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Abstract
Land-use changes often have significant impact on the water cycle, including changing groundwater/surface-water
interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular
is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is
important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface
runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical
models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate
hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-
moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff
estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding
soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a
water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater
balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light
model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are
found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These
conditions were found to closely echo those results from Swiss catchments of similar characteristics.
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Introduction

Groundwater is among the most important reserves of fresh-
water on the planet, critical for drinking water resources as
well as for healthy ecosystem functioning. Groundwater

reserves are replenished through aquifer recharge, which is
highly responsive to climate change and land development
(Gurdak et al. 2007). Unconfined shallow aquifers in particu-
lar are inherently vulnerable to short-term dynamics such as
precipitation excess or deficit, or to quality degradation from
surface influences (Thomas et al. 2017; Vogt and Somma
2000). This vulnerability translates into increased risk of con-
tamination in areas impacted by human land use (Burri et al.
2019; Hale et al. 2014; Jurado et al. 2014; K’oreje et al. 2016;
Meyer et al. 2005; Scanlon et al. 2007; Schirmer et al. 2011;
Sharp et al. 2003; Vázquez-Suñé et al. 2005). As more than
50% of the world’s population is now living in cities, an in-
creasing number of studies have been dedicated to investigat-
ing the numerous and complex changes in the water cycle in
general, and groundwater recharge in particular, in urbanizing
environments (Barron et al. 2013; Ficklin et al. 2010; Lerner
1990; Minnig et al. 2018; Schirmer et al. 2013; Wakode et al.
2018). Groundwater recharge is influenced by many factors;
therefore, its accurate characterization requires properly
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accounting for the individual environmental variables (e.g.
soil texture, land cover) and water balance components (e.g.
climatic forcing functions) that contribute to its dynamics.

Surface runoff in particular is one of several important
components in a groundwater recharge balance, acting as a
direct link between surface flow conditions and groundwater
bodies via groundwater-surface water interactions (Foster and
Chilton 2004; Musolff et al. 2010). Surface runoff is defined
here as the excess precipitation that flows at the land surface
immediately following a storm event (Harbor 1994). Like
recharge, surface runoff dynamics have been shown to be
heavily altered by human activity, often in very complex ways
(Eshtawi et al. 2016; Gremillion et al. 2000; Harbor 1994).
Increases in the amount surface runoff are often observed in
developed areas as a result of increased impervious surfaces,
soil compaction, and drainage infrastructure (Eshtawi et al.
2016; Rose and Peters 2001).

As neither groundwater recharge nor surface runoff can be
directly measured on large scales, both must be inferred indi-
rectly (Foster et al. 1999; Rammal et al. 2018). This typically
leads to great uncertainties in estimates, difficulties in charac-
terizing runoff–recharge relationships in changing environ-
ments, and subsequent difficulties in effectively protecting
and managing groundwater resources. Great efforts have been
made to improve understanding of these dynamics, and many
different approaches of varying complexity have been imple-
mented to study rainfall routing and groundwater recharge
(Scanlon et al. 2002). Examples include empirical and con-
ceptual water balances (e.g. Bergström and Lindström 2015;
Minnig et al. 2018; Wittenberg and Sivapalan 1999); thermal,
chemical, or isotopic tracers (e.g. Meriano et al. 2011;
Solomon et al. 1993); timeseries analyses (e.g. Bakker and
Schaars 2019; Crosbie et al. 2005); statistical and numerical
modeling (e.g. Bakker et al. 2016; Döll and Fiedler 2008;
Moeck et al. 2017); remote sensing and Geographic
Information Systems (e.g. Sheffield et al. 2018; Tweed et al.
2007), as well as combined method approaches (e.g. Brunner
et al. 2004; Hornero et al. 2016; von Freyberg et al. 2015). In
general, it is considered good practice to carry out estimations
using multiple approaches because of the differing spatio-
temporal applicability between different methods, as well as
the uncertainties involved in all approaches (Crosbie et al.
2010; Healy and Cook 2002).

Surface runoff can be quantified in a number of ways, most
commonly with pluviometric methods based on precipitation
data, or with hydrograph methods based on river discharge
data (Hernández-Guzmán and Ruiz-Luna 2013; Kirchner
2019; Rammal et al. 2018; Woldemeskel and Sharma 2016).
Pluviometric methods based wholly or partially on the Natural
Resources Conservation Service Curve Number equations
(USDA Natural Resources Conservation Service 1986) are
popular due to their suitability for small-scale applications,
applicability in ungauged catchments, low data requirements,

and thorough documentation and case studies in literature
(Ajmal et al. 2016; Arnold et al. 2012; Hernández-Guzmán
and Ruiz-Luna 2013; Minnig et al. 2018; Mishra and Singh
2003; Soulis and Valiantzas 2012; Thomas and Tellam 2006;
Verma et al. 2017; Wakode et al. 2018; Wang et al. 2012;
Zope et al. 2017). Modern adaptations of the method attempt
to improve soil-moisture accounting (e.g. Bartlett et al. 2016;
Michel et al. 2005; Mishra et al. 2003; Sahu et al. 2010; Singh
et al. 2015; Wał ga and Rutkowska 2015), or to explore the
proportionality concept that is of unclear origins (Hooshyar
and Wang 2016).

