
Genetics and population analysis

fastsimcoal2: demographic inference under complex

evolutionary scenarios

Laurent Excoffier 1,2,*, Nina Marchi1,2, David Alexander Marques3,4,5,

Remi Matthey-Doret1,2, Alexandre Gouy1,6 and Vitor C. Sousa1,7

1Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland,
2Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland, 3Life Science Division, Natural History Museum Basel, 4051 Basel,

Switzerland, 4Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland,
5Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology,

Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland, 6Gouy Data Consulting, 1026 Denges, Switzerland and
7cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, University of

Lisbon, Campo Grande, 1749-016 Lisbon, Portugal

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz

Received on April 19, 2021; revised on June 11, 2021; editorial decision on June 18, 2021; accepted on June 22, 2021

Abstract

Motivation: fastsimcoal2 extends fastsimcoal, a continuous time coalescent-based genetic simulation program, by
enabling the estimation of demographic parameters under very complex scenarios from the site frequency spectrum
under a maximum-likelihood framework.

Results: Other improvements include multi-threading, handling of population inbreeding, extended input file syntax
facilitating the description of complex demographic scenarios, and more efficient simulations of sparsely structured
populations and of large chromosomes.

Availability and implementation: fastsimcoal2 is freely available on http://cmpg.unibe.ch/software/fastsimcoal2/. It
includes console versions for Linux, Windows and MacOS, additional scripts for the analysis and visualization of
simulated and estimated scenarios, as well as a detailed documentation and ready-to-use examples.

Contact: laurent.excoffier@iee.unibe.ch

1 Introduction

Coalescent theory (Kingman, 1982) has provided a very efficient frame-
work to simulate the diversity of neutrally evolving loci (Hudson, 1990;
Kelleher and Lohse, 2020; Marjoram and Wall, 2006). These simulations
have been used extensively to check the validity of theoretical derivations,
and to make predictions of the effect of complex demographic processes
on the genomic diversity of populations. Due to their versatility, they have
also been used in Approximate Bayesian Computations (ABC, Beaumont
et al., 2002) to estimate parameters under very complex models and to
perform model testing (Beaumont, 2019; Currat et al., 2019; Mondal
et al., 2019; Sanchez et al., 2020; Wegmann et al., 2010). Several faster
alternatives to ABC have been developed in the last ten years to estimate
demographic parameters under relatively complex scenarios (Albers and
McVean, 2020; Gutenkunst et al., 2009; Steinrücken et al., 2019;
Weissman and Hallatschek, 2017), many of them fitting the Site
Frequency Spectrum (SFS) using exact derivations or approximations (e.g.

Excoffier et al., 2013; Gutenkunst et al., 2009; Kamm et al., 2020; Liu
and Fu, 2020). It has been shown that the expected SFS could be robustly
estimated using coalescent simulations (Excoffier et al., 2013). A clear ad-
vantage of SFS-based methods is that the computing time is independent
of the length of the analyzed genome. SFS-based methods, however, ig-
nore information on linkage between sites, an information that is used in
Hidden Markov Models-based approaches (e.g. Li and Durbin, 2011;
Schiffels and Wang, 2020; Speidel et al., 2019; Terhorst et al., 2017) or
those based on the Ancestral Recombination Graph (e.g. Gronau et al.,
2011; Kelleher et al., 2019). In this paper, we describe the latest imple-
mentation of fastsimcoal2, a coalescent-based program that can estimate
parameters from SFS under very complex demographic scenarios includ-
ing continuous arbitrary size changes, gene flow, admixture events, bottle-
necks, populations splitting, population growth, inbreeding, serial
sampling and spatially structured populations. Compared to its initial re-
lease one decade ago (Excoffier and Foll, 2011), fastsimcoal has been
extended in several ways described below.
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2 Novelties implemented in fastsimcoal2

fastsimcoal became fastsimcoal2 (abbreviated fsc2 in the following)
with the implementation of demographic and mutation parameters
inference from the SFS (Excoffier et al., 2013). While fsc2 might not
have a clear edge over other coalescent simulators of genomic diver-
sity, like e.g. msprime (Kelleher and Lohse, 2020), its innovation is
rather in its built-in ability to perform parameter inference under
complex evolutionary scenarios, and the most recent developments
have therefore focused on this aspect.

