	 inactivate	 and	 kill	 bacteria	 are	 still	 unresolved.	

The	 main	 goal	 of	 this	 thesis	 was	 to	 address	 some	 of	 these	 questions.	

Specifically,	 we	 aimed	 at	 expanding	 our	 understanding	 of	 two	 central	

themes	 that	 are	 difficult	 to	 explore	 in	 traditional	 microbiological	

approaches.	 The	 first	 theme	 is	 about	 how	 antibiotics	 affect	 the	 basic	

components	 of	 bacterial	 growth:	 cell	 division	 and	 death.	 We	 exposed	

bacterial	populations	 to	various	concentrations	of	antibiotics	and	analyzed	

how	 the	 population	 growth	 patterns	 that	 we	 observed	 emerged	 from	 the	

interplay	 between	 cell	 division	 and	 cell	 death.	 The	 second	 theme	 is	 non-

genetic	factors	that	contribute	to	differences	in	the	response	and	survival	to	

antibiotics,	 either	 between	 individual	 cells	 or	 between	 environments	with	

plenty	or	limited	resources.	We	used	Escherichia	coli	and	ribosome-binding	

antibiotics	as	our	model	systems	and	employed	microfluidics	and	time-lapse	

microscopy	to	investigate	the	effects	of	antibiotics	at	the	level	of	individual	

cells.		

	

In	Chapter	2,	we	addressed	the	effect	of	antibiotic	pulses	on	bacterial	cells.	

We	focused	on	a	range	of	antibiotic	doses	where,	in	batch	experiments,	a	net	

positive	or	negative	population	 growth	 rate	would	mask	death	or	division	

rates,	 respectively.	 Our	 single-cell	 approach	 allowed	 us	 to	 quantify	 the	

division	events	occurring	for	each	cell.	This	revealed	that	antibiotics	around	

what	 is	 considered	 the	 minimal	 inhibitory	 concentrations	 (MIC)	 in	 batch	
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experiments	or	higher	 sometimes	have	no	discernible	effect	on	 the	 rate	of	

cell	division	during	 the	pulse.	 Informed	by	 this	 finding	and	 in	combination	

with	bulk	experiments,	we	explored	the	role	of	time,	concentration	and	total	

dose	 (the	 product	 of	 time	 and	 concentration)	 on	 the	 probability	 that	

bacterial	 cells	 would	 survive	 an	 antibiotic	 pulse.	 One	 of	 our	 main	

observations	was	that	total	dose	had	the	strongest	effect	on	cell	survival,	but	

short	pulses	of	high	concentrations	or	long	pulses	of	low	concentrations	led	

to	 slightly	 higher	 mortality	 than	 equivalent	 total	 doses	 of	 intermediate	

duration	and	concentration.		

	

In	 Chapter	 3,	we	 asked	whether	we	would	 be	 able	 to	 predict	 that	 a	 given	

bacterial	 cell	would	 survive	 a	pulse	of	 antibiotic,	 based	on	 features	of	 this	

cell	that	we	could	measure	previous,	during	and	immediately	after	antibiotic	

exposure.	We	did	not	 find	evidence	 that	 the	 interdivision	 time	previous	 to	

exposure	 (as	 a	 proxy	 for	 growth	 rate)	 neither	 the	 time	 that	 had	 elapsed	

since	the	last	division	before	the	pulse	(as	a	proxy	for	cell	cycle	position	at	

the	onset	of	the	stress)	predicted	cell	fate.	We	found,	however,	that	potential	

persisters	 (cells	 not	 dividing	 at	 all	 in	 the	 time	 monitored	 previous	 to	

exposure)	 showed	 higher	 chances	 of	 survival	 in	 conditions	 with	 high	

mortality.	We	 also	 found	 that	 cell	 division	 patterns	 immediately	 after	 the	

pulse	can	predict	survival.		

	

In	 Chapter	 4	 we	 investigated	 how	 two	 different	 ribosome-targeting	

antibiotics	 affect	 bacterial	 growth	 in	 a	 limited-nutrient	 environment,	

particularly	 disentangling	 the	 role	 of	 division	 on	 the	 growth	 dynamics	

observed	 at	 the	 population	 level.	 We	 further	 focused	 on	 the	 effect	 of	

gentamicin	as	we	found	that	cells	exposed	to	low	concentrations	of	this	drug	

entered	stationary	phase	earlier.	The	results	of	our	experiments	suggest	that	

bacteria	 exposed	 to	 antibiotics	might	 be	 depleting	 resources	 faster	 during	
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exponential	phase.	It	is	likely	that	this	phenomenon	is	specifically	related	to	

amino	acid	consumption.	

	

In	 summary,	 this	 work	 highlights	 the	 relevance	 of	 improving	 our	

understanding	 of	 how	 antibiotics	 affect	 individual	 bacterial	 cells.	 The	

questions,	 results	 and	 discussions	 presented	 in	 this	 thesis	 suggest	 that	

single-cell	 approaches	 are	 key	 to	 understand	 bacterial	 growth	 dynamics	

under	 stress	 and	 to	 fill	 important	 gaps	 related	 to	 non-genetic	 factors	 that	

affect	survival	and	response	to	antibiotic	treatment.	Such	understanding	can	

potentially	 help	 in	 the	 development	 of	 new	 antibiotics,	 and	 help	 using	

existing	antibiotics	more	effectively.		
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Zusammenfassung	

	

	

Antibiotika	 spielen	 eine	 zentrale	 Rolle	 in	 der	 zeitgenössischen	 Medizin.	

Nichtsdestotrotz	 verstehen	 wir	 aber	 nicht	 im	 Detail,	 wie	 Bakterien	 durch	

Antibiotika	 inaktiviert	 und	 abgetötet	 werden.	 Das	 zentrale	 Ziel	 dieser	

Dissertation	 war	 es,	 an	 diesen	Wissenslücken	 zu	 arbeiten.	 Konkret	 haben	

wir	uns	auf	zwei	Aspekte	fokussiert,	die	mit	traditionellen	Methoden	aus	der	

Mikrobiologie	 schwierig	 anzugehen	 sind.	 Der	 erste	 Aspekt	 ist,	 wie	

Antibiotika	die	grundlegenden	Komponenten	des	bakteriellen	Wachstums	–	

Zellteilung	und	Zelltod	–	beeinflussen.	Wir	haben	Bakterien	verschiedenen	

Konzentrationen	von	Antibiotika	ausgesetzt	und	haben	untersucht,	wie	das	

beobachtete	 Populationswachstum	 zu	 Stande	 kommt	 durch	 ein	

Wechselspiel	 von	 Zellteilung	 und	 –	 tod.	 Der	 zweite	 Aspekt	 ist,	 dass	 nicht-

genetische	 Faktoren	 einen	 erheblichen	 Effekt	 haben	 können	 darauf,	 wie	

Bakterien	Antibiotika-Exposition	überleben,	und	Unterschiede	im	Überleben	

zwischen	 individuellen	 Zellen	 innerhalb	 von	 klonalen	 Population	 oder	

zwischen	verschiedenen	Wachstumsbedingungen	verursachen	können.	Wir	

haben	das	Bakterium	Escherichia	coli	als	Modellsystem	verwendet,	und	mit	

Antibiotika	 gearbeitet,	 die	 an	 das	 bakterielle	 Ribosom	 binden.	 Um	 die	

Effekte	 von	 Antibiotika	 auf	 Einzelzell-Ebene	 zu	 untersuchen,	 haben	 wir	

Experimente	 in	 Mikrofluidik-Kammer	 und	 mit	 Zeitraffer-Mikroskopen	

durchgeführt.		

	

In	 Kapitel	 2	 haben	wir	 untersucht,	 wie	 diskrete	 Pulse	 von	 Antibiotika	 auf	

Bakterien	wirken.	Wir	haben	mit	Konzentrationen	gearbeitet,	unter	der	eine	
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leichte	 Zu-	 oder	 Abnahme	 der	 Populationsgrösse	 in	 konventionellen	

Experimenten	 Zelltod	 respektive	 Zellteilung	 maskieren.	 Unsere	 Einzelzell-

Analyse	hat	uns	erlaubt,	die	Zellteilungsaktivität	von	individuellen	Zellen	zu	

messen.	Diese	Messungen	haben	gezeigt,	dass	Antibiotika-Konzentrationen	

in	 der	 Nähe	 der	 in	 Batchkulturen	 gemessenen	 MIC	 (Minimal	 Inhibitory	

Concentration)	manchmal	keinen	messbaren	Effekt	auf	die	Zellteilungsrate	

während	 dem	 Antibiotikapuls	 haben.	 Wir	 haben	 auf	 diesen	 Ergebnissen	

aufgebaut	und	analysiert,	wie	die	Wahrscheinlichkeit	von	einzelnen	Zellen,	

einen	Antibiotika-Puls	 zu	 überleben,	 von	dessen	Dauer,	 der	Konzentration	

und	totalen	Dosis	(dem	Produkt	aus	Dauer	und	Konzentration)	abhängt.	Die	

totale	 Dosis	 hatte	 den	 stärksten	 Einfluss	 auf	 die	 Überlebensrate.	

Interessanterweise	war	aber	nicht	nur	die	totale	Dosis	entscheidend	–	kurze	

starke	 Pulse	 und	 lange	 schwache	 Pulse	 haben	 zu	 einem	 leicht	 höheren	

Absterben	geführt	als	Kombinationen	von	intermediärer	Konzentration	und	

Zeitdauer.		

	

In	 Kapitel	 3	 haben	 wir	 untersucht,	 ob	 das	 Überleben	 von	 einzelnen	

Bakterienzellen	 unter	 Antibiotika-Exposition	 voraussagen	 können,	

basierend	 auf	 Zelleigenschaften	 vor,	 während	 und	 unmittelbar	 nach	 der	

Exposition.	Wir	haben	keine	Evidenz	dafür	gefunden,	dass	die	Teilungsrate	

vor	der	Exposition	oder	die	Zellzyklusposition	während	der	Exposition	eine	

Voraussage	 über	 das	 Überleben	 einer	 Zelle	 erlauben	 würden.	 Wir	 haben	

aber	gesehen,	dass	einzelne	Zellen	sich	gar	nicht	teilten	vor	der	Antibiotika-

Exposition,	 und	 manche	 dieser	 Zellen	 überlebt	 haben.	 Diese	 Zellen	

entsprechen	 potentiell	 früher	 beschriebenen	 ‘Persister’-Bakterien.	 Unsere	

Experimente	 haben	 auch	 gezeigt,	 dass	 das	 Zellteilungsmuster	 unmittelbar	

nach	 der	 Exposition	 korreliert	 mit	 dem	 längerfristigen	 Überleben	 einer	

Zelle.		
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In	 Kapitel	 4	 haben	 wir	 untersucht,	 wie	 zwei	 Ribosomen-bindende	

Antibiotika	 das	 bakterielle	 Wachstum	 in	 nährstoffarmen	 Bedingungen	

beeinflussen.	 Wir	 haben	 dabei	 analysiert,	 wie	 das	 auf	 Populationsebene	

beobachtete	 Wachstum	 zustande	 kommt	 aus	 einer	 sich	 über	 die	 Zeit	

verändernden	Zellteilungsrate.	Wir	haben	gefunden,	dass	das	Antibiotikum	

Gentamycin	 dazu	 führt,	 dass	 wachsende	 Bakterienkulturen	 früher	 in	 die	

Stationärphase	 eintreten.	 Unsere	 Resultate	 legen	 nahe,	 dass	 Antibiotika-

Exposition	dazu	 führt,	dass	Bakterien	Nährstoffe	schneller	aufbrauchen.	Es	

ist	wahrscheinlich,	dass	dieses	Phänomen	spezifisch	mit	dem	Verbrauch	von	

Aminosäuren	zusammenhängt.		

	

Zusammenfassend	 zeigt	 unsere	 Arbeit,	 dass	 es	 wichtig	 ist,	 den	 Effekt	 von	

Antibiotika	 auf	 einzelne	 Zellen	 zu	 untersuchen	 und	 verstehen.	 Einzelzell-

messungen	 können	 aufzeigen,	wie	 die	Raten	 von	 Zellteilung	 und	 -Tod	 von	

Antibiotika	beeinflusst	werden,	und	welche	Rolle	nicht-genetische	Faktoren	

dabei	 spielen.	 Solche	 Einsichten	 können	 potentiell	 bei	 der	 Entwicklung	

neuer	 Antibiotika	 eine	 Rolle	 spielen,	 und	 auch	 helfen,	 bestehende	

Antibiotika	besser	zu	nutzen.			
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Chapter	1		

	

	
Introduction		

	
Before	 the	 advent	 of	 antibiotics,	 doctors’	 main	 duty	 was	 to	 predict	 the	

course	of	an	illness.	Learning	“the	art	of	prediction”	was	the	major	reason	to	

attend	medical	school.	This,	at	least,	is	the	view	of	Thomas	Lewis,	physician	

and	writer,	who	saw	during	his	lifetime	the	discovery,	development	and	rise	

of	 antibiotics.	 In	 his	 autobiography,	 he	 argued	 that	 before	 the	 era	 of	

antimicrobials,	the	possibility	of	an	accurate	prognosis	was	“all	there	was	to	

science	in	medicine”1.	Antibiotics	thus	might	have	transformed	medicine	in	

what	he	calls	“the	youngest	science”.		

	

By	 revolutionizing	medicine,	 antibiotics	 had	 a	 profound	 impact	 on	 human	

health.	 Better	 living	 conditions,	 such	 as	 nutrition	 and	 housing,	 improved	

sanitation	and	cleaner	water,	had	already	reduced	 the	mortality	caused	by	

infectious	 diseases.	 The	 discovery	 of	 antibiotics	 and	 its	 application	

accelerated	 the	 decline	 of	 deaths	 by	 this	 cause.	 Until	 the	 first	 half	 of	 the	

twentieth	 century,	 bacterial	 infections	 were	 the	 leading	 cause	 of	 human	

death.	 In	 the	 United	 States,	 for	 example,	 tuberculosis,	 pneumonia	 and	

diarrhea	 were	 responsible	 for	 almost	 30%	 of	 all	 deaths	 in	 19002.	 At	 the	

beginning	of	the	second	half	of	the	century,	however,	pneumonia	dropped	to	

the	 sixth	place	and	 tuberculosis	 to	 the	15th	3.	Today,	 chronic	diseases	have	

replaced	 them	 to	 a	 great	 degree	 as	 the	 leading	 causes	 of	 death2,	 more	

notoriously	 in	developed	countries.	Except	 for	 lower	respiratory	 infections	

in	 5th	 and	 6th	 place,	 there	 are	 no	 other	 infectious	 diseases	 in	 the	 top	 10	
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causes	 of	 death	 in	 upper-middle-income	 and	 high-income	 economics4.	 An	

increase	in	hygiene	and	other	environmental	factors	played	a	crucial	role	in	

this	change,	but	the	development	of	antibiotics	was	relevant	for	the	effective	

treatment	of	bacterial	infections.		

	

While	antibiotics	revolutionized	how	infections	were	 treated,	 their	efficacy	

was	 soon	 threatened	 by	 the	 evolution	 of	 bacteria	 that	 were	 genetically	

resistant	against	treatment.	 	The	WHO	has,	in	the	last	decade,	continuously	

warned	 about	 the	 major	 threat	 that	 antibiotic	 resistance	 poses	 to	 public	

health	 and	 food	 security5.	 In	 January	 2018,	 WHO’s	 Global	 Antimicrobial	

Surveillance	 System	 (GLASS)	 reported	 a	 detailed	 account	 of	 common	

pathogenic	 strains	 that	 are	 evolving	 resistance	 towards	 existing	 drugs.	

Among	the	species	with	higher	occurrence	of	resistance	are	Escherichia	coli,	

Klebsiella	pneumoniae,	Staphylococcus	aureus,	Streptococcus	pneumonia	and	

Salmonella	spp	(Mycobacterium	tuberculosis	is	not	included	in	these	data)6.		

	

While	antibiotic	resistance	understandably	receives	a	lot	of	attention	in	the	

scientific	community	and	the	general	public,	is	not	the	sole	problem	we	are	

facing	with	 respect	 to	 controlling	 bacterial	 pathogens.	 In	 the	 last	 decades,	

there	has	been	increasing	evidence	that	in	clonal	populations	of	genetically	

nonresistant	bacteria,	some	individuals	can	survive	antibiotic	exposure,	for	

instance,	 by	 a	 transient	 phenotypic	 state	 that	 confer	 tolerance7–10.	 Other	

studies	 point	 to	 how	 the	presence	 of	 other	microorganisms	 in	 the	 vicinity	

can	 influence	 a	 bacterium’s	 fate	 upon	 exposure	 to	 antibiotics,	 through	

diffusible	 metabolites,	 the	 production	 of	 volatile	 compounds	 or	 the	

expression	of	antibiotic-degrading	enzymes11–14.	Physical	factors	matter,	too.	

Cells	 embedded	 in	 a	 biofilm	 show	 increased	 levels	 of	 tolerance	 towards	

antimicrobials,	potentially	due	to	the	polymer	matrix	structure,	which	limits	

antibiotic	 penetration,	 and	 to	 the	 physiological	 state	 of	 such	 cells	 (e.g.	

decreased	 metabolic	 activity)15–17.	 Moreover,	 tolerance	 to	 antibiotics	
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conferred	by	these	factors	(e.g.	growth	rate,	other	cells	and	space)	can	also	

be	the	first	step	towards	the	emergence	of	resistance18,19.		

	

In	order	to	better	understand	how	antibiotics	can	affect	different	individuals	

in	 a	 clonal	 population	 differently,	 we	 need	 to	 analyze	 the	 effects	 of	

antibiotics	on	individual	bacterial	cells.	This	approach	will	allow,	in	the	first	

place,	 unraveling	 basic	 details	 about	 the	 growth	 dynamics	 of	 bacteria	

exposed	to	antibiotics	during	treatment	or	in	the	environment.	Additionally,	

it	 will	 increase	 our	 knowledge	 about	 the	 heterogeneity	 of	 the	 bacterial	

response	 to	 drugs.	 Understanding	 this	 heterogeneity	 is	 critical	 for	

controlling	 bacterial	 infections,	 as	 it	 will	 inform	 us	 about	 which	 bacterial	

cells	survive	treatments,	how	many	cells	survive,	and	why	they	survive.		

	

Growth	dynamics:	the	interplay	of	birth	and	death			
	

Microbiology	 has	 traditionally	 relied	 on	 population-level	 experiments.	 The	

study	of	the	effect	of	antibiotics	is	not	the	exception.	For	decades,	scientists	

have	 assessed	 the	 impact	 of	 drugs	 on	 bacteria	 by	 looking	 at	 population	

growth,	 for	example,	using	 turbidity	as	a	proxy	of	 the	number	of	 cells	 in	a	

fixed	 volume	 of	 growth	 medium.	 Another	 established	 approach	 is	 plate	

counting,	a	method	to	estimate	the	number	of	culturable	cells	 in	a	volume.	

Plate	 counting	 combines	 batch	 experiments	 with	 the	 enumeration	 of	 the	

number	of	cells	in	a	volume	that	are	able	to	divide	and	give	raise	to	a	colony.	

Evaluating	growth	by	turbidity	or	by	colony	forming	units	(CFUs)	on	a	plate	

has	 been	 fundamental	 to	 understand	 certain	 aspects	 of	 the	 effect	 of	

antibiotics,	for	example,	the	minimum	inhibitory	concentration	(MIC),	which	

is	the	lowest	concentration	required	to	prevent	visible	growth,	or	to	monitor	

the	percentage	of	cells	that	are	able	to	grow	again	after	treatment.		
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However,	analyzing	the	growth	dynamics	in	bulk	experiments	has	a	number	

of	limitations.	The	growth	observed	at	this	level	is	the	result	of	the	interplay	

of	birth	and	death	events;	one	of	the	limitations	is	thus	the	impossibility	to	

disentangle	the	role	of	 these	two	processes.	Specifically,	and	in	the	context	

of	 antibiotics,	we	usually	 do	not	 know	how	exposure	 to	 a	 drug	 affects	 the	

division	rate	and	the	mortality	of	bacteria	–	we	usually	only	know	effects	on	

the	 net	 population	 growth	 rate.	 Analyzing	 these	 two	 processes	 separately	

might	 not	 be	 relevant	 in	 scenarios	where	 one	 of	 the	 processes	 has	 a	 rate	

close	to	zero,	but	in	an	intermediate	range	between	the	two	extremes	of	no	

mortality	 and	 no	 survival,	we	would	 certainly	 benefit	 from	understanding	

how	a	given	population	level	growth	rate	results	from	the	interplay	between	

cell	 division	 and	 mortality.	 Given	 the	 scarcity	 of	 research	 tackling	 this	

question,	we	usually	do	not	even	know	whether	a	given	experiment	falls	into	

this	 intermediate	 range	 where	 both	 division	 and	 death	 play	 a	 substantial	

role.		

