
1.  Introduction
Groundwater modeling plays an important role in practical hydrogeology. In a discipline in which neither 
the system nor its properties can be observed in its entirety, it is the task of models to establish spatial and 
temporal continuity between point-wise information. Where only few observations are available, uncertain-
ty dominates the system characterization. These uncertainties must be quantified to endow any information 
derived from models with reliable confidence intervals.

Sources of model uncertainty are manifold and somewhat elusive, but arise from three main sources: un-
known subsurface parameters (parametric uncertainty: e.g., Linde et  al.,  2017; Renard,  2007), unknown 
boundary conditions and forcings (forcing uncertainty: e.g., Guillaume et al., 2016; Vrugt et al., 2008), and 
model structural inadequacies (conceptual uncertainty; e.g., Höge et al., 2019). In practice, hydrogeologists 
tend to devote most resources to parametric uncertainty, focusing on the ambiguity in sediment parameters 
such as hydraulic conductivity. Where forcing uncertainty is considered, it is rarely explored beyond the 
addition of white noise to perturb model predictions. This omission can be problematic, since the influence 
of forcing uncertainty may be indistinguishable from the effects of parametric uncertainty (e.g., Erdal & 
Cirpka, 2016) or even eclipse them (e.g., Peeters & Turnadge, 2019).

While all models of unisolated systems require boundary conditions in some form, the specific requirements 
depend on the chosen modeling framework. Numerical models place particularly stringent requirements, 
demanding a finite domain along which specified boundary conditions are enforced. Such boundaries are 
rarely well defined in reality. Common pragmatic choices are prescribed hydraulic head conditions inter- and 
extrapolated from marginal observation wells, or no-flow boundaries along anticipated streamlines. Since the 
nature of these boundaries intertwines them closely with the extent of the model grid, they do not lend them-
selves readily to the exploration of uncertainty in their extent or nature without adjusting the grid as well.
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Prescribed in- or outflow boundary conditions would be a more versatile choice to represent the uncertain 
influence of regional flow in a finite domain, but are very difficult to obtain and consequently are rarely 
used. Recognizing this limitation, simulation frameworks such as MODFLOW 6 (Langevin et al., 2017) have 
since implemented multi-level setups which allow the use of simpler, large-scale models to define the flow 
boundaries of the main area of interest. This shifts the boundary problem up the hierarchy, but at additional 
computational expense.

In search of a remedy, an interesting alternative may be found in the analytic element method (AEM: Hait-
jema, 1995; Strack, 1989, 2003, 2017). Instead of discretizing the model domain into cells or finite elements, 
AEM constructs a complex-valued, scale-invariant analytic solution to the flow field for two-dimensional 
steady-state flow. This is achieved through superposition (addition) of simpler solutions, the eponymous 
analytic elements. While initially developed for two-dimensional, steady-state settings, AEM has since been 
extended to support three-dimensional model domains (Haitjema, 1985; Janković & Barnes, 1999), smooth 
inhomogeneities (Craig, 2009), and transient dynamics (Furman & Neuman, 2003). AEM code has been 
distributed in modeling frameworks such as TIMML (Bakker, 2006; Bakker & Strack, 2003), Visual AEM 
(Craig et al., 2009), TTim (Bakker, 2013), or AnAqSim (Fitts et al., 2015).

In the context of forcing uncertainty, AEM has the desirable property that it does not demand enclosure 
through finite, specified boundaries. Traditionally, regional flow is implemented as uniform and unidirec-
tional flow, and subsequently deformed through the placement of elements outside the immediate domain 
of interest. In principle, this method can induce highly complex flow fields, but is not very well suited for 
practical uncertainty estimation due to its indirect nature. More substantial changes to regional flow would 
require changing the position and rotation of the farfield elements.