2.1 Parameter inference
For parameter inference, coalescent simulations are used to estimate
the expected SFS following Nielsen (2000), and a multinomial likeli-
hood (Adams and Hudson, 2004) is maximized using a conditional
expectation maximization algorithm (Meng and Rubin, 1993) to es-
timate the parameters, one at a time over several optimization cycles.
This approach has been shown to be very robust (Excoffier et al.,
2013) and can, in principle, be applied to an arbitrarily large number
of populations, whereas approaches based on analytically derived
SFS can only handle a few populations [e.g. 3 populations in @a@i,
(Gutenkunst et al., 2009) or 4–5 in dadi. CUDA (Gutenkunst,
2021)], or do not deal with continuous gene flow [e.g. in momi2
(Kamm et al., 2020)]. The trade-off for this robustness and versatil-
ity is that computing time, which is independent of genome size, will
however increase linearly with the number of sampled genomes, but
it remains reasonable given the speed improvements mentioned
below. fsc2 also gives the possibility to optimize the likelihood of the
model considering all sites (monomorphic and polymorphic), poly-
morphic positions only or a mixed approach where optimization is
first performed using likelihoods based on all sites, and then only
considering polymorphic sites after a given number of cycles (-l com-
mand line option). Finally, it is now possible to ignore singleton sites
(--nosingleton option), which might be useful when considering an-
cient DNA or low coverage data where some genotyping errors
might have arisen. Note that while fsc2 is using the SMC’ approxi-
mation (Marjoram and Wall, 2006) of the Sequential Markov
Coalescent (McVean and Cardin, 2005) for simulating diversity at
linked sites, the SFS estimation is based on the simulation of inde-
pendent coalescent gene trees.

2.2 Speed improvement
As compared to the first (but unpublished) version of fastsimcoal2
(fsc21), several speed improvements have been performed. First,
multi-threading has been introduced using the openMP framework
(https://gcc.gnu.org/onlinedocs/libgomp/), allowing one to distribute
independent simulations over several threads (-c option). Second,
icsilog (Vinyals and Friedland, 2008), a fast approximation of the
log function (used to generate exponentially distributed coalescent
times) is now used in fsc2, the precision of which can be specified by
the user (--logprecision option). Full precision is used by default (–
logprecision 23), but computing speed can be improved by 10–25%
by slightly lowering the precision (e.g. --logprecision 18)(see Fig.
1B–D). We have also optimized the simulation of large recombining
chromosomes, obtaining a>5� gain for the simulation of 1 Gb-long
chromosomes (Fig. 1A). Finally, we have optimized the simulations
of samples drawn from large, subdivided populations (e.g. in a 2D
stepping-stone), also leading to a drastic speed gain (6�–60�) for
such simulations (see Fig. 1C and D).

2.3 Input file syntax enhancement and new command

line options
The syntax of input files has been enriched to facilitate the specifica-
tion of complex evolutionary scenarios. In input parameter (.par)
and template (.tpl) files, it is now possible to specify an inbreeding
coefficient for each population in the sample section after the sam-
pling times of the simulated lineages, which can be useful when sam-
ples are drawn from a subdivided population leading to a Wahlund
effect (Wahlund, 2010) or when modeling a true inbred population.
One can also define instantaneous bottlenecks (with the instbot

keyword) in the historical events section. These bottlenecks are
implemented as a single generation of intense rate of coalescence,
and their intensity can be specified, where t is the duration of the
bottleneck in generations and N is the effective size during the
bottleneck. This implementation avoids the need to specify two sep-
arate parameters like the population size during the bottleneck N
and its duration t, while leading to the same rate of coalescence.
Population size changes are now also made simpler, as it is possible
to resize a given population size to an absolute value (using the
absoluteResize keyword) rather than to a relative value that often
used to be computed as a complex parameter.