	

Understanding	 effects	 of	 antibiotics	 on	 the	 division	 rate	 and	 on	mortality	

separately	 is	 important	 for	 two	 reasons.	 The	 first	 reason	 is	 that	 this	 will	

allow	 us	 to	 better	 understand	 how	 exactly	 antibiotics	 impact	 bacteria,	 in	

detail.	While	the	cellular	targets	of	antibiotics	are	known	in	most	or	all	cases,	

the	downstream	effects	that	arise	after	a	drug	binds	to	its	cellular	target	are	

usually	 much	 less	 clear20–22.	 In	 order	 to	 understand	 these	 effects,	 it	 is	

important	 to	 know	 how	 cell	 division	 and	mortality	 are	 both	 affected	 by	 a	

given	drug.	The	second	reason	why	disentangling	division	and	mortality	 is	

important	is	that	these	two	processes	determine	the	scope	for	evolution	in	

bacterial	 populations.	 Assuming	 that	 most	 mutations	 occur	 during	 DNA	

replication,	 the	 rate	 of	 replication	 and	 division	 determines	 the	 input	 of	

mutations	into	a	bacterial	population.	To	illustrate	this	point,	let	us	consider	

a	 bacterial	 population	 whose	 size	 does	 not	 change	 over	 time.	 A	 constant	

population	size	could	either	result	from	a	situation	where	no	cells	divide	and	
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no	cells	die;	in	this	case,	the	input	of	mutations	into	the	population	would	be	

zero.	 However,	 and	 alternatively,	 a	 constant	 population	 size	 could	 also	 be	

based	 on	 division	 and	mortality	 occurring	 at	 high	 but	 equal	 rates;	 in	 that	

case,	the	rate	of	new	mutations	would	be	high.			

	

In	scenarios	where	population	size	decreases,	for	example,	after	exposure	to	

a	 certain	 stressor,	 batch	 experiments	 are	 usually	 interpreted	 under	 the	

implicit	 assumption	 that	 division	 is	 not	 taking	 place.	 In	 a	 study	 of	

Mycobacterium	 smegmatis	 exposed	 to	 the	 drug	 isoniazid,	 Wakamoto	 et	 al	

reported	 that,	 even	 at	 the	 killing	 period	 known	 as	 the	 persistence	 phase,	

where	only	a	tiny	fraction	of	cells	withstand	the	drug,	 the	constancy	of	the	

population	 size	 resulted	 from	 a	 balance	 of	 cell	 division	 and	 death23.	 It	 is	

critical	to	be	aware	of	the	occurrence	of	division	events	in	such	conditions,	

for	 instance,	 to	 estimate	 the	 probability	 of	 the	 emergence	 of	 resistant	

mutants.			

	

On	the	other	hand,	unraveling	the	role	of	birth	and	death	is	also	relevant	in	

scenarios	 where	 population	 size	 increases.	 Growth	 at	 low,	 specifically	

subMIC	 concentrations,	 corresponds	 to	 the	 other	 extreme	 of	 high	 division	

rate	and	low	death	rate.	When	monitoring	the	density	of	bacteria	over	time	

in	such	environments,	the	positive	growth	indicates	that	the	division	rate	is	

higher	 than	 the	 death	 rate,	 but	 the	 relative	 rate	 of	 the	 two	 processes	 is	

generally	unknown.	Since	 there	 is	evidence	 that	such	conditions	can	select	

and	 enrich	 for	 resistant	 mutants,	 understanding	 cell	 division	 and	 death	

under	these	conditions	is	important24.		

	

Non-genetic	factors	allowing	survival	
	

The	 idea	 that	 bacterial	 cells	 are	 able	 to	 survive	 antibiotic	 exposure,	 even	

without	 the	 genetic	 factors	 that	 confer	 resistance,	 is	 not	 so	 recent.	 In	 the	



	20	

1940s,	 Bigger	 et	al	 already	 had	 reported	 the	 observation	 that	 around	 one	

cell	 in	 a	 million	 of	 a	 Staphylococcus	 pyogenes	 population	 would	 survive	

penicillin	treatment	high	enough	to	kill	all	the	other	cells.	Their	hypothesis	

was	 that	 these	 cells	were	not	killed	because	 they	were	 in	a	 temporal	non-

dividing	stage	and	penicillin	only	kills	bacteria	in	the	process	of	dividing.	In	

their	 paper,	 they	 also	 stated	 that	 descendants	 of	 what	 they	 called	

“persisters”	were	mostly	sensitive	to	the	antibiotic25.	

	

In	 the	 last	 years,	 aided	 by	 new	 technologies,	 scientists	 have	 been	 able	 to	

confirm	the	existence	of	such	cells	and	obtain	more	insights	into	the	basis	of	

their	 survival.	 The	 hypothesis	 raised	 by	 Bigger,	 that	 the	 persistent	

subpopulation	 is	 growth-arrested,	 was	 confirmed	 by	 direct	 microscopic	

observation	of	 individual	 cells26.	While	 this	phenomenon	was	 first	directly	

observed	 in	cells	exposed	 to	beta-lactam	antibiotics	—that	were	known	 to	

target	 actively	 dividing	 cells—,	 there	 have	 been	 other	 examples	 of	

subpopulations	 with	 reduced	 growth	 rate	 that	 survive	 bactericidal	

antibiotics27,28.	 Aminoglycosides,	 for	 instance,	 target	 the	 ribosome.	

Tolerance	 towards	 this	 antibiotic	 has	 been	 associated	 with	 ribosome	

hibernation	 —ribosomes	 in	 an	 inactive	 form—	 in	 cells	 at	 the	 stationary	

phase29.		

	

Reduced	 growth,	 triggered	 by	 either	 stochastic	 mechanisms	 or	 by	 the	

environment,	 is	not	the	only	factor	that	has	been	associated	with	tolerance	

to	 antibiotics.	 Cell	 fate	 in	Mycobacterium	 smegmatis	 exposed	 to	 the	 drug	

isoniazid	is	not	correlated	with	growth	rate	and	rather	linked	to	the	growth-

rate-independent	 expression	 of	 an	 enzyme23.	 For	 antibiotics	 targeting	 the	

ribosome,	faster	growth	rates	can	either	increase	or	decrease	susceptibility	

to	 subMIC	 concentrations	 of	 the	 drug	 depending	 on	 the	 degree	 of	

reversibility	of	binding	between	the	antibiotic	molecule	and	the	ribosome30.	

Growth	rate	 is	 thus	an	 important	 factor	affecting	 the	bacterial	 response	 to	
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drugs	but	whether	slow	or	fast	growth	is	associated	with	survival	depends	

on	the	exact	circumstances.	

	

Focus	of	this	thesis	
	

Understanding	 non-genetic	 factors	 that	 affect	 survival	 upon	 antibiotic	

exposure	and	the	effects	of	variable	antibiotic	concentrations	on	bacteria,	is	

thus	 critical,	 both	 for	 learning	more	about	how	antibiotics	 act	on	bacteria,	

and	 for	 controlling	 bacterial	 populations	 more	 effectively.	 This	 will	 help	

answering	 questions	 regarding	 the	 evasion	 of	 treatment,	 but	 also	 offer	 a	

better	 picture	 of	 the	 potential	 gateways	 that	 lead	 to	 antibiotic	 resistance.	

Given	 these	 knowledge	 gaps	 and	 their	 relevance,	 the	 main	 focus	 of	 this	

thesis	 is	 to	 increase	our	understanding	of	bacterial	 growth	and	survival	 in	

scenarios	where	an	intermediate	fraction	of	the	population	survives,	mainly	

by	temporal	or	continuous	exposure	to	antibiotic	concentrations	lower	than	

those	used	in	clinics.	

	

In	Chapter	2,	we	investigated	how	bacteria	respond	to	pulses	of	antibiotics	

of	 different	 time	 lengths	 and	 concentrations.	 Given	 the	 heterogeneous	

environments	 that	bacterial	cells	experience	 in	body	compartments	during	

treatment,	 it	 is	 essential	 to	 understand	 how	 temporal	 variation	 in	 the	

concentration	 of	 an	 antibiotic	 affects	 survival	 and	 cell	 division.	 We	 used	

population-	 and	 single-cell	 experiments	 to	 address	 the	 effect	 of	

concentration,	 time	and	total	dose	(the	product	of	concentration	and	time)	

in	such	environments.		

	

One	 of	 the	main	 observations	 of	 chapter	 2	was	 that	 there	 is	 a	 substantial	

range	of	antibiotic	concentrations	and	duration	of	exposure	where	survival	

is	 intermediate,	 that	 is,	 where	 some	 cells	 survive	 and	 others	 are	 killed	

during	the	so-called	log-linear	death	phase.	This	raises	the	question	whether	
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we	can	predict	which	cells	will	 survive,	based	on	measurable	properties	of	

single	 cells.	Thus,	 in	Chapter	 3,	we	asked	whether	 there	are	physiological	

traits,	either	observed	previous	to	exposure	or	as	part	of	the	early	response,	

that	are	associated	with	higher	chances	to	survive.	In	order	to	address	this	

question,	we	evaluated	the	role	of	interdivision	times	previous	to	exposure,	

cell	cycle	stage	at	the	onset	of	the	stress	and	early	divisional	behavior	after	

the	antibiotic	challenge.		

	

Finally,	 the	 goal	 of	 Chapter	 4	 was	 to	 understand	 the	 role	 of	 division	 in	

scenarios	with	continuous	exposure	to	 low	antibiotic	concentrations,	given	

the	 relevance	 this	 has	 on	 increasing	 the	 chances	 for	 the	 evolution	 of	

resistance.	One	of	our	 initial	observations	was	that	the	exponential	growth	

rate	of	bacteria	was	not	affected	by	the	exposure	to	low	levels	of	gentamicin,	

but	 that	 the	 effect	 of	 the	 antibiotic	 becomes	 visible	 at	 the	 transition	 to	

stationary	 phase.	 Using	 a	 combination	 of	 batch-	 and	 microfluidic	

experiments	 we	 further	 investigated	 the	 basis	 of	 this	 growth-phase	

dependent	effect	of	the	antibiotic.		

	

Our	experimental	model:	Escherichia	coli	exposed	to	

ribosome-targeting	antibiotics		
	

Escherichia	coli	was	the	model	organism	we	used	to	explore	all	the	questions	

posed	in	this	thesis.	A	Gram-negative	bacterium	with	a	length	of	about	1µm	

and	a	width	of	about	0.35	µm,	it	is	the	most-studied	bacterial	model	system.	

It	is	a	distinctive	member	of	a	healthy	gut	microbiome	in	many	animals,	but	

also	 an	 important	 human	 pathogen.	 Pathogenic	E.	 coli	 is	 a	major	 cause	 of	

urinary	 tract	 infections,	 bloodstream	 infections	 and	 diarrheal	 diseases,	 as	

well	 as	 a	 frequent	 cause	 of	 foodborne	 infections	 worldwide31,32.	 As	 a	

member	 of	 the	Enterobacteriaceae,	 it	 is	 closely	 related	 to	 other	 important	

pathogens	 such	 as	 Salmonella	 and	 Klebsiella	 and	 it	 might	 be	 possible	 to	
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translate	 findings	 with	 E	 coli	 to	 these	 other	 organisms.	 Moreover,	 when	

exploring	 new	 experimental	 approaches,	 E.	 coli	 is	 —due	 to	 our	 good	

understanding	 of	 its	 biology	 and	 its	 ease	 of	 handling—	 probably	 the	 best	

organism	to	start	with.		

	

All	the	antibiotics	used	in	this	thesis	—tetracycline	and	the	aminoglycosides	

kanamycin	 and	 gentamicin—	 target	 the	 ribosome.	 The	 rationale	 for	 this	

choice	was	partly	technical:	many	other	antibiotics	cause	cell	elongation	in	

the	range	of	concentrations	and	exposure	times	we	wanted	to	explore.	This	

phenotype	 interferes	 with	 the	 time-lapse	 recording	 of	 cells	 inside	

microfluidic	 devices,	 as	 filamentous	 cells	 tend	 to	 be	 removed	 from	 these	

devices	through	flow.	Most	importantly,	however,	is	the	clinical	relevance	of	

these	 antibiotics.	 Tetracycline	 is	 an	 inexpensive	 broad-spectrum	 antibiotic	

widely	used	in	clinics	and	agriculture	and	often	used	to	treat	mycoplasmas,	

rickettsiae	 and	 Lyme	 disease33.	 Aminoglycosides,	 such	 as	 gentamicin	 and	

kanamycin,	 have	 been	 used	 for	 decades	 to	 treat	 common	 and	 potentially	

dangerous	infections	caused	by	Gram-negative	bacteria.	Moreover,	as	in	the	

last	 decade	 Gram-negatives	 have	 shown	 increased	 levels	 of	 resistance	 to	

other	 type	 of	 antibiotics,	 aminoglycosides	 have	 become	 in	 the	 last	 decade	

one	of	the	main	choices	for	therapy34.	

	

Most	 of	 the	 questions	 asked	 in	 this	 thesis	 were	 tackled	 by	 the	 use	 of	

microfluidics	 and	 time-lapse	microscopy,	which	 allowed	monitoring	 single	

cells	over	 time	and	rigorously	controlling	 the	media	 they	were	exposed	to.	

The	 use	 of	 these	 experimental	 models	 with	 this	 technical	 approach	 will	

hopefully	contribute	to	the	current	demands	for	understanding	the	effect	of	

antibiotics	on	bacteria.		
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Chapter	2	

	

	

	

How	to	kill	most	bacteria	with	a	

given	dose	of	antibiotics:		

the	effects	of	time	and	concentration	

of	an	antibiotic	pulse	
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Abstract	
	

When	 bacterial	 cells	 are	 exposed	 to	 antibiotics,	 the	 concentrations	 they	

experience	are	rarely	constant	over	time.	In	clinics,	for	instance,	treatment	is	

frequently	administered	in	series	of	periodical	doses,	and	the	concentration	

of	antibiotics	in	a	patient	thus	changes	dynamically	over	time.	We	do	not	yet	

understand	well	how	the	effects	of	an	antibiotic	on	bacteria	depend	on	the	

dynamics	 of	 the	 antibiotic	—whether	 the	 effect	 of	 a	 certain	 total	 dose	 of	

antibiotics	 depends	 on	 the	 details	 of	 how	 its	 concentration	 changes	 over	

time.	Our	goal	here	was	to	contribute	towards	filling	this	knowledge	gap.	We	

exposed	 our	 model	 system	 Escherichia	 coli	 to	 pulses	 of	 kanamycin.	 Using	

population-	 and	 single-cell	 experiments,	 we	 asked	 how	 features	 of	 an	

antibiotic	pulse,	such	as	 time,	concentration	and	total	dose	(the	product	of	

time	 and	 concentration)	 affect	 cell	 survival.	 Our	 first	 finding	was	 that	 the	

main	determinant	of	survival	is	the	total	dose,	regardless	of	the	duration	and	

concentration	 that	 is	 used	 to	 administer	 this	 dose.	 However,	 we	 also	

observed	deviations	 from	this	rule:	administering	a	given	dose	with	a	very	

high	 concentration	 or	 over	 a	 very	 long	 time	 increased	 mortality	 levels	

compared	to	combinations	of	intermediate	duration	and	concentration.	Our	

single-cell	 approach	 revealed	 substantial	 rates	 of	 cell	 division	 during	

periods	 of	 antibiotic	 exposure,	 sometimes	 even	 at	 equal	 rates	 as	 in	 the	

absence	of	antibiotics.	These	single-cell	experiments	additionally	allowed	to	

assess	how	features	of	the	antibiotic	pulse	affect	the	growth	potential	of	the	

surviving	fraction	of	the	population,	i.e.	how	many	divisions	those	cells	lose	

during	and	after	the	pulse.	Finally,	by	studying	another	feature	of	the	pulse,	

that	 is,	 comparing	 a	 gradual	 versus	 a	 stepwise	 increase	 of	 the	 drug,	 we	

found	 no	 evidence	 that	 the	 rate	 at	 which	 an	 antibiotic’s	 concentration	

increases	over	time	would	be	an	important	determinant	of	survival.	Overall,	

the	 study	of	 single	 cells	 for	understanding	bacterial	 responses	 to	bacterial	
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pulses	provided	a	more	accurate	quantification	of	cell	survival	and	offered	a	

detailed	account	of	the	divisional	pattern	of	survivors.		
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Introduction	
	

Bacteria	are	frequently	exposed	to	fluctuations	 in	antibiotic	concentrations	

for	variable	periods	of	 times.	This	 is	particularly	common	in	the	context	of	

antibiotic	 treatment.	 Patients	 usually	 receive	 antibiotic	 doses	 at	 periodic	

points	 in	 time,	and	this	creates	 fluctuations	 in	 the	antibiotic	concentration.	

In	 addition,	 bacteria	 might	 experience	 additional	 antibiotic	 concentration	

gradients	 resulting	 from	 the	 heterogeneous	 distribution	 of	 drugs	 between	

host	 compartments1,2.	 It	 is	 interesting	 to	 ask	 how	 fluctuations	 in	 the	

concentration	of	an	antibiotic	modulate	its	effect	on	bacteria.	Will	a	certain	

dose	of	antibiotics	be	more	effective	if	 it	 is	administered	as	a	short	 intense	

pulse,	or	over	an	extended	period	of	time	at	a	low	concentration?		

	

The	study	of	the	response	to	treatment	for	define	periods	of	time	has	been	

common	 practice	 for	 decades,	 for	 instance,	 usually	 expressed	 through	 the	

concept	 of	 time-kill	 curves,	 by	 quantifying	 colony-forming	 cells	 after	 the	

exposure	to	a	drug	concentration	over	time.	These	analyses,	however,	have	

limitations.	 If	 bacterial	 cell	 division	 continues	 during	 antibiotic	 exposure,	

then	 population-level	 measurements	 cannot	 disentangle	 how	 antibiotics	

affect	 division	 and	 death.	 Specifically,	 we	 currently	 do	 not	 know	 how	

division	 events	 occurring	 during	 treatment	 influence	 the	 survival	 rate	

quantified	 at	 the	 level	 of	 the	 population.	 We	 also	 do	 not	 have	 an	

understanding	of	how	cells	that	survive	after	the	pulse	are	affected	by	it.	We	

addressed	 these	 questions	 by	 exposing	 Escherichia	 coli	 to	 pulses	 of	 the	

aminoglycoside	 kanamycin	 over	 a	 range	 of	 exposure	 times	 and	

concentrations	where	only	a	fraction	of	the	population	survives.	Using	time-

lapse	 microfluidics,	 we	 monitored	 the	 division	 events	 in	 single	 cells	

previous,	during	and	after	the	pulse,	which	offered	a	detailed	understanding	

of	the	reproductive	behavior	of	each	cell	throughout	the	experiment.		
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Scientists	and	clinicians	use	a	similar	concept	to	what	we	call	here	the	total	

dose	 (the	 product	 of	 time	 and	 concentration	 of	 a	 rectangular	 drug	 pulse):	

Area	Under	the	drug	concentration-time	Curve	(AUC).	The	AUC	is,	however,	

specifically	 assigned	 to	 the	 antibiotic	 concentration	 measured	 in	 serum	

during	 treatment3–5	 and	 has	 been	 studied	 at	 the	 level	 of	 bacterial	

populations	 in	 a	 host	 or	 in	 vitro4,5.	 In	 this	 chapter,	 we	 rather	 asked	 how	

single	bacterial	cells	are	affected	if	we	change	the	concentration	of	a	drug	or	

the	period	of	time	during	which	it	is	administered.		

	

We	 furthered	 explored	 how	 the	 antibiotic	 pulse	 affect	 those	 cells	 who	

survive.	 Aminoglycosides,	 such	 as	 kanamycin,	 inhibit	 protein	 synthesis	 by	

binding	to	the	ribosome.	As	they	interrupt	the	protein	elongation	step	where	

the	 translocation	of	 the	mRNA-tRNA	complex	 takes	place,	 these	drugs	also	

create	 mistranslation,	 and	 misfolded	 proteins	 affect	 the	 membrane6.	