In this study, our objective is three-fold: we strive to (a) demonstrate the intrinsic suitability of AEM for 
Bayesian inference, capitalizing on its naturally low parameter count and computational efficiency. Its nat-
ural approach to complexity (start simple, add more complexity as required) can make it more suitable for 
exploratory analyses than numerical models, which are often explored the other way around (start complex, 
then simplify by aggregating grid parameters). Toward this end, we (b) propose a new element based on a 
Möbius transformation, which can directly induce curving, diverging, or converging regional base flow 
within a circular model domain of arbitrary size. This improves AEM's suitability for the exploratory anal-
ysis of boundary uncertainty. Finally, we (c) provide a simple modular Python toolbox to offer practitioners 
unfamiliar with AEM or Bayesian statistics a starting point for incorporating basic uncertainty estimation 
into their modeling workflow.

We subsequently demonstrate the use of AEM and this element for the inference of local, two-dimensional, 
steady-state flow fields. We provide a modular Python code coupling a simple AEM implementation to a 
Markov Chain Monte Carlo (MCMC) routine, intended for preliminary explorations of plausible flow fields 
during model conceptualization, or simple Bayesian flow field inference in data-scarce environments.

2.  Theory
In this section, we will outline the basic concepts of AEM and some of the most common elements (Sec-
tion 2.1). The derivations summarized here are mainly based on and explored in much greater detail in the 
seminal works of Otto Strack (1989, 2017), but include minor adaptations. For our Python implementation, 
we largely follow the object-oriented procedure suggested by Bakker and Kelson (2009). We present the 
uncertainty estimation algorithm used in this study in Section 2.3. Variables in bold font denote vectors, 
matrices, or vector- or matrix-valued functions, while standard font is reserved for scalar-valued variables 
and functions. The equations and derivatives for all standard elements used in this study are reported in 
Appendix 1 and 2 (supporting information).

2.1.  Analytic Element Method

As opposed to conventional numerical models, the AEM does not seek a solution in terms of hydraulic 
head, but instead computes a complex-valued potential for two-dimensional steady-state flow:
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  iΩ Φ Ψ� (1)

where Φ is the discharge (or hydraulic) potential, Ψ is the stream function, which is constant along each 
streamline, and  1i  is the imaginary unit. At the heart of the method lies the superposition of solutions 
to simpler linear differential equations—the eponymous analytic elements—to yield a more complex result:

 


 
1

;
E

e e
e

Ω f z θ� (2)

where E is the number of analytic elements, and ef  is the function for a specific analytic element parame-
terized by eθ  and evaluated at z, a vector of complex-valued coordinates:

  .iz x y� (3)

where x and y are two coordinate components. The conversion of hydraulic potential Φ into hydraulic 
heads   depends on the aquifer type (Equations 8.12 and 8.13, Strack, 1989):
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where k  is the hydraulic conductivity, H is the thickness of the aquifer, and potentials and heads are defined 
relative to a horizontal aquifer base of zero elevation. Its inverse is:

    21 confined,
2

kH kH HΦ� (6)

   21 unconfined,
2

k HΦ� (7)

Analytic elements can be broadly classified into two groups. Some elements like extraction wells, line sinks, 
or area sinks only have to induce a relative change, for example extracting a certain net amount of water. 
As such, they can simply be added to the stack and induce the desired flow response. We will refer to such 
elements as relative elements. Other elements, like prescribed head boundary conditions, no-flow bounda-
ries, or inhomogeneities must enforce an absolute condition at certain locations. These elements must adapt 
their strength to the influence of other elements to fulfill their function. We will refer to such elements 
as absolute elements. The strength values of absolute elements can be found by solving a system of linear 
equations.

For this study, we have created a toolbox which implements a number of standard analytical elements: 
uniform base flow, extraction or injection wells, linear line doublets for polygonal inhomogeneities of hy-
draulic conductivity and no-flow boundaries, prescribed head boundaries, and area sources and sinks with 
uniform infiltration (Figure 1). For readers unfamiliar with AEM, the equations for these elements and the 
linear solver are briefly summarized and referenced in the supporting information (Appendix 1 and 2), and 
described in much greater detail in the works of Otto Strack (Strack 1989, 2017). Some elements, such as 
extraction wells or area sinks, require a farfield reference potential. In this study, we supplemented this po-
tential with a constant, setting their potential influence at a specified distance to zero, as we are not making 
use of a farfield. We expand this list of features with a novel element based on a Möbius transformation, 
capable inducing curving, diverging and converging regional base flow without the need for pragmatic 
absolute boundary conditions.
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2.2.  Möbius Base Flow