For hydrograph methods, river discharge gives a great deal
of insight into storm runoff response and changing water dy-
namics within a catchment. River discharge, also referred to as
streamflow, is composed largely of slow-moving baseflow
and the rapid-response of quickflow. A discharge hydrograph
can be separated into individual components using simple
recursive digital filters (Chapman 1991; Li et al. 2014;
Nathan and McMahon 1990; Willems 2009), or with more
sophisticated methods using high-frequency chemical or iso-
tope composition in addition to streamflow timeseries
(Jasechko et al. 2016; Lyon et al. 2012; Penna et al. 2015;
Von Freyberg et al. 2017).

Groundwater recharge for shallow aquifers is often deter-
mined via “top-down” water balancing, which uses data on
surface conditions in order to estimate the partitioning of pre-
cipitation between evapotranspiration, runoff, and recharge
(e.g. Arnold and Allen 1999; Minnig et al. 2018; Seibert and
Vis 2012). Major control factors for precipitation partitioning
include climate, geology, geomorphology, precipitation inten-
sity, and land cover, among others (Gannon et al. 2014;
Moeck et al. 2020a; Stanton et al. 2013). In urban environ-
ments, water balances can be expanded to account for addi-
tional inputs such as sewer leakage, effluent, or irrigation.
However, recharge estimates from these water balances are
only as good as the estimates of their individual variables,
and are thus contingent on identifying and accurately quanti-
fying the significant input and output variables.

While increases in computational power have enabled the
development of fully distributed, physically based numerical
models, the use of empirical and conceptual models remains
popular. This can be attributed to the large data requirements
and consequent uncertainty in parameters that are necessary for
numerical modeling, while simple methods are more widely
accessible due to minimal data requirements, relatively straight-
forward parameterization, and simplicity in application (Bakker
and Schaars 2019). Because of this fact, it is important to con-
tinually explore the performance of simplified approaches in
different environments to validate their applicability. The basic
data necessary for simpler methods are readily accessible on
large spatial scales, due in great part to the organization of free
databases provided by local governments up to global organi-
zations such as the Center for Global Environmental Research
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(CGER) or the United Nations Food and Agriculture
Organization (UN FAO). In addition, many small-scale pub-
lished datasets from around the world (e.g. Crosbie et al. 2010;
Moeck et al. 2020a) are also freely available.

With these ideas in mind, the objective of this study is to
apply empirical and conceptual methods to quantify and ex-
plore runoff dynamics, and to assess their suitability to esti-
mate groundwater recharge in an urbanizing environment.
This is carried out in a small catchment located on the Swiss
Plateau that is undergoing active transition from an agricultur-
al landscape into an urban landscape. This catchment is of
interest as the groundwater is the principal source of drinking
water for the local population and is representative of the
active increase in urbanization that many towns are currently
undergoing. This offers a prime opportunity to observe these
changes as they occur. The relative strengths and shortcom-
ings of each of the investigated methods are discussed. With
these comparisons, it is possible to gauge the ability of these
straightforward methods to offer satisfactory characterization
of the water cycle in a human-impacted catchment.

Two approaches were used to estimate catchment surface
runoff: (1) a modified version of the NRCS-CN method,
called the Sahu-Mishra-Eldho (SME) model after its authors
(Sahu et al. 2010, 2012); compared to (2) an automated
hydrograph separation using the popular recursive digital filter
as outlined by Nathan and McMahon (1990). In this applica-
tion of the SME model, additional modifications were made
for soil-moisture calculations, making use of an antecedent
precipitation index. For hydrograph separation, a wide range
of filter parameters suited to urban environments were ex-
plored. Two approaches were then used to estimate ground-
water recharge: (1) an empirical water balance using the sur-
face runoff estimates as input, followed by (2) application of
the conceptual HBV Light model (Seibert and Vis 2012). As a
final step, these results were compared with recharge esti-
mates found in the literature for similar Swiss catchments.

Case study

The upper Kempttal catchment on the Swiss Plateau is located
approximately 10 km east of the city of Zürich, Switzerland
(Fig. 1). The catchment is defined topographically from pub-
licly available data (Swiss Federal Office of Topography), and
covers an area of approximately 35 km2 with an increasing
elevation from NW–SE: 520 masl at the lower outlet area
(NW), and up to approximately 900 masl in the upper head-
water area (SE). The catchment contains a small tributary
network feeding into the Kempt River, which is modified
via canalization and deepening of the river bed within the
central urban municipality, Fehraltorf. Flow in the Kempt
River is supplemented by wastewater effluent released near
its outflow, and is conceptualized here as an integral

contribution to river baseflow. Shallow geology is composed
of unconsolidated fluvio-glacial sediments that are host to an
unconfined aquifer (Fig. 1a). The deepest zones of the aquifer
body are in the central valley and have been reported at 10–
20 m, with thinner portions between 1 and 8 m on the valley
edges (Krejci et al. 1994), though these estimates are uncer-
tain. The residence time of groundwater is assumed to be
relatively short, on the order of months to 2 years (Krejci
et al. 1994). The aquifer provides approximately 80% of fresh-
water resources for local communities (Reinhardt et al. 2019).