Therefore,	it	is	likely	that	these	related	events	are	one	of	the	main	causes	of	

the	 cell	 death	 resulting	 from	 exposure	 to	 aminoglycosides6,7.	 However,	 in	

scenarios	 where	 cells	 survive	 after	 exposure	 and	 given	 that	 kanamycin	

binds	 in	 an	 irreversible	 manner,	 a	 period	 of	 time	 is	 needed	 for	

resynthesizing	the	lost	ribosomes.	This	postantibiotic	effect	(PAE)8	has	been	

measured	in	batch9,	but	it	is	not	clear	how	the	death	of	some	cells	influence	

this	 quantification.	 In	 this	 work,	 we	 are	 able	 to	 study	 the	 reproductive	

behavior	of	each	of	 the	survivors	alone,	by	monitoring	single-cell	divisions	

over	time.		

	

Finally,	 we	 performed	 experiments	 where	 the	 concentration	 increases	

gradually,	to	investigate	how	such	temporal	gradients	would	affect	bacterial	

survival.	 Temporal	 gradients	 emerge	 naturally	 in	many	 clinical	 situations,	

whenever	 antibiotics	 are	 administered	 as	 discrete	 doses;	 in	 these	 cases,	

dissolution	 of	 the	 drug	 and	 the	 subsequent	 distribution	 through	 the	 body	

lead	 to	 a	 gradual	 (but	 often	 fast)	 increase	of	 the	drug’s	 concentration	 in	 a	
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given	body	compartment1,10.	This	is	also	the	case	for	aminoglycosides,	which	

are	 sometimes	 administered	 as	 a	 single	 dose	 per	 day.	 We	 think	 it	 is	

interesting	 to	 ask	 whether	 a	 gradual	 increase	 in	 a	 drug’s	 concentration,	

compared	 to	 a	 step-wise	 increase,	would	 allow	 bacteria	 to	 physiologically	

adapt	and	thereby	tolerate	higher	drug	concentrations,		

	

	

Results	and	Discussion	
	

How	the	features	of	antibiotic	pulse	affect	survival	

	

Our	 first	 aim	was	 to	 understand	 the	 role	 of	 time,	 concentration	 and	 total	

dose	 on	 the	 survival	 of	 individual	 bacterial	 cells.	 For	 this	 purpose,	 we	

treated	 cohorts	of	E.	coli	MG1655	 cells	 inside	 a	microfluidic	 chamber	with	

pulses	of	4,	8	or	16	µg/ml	of	kanamycin	for	a	period	of	0.5,	1	or	2	hours	(we	

determined	 the	 minimal	 inhibitory	 concentration,	 MIC,	 to	 be	 4	 µg/ml	 of	

kanamycin	 for	E.	 coli	 MG1655).	 This	 range	 of	 exposures	 led	 to	 a	 range	 of	

different	 survival	 probabilities	 from	 almost	 100%	 to	 less	 than	 1%;	 this	

allowed	 us	 to	 analyze	 how	 survival	 probability	 depended	 on	 the	

combination	 of	 time	 and	 concentration	 at	 which	 a	 given	 dose	 was	

administered.	It	is	important	to	discuss	briefly	how	we	defined	the	cohort	of	

cells	whose	 survival	we	 analyzed.	We	 started	 our	 experiments	with	 a	 few	

hundred	cells	per	treatment,	and	then	exposed	these	cells	to	antibiotics.	As	

we	will	discuss	below,	some	of	these	cells	divided	during	exposure.	How	did	

we	 then	 keep	 track	 of	 the	 cells	 whose	 survival	 we	 studied?	 At	 each	 cell	

division,	we	always	followed	the	cell	that	carried	the	old	cell	pole11,12.	In	our	

microfluidic	chip,	these	cells	were	always	conveniently	located	at	the	end	of	

a	dead-end	channel	and	were	thus	not	displaced	during	cell	division.	When	

we	 thus	make	 statements	 about	 the	 fraction	 of	 cells	 that	 survived	 a	 given	

dose	of	antibiotic,	this	refers	to	the	group	of	old-pole	cells	that	we	followed	
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during	 the	 whole	 experiment.	 Note	 that	 occasionally	 old-pole	 cells	 might	

have	been	displaced	and	eventually	removed	from	the	growth	channels;	 in	

these	cases	we	followed	the	cell	that	was	located	at	the	end	of	the	dead-end	

channel.		

	

We	monitored	the	cells’	division	events	during	and	after	the	pulse	and	used	

the	 occurrence	 of	 division	 events	 after	 exposure	 as	 a	 proxy	 for	 survival	

(Figure	 1a).	We	 considered	 a	 bacterial	 cell	 as	 having	 survived	 exposure	 if	

this	 cell	 divided	 at	 least	 once	during	 the	period	of	 4	 to	10	hours	 after	 the	

pulse	 (thick	 blue	 line	 in	 Figure	 1a;	 for	 further	 details	 see	 Material	 and	

Methods).	This	criterion	avoided	to	 falsely	classifying	cells	as	dead	 if	 these	

cells	 were	 experiencing	 a	 postantibiotic	 effect	 (PAE),	 where	 cells	 stop	

growing	for	a	short	period	of	time	after	exposure8.	Previous	work	has	shown	

that	 PAE	 for	E.	coli	 cells	 treated	with	 aminoglycosides	manifests	 up	 to	 4.5	

hours	after	exposure	for	4xMIC	and	only	up	to	9	hours	for	concentrations	as	

high	as	64xMIC9.		

	

As	 expected,	 the	 results	 showed	 that	 time,	 concentration	 and	 total	 dose	

played	 a	 role	 in	 survival	 of	 the	 cells	 (ANOVA,	 p<0.001).	 By	 comparing	 the	

absolute	 survival	 of	 the	 nine	 conditions	 and	 performing	 a	 Tukey	 posthoc	

ANOVA	test,	we	were	able	 to	group	 these	conditions	 in	 four	homogeneous	

subsets	(A	to	D	in	Figure	1b;	treatments	that	belong	to	the	same	subset	show	

no	significant	differences	 in	mean	survival	among	them).	 	 In	all	cases,	cells	

treated	with	equivalent	total	doses	(shaded	in	grey)	had	survival	means	that	

belonged	to	at	least	one	equivalent	subset.	This	suggested	that	a	given	dose	

of	 antibiotic	 had	 more	 or	 less	 the	 same	 effect	 independently	 of	 the	

combination	of	concentration	and	time	that	was	used	to	administer	the	dose.	

However,	 we	 also	 found	 some	 tentative	 evidence	 that	 increasing	 the	

concentration	and	decreasing	the	time	reduced	survival	 in	some	cases.	For	

exposure	 times	 below	 one	 hour,	 combinations	with	 higher	 concentrations	
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sometimes	belonged	 to	 survival	 groups	with	 lower	means	 (Figure	2).	This	

analysis	suggested	a	potential	slightly	larger	role	of	concentration	compared	

to	time,	but	also	showed	that	the	main	predictor	of	mortality	was	the	total	

dose.		

	

a)	 	 	 	 	 	 	 b)		

	 	
Figure	1.	Survival	of	E.	coli	cells	after	a	pulse	of	kanamycin,	for	different	
combinations	of	exposure	times	and	antibiotic	concentrations.	 (a)	We	
recorded	 division	 events	 in	 cohorts	 of	 446	 cells	 from	 three	 independent	
replicates	 that	 were	 exposed	 to	 a	 2-hour	 pulse	 of	 8	 µg/ml	 of	 kanamycin	
(represented	by	the	dashed	vertical	 lines).	The	446	cells	are	ordered	along	
the	y-axis	based	on	the	time	of	their	last	division.	Each	red	dot	corresponds	
to	 a	 division	 event	 of	 a	 cell;	 dots	 that	 have	 the	 same	 y-coordinate	 are	
consecutive	 divisions	 of	 the	 same	 cell.	 	 The	 thick	 blue	 line	 indicates	 the	
period	 during	 which	 we	 evaluated	 whether	 a	 cell	 had	 survived	 antibiotic	
exposure;	 cells	 that	 divided	 during	 this	 period	 were	 considered	 to	 have	
survived.	 (b)	 Percentage	of	 survival	normalized	 to	 the	 survival	 rate	 in	 the	
absence	 of	 kanamycin	 for	 antibiotic	 pulses	 of	 different	 durations	 (x-axis)	
and	 concentrations	 (y-axis).	 Individual	 pie	 charts	 show	 mean	 survival	 in	
three	replicates	 in	red;	 the	section	 in	pink	marks	the	standard	error	of	 the	
mean.	 Grey	 areas	 group	 combinations	 of	 time	 and	 concentration	 that	
correspond	to	the	same	total	dose	(concentration	x	time).	The	capital	letters	
next	 to	 the	pie	charts	refer	 to	 the	outcome	of	a	Tukey	post	hoc	analysis	of	
variance.	 Treatments	 that	 are	 marked	 with	 the	 same	 letter	 show	 no	
significant	differences	 in	 their	mean	absolute	survival	after	exposure.	 	The	
letter	A	marks	the	treatments	with	the	highest	mean	survival	and	the	letter	
D	the	group	with	the	lowest	mean	survival.	
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Divisions	during	antibiotic	pulses	and	the	implications	for	CFU	analysis	

	

Our	 next	 goal	 was	 to	 investigate	 the	 occurrence	 of	 cell	 division	 during	

antibiotic	 exposure	 and	 the	 impact	 of	 cell	 divisions	 on	 survival	 estimates.	

Here,	we	exposed	bacterial	cells	temporally	to	concentrations	of	kanamycin	

equivalent	 or	 higher	 than	 the	 MIC.	 The	 MIC	 is	 defined	 as	 the	 antibiotic	

concentrations	 where	 visible	 growth	 is	 prevented	 when	measured	 over	 a	

24-hour	 period.	 Yet	 bacteria	 exposed	 to	 these	 concentrations	 for	 short	

periods	 of	 time	 (0.5,	 1	 or	 2	 hours)	 divided	 during	 exposure	 in	 our	

experiments	 (Figure	2a).	 In	order	 to	quantify	 the	number	of	 cell	divisions,	

we	counted	the	total	number	of	cell	divisions	during	the	antibiotic	pulse	in	

our	cell	cohort,	and	divided	this	sum	by	the	number	of	cells	in	the	cohort	to	

obtain	the	average	number	of	divisions	per	cell.		We	observed	no	significant	

differences	 in	 the	 number	 of	 divisions	 in	 the	 presence	 or	 absence	 of	

kanamycin	 during	 pulses	 of	 half	 an	 hour	 in	 all	 the	 concentrations	 studied	

(ANOVA,	 p=0.15).	 Division	 rate	 neither	 decreased	 significantly	 for	

concentrations	up	to	8	µg/ml	for	one	hour	(ANOVA,	p=0.21)	and	two	hours	

(ANOVA,	 p=0.19).	 Divisions	 even	 took	 place	 at	 the	 highest	 concentration	

studied	 (16	 µg/ml,	 4	 times	 the	 MIC);	 these	 elevated	 concentrations	 of	

kanamycin	 only	 lead	 to	 a	 reduction	 in	 the	 number	 of	 divisions	 by	 around	

50%	for	2	hours	of	exposure	(Figure	2a).			

	

These	observations	raise	the	question	of	how	the	absence	of	turbidity	after	

overnight	 exposure	 to	 those	 concentrations	 might	 be	 the	 result	 of	 the	

interplay	between	division	and	death	of	cells,	with	potentially	a	continuous	

change	in	the	rate	of	these	two	processes	throughout	the	24-hour	period	of	

an	MIC	experiment.	Further	experiments	with	cells	treated	with	such	doses	

but	longer	exposure	times	(e.g.	24	hours)	inside	microfluidic	chambers	will	

be	 critical.	 First,	 such	 experiments	 are	 required	 to	 confirm	 whether	 MIC	

values	 are	 equivalent	 in	 population-level	 batch	 experiments	 and	 in	 single-
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cell	 experiments.	 Second,	 such	 experiments	 will	 offer	 a	 more	 accurate	

picture	 of	 how	 antibiotic	 concentrations	 actually	 affect	 bacterial	 growth	

dynamics	over	longer	periods	of	time.		

	

The	occurrence	of	divisions	during	 the	pulse	 also	affects	how	we	measure	

bacterial	 survival	 when	 we	 perform	 CFUs	 (colony-forming	 units)	

measurements.	 Conventionally,	 bacterial	 survival	 is	 estimated	 by	 counting	

CFUs	before	and	after	antibiotic	exposure.	This	approach	assumes	that	there	

are	no	cell	divisions	during	the	period	of	antibiotic	exposure.	That	divisions	

do	take	place,	at	least	for	the	conditions	explored	here,	is	expected	to	lead	to	

an	overestimation	of	survival.		

	

a)	 	 	 	 	 	 	 b)		

		 	
	

Figure	 2.	 Division	 events	 during	 antibiotic	 pulses	 (a)	Mean	of	division	
events	 per	 cell	 during	 the	 antibiotic	 pulse	 with	 different	 kanamycin	
concentrations.	Error	bars	indicate	standard	error	of	the	mean	of	replicates	
(2	 replicates	 for	 the	 control	 pulse	 and	 3	 replicates	 for	 each	 of	 the	 other	
treatment	 conditions).	 (b)	 Multiple	 linear	 regression	 model	 that	 includes	
time	 and	 concentration	 as	 the	 explanatory	 variables	 to	 determine	 the	
number	 of	 divisions	 taking	 place	 during	 pulses	 of	 different	 durations	 and	
intensities	 (R2=0.9381).	 The	 black	 dots	 represent	 the	 experimental	 data	
shown	in	panel	(a).	The	surface	represents	the	regression	surface	that	best	
describes	the	data.		
	

It	 is	 important	 to	note	 that,	notwithstanding	 this	confounding	effect	of	cell	

divisions	on	survival	estimates,	 the	 total	number	of	CFUs	after	exposure	 is	
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also	an	important	and	relevant	measure:	it	is	a	proxy	for	the	total	population	

size	after	 treatment,	and	 thus	 for	 the	 threat	posed	by	a	bacterial	pathogen	

for	 a	 host.	 However,	 here	 we	were	 interested	 in	 the	 fraction	 of	 cells	 in	 a	

cohort	 that	 survives	antibiotic	 exposure,	 and	 cell	division	during	exposure	

leads	to	an	overestimation	of	survival.	We	think	it	is	interesting	to	focus	on	

survival	in	this	cohort	and	not	just	on	the	effects	on	the	total	population	size:	

we	 expect	 that	 this	 information	 is	 required	 for	 better	 understanding	 how	

antibiotics	act	on	single	cells.	The	overestimation	of	survival	 is	expected	to	

be	 higher	 for	 those	 conditions	 where	 division	 rate	 is	 not	 significantly	

affected	 during	 exposure.	 It	 might	 be	 problematic,	 for	 instance,	 when	

comparing	 conditions	 with	 equivalent	 total	 doses	 but	 where	 the	 division	

rate	during	pulse	is	affected	in	different	ways	(e.g.	16	µg/ml	of	kanamycin	in	

a	one-hour	pulse	versus	8µg/ml	of	kanamycin	in	a	two-hour	pulse,	as	shown	

in	 Figure	 2a	 and	 our	 previously	 described	 statistic	 analyses).	 As	 we	 will	

discuss	in	the	next	section,	knowing	the	division	rates	in	different	antibiotic	

regimes	allowed	us	to	correct	for	this	effect	and	derive	survival	probabilities	

from	population	measurements.		

	

Combining	population	experiments	with	single-cell	data	allows	

extending	the	range	of	exposure	time	and	antibiotic	concentrations	

that	we	can	analyze	

	

The	above-described	measurements	of	division	events	in	our	single-cell	data	

had	a	useful	 application:	 they	allowed	us	 to	use	population	measurements	

for	 estimating	 survival	 probabilities	 under	 antibiotic	 exposure	 and	 to	

correct	 these	 population	measurements	 for	 the	 overestimation	 of	 survival	

that	 resulted	 from	 cell	 division	 during	 exposure	 (Figure	 2).	 	 This	 also	

permitted	 to	 extend	 the	 number	 of	 combinations	 of	 antibiotic	

concentrations	 and	 exposure	 times	 beyond	what	we	 had	 studied	with	 the	

microfluidic	 approach.	 We	 could	 thus	 evaluate	 how	 shorter	 and	 longer,	
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milder	 and	 more	 intense	 pulses	 affected	 cell	 survival.	 We	 tested	 a	 larger	

number	 of	 combinations	 (0-32	 µg/ml	 kanamycin	 administered	 during	 15	

minutes	to	4	hours)	using	batch	cultures.	In	these	experiments,	survival	was	

initially	 estimated	 by	 comparing	 CFUs	 before	 and	 after	 the	 kanamycin	

treatment	(Figure	3a).		These	results,	however,	did	not	take	into	account	the	

division	events	occurring	during	the	pulse.		

	

We	used	the	experimental	data	obtained	from	the	single-cell	measurements	

(Figure	2a)	 to	correct	 the	results	obtained	 in	batch	 for	cell	division	events	

and	 thus	 to	 obtain	more	 precise	 survival	 estimates.	We	 used	 the	 division	

rates	 that	we	directly	measured	 in	 the	microfluidic	experiments	as	well	as	

the	 division	 rates	 that	 we	 obtained	 from	 the	 multiple	 linear	 regression	

analysis	for	conditions	that	were	not	explored	under	the	microscope	(Figure	

2b).	These	rates	were	used	to	correct	the	percentage	of	surviving	cells	after	

the	batch	cultures	were	treated	with	kanamycin	(Figure	3b;	see	Material	and	

Methods	for	further	details).		

	

The	 survival	 percentages	 observed	 in	 the	 nine	 conditions	 studied	 in	

microfluidics	 showed	 no	 difference	 to	 the	 results	 obtained	 in	 batch	 after	

correcting	 for	 divisions	 during	 pulse	 (compare	 Figure	 3b	 to	 Figure	 1b;	

ANOVA,	 p=0.20).	 This	 suggests	 that	 the	 batch	 data	 corrected	 for	 cell	

divisions	provided	a	reliable	measure	of	survival.	We	thus	analyzed	survival	

in	 the	whole	 extended	 set	 of	 combinations	 of	 concentration	 and	 exposure	

time	(see	Figure	3b).	We	compared	 the	survival	of	 those	conditions	where	

we	observed	non-zero	mortality	in	all	replicates	after	correcting	for	division	

events.	We	again	grouped	these	conditions	in	homogeneous	subsets	(Tukey	

post	hoc	ANOVA	test;	p<0.05;	Figure	3).	As	in	the	single-cell	experiments,	we	

observed	 that,	 in	 exposures	 that	 lasted	 one	 hour	 or	 less,	 administering	 a	

given	dose	as	a	shorter	pulse	at	higher	concentrations	decreased	survival	—

more	dramatically	 than	what	we	observed	 in	the	single-cell	experiments—	
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(Figure	 3b).	We	 observed	 the	 opposite	 trend	 in	 exposures	 that	 lasted	 for	

more	than	one	hour:	there,	administering	a	given	dose	as	a	 longer	pulse	at	

lower	concentrations	decreased	survival.	This	 suggests	 that,	although	 total	

dose	 was	 again	 the	 main	 determinant	 of	 survival,	 increasing	 either	 the	

duration	or	 the	 concentration	 of	 a	 pulse	 led	 to	more	 effective	 killing	 for	 a	

given	total	dose.		

	

a)	 	 	 	 	 	 	 b)		

	
	

Figure	3.	Extension	of	 the	 range	of	 concentration	and	pulse	duration:	
experiments	 performed	 in	 batch	 (a)	 Percentage	 of	 survival	 after	
treatment:	number	of	CFUs	after	antibiotic	pulse	compared	to	CFUs	before	
treatment.	(b)	Percentage	of	survival	after	treatment:	number	of	CFUs	after	
antibiotic	pulse	compared	to	CFUs	before	treatment	corrected	by	the	rate	of	
cell	division	during	the	pulse	(based	on	the	model	in	Figure	2b;	see	text	for	
further	detail).	In	both	graphs,	the	fraction	in	red	represents	the	mean	of	the	
replicates	and	the	sections	in	pink	the	standard	error	of	the	mean.	In	cases	
where	the	ratio	of	CFUs	before	to	CFUs	after	the	pulse	is	above	1,	survival	is	
shown	as	100%.	Grey	 areas	 group	 equivalent	 total	 doses.	 Coloured	 letters	
indicate	 groups	 without	 significantly	 different	 means	 in	 the	 absolute	
survival	 after	 treatment,	where	group	A	has	 the	higher	mean	and	group	B	
and	F	the	lowest	in	Figure	a	and	b,	respectively	(Tukey	post	hoc	ANOVA	test	
comparing	groups	with	all	replicates	showing	a	ratio	of	CFUs	before	to	after	
pulse	below	1;	p<0.05).		
	