In two-dimensional flow, analytic elements can be superimposed on flow fields obtained from conformal 
mapping (e.g., Olver, 2018). Conformal mapping is a class of angle-preserving transformations which can 
convert grids in the complex plane—or, in our case, simple complex potential fields such as flow on the unit 
square from east to west—into more complex shapes, while preserving the validity of the solution. Classic 
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Figure 1.  Various analytic elements used in this study. (a) Uniform base flow, (b) Möbius base flow, (c) rate-specified extraction well, (d) polygonal 
inhomoheneity (lower conductivity), (e) polygonal inhomogeneity (higher conductivity), (f) prescribed head boundary, (g) no-flow boundary, (h) extraction 
area sink, and (i) injection area sink. All elements are shown for confined conditions, and all elements from (c) onwards use a background of uniform flow. 
Solutions for the stream function are not valid inside area sinks (h and i) and have been masked inside the element. Elements which add or remove water from 
the system (wells, line sinks, area sinks) induce branch cuts, discontinuities in the stream function. All elements except the Möbius base flow can be embedded 
in infinite domains and are only shown in circular cut-outs for visual simplicity.
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examples of such methods are Schwarz-Christoffel (SC) transformations (e.g., Driscoll & Trefethen, 2009) 
and Möbius transformations (e.g., Nehari, 2012).

We can use the Möbius transformation to obtain more complex regional flow than the uniform flow analyt-
ical element can provide. The Möbius element can be set up in two variations: with or without the SC map. 
With the map, the SC transformation first maps the unit square onto the unit disk, then deforms it with the 
Möbius transformation. This process is illustrated in Figures 2a–2c. If the SC map is not used, we apply the 
Möbius transformation directly to uniform flow in a circular domain (Figures 2d and 2e). Both variants of 
the element yield slightly different flow fields. We found that this element is flexible enough to reproduce 
a wide range of randomized regional flows induced by farfield elements (Appendix 3 in the supporting 
information).

An important benefit of regional flow elements (uniform or Möbius) is that their influence on the flow field 
is relative. As such, their imprint on the solution is more malleable to the influence of other flow-relevant 
features. This reduces undersired amplifying or damping effects on the flow response of other hydrological 
features.

To illustrate the adverse effect of (pragmatic) absolute boundaries, consider the effect of a well with uncer-
tain (thus variable) extraction rate near an absolute model boundary. A streamline-based no-flow bound-
ary would reflect and amplify the drawdown response back into the model domain instead of shifting the 
streamline. Conversely, an interpolated prescribed head boundary condition would indiscriminately supply 
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Figure 2.  Illustration of the conformal mapping from the unit square (a) through the unit disk (b) to the Möbius-transformed unit disk (c). The control 
points A, B, and C in the unit disk (b) and the Möbius-transformed unit disk (c) define the coefficients for the Möbius transformation. Subplots (d) and (e) 
demonstrate the effect of a Möbius transformation on uniform flow in a circular domain without a Schwarz-Christoffel transformation, also yielding a valid 
solution. The forward Schwarz-Christoffel transformation is listed in Appendix 4 (supporting information).
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the well with water from an infinite reservoir, thus damping its induced drawdown response. A malleable 
regional flow boundary, on the other hand, permits the well to express its drawdown response without ma-
jor interference. Of course, the Möbius base flow element does not substitute (nor compromise) the use of 
absolute boundary conditions where appropriate: it merely renders their use optional for the generation of 
regional flow.

For computational purposes, we are mainly interested in the inverse of these conformal maps: from the de-
formed unit disk (representing points in the model domain z, Figure 2c) back onto the unit square (yielding 
the corresponding complex potential Ω, Figure 2a). The first step consists of casting the model domain back 
onto the unit disk through translation and scaling:


 d

ud
d

z
r

zz� (8)

where z are coordinates in the model domain, dz  is the center and dr  the radius of the circular model domain. 
The inverse Möbius transformation is defined as:
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c a

Λ zM z
z� (9)

where Λ are the complex coordinates on the standard unit disk (Figure 2b), and a, b, c, and d are the Möbius 
coefficients. These coefficients can be computed by defining three reference points on the standard unit 
circle (e.g., points A, B, and C in Figure 2b) and their images or destinations on the edge of the transformed 
Möbius unit disk (i.e., A, B, and C in Figure 2c).