Currently, land cover consists of 53% agriculture, 25%
forest, and 22% urban area. Sealed surfaces and drained areas
are present within both urban and agricultural areas, covering
approximately 10% of the entire catchment (Fig. 1b; Federal
Statistical Office of Switzerland GEOSTAT). Sealed surfaces
correspond principally to roads and buildings, whereas
drained areas correspond to tile drains and open ditches.
Surface and underground drainage systems exist in several
areas.Most storm drains are separated from the sewer network
and direct runoff into the river network within the catchment
via sewer inflow. However, some central areas are still served
with storm-water systems combined to the sewer network,
diverting runoff towards the wastewater treatment plant via
sewer inflow. These combined systems can lead to combined
sewer overflow (CSO) during heavy storms when network
flow capacity is exceeded; additional details on the study site
may be referenced in Ramgraber et al. (2021).

Observation data

Table 1 gives a summary of the principal datasets considered,
all on a daily timescale. Surface-water discharge (Q) was col-
lected from a single gauging station near the outflow of the
catchment, approximately 500 m downstream of the wastewa-
ter treatment plant for the municipality of Fehraltorf. Table 2
lists annual values of the water balance variables over the
study period. For these calculations, Q as well as pumping
rates were converted into units of depth by dividing their
values by the catchment area. As the Kempttal catchment is
in fact a subcatchment of the greater Tösstal catchment, re-
gional flow is expected from the surrounding hillslopes, such
that this catchment is not a closed system (Ramgraber et al.
2021).

Materials and methods

Surface runoff

SME method

The SME method was first proposed by Sahu et al. (2010) as
an improvement of the NRCS-CN method (USDA Natural
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Fig. 1 a Shallow geology of the
upper Kempttal catchment. The
aquifer is principally located
within the glacial, loamy, and
alluvial sediments of the
catchment. b Sealed surfaces and
drained areas in the catchment
correspond to impervious
surfaces in the urban area and
drainage networks in agricultural
areas. Public sources: Swiss
Federal Office of Meteorology
and Climatology (MeteoSwiss);
Canton Zürich Office for Waste,
Water, Energy, and Air (AWEL);
Swiss Federal Office for the
Environment (FOEN), Swiss
Federal Office of Topography
(Swisstopo)

Table 1 Summary of main
databases considered in the
current study

Data type Source Time period

Precipitation (P) MeteoSwiss 2007–2018

River discharge (Q) AWEL 2007–2018

Reference Evapotranspiration (ET) MeteoSwiss 2007–2018

Groundwater pumping Municipality Fehraltorf 2014–2017

Land cover GEOSTAT; AWEL; FOEN 2015

Paved surface area Canton Zürich 2015

Public sources: Swiss Federal Office of Meteorology and Climatology (MeteoSwiss); Canton Zürich Office for
Waste, Water, Energy, and Air (AWEL); Municipality Fehraltorf; Swiss Federal Statistical Office GEOSTAT;
Swiss Federal Office for the Environment (FOEN)
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Resources Conservation Service 1986). A brief introduction
of the NRCS-CN method and its governing equations can be
found in the electronic supplementary material (ESM), with
more thorough information found in Mishra and Singh
(2003). The SME method is based on the same water balance
as that of the original CN (Eq. S1 of the ESM) plus adaptations
to the two fundamental hypotheses that underlie the method
(Eqs. S2 and S3 of the ESM). The authors adapted the estima-
tion of soil moisture, while maintaining a relatively straight-
forward implementation and a restricted number of required
parameters. A computer program was developed in Python to
implement the SME model in this study.

The SME method decouples soil moisture from catchment
potential retention, which are lumped in the original NRCS-
CNmethod. Several simplifying assumptions are then applied
in order to derive an expression for soil moisture on daily time
steps, using a 5-day antecedent rainfall condition P5 (Eq. S8 of
the ESM). The principal assumption in formulating this soil-
moisture equation is that the catchment is completely dry prior
to the 5-day antecedent precipitation window P5. This as-
sumption is, however, generally invalid for temperate regions,
regions with regular winter snowfall, and for urban landscapes
where, despite potential decreases in infiltration, impervious
surfaces and compacted soils may lead to prolonged soil-
moisture retention due to reduced ET (Bhaskar et al. 2016).
Antecedent rainfall may be taken over longer time periods (Px

for x > 5) for calculations, but this does not resolve the issue of
subjectivity in choosing an antecedent moisture window, and
subsequent disregard of conditions prior to that window.