As	expected,	not	considering	the	cells	that	divide	during	the	pulse	results	on	

an	overestimation	of	survival	(ANOVA,	p<0.001).	However,	 the	 impact	 that	
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longer	 exposures	 have	 on	 survival	 is	 only	 evident	 when	 adding	 those	

divisions,	 perhaps	 because	 the	 overestimation	 of	 survival	 is	 stronger	 at	

those	 scenarios	 (e.g.	 4-hour	 exposure	 to	 2	 and	 4	 µg/ml	 of	 kanamycin).	

Previous	 studies	 have	 suggested	 that	 bacterial	 mortality	 caused	 by	

aminoglycosides	 is	 more	 dependent	 on	 concentration	 than	 on	 time	

exposure3,	 partly	 due	 to	 its	 prolonged	 PAE9,13.	 This	 could	 be	 potentially	

observed	in	our	experiments	if	the	range	studied	increases,	i.e.	testing	much	

higher	concentrations.	However,	it	is	interesting	to	note	that	division	events	

in	 the	 opposite	 side	 (where	 concentration	 is	 lower	 and	 time	 exposure	

longer)	might	 be	masking	 higher	mortality	 than	 the	 one	 usually	 observed	

when	only	the	net	population	growth	is	measured.		

	

Understanding	survivors:	how	the	pulse	affects	their	growth	potential	

	

Up	to	now,	we	have	focused	on	exploring	the	effects	of	antibiotic	pulses	on	

survival	 within	 a	 bacterial	 population.	 Next,	 we	 extended	 our	 analysis	 to	

investigate	 other	 effects	 of	 antibiotics	 on	 the	 exposed	 populations.	

Specifically,	we	investigated	the	impact	of	the	exposure	on	bacterial	growth	

potential,	 i.e.	 on	 the	 reduction	 of	 the	 number	 of	 divisions	 in	 exposed	

compared	 to	 unexposed	 populations.	 For	 this	 purpose,	 we	 first	 chose	 the	

time	period	 to	 count	divisions;	we	analyzed	periods	 that	extended	beyond	

the	 time	 of	 the	 antibiotic	 pulse,	 as	 drug	 exposure	 usually	 affect	 cells	 even	

after	 the	 antibiotic	 is	 removed.	 This	 effect	 is	 even	 stronger	 when	 using	

aminoglycosides,	as	cells	need	time	for	resynthesizing	ribosomal	proteins9.	

It	 has	 been	 established	 that	 the	 postantibiotic	 effect	 (PAE),	 where	 cells	

reduce	 their	 growth,	 goes	 up	 to	 9	 hours	 after	 the	 pulse	 for	 high	

concentrations	 in	 this	 type	 of	 antibiotics9.	 Given	 this	 knowledge	 and	 the	

observation	 that,	 in	 our	 experiments,	 surviving	 cells	 in	 all	 conditions	

resumed	their	original	division	rate	within	ten	hours	after	exposure	(Figure	
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4),	for	our	analysis	we	focused	on	a	timespan	comprising	the	pulse	plus	ten	

hours	after	it	was	removed.		

	

The	 first	 interesting	 finding	when	observing	the	 impact	of	 the	pulse	 in	cell	

growth	was	that	in	some	conditions	with	low	total	dose,	divisions	during	the	

observation	period	were	gained	rather	than	lost	(green	pie	charts	in	Figure	

5).	This	happened,	on	average,	 in	all	pulses	of	4µg/ml	of	kanamycin	and	in	

the	pulse	of	8	µg/ml	of	kanamycin	for	half	an	hour.	In	the	condition	with	the	

lowest	total	dose	(4	µg/ml	of	kanamycin	for	half	an	hour)	this	effect	is	most	

pronounced	 and	 consistent	 across	 all	 replicates.	 These	 gains	 were	 not	

statistically	 significant	 compared	 to	 the	 treatments	 where	 no	 kanamycin	

was	 added	 (Tukey	 post	 hoc	 ANOVA	 test;	 subsets	 defined	 by	 significantly	

different	 means;	 p>0.05).	 However,	 it	 is	 relevant	 to	 observe	 that,	 even	 in	

scenarios	where	 the	 cells	 are	 exposed	 to	 concentrations	 equivalent	 to	 the	

MIC	—as	measured	in	batch—,	survivors	did	not	show	any	reduction	in	the	

number	of	cell	divisions	during	(already	seen	in	Figure	2)	and	after	the	pulse	

(this	result	might	depend	on	the	choice	of	the	period	that	is	used	to	compare	

cell	divisions;	in	our	case	this	period	was	ten	hours).		

	

This	 analysis	 showed	 the	 impact	 of	 time,	 concentration	 and	 total	 dose	 on	

those	who	survived	(Figure	5).	Higher	total	doses	were	once	more	having	a	

dramatic	effect	on	cells.	Conditions	with	equivalent	total	doses	were	mostly	

grouped	 in	 homogeneous	 subsets	 (Tukey	 posthoc	 ANOVA	 test;	 p<0.05),	

suggesting	 that,	at	 least	within	 this	 regime,	neither	concentration	nor	 time	

had	a	stronger	impact	on	surviving	cells.	There	was	only	an	observed	trend	

that	longer	pulses	of	low	concentrations	were	either	excluded	from	subsets	

with	 lower	 means	 (4	 µg/ml	 of	 kanamycin	 for	 two	 hours)	 or	 included	 in	

subsets	 with	 higher	 means	 (8	 µg/ml	 of	 kanamycin	 for	 one	 hour).	 This	

suggested	 a	 slightly	 stronger	 effect	 of	 concentration	 —in	 contrast	 with	

time—	on	growth	potential	of	survivors.		
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Figure	 4.	 Division	 behaviour	 of	 surviving	 cells.	 For	 each	 condition	
studied,	the	green	lines	show	the	fraction	of	cells	dividing	every	30	minutes	
(each	dot	 represents	 the	period	 comprising	 the	previous	half	 an	hour)	 for	
each	replicate.	The	black	 lines	show	the	mean	and	standard	error	of	 these	
replicates.	The	pulse	 is	 represented	with	vertical	blue	dashed	 lines,	 shown	
here	with	the	20	minutes	delay	from	the	time	it	was	applied	until	it	reaches	
the	microfluidic	 device.	 It	 is	 relevant	 to	 note	 that	 the	 pulses	 that	 result	 in	
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higher	mortality	(e.g.	2	hours	of	16	µg/ml	of	kanamycin)	have	a	very	small	
sample	of	surviving	cells.		
	

	

Figure	 5.	 Percentage	 of	 divisions	
in	surviving	cells	during	and	after	
the	 pulse	 compared	 to	 scenarios	
without	 antibiotic	 exposure.	 Red	
pies	 represent	 conditions	 in	 which	
antibiotic	 exposure	 resulted	 in	 a	
reduction	 of	 cell	 divisions;	 green	
pies	 represent	 conditions	 with	 an	
increase	 in	 cell	 divisions.	 The	
sections	 in	 pink	 and	 light	 green	
show	the	standard	error.	Grey	areas	
group	 conditions	 with	 equivalent	
total	dose.	Identical	coloured	letters	

indicate	 groups	 without	 significantly	 different	 means	 in	 the	 fraction	 of	
divisions	 gained	 or	 lost.	 Group	 A	 has	 the	 higher	 mean	 and	 group	 E	 the	
lowest	(Tukey	post	hoc	ANOVA	test;	p<0.05).		
	

	

Step-wise	versus	gradual	increase	of	antibiotic	concentration		

	

Finally,	 we	 were	 interested	 in	 exploring	 whether	 equivalent	 total	 doses	

applied	through	a	gradual,	rather	than	a	stepwise	increase	in	concentration,	

would	 influence	 survival.	 We	 were	 able	 to	 create	 a	 continuous	 antibiotic	

gradient	 by	 feeding	 the	 chambers	with	 two	 pumps,	 one	without	 the	 drug	

and	 the	 other	 with	 the	 maximum	 concentration	 reached	 (16	 µg/ml	

kanamycin)	and	setting	the	rate	of	the	former	from	0.5	to	0	ml/hour	and	the	

latter	from	0	to	0.5	ml	during	the	exposure	times	tested	(1,	2	or	4	hours).		

	

We	found	that	survival	neither	growth	potential	of	survivors	was	affected	by	

this	modification	of	the	antibiotic	pulse	(Figure	6).	We	did	this	by	comparing	

these	 results	 with	 equivalent	 doses	 in	 step-wise	 increases	 of	 the	 pulse	

(Figures	 1b	 and	 5)	 and	we	 found	 no	 significant	 differences	 between	 both	
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types	of	pulses	 (all	ANOVA;	p>0.05,	 see	 table	S3).	These	 results	 confirmed	

the	 strong	 role	 of	 the	 total	 dose	 we	 observed	 throughout	 the	 previous	

experiments.			

	

Figure	 6.	 Effect	 of	 an	 antibiotic	
pulse	 when	 the	 concentration	
increases	 gradually.	 E.	 coli	 cells	
were	 exposed	 to	 antibiotic	 pulses	
where	the	drug	increased	gradually	
during	1,	2	or	4	hours	until	reaching	
16	 µg/ml	 of	 kanamycin.	 The	 upper	
row	of	pie	charts	shows	percentage	
of	survival	 for	each	condition	while	
those	 in	 the	 lower	 row	 represent	
the	 percentage	 of	 the	 number	 of	
divisions	 maintained	 during	 and	
after	 the	 pulse.	 Mean	 survival	 of	
three	replicates	is	shown	in	red;	the	
section	 in	 pink	marks	 the	 standard	
error	 of	 the	mean	 across	 the	 three	
replicates	 (150-350	 cells	 were	

studied	for	each	replicate).	
	

	

Materials	and	Methods	
	

The	strain	used	for	all	 the	experiments	and	results	exposed	in	this	chapter	

was	Escherichia	coli	MG1655.	

	

Single-cell	experiments	

	

Time-lapse	microscopy	

Cultures	 of	 E.	 coli	 MG1655	 strain	 were	 grown	 overnight	 in	 M9	 media	

supplemented	 with	 0.4%	 glucose,	 to	 be	 afterwards	 inoculated	 in	 1:20	 in	

fresh	equivalent	media	plus	0.01%	Tween	for	two	hours,	time	at	which	they	

were	at	exponential	phase.	The	cells	were	then	introduced	into	the	chamber	
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of	 microfluidic	 devices,	 where	 they	 were	 fed	 by	 M9	media	 supplemented	

with	0.4%	glucose	and	0.01%	Tween,	using	a	peristaltic	pump.	Cells	 inside	

the	chamber	were	 left	overnight	with	continuous	 input	of	 fresh	media	and	

were	then	subjected	to	an	antibiotic	pulse	of	4,	8	or	16	µg/ml	during	0.5,	1	

or	2	hours.	 Images	were	recorded	every	 five	minutes	2-3	hours	before	 the	

pulse,	during	it	and	10-12	hours	afterwards.	Division	rate	was	subsequently	

measured	 manually,	 with	 the	 aid	 of	 the	 software	 Vanellus14.	 Previous	

research	 work	 evaluating	 the	 diffusion	 of	 small	 molecules	 in	 microfluidic	

chambers	confirm	that	there	is	a	separation	of	timescales	between	the	(fast)	

diffusion	of	small	molecules	and	 the	(slow)	uptake	of	 the	cell15,	 suggesting	

that	 the	 fast	 diffusion	 of	 the	 antibiotic	 had	 likely	 allowed	 the	 cells	 to	

experience	the	pulse	during	the	whole	period	it	lasted.		

	

The	protocol	for	the	experiments	performed	to	test	the	response	to	gradual	

increase	 of	 antibiotics	 was	 mostly	 equivalent	 to	 those	 performed	 for	 the	

rectangular	 pulses.	 The	 only	 difference	 was	 the	 pumps	 used	 to	 feed	 the	

chambers.	We	used	syringe	pumps	previous,	during	and	after	exposure.	For	

obtaining	the	gradual	increase	in	antibiotic,	we	connected	two	pumps	to	the	

input	 of	 the	 chambers;	 one	 of	 the	 syringes	 contained	 media	 without	

antibiotics	 and	 the	other	16	µg/ml	of	 kanamycin.	The	 rate	of	 pumping	 for	

the	first	one	went	from	0.5	to	the	0	ml/hour	while	the	second	pumped	from	

0	 to	 0.5ml/hour,	 throughout	 the	 1,	 2	 or	 4	 hours	 of	 exposure,	 creating	 a	

gradient	of	the	drug.		

	

Division	events	as	a	proxy	for	survival		

The	period	monitored	 to	evaluate	 if	a	cell	was	alive	or	dead	(based	on	 the	

presence	or	absence	of	divisions)	comprise	the	last	6	hours	of	the	10	studied	

after	 the	 input	 media	 with	 antibiotics	 was	 replaced	 with	 fresh	 M9	 with	

glucose	 (thick	 blue	 line	 in	 Figure	 1a).	 Survival	 values	 are	 not	 significantly	
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affected	when	division	 is	 evaluated	 in	periods	expanding	 to	 the	 last	9.5	or	

reduced	to	the	last	2.5	hours	of	those	10	hours	(ANOVA,	p=0.27).	

Measuring	division	events	during	the	antibiotic	pulse	

We	determined	the	number	of	division	events	per	cell	that	took	place	during	

the	antibiotic	pulse	(Figure	2a)	by	averaging	the	number	of	divisions	of	all	

cells	during	the	treatment.	In	order	to	identify	the	exact	moment	when	the	

bacteria	 cells	 experienced	 the	 pulse,	 we	 performed	 tests	 using	 the	

equivalent	setup	where	the	input	media	was	food	colouring.	We	found	that	a	

change	 in	 the	 media	 took	 approximately	 20	 minutes	 to	 reach	 the	 cells.	

Therefore,	 the	 division	 events	 during	 the	 pulse,	 shown	 in	 Figure	 2a,	were	

evaluated	taking	into	account	this	20-minute	delay.		

	

Percentage	of	divisions	in	surviving	cells	compared	to	those	not	exposed	

In	order	to	obtain	the	percentages	of	divisions	in	surviving	cells	(Figure	5),	

we	used	the	six	replicates	exposed	to	pulses	of	media	without	kanamycin	(2	

for	each	exposure	time	studied).	For	the	nine	conditions	with	kanamycin,	we	

counted	the	time	during	the	pulse	(excluding	the	 first	20	minutes)	and	the	

10	hours	 after	 the	manual	 removal	 of	 the	media.	We	 compared	 that	 value	

with	the	number	of	divisions	taking	place	in	the	6	replicates	of	Kan0	for	the	

exact	 period	 of	 time,	 regardless	 whether	 the	 pulse	 in	 the	 absence	 of	

antibiotics	was	for	0.5,	1	or	2	hours.			

	

Population-level	experiments	(batch)	

	

Antibiotic	pulses	for	batch	cultures	

Cultures	 of	 E.	 coli	 MG1655	 strain	 were	 grown	 overnight	 in	 M9	 media	

supplemented	with	0.4%	glucose,	 to	be	 then	 inoculated	 in	1:1000	 in	 fresh	

equivalent	 media	 for	 four	 hours,	 time	 at	 which	 they	 were	 at	 exponential	

phase.	 The	 cells	were	 plated	 and	 exposed	 to	 0,	 2,	 4,	 8,	 16	 or	 32	 µg/ml	 of	

kanamycin	for	0.25,	0.5,	1,	2	or	4	hours	in	96-well	plates.	The	cultures	were	
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plated	before	and	after	the	pulse	in	M9	agar	plates	supplemented	with	0.4%	

glucose.	 After	 at	 least	 30	 hours,	 CFUs	 were	 counted	 and	 survival	 was	

determined	by	the	ratio	of	this	measurement	before	and	after	treatment.		

	

In	 order	 to	 correct	 the	 survival	 percentage	 by	 including	 divisions	 during	

pulse,	we	modified	 the	CFUs	before	 treatment	 (ni)	 to	ni*2d,	where	d	 is	 the	

division	 events	 per	 cell	 during	 the	 antibiotic	 pulse,	 obtained	 from	 the	

experiment	data	 if	 available	or	 from	 the	predictions	by	 the	multiple	 linear	

regression	model	(Figure	2b).	

	

Statistical	analyses	

	

Single-cell	experiments	

In	order	to	evaluate	whether	there	were	differences	in	the	mean	in	survival	

among	 the	 nine	 conditions	 studied,	 we	 performed	 an	 analysis	 of	 variance	

(ANOVA)	on	the	arcsine-transformed	data	(p<0.001;	same	result	on	data	not	

transformed).	The	Tukey	posthoc	test	described	 in	Figure	1b	also	gave	the	

same	homogeneous	subsets	on	data	not	transformed.		

	

When	comparing	number	of	divisions	in	those	cells	surviving,	we	performed	

the	Tukey	posthoc	ANOVA	test	on	(1)	the	fraction	of	divisions	taking	place	

during	and	after	ten	hours	after	the	pulse	(values	above	and	below	1;	data	is	

not	 transformed)	 and	 (2)	 comparing	 absolute	 number	 of	 divisions	 during	

pulse	and	12	hours	 since	pulse	 started	 (noted	 that	 these	number	of	hours	

included	the	pulse,	in	order	to	standardized	the	number	of	hours	studied	in	

all	 conditions).	 Equivalent	 homogeneous	 subsets	 were	 found	 in	 both	

approaches.	 In	both	analyses,	 the	divisions	 taking	place	during	 the	 first	20	

minutes	after	the	manual	change	of	input	media	are	not	included,	as	that	is	

the	time	period	it	takes	the	media	to	reach	the	cells.		
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Batch	culture	experiments	

In	order	to	evaluate	whether	there	were	differences	in	the	mean	in	survival	

among	 the	 conditions	 studied	 (those	 with	 survival	 below	 100%),	 we	

performed	an	analysis	of	variance	(ANOVA)	on	the	arcsine-transformed	data	

not	yet	 corrected	 for	divisions	during	pulse	 (p<0.001;	 same	result	on	data	

not	 transformed).	 The	Tukey	posthoc	 test	 described	 in	 Figure	3a	 gave	 the	

same	 homogeneous	 subsets	 on	 data	 not	 transformed.	 We	 performed	

equivalent	analyses	for	the	arcsine-transformed	data	including	the	division	

events	 during	 treatment	 (p<0.001;	 same	 result	 on	 data	 not	 transformed).	

The	Tukey	posthoc	test	described	in	Figure	3b	was	affected	when	performed	

on	 data	 not	 yet	 transformed:	 all	 CDEF	 subsets	 were	 grouped	 in	 only	 one	

homogeneous	subset.		

	

Comparing	microfluidic	versus	batch	culture	experiments	

We	compared	 the	 results	 obtained	 for	 the	nine	 conditions	 studied	 in	 both	

experiments	(4,	8,	16	µg/ml	kanamycin	 for	0.5,	1,	2	hours	of	exposure).	 In	

cases	where	the	ratio	of	CFUs	before	to	after	treatment	was	above	1	in	any	

of	 the	 replicates	 in	 batch,	 this	 value	was	modified	 to	 1.	 	 The	 ANOVA	was	

performed	 on	 the	 arcsin	 transformed	 data	 but	 no	 significant	 differences	

were	neither	found	when	analysis	was	performed	on	data	not	transformed	

(p	 =	 0.72).	 However,	 when	 comparing	 microfluidic	 experiments	 versus	

results	 in	 batch	 without	 accounting	 for	 the	 divisions	 during	 pulse,	 the	

ANOVA	 showed	 significant	 differences	 between	 both	 experimental	

approaches	(p<0.001	in	transformed	and	untransformed	data).		
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0.9903	

180	

80	

85	

0.8722	

0.9375	

0.8941	

205	

86	

158	

	

0.2098	

0.2326	

0.0570	

	

2	h	

131	

135	

0.9695	

0.9630	

157	

73	

72	

0.8089	

0.9041	

0.7361	

187	

169	

109	

0.1497	

0.0533	

0.1835	

192	

134	

143	

0	

0.0149	

0.0070	

Table	S1.	Number	of	cells	used	for	each	replicate	of	the	12	conditions	
studied	in	the	microfluidic	experiments.	
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	 Kan	0	 Kan	2	 Kan	4	 Kan	8	
Kan	

16	

Kan	

32	

0.25	

h	
4	 4	 4	 4	 4	 4	

0.5	h	 4	 4	 4	 4	 4	 4	

1	h	 4	 4	 4	 2	 4	 4	

2	h	 4	 2	 3	 4	 4	 4	

4	h	 4	 4	 4	 4	 4	 4	

Table	S2.	Number	of	replicates	for	each	of	the	30	conditions	studied	in	
batch	culture	experiments.		
	