New options have also been made available in the parameter specifica-
tion (.est) file. The most useful one is the possibility to specify the search
range of a simple parameter as being bounded by the values of previously
defined parameters using the paramInRange keyword. For instance, in the
following example a bottleneck time (TBOT) can be defined to occur be-
tween two divergence times (TDIV1 and TDIV2), with TDIV2 being ne-
cessarily larger than TDIV1 as

1 TDIV1 unif 100 10000 output
1 TDIV2 unif TDIV1 10000 output paramInRange
1 TBOT unif TDIV1 TDIV2 output paramInRange

Note that the combination of an absolute value and a parameter for
the lower or upper bound can also be provided. Finally, new operations
are now possible for the definition of complex parameters: abs(X) for
computing the absolute value of X; X%min%Y and X%max%Y for
finding the minimum and maximum of the numbers X and Y, respective-
ly; <condition>? <if true>: <if false> for assigning values to a param-
eter depending on whether a condition is met.

Command line options now include the possibility to define ini-
tial parameter values for parameter estimation (--initvalues), which
is useful when performing bootstrap confidence interval estimations.
Finally, the 1D or 2D folded SFS can be computed in different

Fig. 1. Speed comparison between different versions of fsc2. fsc21: released in 2013,

single-threaded. fsc2603: released in 2017, multi-threading but no log acceleration.

fsc27: current release, log acceleration, optimized for large chromosomes and highly

subdivided populations. (A) Simulation of 100 1 Gb chromosomes, r¼ 1e-7. (B)

Simulation of 100 haploid genomes consisting of 1 million unlinked segments of

100 bp, u¼ 1.4e-8. (C) Simulation of 2 haploid genomes of 10 000 unlinked seg-

ments of 100 bp in a 2D stepping-stone of 10�10 demes. (D) Simulation of 2 hap-

loid genomes of 1000 unlinked segments of 100 bp in a 2D stepping-stone of 20�20

demes. In the two top cases, the mutation rate u¼ 1.4e-8 per bp, and the haploid

population size is 20 000. In the two bottom cases, u¼ 1.25e-8, m¼ 0.05 to each of

the 4 adjacent demes and the haploid population size of each deme is 200. The num-

bers above the bars indicate the speed gain factor as compared to fsc21
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populations using the --foldedSFS option, which simply folds the
unfolded SFS irrespective of what is the overall minor allele among
all populations, so as to provide compatibility with ANGSD
(Korneliussen et al., 2014) folded SFS.

2.4 Additional tools for the analysis and visualization of

the results
Several tools have been developed to facilitate the use of fsc2 and the
analysis of the outputs it produces (see http://cmpg.unibe.ch/soft
ware/fastsimcoal2/additionalScripts.html). They include a shiny ap-
plication and several bash, R and python scripts to 9i) prepare input
files from VCFs, (ii) resample individuals in genomic blocks of arbi-
trary size for block bootstrap analyses, (iii) generate parametric
bootstrap replicates, (iv) convert multidimensional SFS into a series
of 1D and 2D SFS to visually compare observed and expected SFS,
(v) identify the least well fitted SFS entries under a given model and
(vi) visually inspect an evolutionary scenario embedded in an input
(.par) file.

3 Conclusion

fsc2 is a very versatile coalescent simulator able to handle evolution-
ary scenarios of arbitrary complexity. It can also be used to estimate
demographic parameters under similarly complex scenarios from the
site frequency spectrum, in a very consistent way. It can now also be
used to analyze geographically structured populations in a faster
way than some spatially explicit simulators [e.g. SPLATCHE3
(Currat et al., 2019)], even though input files can still be very large
as they can require an explicit definition of big migration matrices.
The syntax of input file has been improved to build complex scen-
arios in a simpler and consistent way, eliminating the need of defin-
ing rules to establish a hierarchy among parameters. fsc2 is restricted
to the simulation of neutral markers, but it can have a wide range of
applications from the simulation of whole recombining genomes
with complex architectures, to the estimation of parameters in mod-
els including many populations exchanging arbitrary and changing
numbers of migrants over time, or model comparisons via
likelihood-ratio tests or AIC. It has been applied to a variety of
organisms including humans (e.g. Malaspinas et al., 2016; Pouyet
et al., 2018), animals (Armstrong et al., 2021; de Manuel et al.,
2016; Marques et al., 2019, 2018; Meier et al., 2017), plants
(González-Martı́nez et al., 2017; Lu et al., 2019) or microbes
(Montano et al., 2015; Vázquez-Rosas-Landa et al., 2020), and it
can deal with ancient DNA samples and establish their relationships
with modern samples (e.g. Sikora et al., 2019, 2017).
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