Given the significant dependence of runoff generation on
antecedent moisture conditions in many catchments (e.g.
Bennett et al. 2018; Hrachowitz et al. 2013; Penna et al.
2011), an attempt to further improve upon soil-moisture char-
acterization is merited. An alternative is the antecedent precip-
itation index (Fedora and Beschta 1989; Kohler and Linsley
1951), which is proposed here to replace P5. The antecedent
precipitation index (API) applies an exponential decay factor
over a rainfall timeseries, in order to estimate the amount of
prior rainfall that may be contributing to current soil-moisture
conditions. APIs are regularly used as soil-moisture proxies in
rainfall–runoff modeling (e.g. Bennett et al. 2018; Descroix
et al. 2002; Ma et al. 2014; Woldemeskel and Sharma 2016).
Various, closely related formulations are given in the litera-
ture, and a generalized form of the API is used in this study:

API ¼ ∑T
t¼1P−t � kt ð1Þ

In Eq. (1), T is the total number of time steps in the series,
t = 1, 2, …, T are the individual time steps, and k is a dimen-
sionless decay factor, with 0 < k < 1 (often in the range of 0.6–
0.99 for temperate areas). P–t is the amount of precipitation at a
prior time step –t. As t increases, the term kt vanishes. The factor
k is conceptualized as representing how quickly moisture is lost
from a catchment through any process: higher values of k rep-
resent a slow draining landscape (including soil-moisture drain-
age), and lower values represent a quickly draining landscape
(Ali et al. 2010; Lee and Huang 2013; Woldemeskel and
Sharma 2016). In reality, the decay factor is proportional to
evapotranspiration and likely related to water table depth, and
thus should vary seasonally (Pui et al. 2011). In practice, it is
often taken as a constant through time, assumed to represent
average annual conditions. The API rids the need for the user to
determine an arbitrary, fixed-window sum of antecedent pre-
cipitation, at the expense of having to estimate the parameter k.

For this study, values of k between 0.8 and 0.95 for daily
time steps were considered. The calculated API was in fact
relatively insensitive within this range, with an average differ-
ence of 2.5 mm between the API using k = 0.8 and k = 0.95.
Without further information to constrain this value, a value of
k = 0.9 was selected for the API. The length of T for the API
covered the entire timeseries (2007–2018) on daily time steps.

The original SME equation for soil moisture,M, (Eq. S8 in
the ESM) is thus modified and applied here as:

M ¼ β
API−λS0ð ÞS0

API þ 1−λð ÞS0

� �
for API > λS0 ð2Þ

where β (dimensionless) represents the fraction of antecedent

Table 2 Annual sums of major water balance variables during the
period of study

Year P (mm) ET (mm) Q (mm) GW pumping (mm)

2007 1,137.3 445.7 443.1 –

2008 1,115.7 422.8 323.7 –

2009 1,057.5 433.5 325.4 –

2010 1,207.5 414.8 462.6 –

2011 961.1 514.2 305.7 –

2012 1,329.5a 450.0 605.9 –

2013 1,156.6 441.7 577.8 –

2014 1,116.8 430.4 531.2 23.7a

2015 891.6 554.8 452.0 32.8

2016 1,268.4 403.8b 660.2a 29.4

2017 1,048.6 475.6 438.9 36.5b

2018 889b 554.9a 288.4b –

Ave. 1,094.7 462.0 451.3 30.6

Precipitation is assumed to represent the maximum potential recharge,
reference evapotranspiration ET is the principal precipitation loss factor,
and Q is streamflow, which is an integrated signal of surface runoff and
groundwater exfiltration. Ave. is average
a Corresponds to the highest yearly values
b Corresponds to the lowest yearly values

Data courtesy of MeteoSwiss and Municipality Fehraltorf Municipality
(2018)
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precipitation that is contributing to soil moisture, S0 (units of
depth) represents maximum potential retention of a catch-
ment, and λ (dimensionless) is the so-called initial abstraction
(Ia) coefficient, where Ia = λS0.

From the decoupling of soil moisture and maximum
potential retention, S0 is determined as a function of phys-
ical catchment characteristics including soil type, unsatu-
rated zone depth, land cover, and vegetation types. Initial
S0 values can be approximated with values of S in dry
conditions from the NRCS-CN method (Mishra and
Singh 2003; USDA Natural Resources Conservation
Service 1986), and adjusted through calibration. The pa-
rameter λ is generally deduced from geological maps,
drainage tests, soil cores, climatic factors, or other aspects
of the current conceptual model for the site under study.
Values of λ are referenced in literature between the ranges
of 0.05 and 0.3, and are closer to 0.05 in urbanized areas
(e.g. Minnig et al. 2018; Mishra and Singh 2003). Values
of β may range between 0 and 1, though more precise
information on this parameter in literature is sparse.
Further, the fraction β is most certainly affected by the
use of the API in place of P5, and is expected to be closer
to 1 in this formulation of M due to the decay factor
inherent to the API.