Total	doses		
µg/ml	
Kanamicin	
/hour	

Survival	
(stepwise	versus	gradual)	
	P-values	

Growth	potential	of	
survivors	
(stepwise	versus	gradual)	
P-values	

32		 0.35	 0.35	
16	 0.48	 0.15	
8	 0.24	 0.45	
Table	 S3.	 ANOVA	 P-values	 for	 comparing	 equivalent	 total	 doses	 in	
stepwise	 and	 gradual	 increase	 of	 antibiotics.	 Survival:	 Absolute	
percentage	 of	 survival	 was	 used	 for	 comparison,	 p-values	 shown	 for	 data	
after	arcsin	transformation;	equivalent	results	(p>0.05)	were	obtained	when	
data	was	not	transformed.	Growth	potential	of	survivors:	p-values	shown	
for	data	without	transformation;	equivalent	results	(p>0.05)	were	obtained	
when	data	was	arcsin	transformed	in	the	cases	when	this	was	possible.		
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Chapter	3		

	

	

	

Can	we	predict	cell	survival	

upon	an	antibiotic	pulse?	
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Abstract	
	

During	 the	 last	 decades,	 it	 has	 become	 clear	 that	 phenotypic	 differences	

between	 genetically	 identical	 bacteria	 can	 play	 an	 important	 role	 in	

determining	whether	or	not	individual	cells	survive	exposure	to	antibiotics.	

For	instance,	a	tiny	fraction	of	bacterial	cells	that	are	in	a	metabolic	inactive	

state,	 called	persisters,	are	known	 to	be	more	 tolerant	 to	antibiotics.	Little	

work,	 however,	 has	 been	 done	 to	 understand	 the	 factors	 allowing	 cell	

survival	 in	 the	 early	 phase	 of	 killing	 upon	 antibiotic	 exposure,	 before	

persister	 numbers	 become	 relevant.	 In	 this	 chapter,	 we	 looked	 for	

phenotypic	predictors	of	 survival	at	 the	single-cell	 level,	using	 information	

about	division	events	before,	during	and	after	E.	coli	 cells	were	exposed	to	

kanamycin	 pulses,	 as	 described	 in	 Chapter	 2.	 We	 found	 no	 evidence	 that	

interdivision	time	previous	to	exposure,	as	a	proxy	for	growth	rate,	predicts	

survival.	However,	in	conditions	with	low	survival	(between	5%	and	50%),	

we	 found	 that	 cells	 that	 did	 not	 divide	 at	 all	 in	 the	 hours	 previous	 to	

exposure	 (potential	 persisters)	 showed	 higher	 levels	 of	 survival.	 We	 also	

asked	whether	the	cell	cycle	position	of	a	cell	at	the	onset	of	exposure	could	

influence	 survival,	 but	 found	 no	 evidence	 to	 support	 this.	 Finally,	 we	 saw	

that	 early	 divisional	 behaviour	 (i.e.	 division	 frequency	 during	 and	

immediately	after	the	pulse)	can	predict	survival.		
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Introduction	
	

Bacterial	 cells	 can	 survive	 antibiotic	 treatment	 either	 by	 being	 genetically	

resistant	 or	 by	 being	 in	 a	 phenotypic	 state	 that	 confers	 protection	 from	 a	

drug.	 As	 opposite	 to	 genetic	 resistance,	 which	 defines	 the	 identity	 of	 a	

population,	phenotypic	traits	can	sometimes	be	found	in	a	subpopulation	of	

a	clonal	group	of	cells	that	tolerate	only	transiently	the	presence	of	a	drug1,2.	

Persister	cells	are	an	example	of	a	subpopulation	that	can	survive	antibiotic	

treatment	 as	 a	 consequence	 of	 their	 phenotypic	 state1–4.	 Persistence	—in	

one	of	its	definitions—	refers	to	the	phenomenon	where	a	minor	fraction	of	

cells	 survives	 antibiotic	 exposure	 a	 long	 time	 after	most	 of	 the	population	

have	 been	 killed	 in	 a	 log-linear	 fashion1,4,5.	 Their	 survival	 is	 attributed	

largely	to	their	reduced	growth	rate5.			

	

In	this	chapter,	we	were	interested	in	exploring	potential	phenotypic	traits	

associated	 with	 survival	 during	 the	 log-linear	 death	 phase,	 before	 the	

‘persistent	 fraction’	 becomes	 significant.	 Are	 there	 phenotypic	 differences	

that	 cause	 some	 cells	 to	 be	 more	 sensitive	 than	 others	 during	 this	 early	

phase	of	death?	Little	work	has	been	done	to	understand	survival	and	death	

in	this	early	phase	of	the	kill	curve.	But	there	is	evidence	that,	 in	scenarios	

where	 survival	 is	 much	 higher	 than	 the	 one	 expected	 in	 a	 population	

composed	 only	 of	 ‘persisters’	 —in	 the	 definition	 previously	 described—,	

individual	 traits	have	been	associated	with	higher	chances	of	 survival.	Cell	

cycle	position	in	Caulobacter	crescentus,	for	example,	has	a	strong	impact	on	

survival	to	sodium	chloride6	and	expression	of	virulent	genes	in	Salmonella	

typhimurium	increases	survival	to	antibiotic	treatment7.	

	

Here	 we	 studied	 whether	 phenotypic	 traits	 of	 individual	 cells	 were	

associated	with	survival	after	an	antibiotic	pulse	within	the	log-linear	death	

phase	(Figures	1	and	S1).	Escherichia	coli	cells	were	exposed	to	a	range	of	4-
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16	 µg/ml	 of	 the	 aminoglycoside	 kanamycin	 for	 0.5-2	 hours.	 These	

experiments	are	fully	described	in	Chapter	2.	In	the	current	chapter	we	only	

focus	on	the	five	conditions	where	the	survival	percentage	lies	between	5%	

and	95%	 (Figures	1a	 and	1b).	We	 investigated	 traits	 that	 can	be	 obtained	

from	monitoring	division	events	previous,	during	and	shortly	after	the	pulse,	

such	as	interdivision	times	and	cell	cycle	stage	at	the	onset	of	the	exposure.	

	

	(a)		 	 	 	 	 	 (b)	

	
Figure	 1.	 Percentage	 of	 survival	 of	 E.	 coli	 cells	 after	 a	 pulse	 of	
kanamycin	(results	taken	from	Chapter	2).	(a)	Percentage	is	normalized	
to	the	survival	rate	in	the	absence	of	kanamycin;	individual	pie	charts	show	
mean	survival	of	three	replicates	in	red	and	the	section	in	pink	refers	to	the	
standard	 error	 of	 the	mean	 (see	 Chapter	 2	 for	 further	 details).	 Conditions	
shaded	 in	 grey	 are	 the	 ones	 studied	 in	 the	 current	 chapter.	 (b)	 Time-kill	
curves	 show	 mean	 and	 standard	 error	 of	 survival	 in	 the	 conditions	
illustrated	 in	Figure	1a;	 those	with	a	 filled	circle	 in	the	mean	value	are	the	
ones	we	studied	in	this	chapter	(these	are	the	same	conditions	as	the	shaded	
area	in	Figure	1a).		
	

Growth	 rate	 could	 be	 potentially	 relevant	 for	 bacteria	 exposed	 to	

aminoglycosides.	 These	 antibiotics	 target	 the	 ribosome,	 inhibiting	 protein	

synthesis	 and	generating	protein	mistranslation8,9.	There	 is,	 for	 instance,	 a	

correlation	 between	 ribosome	 content	 and	 nutrient-dependent	 growth	

rate10,	 which	 has	 been	 shown	 to	 be	 relevant	 in	 response	 to	 sublethal	

concentrations	of	ribosome-binding	antibiotics11.	Additionally,	as	cells	enter	

stationary	 phase,	 ribosomes	 enter	 into	 an	 hibernation	 state	 that	 increases	
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tolerance	 to	 aminoglycosides12.	 Associations	 between	 the	 number	 and	 the	

state	 of	 ribosomes	 and	 growth	 rate	 and	 survival	 are	 usually	 analysed	 by	

varying	 the	 quality	 and	 quantity	 of	 nutrients;	 it	 is	 not	 clear	 whether	

phenotypic	variation	 in	 these	 traits	within	one	population	can	also	explain	

variability	in	survival.	

	

It	 is	 also	 unclear	 how	 the	 cell	 cycle	 stage	 of	 an	 individual	 exposed	 to	

antimicrobial	treatment	impacts	its	survival.	In	eukaryotes,	where	the	stages	

of	the	cell	cycle	are	well	defined,	there	is	evidence	of	such	a	role	in	certain	

stresses.	Yeast	cells	exposed	to	copper,	for	example,	have	higher	chances	of	

survival	 if	 they	 are	 in	 G1	 phase	when	 they	 are	 exposed13.	 Neuroblastoma	

cells	 in	 a	 tumour	 also	 show	different	 response	 to	 treatment	depending	on	

their	 cell-cycle	 position14.	 In	 bacteria,	 however,	 the	 issue	 is	 less	 clear.	 The	

bacterium	 Caulobacter	 crescentus	 shows	 significant	 differences	 in	 survival	

when	exposed	to	salt	stress	depending	on	the	cell	cycle	stage6.	On	the	other	

hand,	survival	of	E.	coli	cells	exposed	to	heat	stress	has	not	been	found	to	be	

influenced	by	this	factor15.	As	far	as	we	know,	the	role	of	cell	cycle	stage	in	

bacteria	exposed	to	antibiotic	stress	has	not	been	addressed.	

	

	

Results	and	Discussion	
	

Interdivision	time	previous	to	exposure	does	not	predict	survival		

	

In	order	 to	evaluate	whether	growth	rate	before	 the	antibiotic	pulse	could	

influence	survival,	we	monitored	 the	cells	 two	hours	previous	 to	exposure	

(plus	 the	20-minute	delay	 that	 it	 takes	 for	 the	media	 to	 reach	 the	 cells,	 as	

reported	in	Chapter	2).	We	registered	the	division	events	in	this	period	and	

used	the	length	of	time	between	the	penultimate	and	the	last	division	event	

before	 the	 pulse	 as	 a	 proxy	 for	 growth	 rate.	 We	 then	 applied	 a	 logistic	
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regression	using	 the	minutes	of	 this	 interdivision	period	 to	test	whether	 it	

could	be	used	as	a	predictor	 for	survival.	 	We	 implemented	this	procedure	

for	each	replicate	in	all	the	conditions	studied	(5	conditions	and	3	replicates	

each,	 giving	 a	 total	 of	 15	 experiments)	 and	 obtained	 their	 corresponding	

regression	models	as	 shown	 in	Figure	2a	 (the	red	 line	 represents	 the	only	

case	where	the	relationship	between	both	variables	was	significant,	i.e.	one	

of	the	three	replicates	where	cells	were	exposed	to	16µg/ml	to	kanamycin).	

We	then	plotted	the	beta	values	of	all	the	experiments	against	their	p-values,	

where	 the	 sign	 of	 beta	 indicates	 whether	 there	 is	 a	 positive	 or	 negative	

correlation	between	the	two	variables	and	 its	p	designates	the	significance	

of	this	relationship	(Figure	2b).	Except	for	the	one	replicate	mentioned,	none	

of	 the	 logistic	 regression	models	 showed	a	 significant	association	between	

the	length	of	the	interdivision	times	and	the	chance	of	survival	(Figure	2b).		

	

We	 hypothesized	 that	 growth	 rate	 could	 influence	 the	 cell	 fate	 after	 the	

antibiotic	exposure	due	to	different	reasons.	In	first	place,	there	are	several	

studies	 indicating	 that	 slow-growing	 populations	 are	 more	 tolerant	 to	

antibiotics.	 This,	 however,	 has	 been	 mainly	 done	 through	 manipulating	

growth	rate	by	modifying	the	growth	condition4,16,17	(i.e.	increased	tolerance	

found	at	the	level	of	population,	not	heterogeneously	in	a	same	clonal	group	

exposed	to	the	same	environment)	or,	through	the	study	of	persisters,	which	

is	a	very	small	number	not	necessarily	relevant	for	the	survival	percentage	

we	see	in	our	conditions4,5,18.	Growth	rate	could	also	potentially	be	relevant	

for	 this	 specific	 type	 of	 drug,	 as	 kanamycin	 targets	 ribosomes.	 Ribosome	

content	is	linearly	related	to	growth	rate,	when	growth	rate	is	manipulated	

by	 nutrient	 quality10,	 and	 this	 variation	 is	 known	 to	 affect	 how	 bacteria	

respond	 to	 ribosome-targeting	 antibiotics,	 at	 least	 at	 subinhibitory	

concentrations11.	 However,	 it	 is	 unknown	 whether	 the	 linear	 correlation	

between	 ribosomes	 and	 growth	 rate	 is	 maintained	 within	 a	 clonal	

population	experiencing	the	same	nutrient	quality.	 It	 is	also	unknown	how	
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much	 variation	 exists	 in	 the	 ribosome	 content	within	 a	 clonal	 population,	

although	superresolution	fluorescence	microscopy	might	be	helpful	to	soon	

unravel	this	question19,20.		

	

(a)		 	 	 	 	 	 (b)	

	
Figure	2.	Logistic	regression	to	evaluate	the	role	of	 interdivision	time	
previous	to	exposure	on	survival.	(a)	Logistic	regression	model	for	the	15	
experiments	performed	(5	conditions,	3	replicates	each).	Except	for	the	one	
experiment	 marked	 with	 a	 red	 line,	 none	 of	 the	 experiments	 showed	 a	
significant	 effect	 of	 the	 interdivision	 time	 on	 the	 probability	 of	 surviving	
exposure	 to	 antibiotics.	 (b)	 The	 beta	 values	 and	 significance	 values	 (p-
values)	obtained	 from	 the	 regression	models	 in	Figure	2a	are	plotted.	The	
beta	value	describes	how	the	probability	of	survival	changes	with	increasing	
interdivision	time;	a	positive	beta	means	that	survival	increases	with	longer	
interdivision	 times	(as	we	would	expect	 if	 cells	 that	grow	more	slowly	are	
more	 tolerant);	 a	 negative	 value	 means	 that	 survival	 decreases	 with	
increasing	 interdivision	 time.	 The	 p-value	 associated	with	 each	 beta-value	
denotes	 whether	 the	 effect	 is	 statistically	 significant.	 	 The	 dashed	 line	
separates	significant	(p<0.05)	from	nonsignificant	coefficient	estimates.		
	

	

Our	results,	however,	suggested	that	interdivision	time	previous	to	exposure	

did	 not	 predict	 survival.	 Research	 on	 single-cells	 has	 shown	 that	 growth	

rates	 and	 inverse	 interdivision	 times	 are	 correlated	 across	 slow	 growth	

conditions21	 —as	 the	 one	 studied	 in	 this	 chapter—,	 so	 it	 is	 possible	 to	

translate	these	results	into	the	observation	that	the	variation	in	growth	rate	

among	 the	 cells	 in	 our	 experimental	 setting	 did	 not	 seem	 to	 influence	

survival	 probabilities	 upon	 exposure	 to	 kanamycin.	 One	 possible	
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explanation	 for	 this	 finding	 is	 that	 the	 variation	 in	 growth	 rate	 and	

interdivision	 time	 in	 clonal	 populations	 under	 the	 conditions	 studied	here	

might	 be	 too	 small	 to	 manifest	 as	 survival	 differences.	 In	 particular,	 the	

variation	 in	 growth	 rate	 might	 not	 be	 linked	 with	 ribosome	 content	 or	

proton	 motive	 force,	 and	 thus	 might	 not	 translate	 into	 variation	 in	

phenotypic	traits	that	are	linked	with	tolerance	to	aminoglycosides.		

	

Potential	role	of	persister-like	cells	in	survival	in	conditions	with	high	

mortality	

	

In	 the	 previous	 analysis,	 we	 only	 included	 cells	 that	 had	 a	 defined	

interdivision	 time	 (i.e.	 two	 division	 cells	 during	 the	 monitored	 period	

previous	to	treatment).	However,	there	was	a	small	fraction	of	cells	that	did	

not	divide	throughout	the	140	minutes	before	the	pulse.	We	do	not	know	the	

last	 time	these	cells	divided;	 they	could	potentially	have	been	 in	a	growth-

arrested	 state	 for	 a	 long	 period	 of	 time,	 a	 characteristic	 of	 persister	 cells.	

Persister	cells,	in	that	definition,	are	usually	present	as	a	very	small	fraction	

in	a	population	(10-4	to10-6	in	traditional	studies	of	exposure	to	beta-lactam	

antibiotics5,18;	 these	numbers	are	usually	defined	by	surviving	cells,	not	by	

growth	rate	previous	to	treatment).		

	

The	 potential	 persister	 cells	 in	 our	 experiments	 might	 come	 from	 two	

different	sources:	they	could	have	emerged	during	stationary	phase	(type	I	

persisters)	 or	 have	 been	 produced	 through	 phenotypic	 switching	 during	

exponential	 phase:	 (type	 II	 persisters)5.	 There	 is	 a	 feature	 of	 our	

experimental	 system	 that	 increases	 the	 probability	 of	 having	 type	 I	

persisters	 compared	 to	 a	 batch	 experiment	 that	 has	 grown	 for	 the	 same	

amount	of	time	in	exponential	phase.	This	is	the	fact	that	cells	monitored	in	

our	 experiments	 were	 placed	 inside	 the	 microfluidic	 chambers	 after	 two	

hours	 of	 exponential	 growth	 of	 a	 population	 coming	 from	 an	 overnight	
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culture,	 and	 then	 fed	with	 continuous	media	without	 antibiotics	 for	 20-27	

hours	before	treatment.	The	majority	of	cells	 that	entered	into	exponential	

phase	 during	 the	 first	 two	 hours	 —before	 being	 placed	 inside	 the	

chambers—	were	already	in	a	balanced	growth	when	they	were	exposed	to	

kanamycin.	However,	the	minority	of	cells	that	had	not	yet	initiated	growth	

and	 ended	up	 in	 the	bottom	of	 a	 chamber	did	not	 go	 through	 the	dilution	

process	they	would	have	gone	through	in	a	bulk	experiment.	While	we	thus	

do	 not	 know	whether	 the	 persister-like	 cells	 observed	 here	 were	 formed	

during	 stationary	 or	 exponential	 phase,	 it	 is	 plausible	 that	 a	 substantial	

fraction	derived	from	stationary	phase	and	were	protected	from	dilution	by	

fast-growing	cells	during	growth	in	our	microfluidic	device.		

	

We	therefore	investigated	whether	these	cells	 in	apparent	growth-arrested	

state	 showed	higher	 levels	 of	 survival.	We	 grouped	 all	 the	 cells	 studied	 in	

two	 categories:	 those	 that	 at	 least	 divided	 once	 in	 the	 lapse	 monitored	

before	the	pulse	and	those	that	did	not	divide	at	all	 (on	average	3%	of	 the	

population	 studied).	 When	 comparing	 the	 fraction	 of	 divisions	 in	 both	

categories,	we	found	no	significant	differences	in	the	fraction	of	survival	for	

conditions	 where	 survival	 was	 high	 (above	 75%	 of	 the	 population	 in	

average;	ANOVA,	p-values:	0.32,	0.58,	0.73	for	8,	4,	16	µg/ml	of	kanamycin	

for	1,	2,	0.5	hours	respectively).	However,	in	conditions	where	survival	was	

low,	i.e.	only	10-20%	of	cells	survived,	the	fraction	of	survivors	was	higher	

for	the	potential	persister	population,	although	only	significant	in	one	of	the	

two	conditions	(ANOVA	p-values:	p<0.001	and	p=0.32	for	16	and	8	µg/ml	of	

kanamycin	 for	 1	 and	 2	 hours,	 respectively).	 The	 different	 fractions	 of	

survival	in	both	categories	and	the	number	of	potential	persisters	are	shown	

in	Figure	3.		

	

These	 findings	 suggested	 that	 the	 growth-arrested	 state	 of	 cells	 was	

conferring	 higher	 survival	 in	 conditions	 where	 the	 total	 dose	 was	 high.	
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However,	 the	presence	of	persisters	only	explained	 to	a	very	 small	degree	

the	 fate	 of	 cells	 in	 the	 log-linear	 death	 phase.	 The	 survival	 fraction	 in	 the	

category	of	cells	dividing	once	(Figure	3a)	illustrates	this.		

	

	

(a)		 	 	 	 	 	 (b)	

	
Figure	 3.	 Survival	 fraction	 of	 potential	 persistent	 cells	 (a)	 Survival	
fraction	of	each	condition	studied	for	cells	dividing	at	least	once	during	the	
2:20	 hours	 monitored	 previous	 to	 exposure	 and	 those	 with	 no	 observed	
division	(potential	persisters).	Mean	and	standard	error	of	 three	replicates	
for	 each	 case	 is	 shown.	When	 comparing	 both	 categories	 of	 cells,	 there	 is	
only	 a	 significant	 increase	 of	 survival	 in	 potential	 persisters	 for	 those	
exposed	to	16	µg/ml	of	kanamycin	during	one	hour	(ANOVA,	p<0.001).	(b)	
Number	of	cells	with	no	division	observed	for	each	of	the	replicates	and	the	
fraction	of	the	population	that	it	represents.			
	