Why do three points suffice to define a Möbius transformation with four coefficients? To gain some intui-
tion, consider the forward Möbius transformation:
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With some trivial reformulation, it is possible to express this equation as:
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where we have reduced the four Möbius coefficients a, b, c, and d to three effective coefficients /a c, /b a, 
and /d c. By convention, however, Möbius transformation are often expressed in terms of the four coeffi-
cients (e.g., Nehari, 2012). To gain visual intuition about the nature of Möbius transformations, we recom-
mend the video Möbius Transformations revealed by Arnold and Rogness (2008).

In search of the Möbius coefficients, it is easier to express the complex coordinates of the control points and 
their images in terms of polar coordinates of unit length and angle :


    cos sin iZ i e� (12)

If we consider the static reference points in Figure 2b
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we can express their images on the Möbius unit circle of Figure 2c similarly






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i A
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i B
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i C
C

z e

z e

z e

� (14)

Consequently, we can specify the Möbius transformation through three variables only: A, B, and C. We can 
then calculate the desired Möbius coefficients (see Appendix 5 for the derivation, supporting information):

     
     


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a b z z z z z z
c d z z z z z z

� (15)

If desired, we may further map the standard unit disk onto the unit square with an inverse SC transforma-
tion (Fong, 2019)

     
           

1 11 1 1cos , 1
2 2us

e

i iF m i
K

Ω Λ ΛSC c� (16)

where usΩ  is the complex potential on the unit square,  ,F mc  is the incomplete Legendre elliptical integral 
of the first kind with argument c and parameter m:

   
 20

1,
1 sin

F m dt
m t

c
c� (17)

and     0.5 , 0.5 1.854eK F c m . This transformation is illustrated in Figures 2a and 2b. Note that 
we also obtain a valid solution if we do not make use of the SC transformation (Figures 2d and 2e). usΩ  (or 
Λ, if the SC transformation was not used) may then be transformed into a user-specified range:

     max min minΦ Φ 1 / 2 ΦusΩ Ω� (18)

A further example of a Möbius base flow is shown in Figure 1b. A final note pertaining to the Möbius trans-
formation: the list of its possible operations also includes inversion (i.e., the mapping of the disk's inside 
to its outside and vice versa), which is of course undesirable for our purposes. To check whether a given 
Möbius transformation of the unit disk includes inversion, it suffices to verify that the origin is not mapped 
outside the unit disk, at which point inversion would occur. A simple application of Equation 10 reveals 
that inversion occurs whenever / 1b d . The supporting information contains a video which illustrates 
the resulting support for combinations of A, B, and C.

2.3.  Bayesian Inference

Bayesian statistics are a formalized way of assigning probability densities, which can be interpreted as a 
plausibility metric, to different alternative hypotheses, often defined as a vector of unknown parameters 

    1, , Dθ


, where D is the number of uncertain parameters. When the number of hypotheses is in-
finite, for example in the case of continuous variables, Bayesian inference works with probability densities 
instead of probabilities. These densities are defined through probability density functions (pdf), which assign 
to each hypothesis (i.e., specific parameter vector) a value corresponding to its relative plausibility. Bayes' 
Theorem formalizes the process of updating one's state of knowledge by combining initial belief—the prior 

 p θ —with new information—the likelihood  |p y θ —to obtain the posterior pdf  |p θ y  after normali-
zation through the model evidence  p y  (e.g., Gelman et al., 2013; Kruschke, 2015; Sivia & Skilling, 2006):