Further, it was deemed important to expand the represen-
tation of runoff beyond soil-controlled, saturation-excess
overland flow. This was done by explicitly accounting for
paved and drained surfaces with a preprocessing of rainfall
partitioning. Runoff over paved and drained surfaces was
decoupled from soil-controlled runoff dynamics with the sim-
plified assumption that all precipitation falling onto these sur-
faces immediately becomes runoff. As 10% of the entire
catchment is covered and connected to storm drainage, 10%
of all precipitation was routed directly to runoff, and the re-
maining 90% of precipitation then used as input for both API
and SME runoff calculations. This treatment is equivalent to
routing 10% of precipitation directly into surface water via
storm sewers and drainage systems. With these added consid-
erations, the following equation for runoff Roff is applied:

Roff ¼ 0:9P−I að Þ 0:9P−I a þMð Þ
0:9P−I a þ S0

þ 0:1P; for 0:9P

> Ia ð3Þ

where Ia corresponds to rainfall interception, which is the
fraction of precipitation that is lost from a catchment during
a storm event through processes such as infiltration, canopy
interception, or ponding at the surface (Lee and Huang 2013;
Van Dijk et al. 2015). In Eq. (3), the factors of 0.9 and 0.1 will
change from catchment-to-catchment depending on the ratio
of area that is covered by impervious surfaces. Calculations
were carried out on a daily basis and upscaled to weekly,

monthly, and annual scale in order to explore storm-by-storm,
seasonal, and annual runoff.

Hydrograph separation

Hydrograph separation (HS) involves dividing a hydrograph
into its assumed subflow components, which consist princi-
pally of quickflow and baseflow. Baseflow corresponds to
sustained streamflow during dry weather periods and is large-
ly sourced from groundwater, where quickflow is largely
sourced from surface runoff from storm events. Land devel-
opment often leads to significant changes in baseflow and
quickflow dynamics (Gremillion et al. 2000; Liu et al. 2013;
Meriano et al. 2011).

The basic approach for hydrograph separation uses recur-
sive digital filters (RDFs) to separate quickflow and baseflow
(Chapman 1991; Nathan and McMahon 1990; Willems
2009). The RDF first proposed by Lyne and Hollick (1979),
as outlined by Nathan andMcMahon (1990) was applied with
the EcoHydrology package available in R (Fuka et al. 2018)
for this study. The filter is expressed as such:

qf t ¼ α� qf t−1 þ
1þ α
2

� Qt−Qt−1ð Þ ð4Þ

where qf is quickflow (units of depth), Q is measured
streamflow (units of depth), and α is the filter parameter (di-
mensionless). It can be seen from Eq. 4 that larger values of α
lead to lower estimates of baseflow and higher estimates of
quickflow, and vice versa. For the purpose of this study, qf is
assumed to correspond to surface runoff.

In most applications, α is set at or near the value of 0.925
proposed by Nathan and McMahon (1990), which is applied
as standard practice (e.g. Bennett et al. 2018; Burns et al.
2012; Partington et al. 2012). However, the original work by
Lyne and Hollick (1979) suggested varying the filter parame-
ter between 0.75 <α < 0.9, and more recent work by Li et al.
(2014) has demonstrated that α can and does widely vary
between 0 <α < 1, depending on baseflow dynamics and the
underlying conceptual model. Knowledge of land cover, soil
types, water-table depth, and visual inspection of a streamflow
hydrograph can be used as a preliminary assessment of poten-
tial value ranges of α. It is generally assumed that the lower
end of the hydrograph recession curve should coincide with
baseflow. Visual inspection of the upper Kempttal hydrograph
show that values of α lower than the commonly used 0.925
better portray the expected behavior of a flashier runoff re-
sponse to storm events that is characteristic of urbanizing
areas. For the current work, a range of values between 0.3
and 0.95 were explored with an uncertainty analysis (see sec-
tion ‘Uncertainty analysis’ for details).
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As the river gauging station at this study site is located
directly downstream of the wastewater treatment plant
(WWTP), wastewater effluent is integrated into the
streamflow signal, supplementing groundwater-sourced
baseflow due to its relatively lagged response relative to
quickflow. Because of this, a higher quantity of baseflow
(and thus a lower value for α) is deemed more appropriate
to account for this effluent; an example hydrograph from this
exercise is available in the supplementary information (Fig. S2
of the ESM). As with the SME method, HS calculations were
calculated on a daily basis and upscaled to weekly, monthly,
and annual scale in order to explore storm-by-storm, seasonal,
and annual runoff.

Streamflow, runoff, and quickflow coefficients

The streamflow coefficientCQ= Q
�
P is an often-used index to

characterize the relative response of river discharge to storm
events, and has been applied in numerous studies to this end
(e.g. Barron et al. 2013; Penna et al. 2015; von Freyberg et al.
2018). Similarly, runoff coefficients using Roff and qf from
SME and HS calculations, respectively, can be used to specif-
ically characterize the relative surface runoff response to storm
events. These are expressed as CRoff = Roff=P and Cqf = qf

�
P,

respectively. It is important to note that CQ only represents
how much water is mobilized by a storm event, and does not
track the source of water in the streamflow response (von
Freyberg et al. 2018). It is only Roff, which is calculated from
the SMEmethod, that is physically derived from precipitation.
All three of these coefficients were calculated over the entire
timeseries in an attempt to gain insight on the proportional
streamflow or runoff response from a given storm event, the
potential presence of runoff inputs additional to rainfall (i.e.
pre-event water, CSO), and the catchment contributing area to
runoff generation. These coefficients were explored as a func-
tion of both precipitation magnitude as well as antecedent
precipitation conditions.