	

Cell	cycle	stage	at	the	moment	of	pulse	does	not	predict	survival		

	

We	then	tested	whether	the	cell	cycle	position	of	each	cell	at	the	onset	of	the	

antibiotic	exposure	affected	the	probability	to	survive.	We	used	the	minutes	

that	had	elapsed	since	the	last	cell	division	as	a	proxy	for	cell	cycle	stage	and	

categorized	 each	 cell	 based	 on	 this	 variable.	 By	 comparing	 the	 survival	

fraction	of	cells	for	each	category	in	all	the	conditions	studied,	we	found	no	

evidence	that	the	cell	cycle	stage	of	a	cell	had	an	effect	on	that	cell’s	survival	

(Figure	4;	ANOVA	p	values	for	each	conditions	p>0.05;	see	table	S1).		
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Figure	4.	Fraction	of	cells	surviving	the	antibiotic	pulse	as	a	function	of	
the	 cell	 cycle	 stage	 at	 the	 beginning	 of	 the	 pulse.	 Fraction	 of	 cells	
surviving	depending	on	the	number	of	minutes	since	the	last	division	at	the	
moment	of	 the	stress	 (a	proxy	 for	cell	 cycle	position).	When	comparing	all	
six	 categories	of	 cell	 cycle	 stage	 in	all	 five	 conditions	with	 three	 replicates	
each,	none	of	 them	showed	a	 significant	 change	 in	 survival	 (ANOVA;	all	p-
values	>0.05).	The	intensity	of	the	blue	lines	depicts	mortality.		
	

Whether	the	cell-cycle	position	of	a	bacterial	cell	 influences	its	response	to	

stress	is	a	question	that	needs	further	exploration.	In	contrast	with	growth	

rate,	where	there	is	a	more	general	trend	in	the	observations	(slow	growth	

rate	 correlates	with	 higher	 survival,	 with	 few	 exceptions),	 the	 role	 of	 cell	

cycle	 stage	might	be	much	more	variable	 across	 species	 and	dependent	of	

the	nature	of	 the	 stress	 that	 is	 studied.	Variability	across	 species	might	be	

expected,	 for	 instance,	 given	 the	 different	 strategies	 for	 chromosome	

replication,	which	is	the	target	of	some	stressors.	We	would	expect	a	role	of	

this	 trait	 on	 survival	 to	 aminoglycoside	 exposure	 if	 drug	 uptake	 or	

ribosomal	content	would	be	influenced	by	the	cell	cycle	stage.		

	

Early	reproductive	behaviour	after	the	pulse	predicts	cell	survival		

	

Finally,	we	explored	how	early	 it	was	possible	to	determine	whether	a	cell	

would	eventually	survive	or	die	after	the	pulse	of	kanamycin.	We	considered	

the	 number	 of	 divisions	 during	 and	 shortly	 after	 the	 pulse	 (30	 to	 120	

minutes	 after	 the	 end	 of	 the	 pulse)	 and	 used	 them	 as	 the	 explanatory	

variable	 for	 survival	 at	 the	 single-cell	 level.	 We	 performed	 a	 logistic	
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regression	 on	 the	 15	 experiments	 we	 performed	 (3	 replicates	 for	 5	

conditions)	and	obtained	their	beta	estimates	and	their	respective	p-values,	

where	the	sign	of	beta	indicates	a	positive	or	negative	correlation	between	

number	 of	 divisions	 during	 the	 period	 studied	 and	 the	 fate	 of	 the	 cell	 (as	

described	in	the	legend	of	figure	2).	Figure	5a	shows	this	procedure	applied	

to	 the	 period	 of	 the	 pulse	 plus	 90	minutes	 after	 it	 was	 removed.	 All	 beta	

values	 in	 this	case	are	higher	 than	zero,	 i.e.	 implying	a	positive	correlation	

between	 the	 number	 of	 divisions	 in	 this	 interval	 and	 the	 probability	 of	

surviving	antibiotic	exposure;	12	of	the	15	(0.8	fraction	of	the	experiments)	

are	 significant.	We	 applied	 the	 same	 procedure	 for	 the	 period	 comprising	

the	pulse	plus	30,	60	and	120	minutes.	These	results	were	plotted	on	Figure	

5b,	 where	 the	 bars	 represent	 the	 fraction	 of	 all	 the	 15	 experiments	 that	

showed	 a	 positive	 correlation	 between	 number	 of	 divisions	 and	 survival,	

showing	in	blue	those	with	significant	p-values	(p>0.05)	and	in	black	those	

not	significant.		

	

We	 found	 that	 the	 early	 reproductive	 behaviour	 of	 cells,	 i.e.	 their	 division	

frequency	immediately	after	the	pulse,	was	a	good	predictor	of	survival.	The	

positive	 correlation	 was	 visible	 as	 early	 as	 when	 the	 studied	 period	

comprised	 the	 pulse	 plus	 half	 an	 hour,	 even	 if	 the	 p-values	 were	 not	 yet	

significant.	This	might	reflect	the	fast	bactericidal	action	of	the	antibiotic.		

	

The	 absence	 of	 an	 early	 predictor	 given	 this	 data,	 though,	 encourages	

further	 investigation,	 testing	 for	 instance	 individual	 variation	 in	 gene	

expression	or	macromolecular	content.	Potential	candidates	for	such	a	role	

are	 the	 individual	 variation	 in	 the	 expression	 of	 the	 outer-membrane	

porins22,	where	aminoglycosides	enter	 through,	and	single-cell	variation	 in	

the	number	of	ribosomes20.		
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(a)		 	 	 	 	 	 (b)	

	 	
Figure	 5.	 Early	 reproductive	 behaviour	 after	 the	 pulse	 predicts	
survival.	 (a)	The	beta	and	their	associated	p-values	plotted	for	the	logistic	
regression	 performed	 for	 each	 replicate	 of	 each	 condition,	 where	 the	
number	 of	 divisions	 of	 a	 cell	 during	 and	 90	minutes	 after	 the	 pulse	were	
used	as	predictors	of	survival.	All	beta	values	are	positive	and	12	of	the	15	
experiments	 showed	 significant	 p-values	 (blue),	 indicating	 that	 those	 cells	
with	 higher	 number	 of	 division	 in	 this	 period	 have	 higher	 chances	 of	
survival.	(b)	The	same	analysis	 than	the	one	performed	 in	(a)	was	applied	
for	 30,	 60	 and	 120	 minutes	 after	 the	 pulse.	 The	 blue	 bars	 indicate	 the	
fraction	of	experiments	with	significant	positive	beta	values	and	the	stacked	
gray	represent	those	positive	but	not	significant	beta	values.	Significance	in	
all	positive	beta	values	is	reached	until	studying	205	minutes	after	the	pulse.	
	
	
	

Materials	and	Methods	
	

The	 strain	 used	 for	 all	 the	 experiments	 and	 results	 exposed	 here	 was	

Escherichia	coli	MG1655.	All	 the	analysis	performed	 in	 the	current	 chapter	

was	based	on	the	experimental	data	described	in	Chapter	2.		
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Supplementary	material	

	
	

	
Figure	 S1.	 Time-kill	 curve	 of	E.	coli	 cells	 exposed	 to	 kanamycin	 (data	
obtained	 from	 batch	 experiments	 in	 Chapter	 2).	 The	 graph	plots	CFUs	
after	variable	concentrations	of	kanamycin	during	0.25-4	hours.	The	shaded	
area	indicates	the	regime	we	explored	in	this	chapter	in	the	context	of	this	
traditional	data	illustration	(see	figure	1b	for	the	exact	conditions	analysed	
with	single-cell	data).		
	
	

ANOVA	p-values	for	cell	cycle	

analysis	

4	µg/ml	during	2	hours	 0.96	

8	µg/ml	during	1	hour	 0.70	

8	µg/ml	during	2	hours	 0.56	

16	µg/ml	during	0.5	hour	 0.94	

16	µg/ml	during	1	hour	 0.72	

	

Table	 S1.	 ANOVA	p-values	 for	 comparing	 survival	 fractions	 depending	 on	
cell	cycle	stage	at	the	beginning	of	the	antibiotic	pulse.	Six	categories	(as	in	
Figure	 4a)	 were	 compared	 for	 each	 condition	 (three	 replicates	 per	
condition).		
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Chapter	4	

	

	

	

The	effects	of	sublethal	

concentrations	of	antibiotics	on	

single-cell	growth	parameters	

during	feast	and	famine	
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Abstract	
	

Bacteria	 are	 often	 exposed	 to	 antibiotics	 at	 concentrations	 that	 are	 lower	

than	 those	 used	 in	 clinics.	 In	 spite	 of	 the	 ubiquity	 of	 these	 conditions	 and	

their	role	 in	promoting	the	evolution	of	antibiotic	resistance,	we	only	have	

limited	understanding	of	how	they	affect	bacterial	physiology.	Our	goal	here	

was	 to	 analyze	 how	 low	 concentrations	 of	 ribosome-targeting	 antibiotics	

affect	bacteria	at	different	stages	of	a	growth	cycle.	We	exposed	populations	

of	Escherichia	coli	to	gentamicin	or	tetracycline	and	analyzed	the	impact	on	

the	growth	dynamics.	At	very	low	concentrations,	gentamicin	did	not	affect	

the	growth	rate	during	exponential	phase	but	reduced	the	growth	yield.	 In	

contrast,	tetracycline	affected	the	growth	rate	at	the	exponential	phase	but	

had	a	 lower	 impact	on	the	yield	attained.	 In	order	 to	gain	 insights	 into	the	

single-cell	basis	of	these	observations,	we	performed	time-lapse	microscopy	

of	bacteria	that	experienced	the	feast	and	famine	conditions	that	are	typical	

for	 batch	 growth.	 Our	 results	 suggested	 that	 the	 observations	 at	 the	

population	 level	 were	 explained,	 to	 a	 large	 extent,	 by	 how	 antibiotics	

affected	the	division	rate	of	individual	cells.	It	was	particularly	interesting	to	

confirm	 that,	 by	 being	 exposed	 to	 low	 concentrations	 of	 gentamicin,	 cells	

stopped	dividing	earlier	and	entered	into	stationary	phase,	in	accordance	to	

the	 reduced	yield	observed	at	 the	population	 level.	A	 subsequent	 series	of	

experiments	 suggested	 that	 cells	 exposed	 to	 antibiotics	 could	be	depleting	

resources	 faster	 during	 exponential	 phase.	 This	 was	 in	 agreement	 with	

recent	 findings	 that	 cells	 exposed	 to	 subinhibitory	 concentrations	 deplete	

amino	acids	 faster	 than	unexposed	 cells.	 Further	preliminary	experiments,	

however,	suggested	that	this	phenomenon	was	not	occurring	when	a	single	

sugar,	 e.g.	 glucose,	 was	 the	 main	 carbon	 source.	 Increasing	 our	

understanding	 of	 how	 bacterial	 physiology	 is	 affected	 by	 low	 antibiotic	

concentrations	 is	 crucial	 both	 for	 its	 clinical	 implications	 and	 for	 what	 it	

reveals	about	how	bacteria	respond	to	low	levels	of	stress.		
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Introduction	
	

For	 several	 decades,	 humans	 have	 used	 antibiotics	 to	 fight	 bacterial	

infections.	Since	the	early	days	of	the	discovery	of	antibiotics,	the	treatment	

doses	 were	 chosen	 to	 be	 high	 enough	 to	 eradicate	 the	 pathogen	 without	

being	toxic	towards	the	host.	 In	most	clinical	settings,	 this	simple	 logic	has	

been	maintained	up	to	now,	only	being	recently	questioned,	for	example,	by	

an	 increasing	 number	 of	 scientists	 and	 medical	 doctors	 advocating	 for	

individualized	antibiotic	dosing	taking	into	account	other	factors1.	However,	

given	 the	purpose	of	 antibiotic	use,	 scientific	 research	was	 for	 a	 long	 time	

mainly	 focused	on	 studying	how	high	antibiotic	 concentrations	—the	ones	

employed	for	medical	treatment—	affect	or	kill	bacteria.		

	

Bacteria	 are	 nonetheless	 frequently	 exposed	 to	 antibiotic	 concentrations	

that	are	lower	than	those	used	in	the	clinical	context.	These	concentrations	

are	commonly	referred	to	as	non-lethal,	subinhibitory	or	subMIC,	as	they	are	

below	 the	 known	 amounts	 needed	 to	 inhibit	 growth	 after	 24	 hours	 of	

exposure	 (the	 minimal	 inhibitory	 concentration,	 MIC).	 Bacteria	 can	

encounter	temporal	and	spatial	gradients	that	include	low	concentrations	in	

common	environments,	such	as	in	sewage	water,	lakes,	and	rivers,	but	also	

inside	hosts,	e.g.	patients	and	livestock	undergoing	treatment2.	Many	factors	

contribute	 to	 the	 presence	 of	 such	 gradients	 for	 instance	 the	 natural	

production	 of	 these	 molecules	 by	 a	 wide	 range	 of	 organisms,	 the	 dosing	

rationale	in	clinics	and	the	distribution	of	antibiotics	inside	the	patient	body.	

Given	 the	ubiquity	of	 such	 low	concentrations,	 it	 is	 relevant	 to	understand	

how	they	affect	the	rates	of	bacterial	cell	division	and	death.		

	

In	 addition	 to	 their	 occurrence	 in	 numerous	 environments,	 subinhibitory	

drug	concentrations	have	been	recently	pointed	out	as	important	factors	in	

bacterial	 infection	and	treatment.	Importantly,	they	influence	the	evolution	
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of	resistance	as	they	select	and	enrich	for	potential	mutants	already	present	

in	a	population3.	These	concentrations	are	also	known	to	trigger	variability	

at	the	genetic	and	phenotypic	level,	by	affecting	horizontal	gene	transfer	and	

recombination	 rates,	 inducing	 mutagenesis	 or	 simply	 affecting	 the	

physiological	state	of	the	exposed	cells4,5.	Recent	studies	also	suggest	a	role	

of	 antibiotics	 at	 low	 concentrations	 acting	 as	 signaling	 molecules6–8,	 for	

instance,	affecting	various	aspects	of	bacterial	behavior,	 such	as	virulence6	

and	biofilm	formation6,9.		

	

However,	 most	 studies	 exploring	 bacterial	 responses	 to	 low	 antibiotic	

concentrations	 have	 been	 focused	 on	 periods	 of	 exponential	 growth.	 We	

therefore	 lack,	 for	 instance,	knowledge	about	how	the	effects	of	antibiotics	

at	 low	concentrations	 interact	with	nutrient	depletion.	Moreover,	bacterial	

responses	to	low	concentrations	of	antibiotics	are	typically	measured	at	the	

population	level	and	it	is	often	not	clear	how	effects	of	antibiotics	on	single	

cells	scale	up	to	give	rise	to	patterns	observed	at	the	population	level.		

	

In	this	work,	we	explored	the	growth	response	to	two	antibiotics	targeting	

the	 bacterial	 ribosome:	 gentamicin,	 which	 binds	 to	 the	 ribosome	 in	 an	

irreversible	way,	and	tetracycline,	which	binds	reversibly.	Our	results	show	

that,	at	concentrations	equivalent	or	below	half	the	MIC,	the	two	antibiotics	

differ	 in	 their	 effect	 on	 the	different	 growth	phases.	By	performing	 single-

cell	 experiments	 to	 study	 this	 response,	we	 learnt	 that	 the	division	 rate	of	

cells	was	notably	influencing	the	dynamics	observed	at	the	population	level.		

	

We	 then	 investigated	 bacterial	 responses	 to	 low	 concentrations	 of	

gentamicin	in	more	detail,	as	we	found	that	the	growth	rate	of	exposed	cells	

was	 not	 affected	 during	 exponential	 growth.	 Cells,	 however,	 had	 a	 lower	

yield	than	in	the	absence	of	 the	drug	and	analysis	of	division	rate	 in	single	

cells	suggested	that	this	was	due	to	an	early	cessation	of	growth.	When	we	
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tested	different	hypotheses	to	understand	this	phenomenon,	we	found	that	

cells	 were	 entering	 earlier	 into	 stationary	 phase,	 likely	 due	 to	 an	 earlier	

depletion	of	nutrients.		

	

As	our	experiments	were	performed	in	LB	(Lysogeny	broth)	media	(LB	10%,	

see	methods	 for	 further	 details),	 it	 is	 likely	 that	 the	 early	 entrance	 in	 the	

presence	 of	 gentamicin	 resulted	 from	 the	 faster	 amino	 acid	 depletion,	 in	

accordance	to	recent	findings10.	Adding	a	carbon	source,	glucose,	during	the	

transition	to	stationary	phase,	 increased	the	yield	of	exposed	cells,	without	

increasing	 the	 yield	 of	 those	 not	 exposed.	 When	 we	 asked	 whether	 this	

faster	depletion	of	nutrients	could	also	be	taking	place	in	environments	with	

other	 types	 of	 carbon	 sources	 (i.e.	 sugars,	 specifically	 carbon),	 our	

preliminary	results	suggested	that	this	was	not	the	case.	In	fact,	we	observed	

the	opposite	effect:	transition	to	stationary	phase	took	place	later	and	higher	

yield	was	reached	in	such	scenarios.		

	

Together,	our	data	strongly	suggest	that	the	type	and	availability	of	

nutrients	play	an	important	role	in	how	cells	respond	to	low	concentrations	

of	antibiotics.		

	

	

Results	and	Discussion	
	

Bacterial	response	to	low	antibiotic	concentrations	at	different	growth	

phases	

	

When	 we	 exposed	 E.	 coli	 to	 a	 range	 of	 subinhibitory	 concentrations	 of	

gentamicin	and	tetracycline,	we	observed	different	growth	responses	for	the	

two	antibiotics:	gentamicin	at	low	concentrations	did	not	have	a	significant	

effect	on	the	growth	rate	during	the	exponential	phase	(ANOVA,	p=0.13)	but	
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it	reduced	the	growth	yield	(ANOVA,	p<0.001;	figures	1a	and	1c).	The	yield	

continuously	decreased	with	increasing	gentamicin	concentration,	reaching	

for	 instance	only	40%	 in	populations	exposed	 to	half	 the	MIC	 (0.3	µg/ml);	

interestingly,	 even	 at	 this	 concentration	 of	 gentamicin,	 we	 did	 not	 find	 a	

significant	 effect	 on	 the	 growth	 rate	 during	 the	 exponential	 phase.	 In	 the	

case	 of	 tetracycline	 exposure,	 growth	 rate	 and	 yield	were	 both	 affected	 at	

these	 low	 concentrations	 (figures	 1b	 and	 1d).	 The	 growth	 rate	 during	

exponential	 phase	 decreased	 with	 increasing	 tetracycline	 concentration	

(ANOVA,	 p<0.001)	 while	 the	 yield	 increased	 at	 extremely	 low	

concentrations	(0.05	µg/ml	tetracycline,	ANOVA,	p<0.005	both	after	24	and	

40	 hours	 of	 exposure)	 and	 then	 decreased	 when	 the	 tetracycline	

concentration	 increased	 (but	 did	 not	 exceed	 the	 minimal	 inhibitory	

concentration;	 ANOVA,	 p<0.001	 both	 after	 24	 and	 40	 hours	 of	 exposure).	

This	reduction	of	yield	is,	however,	less	pronounced	for	tetracycline	than	for	

gentamicin.	 Bacteria	 exposed	 to	 half	 the	 MIC	 of	 tetracycline	 (0.2	 µg/ml	

tetracycline)	 reached	50%	of	 their	maximal	 yield	 after	 24	 hours	 and	 even	

86%	after	40	hours.		

	

While	both	antibiotics	target	the	30S	subunit	of	the	bacterial	ribosome	and	

inhibit	 the	 step	 of	 elongation	 during	 protein	 translation,	 their	 different	

mode	 of	 action	 might	 partially	 explain	 these	 contrasting	 observations.	