     
 

|
|

p p
p

p
θ y θ

θ y
y

� (19)
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The prior  p θ  is generally user-specified. In practice, the definition of priors provides an opportunity to 
introduce expert knowledge. As a general rule of thumb, prior distributions should be chosen so that they 
return high probability densities in regions of sensible parameter values (“the hydraulic conductivity of this 
gravel unit should be around 210  m/s”), low densities for unrealistic parameter values (“the hydraulic con-
ductivity of this gravel unit should be around 910  m/s”), and zero for impossible parameter values (“the 
hydraulic conductivity of this gravel unit should be around 5 m/s”). Confident, narrow priors will bias the 
posterior solution toward the initial belief, so if in doubt, it is safer to use broader, more uninformative pri-
ors, which puts more weight on the likelihood—and consequently the data-fit—during the inference. Note 
that priors should never be defined based on the information used for the likelihood.

The likelihood  |p y θ  expresses the probability of obtaining the observations y given the hypothesis θ and 
is often based on the observation error. In practical terms, it constitutes a measure of fit between the model 
predictions and observations. Unfortunately, it is generally impossible to solve Equation 19 analytically. The 
model evidence is rarely known, and it is not always possible to find a tractable closed-form formulation for 
the posterior .

2.3.1.  Markov Chain Monte Carlo

However, even if Equation 19 does not have a closed-form solution, inference methods such as MCMC can 
still sample from the unknown posterior (e.g., Kruschke, 2015). This is useful because a sufficiently large 
sample set from a random distribution can act as a surrogate for the distribution itself, and consequently be 
used to infer its properties.

MCMC achieves this by starting from an initial hypothesis—the start point 0θ —then exploring similar hy-
potheses nearby by sampling from a proposal distribution, exploring the neighborhood of the current hy-
pothesis. MCMC then assembles a chain of samples by comparing each new hypothesis (the proposal) with 
the chain's last entry (the reference), and accepts or rejects the proposal based on its unnormalized posterior 
density relative to the reference's. If the proposal density is symmetric (it is equally probable to jump from 
the reference to the proposal than from the proposal to the reference), the acceptance probability acceptp  can 
be calculated as:

   
    

 
 
 
 

proposal proposal
accept

1 1

|
min 1,

|k k

p p
p

p p

θ y θ

θ y θ
� (20)

Equation 20 states that if the proposal is more plausible than the reference, the proposal is automatically 
accepted ( accept 1p ) and appended to the chain (  proposalkθ θ ). If it is less plausible, it is either accepted 
with a probability equal to the posterior density ratio ( accept 1p ) and appended to the chain (  proposalkθ θ ), 
or otherwise rejected, in which case the reference is appended to the chain once more (  1k kθ θ ).

2.3.2.  Adaptive Proposals

A practical challenge in MCMC is that if the proposal distribution is sub-optimal, the chain will either ac-
cept or reject an inordinate amount of proposals, and consequently contain either only few independent or 
few unique samples. To address this issue, adaptive MCMC algorithms (e.g., Andrieu & Thoms, 2008) seek 
to learn an efficient proposal distribution while the chain is assembled.

In our study and toolbox, we employ a version of the Differential Evolution Markov Chain (DE-MC: Ter 
Braak, 2006) algorithm. This algorithm runs multiple walkers in parallel, each assembling its own Markov 
Chain, and proposes jumps based on relative differences between the chains' latest entries

      proposal, 1, 1, 1,1 2i k i k R k Rθ θ θ θ ε� (21)

where the second subscript i denotes the indices of different walkers, 1R  and 2R  are indices drawn without 
replacement from the set of walkers without i,  is a scaling factor, and   0, Iε   is a small perturbation 
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drawn from a multivariate Gaussian with small variance  in order to prevent confinement to a subspace. 
Following Strens et al. (2002), we sample  from a stationary beta distribution    1, 3a b .

When using proposals based on relative differences between walkers, care should be taken to ensure that 
the number of walkers is larger than the number of dimensions D, as the proposals would otherwise be 
confined to a subspace. Ter Braak (2006) recommends choosing the number of walkers as 2D. Finally, the 
full chain is assembled by concatenating the individual walkers' chains. MCMC usually also requires some 
post-processing for finite chains. In addition to discarding a static burn-in period, we employ an automated 
routine which discards all entries of a walker's chain before it first crosses above a 10% margin around the 
logposterior mean of all chains.