Uncertainty analysis

Uncertainty in the parameters for both runoff methods were
explored. First, the SME method is a relatively new approach
as compared to the original CN method, and plausible ranges
of parameter values are less documented. To address the un-
certainty for this method, a Monte Carlo sampling approach
was used to generate an ensemble of 10,000 random parame-
ter combinations from independent prior probability distribu-
tions for S0, λ, and β (Table 3; Fig. S1 of the ESM), resulting
in 10,000 runoff estimates. The lower and upper limits of S0
and λ were constructed to be larger than the ranges of these
parameters found in literature for the original CN method
(Minnig et al. 2018; Mishra and Singh 2003; Sahu et al.

2012). It should be noted that during construction of parame-
ter ranges, S0 values greater than 300 mm led to very minimal
surface runoff estimates, and values greater than 450 mm led
to a complete absence of surface runoff. Finally, each param-
eter was allowed to vary independently during the sampling
process.

With regard to hydrograph separation, the filter parameter
α was similarly tested. In this case, a manual sampling of 23
random values between 0.3 and 0.95 was carried out
(Table 3).

Groundwater recharge

Water balance

In this text, the water balance calculates groundwater recharge
(GWR) as the residual of relevant terms including precipita-
tion (P), evapotranspiration (ET), and surface runoff (Runoff).
The basic form was calculated in the current study:

GWR ¼ P−ET−Runoff ð5Þ

Using Eq. (5), GWR was estimated on a daily basis over
the entire catchment, and then upscaled to annual sums for the
purpose of identifying long-term trends (i.e. dry years or wet
years). The estimates of surface runoff and quickflow outlined
in sections ‘SME method’ and ‘Hydrograph separation’ were
used in turn as the runoff input. As reference ET inputs were
available from public data, their uncertainties were not ex-
plored, and the same ET dataset was used for water balance
calculations.

Human systems in general, and urban systems in particular,
may contain additional artificial inputs into a groundwater
recharge balance such as sewer leakage, water mains leakage,
or irrigation return flow (Bhaskar et al. 2016). However, such
sources are highly uncertain and are difficult to identify, par-
ticularly when their impact is small or is balanced out with
artificial losses such as groundwater pumping. The net impact
of these artificial sources on the overall mass balance is ex-
pected to be minimal at our study site and without further data,
are therefore not considered.

Table 3 Ranges of prior parameter values considered for SME and HS
calculations

Method Parameter Mean Min Max

SME S0 150 8.56 293.55

λ 0.10 0.002 0.29

β 0.5 0.01 0.99

HS α 0.61 0.3 0.95
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HBV Light model

HBV Light is a rainfall-runoff model developed by Seibert
and Vis (2012) as an adaptation to the original HBV model
developed by Bergström (1976). HBV Light is regularly ap-
plied by hydrologists to partition measured streamflow into its
assumed subcomponents, and has been used in numerous
studies for various objectives (e.g. Etter et al. 2017;
Gebrehiwot et al. 2013; Griessinger et al. 2016; Orth et al.
2015). Thorough overviews are available in literature
(Bergström and Lindström 2015; Seibert 1999; Seibert and
Vis 2012). The model is built around the following water
balance equation:

P−AET−Q ¼ d
dt

SPþ SMþ SUZþ SLZþ lakesð Þ ð6Þ

where P is precipitation, AET is evapotranspiration, Q is river
discharge, SP is snow pack, SM is soil moisture, and SUZ and
SLZ are storage in upper and lower subsurface zones, respec-
tively. The model output variable labeled as recharge is con-
ceptualized as all water infiltrating from the surface into both
upper and (SUZ) and lower (SLZ) subsurface zones. All var-
iables are in units of depth over a specified time step.
In its simplest form, timeseries for precipitation, air
temperature, river discharge, and potential ET (PET)
are needed, where river discharge is fitted to calibrate
model parameters. AET is then calculated from PET and
air temperature within the model. The model may be
solved in either a lumped-catchment manner or in a
semidistributed manner by defining elevation and vege-
tation zones. Model structures are available that account
for multiple groundwater bodies, snow packs, or a het-
erogeneous unsaturated zone.

For this study, the standard HBV Light model structure
was applied in order to represent both unsaturated and satu-
rated zones. Five different elevation zones and one vegetation
zone were defined in order to create a semidistributed frame-
work. There are in fact three streamflow components in the
model structure that correspond to the groundwater recharge
output from SUZ and SLZ. These components are labeledQ0,
Q1, and Q2, and account for unsaturated zone and shallow
percolation contribution into streamflow (Q0, Q1), followed
by baseflow that is connected to deep percolation (Q2). Q0 is
calculated as 0 except during strong storm events and when
soil moisture is above a predefined threshold, and Q1 is acti-
vated during most storm events as well as when soil moisture
is above a second predefined threshold. Therefore, for the
purpose of this study, Q0 and Q1 were subtracted from the
given recharge variable in order to calculate GWR that is
consistent with the empirical water balance applied for this
study.