Gentamicin	binds	 in	an	 irreversible	manner	and	causes	 interruption	of	 the	

amino	 acid	 chain	 elongation.	 Like	 other	 aminoglycosides,	 it	 is	 known	 to	

prevent	elongation	by	 inhibiting	translocation	of	 the	mRNA-tRNA	complex,	

causing	also	protein	mistranslation.	It	is	considered	a	bactericidal	antibiotic	

for	E.	coli,	meaning	 that	 the	 antibiotic	 concentration	needed	 to	 reduce	 the	

viable	bacterial	density	by	at	least	99.9%	under	specific	conditions	in	vitro	is	

less	than	four	times	the	MIC11.	The	mechanisms	that	induce	cell	death	after	

gentamicin	 exposure	 include	 ribosomal	 mistranslation,	 accumulation	 of	

protein	 aggregates,	 changes	 in	membrane	 potential	 and	 alterations	 to	 the	
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membrane	 composition	 and	 integrity12,13.	 At	 the	 low	 concentrations	 used	

here,	 however,	 it	 is	 not	 clear	whether	 the	 lower	 yield	was	 a	 result	 of	 cell	

death	or	earlier	entrance	to	stationary	phase.	On	the	other	hand,	tetracycline	

binds	to	the	ribosome	in	a	reversible	way,	mainly	interrupting	the	delivery	

of	tRNAs,	but	not	creating	mistranslation.	It	is	therefore	considered	to	have	

a	 bacteriostatic	 effect,	 i.e.	 inhibiting	 cell	 division	 rather	 than	 causing	 cell	

death.	 Our	 first	 results	 suggested	 that	 this	 slowdown	 in	 division	 rate	was	

already	 observed	 at	 low	 concentrations	 of	 tetracycline,	 but	 the	 effect	 on	

yield	was	not	as	pronounced.	

	

(a)		 	 	 	 	 	 (b)	

			 	
(c)		 	 	 	 	 	 (d)	

		 	
Figure	 1.	 Bacterial	 growth	 at	 subinhibitory	 concentrations	 of	
ribosome-binding	 antibiotics.	 (a,b)	 Population	 growth:	 mean	 and	
standard	deviation	of	the	O.D.600	of	three	replicates	(E.	coli	MG1655)	over	25	
hours	of	exposure	to	subMIC	concentrations	of	gentamicin	(a)	and	40	hours	
of	 exposure	 to	 subMIC	 concentrations	 of	 tetracycline	 (b)	 (MIC	 for	
gentamicin:	 0.6	 µg/ml;	 MIC	 for	 tetracycline:	 0.4	 µg/ml).	 (c,d)	 Mean	 and	
standard	deviation	of	the	growth	rate	(blue)	and	yield	after	24	hours	(red)	
of	 the	 three	 replicates.	 Identical	 lowercase	 letters	 indicate	 groups	without	
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significant	 differences	 in	 their	 growth	 rate	 and	 uppercase	 letters	 those	
without	 significant	 differences	 in	 their	 yield	 (Tukey	 post	 hoc	 ANOVA	 test;	
p<0.05)		
	

	

These	 first	 experiments	performed	at	 the	population	 level	did	not	provide	

details	about	the	single-cell	growth	behavior	that	underlay	the	population-

level	observations.	 In	particular,	 for	 the	experiments	with	gentamicin,	 it	 is	

unclear	whether	the	lower	yield	was	due	to	a	decline	in	the	division	rate	of	

some	or	all	cells	or	from	the	death	of	a	fraction	of	the	population.	

	

Disentangling	 the	 role	 of	 division	 and	 death	 is	 thus	 key	 to	 get	 a	 better	

understanding	 of	 how	 these	 antibiotics	 affect	 bacterial	 physiology.	 This	 is	

particularly	 relevant	 in	 the	 context	 of	 the	 evolution	 of	 resistance,	 where	

higher	 rates	 of	 division	would	 for	 instance	 increase	 the	 probability	 of	 the	

emergence	 of	 mutants.	 Additionally,	 analyzing	 the	 growth	 behavior	 of	

individual	 cells	 also	 allows	 studying	 the	 degree	 of	 heterogeneity	 in	 the	

response	 to	 low	 concentrations	 of	 antibiotics	 among	 genetically	 identical	

cells.		

	

Division	rate	is	an	important	factor	in	the	bacterial	growth	dynamics	at	

low	antibiotic	concentrations.		

	

To	analyze	the	growth	behavior	at	the	single-cell	level,	we	performed	single-

cell	 microfluidics	 monitored	 through	 time-lapse	 microscopy.	 Our	 setup	

consisted	 on	 growing	 cells	 inside	 chambers	 in	 a	microfluidic	 device.	 Each	

chamber	fitted	around	20	cells	and	was	connected	to	a	wider	channel	where	

media	 flowed	 at	 a	 constant	 rate.	 In	 these	 experiments,	 this	 input	 channel	

was	connected	to	a	flask	with	a	growing	E.	coli	culture.	Bacterial	cells	inside	

the	chambers	therefore	faced	similar	conditions	to	the	ones	experienced	by	

the	 culture	 growing	 inside	 the	 flask.	 We	 used	 time-lapse	 microscopy	 to	
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monitor	the	division	of	the	cells	in	the	bottom	of	each	chamber	by	imaging	

every	5	minutes	(figure	2a,	see	methods).		

	

Using	 this	 setup,	we	 carried	 out	 equivalent	 experiments	 to	 those	 in	 batch	

and	measured	the	cell	division	frequency	of	cells	in	the	absence	or	presence	

of	0.05	µg/ml	of	gentamicin	and	0.1	µg/ml	of	tetracycline.	An	initial	phase	of	

frequent	division	in	both	scenarios,	followed	by	a	deceleration	period	up	to	

no	 division,	 indicated	 that	 cells	 inside	 the	 chambers	 were	 indeed	

experiencing	 a	 similar	 environment	 to	 the	 batch	 cultures	 feeding	 them,	

moving	from	exponential	to	stationary	phase	(figures	2b	and	2c).		

	

The	analysis	of	the	frequency	of	division	in	these	microfluidics	experiments	

suggested	that	the	timing	of	division	of	individual	cells	explained	to	a	large	

extent	the	growth	dynamics	observed	at	the	population	level.	Cells	exposed	

to	 sublethal	 concentrations	 of	 gentamicin	 achieved	 the	 same	 maximal	

division	rate	during	exponential	phase	as	those	not	exposed	to	the	antibiotic	

(ANOVA,	 p=0.60).	 However,	 the	 frequency	 of	 division	 decelerated	 earlier	

during	 batch	 growth	 in	 the	 presence	 of	 gentamicin	 and	 exposed	 cells	 also	

stopped	 dividing	 earlier	 (figure	 2b).	 As	 it	 will	 be	 discussed	 below,	 this	

observation	can	explain	the	lower	yield	observed	in	the	batch	experiments.	

Cells	 exposed	 to	 low	 levels	 of	 tetracycline	 showed	 a	 different	 division	

dynamics.	During	the	 first	hours	of	growth,	 i.e.	 the	exponential	phase,	 they	

divided	 less	 frequently	 than	the	ones	growing	 in	 the	absence	of	antibiotics	

(ANOVA,	p<0.001).	However,	during	the	transition	to	stationary	phase,	their	

frequency	 of	 division	 was	 similar	 to	 the	 control	 cells	 (ANOVA,	 p=0.37)	

(figure	2c).		

	

Our	 next	 goal	 was	 to	 scale	 up	 from	 single	 cells	 to	 populations	 and	 ask	

whether	 the	 single-cell	 growth	patterns	 that	we	measured	 can	explain	 the	

observations	at	 the	population	 level	described	 further	above.	To	do	so,	we	
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performed	a	numerical	simulation	of	the	growth	of	population	based	on	the	

division	dynamics	measured	at	the	individual	level	(see	methods	for	further	

details).	We	observed	a	qualitative	agreement	between	the	outcome	of	this	

numerical	 simulation	 and	 the	 patterns	 observed	 in	 batch	 experiments	

(figures	2d	and	2e).	This	confirmed	both	that	the	cells	inside	the	chambers	

experienced	a	similar	environment	to	those	grown	in	batch	and	that	division	

could	partially	 explain	 the	growth	dynamics	observed.	For	gentamicin,	 the	

impact	of	the	antibiotic	on	growth	yield	was	smaller	in	the	batch	experiment	

compared	 to	 the	 simulation	 based	 on	 single-cell	 data.	 This	 could	 be	

potentially	explained	by	the	fact	that	the	former	was	measured	in	terms	of	

optical	density	(O.D.)	while	the	latter	was	based	on	the	numbers	of	cells.	As	

cells	 are	 known	 to	 be	 smaller	 during	 stationary	 phase,	 the	 difference	 in	

terms	of	O.D.	was	probably	smaller	than	the	difference	in	the	number	of	cells	

(figure	2d).	The	simulation	for	tetracycline	exposure	based	on	the	single-cell	

division	 dynamics	 also	 confirmed	 the	 pattern	 observed	 at	 the	 population	

level:	growth	rate	during	exponential	phase	was	lower	in	exposed	cells	and	

cells,	 therefore,	 potentially	 took	 longer	 to	 reach	 the	 same	 yield	 as	 in	 the	

absence	of	the	antibiotic	(figure	2e).		

	

Death	 rate	was	 not	measured	 in	 the	 single-cell	 experiments	 and	 thus	 also	

not	 included	 in	 the	 numerical	 simulation	 (since	 cells	 cease	 to	 divide	 upon	

entering	stationary	phase,	it	was	not	possible	to	use	cessation	of	cell	division	

as	a	proxy	for	cell	death).	Nevertheless,	initial	observations	of	the	time-lapse	

microscopy	 images	suggested	 that	 the	single-cell	mortality	rates	were	 low.	

Further	 studies	 should	 be	 performed	 to	 confirm	 this,	 for	 example,	 using	

fluorescent	 markers	 that	 allow	 distinction	 between	 alive	 and	 dead	 cells.	

From	what	 we	 observed	 in	 both	 batch	 and	 single-cell	 experiments	 at	 the	

lowest	 tetracycline	 concentrations	 and,	 given	 the	 bacteriostatic	 nature	 of	

this	antibiotic,	it	is	likely	that	death	rate	barely	played	a	role	in	the	growth	

dynamics	observed	(figure	1b).	 In	contrast,	 in	 the	experiments	where	cells	
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were	exposed	to	gentamicin,	the	O.D.	decreased	over	time	during	stationary	

phase	 (figure	 1a),	 presumably	 either	 because	 of	mortality	 or	 because	 of	 a	

change	in	a	cellular	phenotype	that	affected	the	optical	density.		

	

(a)		 	 	 	 	 	 	

	
(b)		 	 	 	 	 	 (c)	

	
(d)		 	 	 	 	 	 (e)	
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Figure	 2.	 Single-cell	 growth	 at	 subinhibitory	 concentrations	 of	
ribosome-binding	 antibiotics.	 (a)	 E.	 coli	 cells	 inside	 the	 microfluidic	
channels	connected	to	a	batch	culture	growing	in	the	absence	(top	row)	or	
presence	 of	 gentamicin	 (bottom	 row).	 The	 temporal	 montage	 shows	
consecutive	 time	 frames	 of	 the	 same	 two	 channels.	 During	 the	 first	 hour	
both	cell	populations	were	growing	exponentially.	However,	in	the	following	
hours,	cells	growing	in	gentamicin	slowed	down	division	earlier	and	entered	
into	stationary	phase	before	the	ones	without	antibiotics.	Images	were	taken	
every	five	minutes.	(b,c)	Cell	division	rate:	mean	and	standard	deviation	of	
the	 frequency	 of	 division	 of	 ~20	 cells	 of	 one	 replicate	 over	 20	 hours	 of	
exposure	to	none	(black)	or	0.05	µg/ml	of	gentamicin	(red)	(b)	and	over	17	
hours	of	exposure	to	none	(black)	or	0.1	µg/ml	of	tetracycline	(magenta)	(c).	
(d,e)	 Mean	 and	 standard	 deviation	 of	 the	 change	 in	 the	 population	 size	
during	batch	growth	 in	10	 simulations,	based	on	 the	 frequency	of	division	
obtained	 from	 the	 single-cell	 experiments	 where	 cells	 were	 exposed	 to	
gentamicin	(d)	and	tetracycline	(e).		
	

Early	transition	to	stationary	phase	in	low	concentrations	of	

gentamicin	might	be	a	consequence	of	faster	depletion	of	nutrients	

	

Next,	we	were	interested	in	understanding	why	cells	reduced	their	division	

rate	 and	 entered	 into	 stationary	 phase	 earlier	 when	 exposed	 to	

subinhibitory	concentrations	of	gentamicin.	One	possibility	 is	 that	 in	 these	

conditions	 cells	 lacked	 resources	 for	 further	 growth.	 Alternatively,	 it	 is	

conceivable	 that	 the	 effect	 of	 low	 concentrations	 of	 gentamicin	 increased	

during	stationary	phase,	i.e.	that	the	inhibitory	effect	of	the	antibiotic	had	a	

synergistic	 interaction	 with	 either	 low	 nutrient	 concentrations	 or	 with	

metabolites	or	toxins	released	during	this	growth	phase.	A	third	possibility	

is	that	exposed	cells	got	increasingly	damaged	over	time	and	were	not	able	

to	divide	further	at	the	onset	of	stationary	phase.		

	

We	 tested	 the	 three	different	hypotheses	 and	our	 results	 suggested	 that	 it	

was	 the	environmental	 conditions	 that	did	not	allow	 further	growth.	First,	

yield	 was	 not	 altered	 when	 bacteria	 coming	 from	 fresh	 medium	 were	
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introduced	at	different	timepoints	(figure	3a:	blue	series,	ANOVA,	p=0.80	—

not	 including	bacteria	added	after	8:20	hours,	when	there	was	a	decline	 in	

O.D.).	This	 suggested	 that	 the	 reduction	 in	yield	was	not	 a	 consequence	of	

bacteria	accumulating	damage	during	growth	in	gentamicin.	Second,	adding	

gentamicin	 during	 the	 transition	 to	 stationary	 phase	 did	 not	 reduce	 the	

growth,	but	allowed	cells	to	reach	a	higher	yield	when	it	was	added	at	latter	

points	 (figure	 3a:	 magenta	 series;	 ANOVA,	 p<0.01,	 posthoc	 analysis	

indicating	a	significant	increase	when	gentamicin	was	added	after	5:40,	7:00	

and	8:20	hours,	likely	because	of	cells	already	having	grown	in	the	absence	

of	 the	 drug).	 This	 suggested	 that	 the	 reduction	 in	 yield	 was	 not	 a	

consequence	 of	 the	 growth-suppressing	 effect	 of	 gentamicin	 increasing	 at	

the	 onset	 of	 stationary	 phase.	 Finally,	 single-cell	 experiments	 with	

continuous	 flow	 of	 0.05	 µg/ml	 of	 gentamicin	 without	 resource	 limitation	

indicated	 that	 cells	 maintained	 the	 same	 growth	 rate	 after	 12	 hours	 of	

exposure	(figure	3b).	This	supported	the	conclusion	from	above	that	damage	

accumulation	during	prolonged	exposure	to	gentamicin	was	not	responsible	

for	 the	 decrease	 in	 yield.	 Together,	 these	 observations	 strongly	 suggested	

that	it	was	the	media	which	was	not	allowing	further	growth.		

	

In	 order	 to	 evaluate	 whether	 faster	 nutrient	 depletion	 could	 explain	 the	

early	entrance	 into	stationary	phase,	we	added	different	 types	of	nutrients	

five	 hours	 after	 the	 experiment	 started,	 i.e.	 during	 the	 transition	 to	

stationary	 phase.	 Among	 the	 nutrients	 tested,	 we	 included	 glucose	—as	 a	

carbon	source—	and	MgSO4	and	CaCl2	—sources	of	divalent	cations,	which	

could	 be	 potentially	 limiting	 factors	 in	 LB14.	 In	 the	 three	 cases,	 statistical	

analyses	 indicated	an	 interaction	between	 the	addition	of	 the	nutrients	on	

growth	yield	and	the	presence	versus	absence	of	gentamicin	in	the	medium	

(two-way	 ANOVA,	 glucose	 p<0.01;	 MgSO4	 p<0.001;	 CaCl2p<0.005).	 This	

meant	that	the	effect	of	these	nutrient	additions	on	growth	yield	depended	

on	the	presence	of	the	antibiotic.		
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a) b)	

		 	
Figure	3.	Testing	three	hypotheses	to	understand	the	earlier	transition	
to	 stationary	 phase	 when	 cells	 are	 exposed	 to	 low	 gentamicin	
concentrations.	 (a)	In	blue:	changes	in	the	population	yield	when	bacteria	
grown	in	the	absence	of	antibiotics	were	added	to	a	bacterial	culture	grown	
in	the	presence	of	0.05	µg/ml	of	gentamicin	at	the	beginning	or	during	the	
transition	 to	 stationary	 phase	 (mean	 and	 standard	 deviation	 of	 three	
replicates);	 in	 magenta:	 changes	 in	 population	 yield	 when	 0.05µg/ml	 of	
gentamicin	 were	 added	 to	 a	 population	 of	 bacteria	 grown	 without	
antibiotics	(mean	and	standard	deviation	of	three	replicates).	The	black	line	
indicates	 yield	 in	 the	 absence	 of	 gentamicin	 and	 the	 red	 line	 yield	 in	 the	
presence	 of	 gentamicin	 (line:	 mean;	 shaded	 areas:	 standard	 deviation	 of	
three	 replicates).	 (b)	 Mean	 and	 standard	 deviation	 of	 the	 number	 of	
divisions	 per	 hour	 of	 cells	 inside	 a	 microfluidic	 chamber	 exposed	 to	
continuous	 fresh	 media	 during	 12	 hours	 (LB	 10%	 with	 or	 without	
gentamicin;	n=48	and	n=31,	respectively).		
	

	

The	 addition	 of	 sources	 of	 divalent	 cations	 affected	 the	 yield	 in	 dissimilar	

ways.	In	the	case	of	magnesium,	the	O.D.	notably	increased	regardless	of	the	

presence	 or	 absence	 of	 the	 antibiotic	 (Figure	 4b),	 although	 the	 effect	was	

significantly	 different	 between	 the	 two	 scenarios	 (ANOVA;	 p<0.001).	 The	

increase	in	yield	could	be	explained	by	the	hypothesis	that	divalent	cations	

might	be	 the	 limiting	resource	 for	E.coli	when	growing	 in	LB	(discussed	 in	

Nikaido,	H.,	200914).	The	idea	is	that	bacterial	cells	require	a	high	amount	of	

divalent	 cations	 in	 order	 to	 neutralize	 the	 negatively	 charged	

lipopolysaccharide	 molecules	 in	 the	 outer	 membrane,	 a	 concentration	

potentially	 not	 available	 in	 LB.	 Our	 analysis	 indicated	 that	 the	 increase	 in	
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yield	 was	 stronger	 in	 the	 absence	 of	 the	 drug.	 This	 could	 be	 partially	

explained	 by	 the	 damage	 that	 the	 outer	membrane	 suffers	when	 cells	 are	

exposed	 to	 aminoglycosides,	 but	 it	 also	 suggested	 that	 another	 type	 of	

resource	 depletion	 was	 responsible	 for	 the	 observed	 reduction	 in	 yield.	

Interestingly,	 adding	 calcium	 had	 a	 different	 effect	 (figure	 4b):	 it	 reduced	

yield	 slightly	 in	 the	 absence	 of	 gentamicin	 (ANOVA,	 p<0.05)	 and	 had	 no	

significant	 effect	 in	 the	 presence	 of	 gentamicin	 (ANOVA,	 p=0.06).	 This	

difference	between	magnesium	and	 calcium	raised	doubts	 about	 a	 general	

effect	of	cations	on	growth	yield	in	the	presence	of	gentamicin.		

	
The	 addition	 of	 glucose	 allowed	 further	 growth	 in	 cells	 exposed	 to	

gentamicin,	while	 this	was	not	 the	case	 for	cells	growing	 in	media	without	

antibiotics	 (figure	 4a).	 These	 results	 suggested	 that	 carbon	 or	 energy	

limitation	might	prevent	 cells	 from	dividing	 further,	 leading	 them	 to	enter	

earlier	into	stationary	cells.	Thus,	cells	exposed	to	low	concentrations	of	this	

aminoglycoside	might	deplete	carbon	or	energy	faster	than	unexposed	cells.	

It	is	relevant	to	note	that	the	yield	was,	however,	not	fully	reached	as	in	the	

absence	 of	 gentamicin.	 This	 is	 likely	 due	 to	 the	 low	 glucose	 concentration	

added.	

	

The	 hypothesis	 of	 cells	 consuming	 higher	 resources	when	 exposed	 to	 low	

antibiotic	concentrations	is	in	line	with	results	obtained	by	Mathieu	et	al	10.	