We note that the choice of inference algorithm is ultimately up to the user. In this study, we chose to imple-
ment a DE-MC algorithm due to its relative simiplicity and robustness, as well as to limit the accompanying 
toolbox' external dependencies.

3.  Examples
In this section, we illustrate the performance of the algorithm for two test cases. For the first test case, we 
benchmark our Python AEM code against MODFLOW, a well-established numerical finite-volume method 
(FVM) framework. In the second test case, we demonstrate the performance of the AEM model and the 
MCMC inference mechanism in a synthetic test case. The codes for both scenarios are provided under 
https://doi.org/10.25678/00044N.

3.1.  Benchmarking

For benchmarking, we compare the results from our Python AEM implementation to the results of a steady-
state MODFLOW 6 model (Bakker et al., 2016; Langevin et al., 2017) at varying grid resolutions. Toward this 
end, we design a simple synthetic model employing every element described in Section 2.1 except the base 
flow elements (uniform or Möbius), as both are redundant in a domain enclosed by absolute boundaries, an 
unfortunate prerequisite of the numerical reference. A schematic illustration of the benchmarking model 
is illustrated in Figure 3a, and the results compared to different resolutions of uniformly sized hexagonal 
grids are shown in Figures 3b–3d.

The results indicate that our AEM code can accurately reproduce the FVM predictions, and that conversely 
the FVM results converge toward the AEM solution at finer grid sizes. This is mainly owed to the inability 
of rougher grid sizes to reproduce the boundaries and features in Figure 3a as faithfully as finer resolutions. 
We do however note that unstructured grids—which may adopt the cell size and shape locally to reproduce 
features more prescisely—can yield solutions closer to AEM than the uniform regular grids shown here.

3.2.  Synthetic Test Case

To illustrate the potential of AEM for practical groundwater field inference, we explore the algorithm in a 
synthetic test case. Revisiting the motivating issue of uncertain boundary dynamics, we design our synthetic 
site as part of a larger catchment, with limited head information and uncertain boundary conditions along 
most of the domain's circumference. Such scenarios abound in hydrogeological practice. The setup of the 
synthetic scenario and its true reference parameters are illustrated in Figure 4. The water table is assumed 
to be observed at an extraction well and three surrounding observation wells (Figures 4 and 5a). Toward the 
north-west, a river intersects the domain, implemented as a prescribed head boundary from 335 m in the 
South-West to 345 m in the North-East. The following model parameters are assumed uncertain:

•	 � 1c , 2c , 3c , 4c : The river's connectivity to the aquifer is interpolated between four nodes at 0%, 33%, 66%, 
and 100% of its length.

•	 � inhomogeneity ,k  backgroundk : The northern part of the model domain is defined as a polygonal inhomogeneity 
with a different hydraulic conductivity than the southern part.

•	 �A, B, C: the flow direction control points specifying the direction, curvature, and divergence for the 
Möbius base flow element are set as uncertain.
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•	 � minh , maxh : the lower and upper hydraulic head values for the regional base flow are similarly assumed to 
be flexible.

In the south of the model domain, we prescribe a no-flow boundary representing an impermeable geo-
logical formation. We note that it is sometimes useful to extend flow-relevant features outside the circular 
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Figure 3.  Illustrations of the benchmarking test case. To define a system which can be equivalently evaluated numerically, we embed a square area enclosed 
by two no-flow and two prescribed head boundaries within (functionally irrelevant) uniform flow. The central model domain, completely encased by absolute 
boundary elements, includes an area sink, an inhomogeneity, and an injection well (a). We compare the analytic element method (AEM) results (solid line; b–d) 
with three finite-volume method (FVM) grids of different cell in radii (radius from the hexagon's center to its edges) (dashed line): 30 m (b), 10 m (c), and 3 m 
(d). FVM results converge against the AEM solution at finer grid sizes. The discrepancies arise because numerical grid sizes determine how finely flow-relevant 
features can be resolved. Element and features outside the model domain in subplot (a) are merely shown for completeness' sake.
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model domain to prevent tip effects near the domain's edge. We extended the no-flow boundary beyond the 
circular model domain, but limited the river and inhomogeneity to the model domain.