Built-in calibration methods are available to explore model
uncertainty. Automatic sampling of parameter values between
user-defined bounds can be carried out with either Monte
Carlo (MC) random sampling or a Genetic Algorithm and
Powell optimization (GAP). Parameter sets are then evaluated
by applying one or more objective functions between simu-
lated and observed streamflow, and best-fit combinations are
determined by optimizing the chosen objective function(s).
The model was calibrated between the years 2008–2012 and
validated from 2013 to 2016, using both MC and GAP to find
the best parameter sets. From these, the six best performing
parameter sets were selected each from the MC and GAP
simulations, for a total of six optimized estimates. Three ob-
jective functions were used to assess model performance: ef-
ficiency Reff, log of efficiency Log Reff, and the coefficient of
determination R2. Optimal values for each of these objective
functions is 1. Results only from the validation period 2013–
2016 are presented in this study.

Results

Runoff response to rainfall

Streamflow dynamics

The streamflow coefficient CQ is plotted in Fig. 2 against
precipitation (Fig. 2a), and then as the API, over daily
timesteps (Fig. 2b). The relationship is shown for days where
P > 10 mm; amounts below 10 mm in 1 day were generally
observed to generate little to no streamflow response, which
has been observed in studies of similar climate (e.g. Thomas
and Tellam 2006). Figure 2a shows that the streamflow coef-
ficient for precipitation amounts >30 mm/day does not exceed
0.5. In contrast, when CQ is compared to the API (Fig. 2b), a
positive and exponential relationship is exposed. These rela-
tions suggest that higher antecedent catchment moisture is a
strong indicator for greater streamflow response, whereas
higher absolute rainfall does not seem to lead to a relatively
higher streamflow response. Conditions when CQ > 1 are ob-
served for several instances when the API surpasses 30 mm,
and may be an indication of greater pre-event soil-water input
or CSO, although this should be interpreted with care because
CQ > 1 can be influenced by the frequency of measurements,
as streamflow recession can occur over periods longer than
1 day.

Figure 3 exposes the temporal relationship between
streamflow, precipitation, and the API for the example year
2010 (time series for all years available in Fig. S4 of the
ESM). It can be seen that the two largest storms and river
discharge peaks occur immediately following a mostly dry
period with a low API. It is interesting to note that during
prolonged periods of increased soil moisture and consistent
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small storms, major peaks in streamflow are not always ob-
served. A notable example in Fig. 3 is the month of July,
where the API is elevated from small storms, but streamflow
exhibits few major peaks. Despite increases in sealed surfaces
and presence of drainage systems, it is suggested that much of
the precipitation during small storms ends up infiltrating soils
and recharging the aquifer rather than being lost to surface
runoff.

Comparing estimates of surface runoff

The surface runoff coefficient CRoff was calculated using the
mean values of all SME surface runoff simulations as a func-
tion of precipitation. When CRoff is plotted against precipita-
tion and against the API (Fig. 4), a similar pattern to those of
Fig. 2 emerges: smaller amounts of precipitation correspond
more strongly to proportionally higher runoff responses,
whereas higher API values correspond to proportionally
higher runoff responses. Regardless that SME calculations
explicitly account for direct runoff from paved surfaces,

increases in precipitation do not seem to have a significant,
positive impact on CRoff.

Likewise, the quickflow coefficient Cqf was calculated
using the mean values of all qf estimations, and is plotted
against precipitation and then the API in Fig. 5. A major dif-
ference between CRoff and Cqf is in their maximum values.
Whereas the maximum value of CRoff is below 0.5, the max-
imum value of Cqf surpasses 1. While SME runoff estimates
are ‘blind’ to additional contributions to storm runoff, any
additional inputs to quickflow (i.e. pre-event water, CSO)
are integrated into the hydrograph such that Cqf is not subject
to the constraint of precipitation as an upper threshold.
Further, contrary to the discharge coefficient CQ, lags in
streamflow recession are assumed to have less of an impact
as much of the recession limb is filtered out when calculating
qf.

Simulations of the resulting surface runoff time series for
the example year 2010 are plotted on a weekly and monthly
basis in Fig. 6, where the solid and dashed lines represent the
average of all simulations, and the shaded areas represent their

Fig. 2 Streamflow coefficient CQ with measured discharge Q as a function of a daily precipitation and b the antecedent precipitation index (API)

Fig. 3 Daily time series of precipitation, river discharge, and calculated API. Time series for all years included in this study are available in Fig. S4 of the
ESM
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respective standard deviations (time series for all years are
available in Fig. S3 of the ESM). The weekly time scale is
used to compare results on an approximately storm-by-storm
basis, whereas monthly time scales are used to compare sea-
sonal dynamics. On a weekly basis, Fig. 6 reveals that the
temporal trends in runoff estimates tend to agree well for
greater runoff magnitude. Greater mismatches with regard to
magnitude as well as response trends are present in consistent,
low levels of precipitation, where soil moisture is high—for
example, storms in early August 2010. This same tendency is
observed for all years (see Figs. S3.a and S3.b in the ESM).
Runoff estimates on a monthly basis show good agreement in
general. During the month of August, discrepancies can at
least partially be attributed once again to the higher values of
the API that are used for SME runoff estimates.