In	 this	 work,	 Mathieu	 et	 al	 discovered	 that	 E.	 coli	 cells	 increase	 energy	

production	 and	 translation	 when	 exposed	 to	 low	 doses	 of	 bactericidal	

antibiotics,	 specifically	 ampicillin,	 norfloxacin	 and	 gentamicin.	 They	

reported	that	cells	treated	with	50%	MIC	(which	for	their	strain	is	0.5	µg/ml	

of	gentamicin)	deplete	amino	acids	faster	than	in	the	absence	of	antibiotics.	

The	 lower	 concentrations	of	 intracellular	amino	acids	 induce	 the	 stringent	

response,	which	leads	to	early	entrance	into	stationary	phase.		
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Both	their10	and	our	experiments	were	performed	in	LB	media.	LB	contains	

very	 low	 concentrations	 of	 fermentable	 sugars.	 Amino	 acids	 are	 therefore	

the	major	energy	source15.	Preliminary	experiments	where	cells	grow	on	a	

single	 sugar	 (glucose)	with	 no	 amino	 acids	 show	 that	 the	 response	 to	 the	

antibiotic	differs	from	what	we	observed	in	LB10%	(Figure	S1).	Our	results	

suggested	 that	 yield	of	 cells	 exposed	 to	gentamicin	 in	minimal	media	with	

glucose	 was	 at	 least	 as	 high	 as	 in	 the	 absence	 of	 the	 drug	 (Figure	 S1a).	

Additionally,	we	found	no	evidence	of	an	early	entrance	to	stationary	phase	

when	glucose	was	the	main	source	(Figures	S1b).		Both	observations	were	in	

accordance	 to	 the	 explanation	 offered	 by	 Mathieu	 et	 al10,	 where	 early	

entrance	 to	 stationary	 phase	 is	 linked	 to	 the	 stringent	 response,	 i.e.	

depletion	of	amino	acids.			

	

a)	 	 	 	 	 	 b)	

		 	
Figure	4.	Adding	nutrients	to	the	growth	media	during	the	transition	to	
stationary	phase.	(a)	Adding	0.01%	of	glucose	5	hours	after	the	beginning	
of	the	experiment	had	a	significantly	different	effect	on	yield	in	the	absence	
or	presence	of	the	antibiotic	(two-way	ANOVA;	p<0.01).	(b)	The	addition	of	
divalent	cations	sources	5	hours	after	the	start	of	the	experiment	had	also	a	
significantly	 different	 effect	 on	 yield	 in	 the	 absence	 or	 presence	 of	 drug	
(two-way	 ANOVA:	 MgSO4:	 p<0.001;	 CaCl2:	 p<0.005).	 In	 both	 graphs,	
diamonds	 indicate	 mean	 of	 three	 replicates	 and	 error	 bars	 refer	 to	 the	
standard	deviation.		
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Materials	and	Methods	

	

The	 strain	 used	 for	 all	 the	 experiments	 and	 results	 exposed	 here	 was	

Escherichia	coli	MG1655.	

	

LB	10%	media	is	composed	by	0.1	fraction	of	the	tryptone	and	yeast	extract	

that	LB	(Lysogeny	Broth)	contains	and	equivalent	NaCl	concentration,	i.e.	5g	

NaCl,	1g	tryptone,	0.5g	yeast	extract	per	liter	of	water.		

	

We	 chose	 LB	 10%	 as	 cells	 inside	 the	 chambers	 did	 not	 reach	 stationary	

phase	 when	 they	 were	 fed	 with	 the	 batch	 culture	 growing	 in	 LB.	 One	

possible	 explanation	 was	 that	 the	 batch	 culture	 could	 have	 been	

experiencing	 a	 reduction	of	 oxygen	before	 consuming	 all	 resources,	which	

may	have	resulted	in	a	still	carbon-rich	medium	input	for	the	cells	inside	the	

microfluidic	chambers.		

	

Population-level	experiments	(batch)	

	

Bacterial	response	to	low	antibiotic	concentrations	

Three	independent	replicates	were	grown	overnight	 in	LB,	 then	inoculated	

in	1:1000	in	fresh	LB	10%	+	0.01%	Tween20	medium	for	three	hours,	time	

at	which	they	were	in	exponential	phase.	Each	replicate	was	then	diluted	to	

obtain	 an	 O.D.	 of	 0.001	 and	 afterwards	 inoculated	 in	 96-well	 plates	 with	

195µl	of	LB	10%	+	0.01%	Tween20	with	or	without	antibiotics.	The	O.D.	was	

measured	every	20	minutes	during	more	than	25	hours.	In	order	to	test	the	

addition	 of	 resources	 during	 growth,	 5	 µl	 of	 glucose	 (for	 a	 final	

concentration	of	0.01%),	MgSO4	or	CaCl2	were	added	after	5	hours	after	the	

experiment	started.		
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Single-cell	experiments	

	

Time-lapse	microscopy	

Cultures	 of	 E.	 coli	 MG1655	 strain	 were	 grown	 overnight	 in	 LB,	 to	 be	

afterwards	 inoculated	 in	 1:1000	 in	 LB10%	 for	 three	 hours,	 time	 at	which	

they	 were	 at	 exponential	 phase.	 The	 cells	 were	 then	 introduced	 into	 the	

chamber	of	microfluidic	devices,	where	they	were	fed	by	either	LB10%	or	by	

a	 growing	 batch	 culture	 in	 LB10%,	 both	 in	 the	 absence	 and	 presence	 of	

antibiotics	 (0.05	 µg/ml	 gentamicin	 or	 0.1	 µg/ml	 tetracycline)	 in	 order	 to	

follow	 single	 cells	 throughout	 the	 bacterial	 growth	 curve.	 Images	 were	

recorded	 every	 five	 minutes	 during	 15-20	 hours.	 Division	 rate	 was	

subsequently	measured	manually	by	observing	the	cells	captured.		

	

In	silico	population	growth	based	on	single-cell	division	dynamics	

	

Matlab	simulation		

The	 division	 frequency	 of	 cells	was	 obtained	 for	 every	 1.5-hour	 period	 of	

time	throughout	the	single-cell	microfluidic	experiments,	allocating	each	cell	

value	 into	 a	 vector.	 Based	 on	 this	 data,	 10	 simulations	 in	 Matlab	 were	

performed	for	population	growth	in	the	absence	or	presence	of	antibiotics.	

Each	simulation	starts	with	an	initial	number	of	ten	cells.	In	order	to	assign	

the	 division	 frequency	 to	 each	 cell	 for	 every	 1.5-hour	 period	 of	 time,	 the	

division	 vector	 was	 sampled	 at	 random,	 with	 replacement,	 and	 the	

corresponding	 cell	 will	 divide	 accordingly	 during	 that	 period.	 This	 step	 is	

repeated	for	each	period	during	15-	20	hours,	updating	in	each	of	them	the	

number	 of	 cells	 —including	 the	 progeny	 resulting	 from	 the	 division	

processes—.		
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Supplementary	Material	
	

a) b)	

		 	
Figure	 S1.	 Comparing	 growth	 on	 LB	 10%	 and	 M9	 with	 glucose	
(preliminary	studies).	(a)	Growth	rate	and	yield	reached	after	24	hours	for	
cells	 growing	 in	 LB	 10%	 (blue	 squares),	 M9	 with	 glucose	 0.2	 %	 (pink	
rhomboids)	 and	 M9	 with	 glucose	 0.4	 %	 (red	 rhomboids).	 Filled	 symbols	
show	values	 in	 the	absence	of	 antibiotics;	unfilled	 symbols	 show	values	 in	
the	presence	of	gentamicin	(smaller	square:	0.05	µg/ml,	bigger	square:	0.3	
µg/ml;	smaller	rhomboids:	0.01,	bigger	rhomboids:	0.1).	In	all	cases,	mean	of	
three	 replicates	 is	 shown.	 (b)	 Time	 of	 transition	 to	 stationary	 phase	
(timepoint	 —hours	 after	 the	 experiment	 started—	 where	 exponential	
growth	 rate	 slows	down)	versus	yield	after	24	hours	of	 growth.	The	 same	
nomenclature	as	in	figure	S1a	is	shown.		
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Supplementary	Methods	

	

Comparing	growth	on	LB	10%	and	M9	with	glucose	

The	 values	 shown	 for	 LB	 10%	 are	 described	 in	 the	 main	 Materials	 and	

Methods	 section.	 For	 the	 experiments	 in	M9,	 three	 independent	 replicates	

were	grown	overnight	in	LB,	then	inoculated	in	1:1000	in	fresh	M9	+	0.2	or	

0.4%	medium	for	four	hours,	time	at	which	they	were	in	exponential	phase.	

Each	 replicate	was	 then	diluted	 to	 obtain	 an	O.D.	 of	 0.001	 and	 afterwards	

inoculated	in	96-well	plates	with	195µl	of	M9	+	0.2	or	0.4%	with	or	without	

antibiotics.	The	O.D.	was	measured	every	20	minutes	during	more	than	30	

hours.	
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Chapter	5	

	

	
Discussion	

	
The	antibiotic	crisis	we	are	currently	 facing	prompts	us	more	 than	ever	 to	

better	 understand	 how	 exactly	 antibiotics	 act	 on	 bacterial	 cells,	 and	 how	

they	affect	rates	of	division	and	cell	death.	Extensive	research	has	been	done	

in	 the	 last	 decades	 to	 investigate	 many	 aspects	 of	 this	 simple	 question.	

However,	many	basic	issues	remain	unresolved,	for	instance,	how	the	effect	

of	 drugs	 on	 individual	 cells	 give	 rise	 to	 the	 patterns	 we	 observe	 at	 the	

population	level,	both	in	the	lab	and	clinics.	In	this	thesis,	we	took	advantage	

of	single-cell	experimental	approaches	to	investigate	little-explored	general	

aspects	of	the	effect	of	antibiotics	on	bacteria.	Part	of	our	work	focused	on	

disentangling	 rates	 of	 cell	 division	 and	 cell	 death,	 specifically	 by	 studying	

division	 events	 at	 the	 individual	 cell	 level.	 We	 also	 explored	 non-genetic	

factors	affecting	survival	and	response	to	antibiotics,	specifically,	phenotypic	

single	 cell	 traits	 and	 the	 role	 of	 nutrient	 depletion	 during	 antibiotic	

exposure.		

	

Regarding	 growth	 dynamics,	 the	 study	 of	 division	 events	 in	 single	 cells	

exposed	to	antibiotic	pulses	strong	enough	to	kill	a	considerable	fraction	of	

cells	 (Chapter	 2)	 and	 to	 environments	 with	 continuous	 low	 antibiotic	

concentrations	with	 limited	resources	(Chapter	 4),	provided	the	 following	

insights:	

§ Cell	 division	 can	 sometimes	 continue	 in	 the	 presence	 of	 antibiotics:	

rates	 of	 cell	 division	 of	 bacteria	 exposed	 to	 pulses	 of	 kanamycin	 at	
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concentrations	equal	to	or	above	the	MIC	during	up	to	two	hours	can	

be	as	high	as	in	the	absence	of	the	drug	(Chapter	2).	That	populations	

do	 not	 grow	under	 these	 conditions	might	 be	 a	 consequence	 of	 cell	

death	rate.		

§ Administering	a	given	antibiotic	dose	at	a	high	concentration	or	over	

a	long	time	increased	cell	mortality	levels	compared	to	combinations	

of	intermediate	duration	and	concentration	(Chapter	2).		

§ Division	 rate	 is	 an	 important	 factor	 determining	 bacterial	 growth	

dynamics	at	low	antibiotic	concentrations	(Chapter	4).		

§ Bacterial	cells	exposed	to	low	gentamicin	concentrations	in	a	limited-

resource	 environment	 enter	 earlier	 into	 stationary	 phase	 (Chapter	

4).	

	

When	 studying	non-genetic	 factors	 affecting	 the	 effect	 of	 a	 drug	 in	 these	

different	 scenarios	 (antibiotic	 pulses	 and	 continuous	 exposure	 to	 subMIC	

antibiotic	concentrations	with	limited	resources),	our	most	relevant	findings	

were:			

§ We	found	no	evidence	that	interdivision	time	previous	to	an	antibiotic	

pulse	or	the	cell	cycle	stage	at	 the	onset	of	 the	pulse	 influences	cells	

survival		(Chapter	3).		

§ Potential	 persister	 cells	 (referring	 to	 non-dividing	 cells)	 in	 our	

experiments	 had	 higher	 chances	 of	 survival	 in	 pulses	 with	 high	

mortality	rates	(Chapter	3).	

§ Single-cell	experiments	suggest	that	the	response	of	bacterial	cells	to	

low	gentamicin	concentration	depends	on	the	availability	of	nutrients.	

By	combining	batch	experiments	with	a	microfluidic	set-up,	we	found	

that	antibiotic	exposure	 leads	 to	an	earlier	 transition	 into	stationary	

phase,	 potentially	 as	 a	 consequence	 of	 faster	 depletion	 of	 nutrients	

during	the	exponential	phase	(Chapter	4).		
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It	is	pertinent	to	ask	whether	and	how	these	findings	are	relevant	for	clinical	

application.	 While	 our	 work	 was	 focused	 on	 studying	 aspects	 of	 the	

antibiotic	effect	that	are	little	understood,	it	cannot	directly	and	immediately	

be	 translated	 into	 a	 clinical	 setting.	Nonetheless,	we	 believe	 that,	 together	

with	 the	work	 of	 other	 colleagues,	 the	 findings	 here	 challenge	 some	 ideas	

and	concepts	about	the	use	of	antibiotics	for	treating	patients.		

	

For	 instance,	 even	 after	 decades	 of	 antibiotic	 use	 in	 modern	 medicine,	

scientists	and	clinicians	are	still	looking	for	the	optimal	dosing	strategies	to	

treat	infections.	This	is	not	an	easy	endeavour,	as	many	elements	have	to	be	

taken	into	account	—the	responses	of	the	patient	and	pathogen	being	at	the	

centre	of	the	issue.	One	of	the	chapters	of	this	thesis	addressed	one	aspect	of	

this	 problem:	 how	 the	 effect	 of	 a	 certain	 total	 dose	 of	 antibiotics	 on	 the	

bacteria	depends	on	the	concentration	of	the	antibiotics	and	the	time	period	

during	which	 it	 is	 applied.	 This	 is	 not	 a	 new	 question,	 but	 by	 exploring	 it	

through	the	study	of	single	cells,	the	work	here	reveals	that	divisions	do	take	

place	during	antibiotic	 treatment	with	concentrations	equivalent	or	higher	

than	 the	MIC	 (as	measured	 in	 batch	 experiments),	 questioning	 traditional	

quantifications	 of	 survival	 in	 these	 scenarios.	 The	 occurrence	 of	 division	

events	 during	 these	 pulses,	 also	 observed	 in	 another	 work	 at	 conditions	

with	even	higher	death	 rate1	 should	be	 studied	 in	 the	 context	of	 infection.	

How	relevant,	 for	example,	are	these	division	events	during	 longer	periods	

of	 drug	 treatment?	 The	 effort	 for	 finding	 the	 optimal	 antibiotic	 dosing	

strategy	will	probably	benefit	from	the	knowledge	of	division	events	that	an	

analysis	of	the	net	population	growth	rate	usually	masks.		

	

This	 thesis	 also	 emphasizes	 the	 need	 to	 understand	 variation	 in	 survival	

times	between	single	cells	during	the	log-linear	death	phase,	 i.e.	before	the	

presence	of	persisters	—understood	in	the	traditional	sense	of	a	minority	of	

non-growing	 cells2,3—	 starts	 to	 influence	 population-level	 survival	
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measurement.	We	explored	the	question	in	Chapter	3	and	found	no	evidence	

that	growth	rate,	a	common	factor	associated	with	survival,	plays	a	role	 in	

such	scenario,	except	for	a	extremely	small	fraction	of	the	population,	which	

are	likely	persister	cells.	Understanding	why	some	cells	die	immediately	and	

others	 survive	 much	 longer	 might	 prove	 powerful	 for	 treating	 diseases	

where	this	early	phase	of	bacterial	death	takes	long	periods	of	time,	such	as	

tuberculosis,	 and	 where	 we	 want	 to	 understand	 what	 makes	 some	 cells	

resist	the	drug	for	longer	than	others.		

	

Microfluidics	 for	 studying	 antibiotic	 effects:	 relevant	 for	

clinics?	
	

Most	 of	 the	 questions	 that	we	 ask	 in	 this	 thesis	 can	 only	 be	 answered	 by	

monitoring	bacteria	at	the	single-cell	level,	a	goal	accomplished	here	by	the	

use	 of	 time-lapse	 microscopy	 in	 combination	 with	 microfluidics.	 Studying	

the	 effects	 of	 antibiotics	 at	 the	 single-cell	 level	 offers	 insights	 that	 are	

difficult	 to	 obtain	 with	 more	 conventional	 population	 analyses.	 Two	 such	

insights	 have	 been	mentioned	 several	 times	 throughout	 this	 thesis.	 One	 is	

precisely	 the	 possibility	 of	 visualizing	 how	 events	 (e.g.	 division)	 in	

individual	cells	impact	the	response	we	have	for	decades	observed	in	batch	

experiments.	The	other	one	is	to	evaluate	whether	and	how	the	phenotypic	

state	 of	 a	 bacterial	 cell	 in	 a	 clonal	 population	 influences	 its	 response	 to	

antibiotic	treatment.		

	

Ignoring	 the	 interplay	 between	 division	 and	 death	 can	 affect	 our	

understanding	 of	 the	 evolution	 of	 resistance	 under	 stressful	 situations	 for	

bacteria.	Divisions	masked	by	high	death	rates	will	lead	to	underestimating	

the	potential	for	mutations.		This	goes	hand	in	hand	with	a	second	problem:	

overlooking	death	during	periods	of	treatment	where	population	grows	can	

lead	 to	 an	 overestimation	 of	 mutation	 rates	 under	 stress.	 A	 recent	
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combination	 of	 experimental	 and	 theoretical	 work4	 showed	 that	 death	

events	 in	 scenarios	where	bacteria	 are	 exposed	 to	 subinhibitory	 antibiotic	

concentrations	 can	 bias	 quantification	 of	mutation	 rates.	 	When	 cell	 death	

was	 included	 in	 the	 analysis,	 for	 instance	 in	 scenarios	 of	 kanamycin	

exposure,	 there	 was	 no	 evidence	 of	 stress-induced	 mutagenesis4.	 Thus,	

details	of	growth	dynamics	during	treatment	will	offer	a	more	accurate	view	

of	the	evolution	of	resistance	in	such	environments.		

	

Taking	into	account	heterogeneity	in	a	population	or	bacterial	community	is	

key	in	our	attempt	to	control	infections.	Several	in	vitro	studies	have	shown	

how	heterogeneity	can	play	a	role	in	clonal	infections1,5,6.	The	next	challenge	

is	 to	 study	 phenotypic	 heterogeneity	 in	 bacterial	 pathogens	 under	

conditions	 that	 are	 closer	 to	 the	 situation	 inside	 hosts.	 Microfluidics	 can	

potentially	 make	 an	 important	 contribution	 in	 replicating	 host	 conditions	

experimentally	in	the	laboratory:		efforts	are	currently	under	way	for	using	

microfluidics	 to	mimic	 biofilms7,8	 and	 host	 compartments	 including	 blood,	

urinary	 tract	 and	 simple	 organs9,10.	 We	 expect	 more	 of	 these	 promising	

developments	in	the	coming	years.		

	

Finally,	microfluidics	have	certainly	limitations.	Such	experiments	are	much	

more	 time-	 and	 resource-	 demanding.	 As	 a	 consequence,	 this	 approach	 is	

mainly	a	tool	in	research	environments	rather	than	in	the	clinics.	However,	

we	 expect	 that	 its	 power	 in	 answering	 relevant	 questions	 as	 the	 ones	

discussed	 throughout	 this	 work,	 will	 lead	 to	 future	 discoveries	 about	 the	

behaviour	 and	 properties	 of	 single	 cells	 that	 will	 be	 relevant	 for	 clinical	

applications.	 Another	 limitation	 is	 the	 current	 difficulty	 to	 observe	 rare	

events	due	to	the	low	number	of	cells	that	can	be	monitored.	This	challenge	

is	 starting	 to	 be	 solved	 by	 technical	 solutions11,12	 and	 has	 been	 addressed	

previously	by	 the	use	of	mutants	 (hipA	mutants,	 for	 example,	which	 show	

higher	levels	of	persistence13).		
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In	 summary,	 the	 challenges	 posed	 by	 the	 antibiotic	 crisis	 and	 the	

development	of	single-cell	and	microfluidic	technologies,	make	it	necessary	

and	 possible	 to	 further	 investigate	 growth	 dynamics,	 phenotypic	

heterogeneity	and	the	role	of	individual	traits	in	bacterial	infections.		
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