For the inference, the priors we use are reported in Table S1 (supporting information) and illustrated in 
Figure 6. We base the likelihood on independent Gaussian observation errors (  0m,   0.15m), and we 
initialize the MCMC algorithm with 32 walkers with a target chain length of 5,000 each, plus an additional 
burn-in period of 500 steps each.

The inference results are illustrated in Figures 5 and 6. The RMSE (0.022 m) and bias (0.003 m) reflect 
the model's lack of structural error, but a glance at its uncertainty (Figure 5c) reveals greater ambiguity 
in the unobserved system states. Uncertainty in the groundwater field is lowest between the observation 
wells and swiftly increases toward the domain's edges, illustrating the diversity of different flow fields com-
patible with the observations. Overall, the (combined) chain's posterior predictions were faithful to the 
observations, with 95.73% of its predictions falling within two likelihood standard deviations of their re-
spective observation values (Figure 5f).

To test our DE-MC implementation, we compare the inference results to the EMCEE Python module (Fore-
man-Mackey et al., 2013) with the same number of walkers and chain length (Figure 6, Figures S4 and S5, 
supporting information). Comparing MCMC chains is less trivial than it is for deterministic algorithms, but 
over the limited chain length we investigated, both algorithms returned similar distributions. We also note 
that both EMCEE and DE-MC required post-processing (manual for EMCEE, automated for DE-MC), as 
both returned a few walkers which never converged.
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Figure 4.  Synthetic test case setup, illustrating uncertain variables (blue) and fixed features (gray). The central well 
extracts groundwater with a rate of −0.0025 m³/s, and the river acts as a prescribed head boundary linearly interpolated 
between 445 m in the North-East and 435 m in the South-West. The true values for the synthetic reference are listed 
beneath their respective parameter labels.
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Figure 5.  Schematic illustration (a) and results (b–f) for the synthetic test case. The model is implemented on a Möbius base with a polygonal inhomogeneity, an 
extraction well, a prescribed head boundary with spatially interpolated connectivity, and a no-flow boundary. Hydraulic heads are observed at three observation 
wells and the pumping well. Subplots (b and c) show the posterior mean and standard deviation of hydraulic head. Subplot (d) shows a selection of pathlines 
toward the extraction well. Subplot (e) shows the proportional logposterior density of the Markov Chain Monte Carlo, and subplot (f) shows the corresponding 
residual errors for the four observation wells. 95.73% of the chain's predictions fall within two likelihood standard deviations around the observations.
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Although this synthetic scenario is somewhat simplistic, we can illustrate some of the potential of AEM 
beyond simple groundwater field inference. Figure 5d illustrates a selection of uncertain flow paths toward 
the extraction well, which may serve as the basis for Lagrangian transport modeling. Similarly, we could 
investigate the sign and magnitude of the river segments' strength values to obtain probabilistic estimates 
about which parts of the river might be losing or gaining.

Using the algorithm as a support tool for model conceptualization, we can explore its use for the assignment 
of numerical model boundaries. Such a transition to numerical models might be motivated by Eulerian 
transport simulations or the investigation of transient dynamics. Naturally, it would be possible to calculate 
regional fluxes based on the AEM predictions and assign these as inflow or outflow boundaries. For tran-
sient dynamics, however, the user might wish to return to no-flow boundaries and time-variable prescribed 
head boundaries, which are more easily informed through marginal observation wells. If the observations 
and priors for the steady state AEM simulation were sufficiently representative of the average dynamics, 
either boundary type is best assigned in regions where the posterior AEM flow direction is relatively certain 
(deep blue regions, Figure 7).

The map in Figure 7 can be obtained by capitalizing on AEM's analytical nature to directly evaluate the hy-
draulic potential gradient  /Φ z for each entry in the MCMC chain. The resulting set of gradients at each 
individual location z z can be converted to a set of flow directions           arctan / / /z zΦ Φα , 
where     and     are the real and imaginary components of their respective arguments. Since the orien-
tation of flow is irrelevant for the assignment of boundaries (i.e.,     0.25 0.75 ), we can furthermore 
offset all angles  0α  by   (assuming    α ), then doubling α and halving the standard deviation 
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Figure 6.  Comparison between parameter inference results for our Differential Evolution Markov Chain (DE-MC) 
implementation and results obtained using the Python EMCEE toolbox. Posterior estimates for the control point 
rotations are illustrated as histograms around the model domain. Gray bars are used for the EMCEE results and colors 
for the DE-MC results, with the exception of the Möbius rotation histograms along the circumference, for which we 
retained common colors to distinguish different control points. For these variables, saturation denotes the difference 
between the EMCEE reference (saturated) and DE-MC (desaturated). Gray lines behind the histograms denote the 
prior distributions, except for the Möbius control point rotations, which have an (undepicted) uniform von Mises prior. 
Scatter points within the histograms mark the synthetic truth.
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estimate to obtain a more concise estimate. Circular standard deviations for all α are defined as (e.g., Mardia 
& Jupp, 2008):

    


   
 

2 2
1 1

circular

sin cos
2 log

N N
i i i i

N
� (22)

Prescribed head boundaries with constant head are best assigned perpendicular to flow lines (light blue 
arrows) in regions of low flow-direction uncertainty (Figure 7) and low hydraulic head uncertainty (Fig-
ure 5c). No-flow boundaries are best assigned parallel to well-informed flow lines.

4.  Discussion and Conclusions
In this study, we explored the use of the AEM for the inference of uncertain groundwater tables, particularly 
under the lens of uncertain regional flow. Toward this end, we expanded the standard toolbox of analytical 
elements with an element based on conformal mapping. This new element induces curving, converging, 
or diverging regional flow in a circular model domain of arbitrary size. We subsequently benchmarked our 
toolbox against a numerical model (MODFLOW 6) for varying grid resolutions.

To examine the performance of the Möbius base flow element and toolbox in practice, we explored its 
application in a simple synthetic scenario. Coupling the model to an MCMC routine, we sampled from its 
parameter posterior and simulated the corresponding uncertain groundwater flow fields. Finally, we illus-
trated a few possible analyses of the inferred water tables: water table uncertainty, simple pathline tracing, 
or decision support for the placement of numerical model boundaries.
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Figure 7.  Posterior circular mean (streamlines) and circular standard deviation (filled contours) of the hydraulic 
potential gradient direction. Since the orientation (back or forth) of flow in a given direction is irrelevant for the 
purpose of assigning boundaries (i.e.,  0.5 0.5 ), we estimated the circular standard deviation of the flow direction 
angles by first offsetting all negative angles by 180°, then doubling all angles, estimating the standard deviation, and 
halving this estimate. A version of this figure with simple circular standard deviation estimates is provided in Figure S6 
(supporting information).
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We find that AEM can be a highly computationally efficient tool for the exploration of uncertain flow fields 
in data-scarce environments. Its comparatively simple structure allows for straightforward uncertainty esti-
mation and can make it attractive for the estimation of probabilistic flow maps, particularly in studies with-
out a primary focus on subsurface characterization. Alternatively, it can prove valuable as a support tool in 
preparation for more complex numerical models, especially for the assignment of boundaries.

In summary, we believe that AEM constitutes a highly attractive compromise between simplistic, often 
one-dimensional analytical groundwater flow solutions (e.g., method of fragments: Harr, 2006), and the 
sometimes debilitating complexity of full numerical models. Its usually low parameter count and high com-
putational efficiency renders AEM naturally well-suited for most Bayesian uncertainty estimation methods. 
In light of the push toward more comprehensive uncertainty analyses over the past decades, we remain con-
fident that this property in particular warrants greater attention to AEM in the future. We have provided the 
AEM and MCMC toolboxes used in this study in the supporting information and on GitHub under https://
maxramgraber.github.io/Simple-AEM-Toolbox/

Data Availability Statement
The data and algorithms to reproduce the results reported in this study have been uploaded under https://
doi.org/10.25678/00044N.
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