A summary of the runoff simulations for both SME runoff
and HS quickflow are visualized in Fig. 7 (numeric values
may be referenced in Table S1 in the ESM). The average
runoff estimates from the SME method are generally lower
than quickflow estimates from HS during moderate and wet
years, yet higher during dry years. These relatively higher
SME runoff estimates during dry years can partially be

attributed to the uncertainties surrounding consistent low
levels of precipitation that are predominant in drier years, as
opposed to large storm events. Relatively higher SME esti-
mates may also be due to the direct routing of precipitation
over impervious areas into runoff, such that even moderate
storms will lead to a small runoff response estimated using
the SME method. For its part, overall higher values of surface
runoff estimated from HS may be due to additional inputs to
streamflow (such as sewer effluent) that are not fully filtered
out with α.

Annual groundwater recharge

Groundwater balance of the upper Kempttal catchment

As groundwater recharge generally portrays a slower response
time than surface runoff, annual estimations were explored.
Figure 8 compares annual groundwater recharge calculated
with the two runoff estimates, where the P and ET inputs were
kept constant. The magnitude of the two resulting GWR esti-
mates are generally in good agreement, and the inter-annual
recharge trend is coherent between the two water balances as

Fig. 4 SME runoff coefficient (CRoff) as a function of a daily precipitation and b the API. The mean SME runoff was used to calculate CRoff

Fig. 5 HS quickflow runoff coefficient (Cqf) as a function of a daily precipitation and b the API. The mean quickflow estimates were used to calculate
Cqf
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well. The largest difference between these estimates is on the
order of 50 mm/year; a small and satisfactory difference.
However, despite accounting for runoff uncertainty, there is
a pattern of the HS quickflow input leading to lower recharge
estimates between the years 2012 to 2018, consistent with
higher runoff values in those years. This is likely a carryover
effect to the fact that SME runoff estimates only account for
losses from precipitation, where HS quickflow integrates po-
tential signals from pre-event soil-moisture losses.

Results from the water balance were then compared to esti-
mates of groundwater recharge from the HBV Light model for
the years 2013–2016, which is the period where all three
methods are covered. Figure 9 shows the spread of these esti-
mates, where the boxplots represent all simulations for each
method (numerical values may be referenced in Table S2 in

the ESM). In general, the average estimates between the water
balance and the HBV Light model are also in good agreement.
For the years 2013 and 2014, when annual precipitation was
close to its 10-year average, the average difference between
the lowest and highest recharge estimates is below 100 mm/
year. However, differences increase for both the extremely dry
year of 2015 and the wet year of 2016, reaching approximately
200 mm/year of difference in 2016. Indeed, such reduced per-
formance under extreme conditions is a known issue for lumped
models (Crosbie et al. 2011; Moeck et al. 2018). Regardless of
these differences, estimates of groundwater recharge generally
equate to 40–45% of annual precipitation recharging the aquifer
from all methods. The exception to this is seen during the par-
ticularly dry years of 2015 and of 2018, where recharge esti-
mates dropped as low as 20% of annual precipitation.

Fig. 6 Time series comparison of surface runoff estimated from the SME method versus HS on a weekly and b monthly time steps. Additional time
series over the entire course of study can be found in Fig. S3 of the ESM

Fig. 7 Sum of annual surface
runoff estimated including all
simulations for both methods for
each year of the study period
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Performance metrics of the HBV Light model runs are
available in Table S3 of the ESM. It can be seen in Fig. 9 that,
despite a formal calibration in the HBV Light model against
streamflow, the inter-quartile range of HBV Light groundwa-
ter recharge estimates is larger than is found with the water
balance. This spread is certainly affected by uncertainties in
ET in addition to runoff uncertainties. While the same refer-
ence ET data was used for the water balance calculations, the
HBV Light model calculates AET internally from PET, using
temperature and soil moisture as a limiting factor.

Groundwater recharge across Switzerland

To further assess the relative performance of GWR calcu-
lations, results were compared with additional estimates
of GWR found at a number of study sites across
Switzerland. The studies listed in Table 4 were all carried
out in unconfined catchments similar to the Kempttal
(based on geographical proximity, elevation, climatic
forcing functions, geology, and land cover). These GWR
estimates are plotted together as a function of annual pre-
cipitation in Fig. 10.

Different objectives, approaches and assumptions were
used in each of the studies listed in Table 4. Baillieux
et al. (2015) investigated the use of transfer functions

and the importance of recharge estimates on contaminant
transport dynamics. Epting et al. (2021) investigated the
impact of climate change, and of groundwater temperature
increase in particular, on recharge rates for aquifers in
high-production valleys all across the Swiss plateau.
Minnig et al. (2018) carried out a groundwater balance
over four time periods of increasing urbanization, explic-
itly accounting for reduced ET under paved surfaces plus
input from sewer leakage and water mains losses.
Mdaghri-Alaoui and Eugster (2001) estimated groundwa-
ter recharge for an aquifer with historical nitrate contam-
ination, with particular focus on quantifying evapotrans-
piration. Moeck et al. (2016) explored the effects of dif-
ferent hydrological model structures, calibration on
groundwater recharge estimates within the context of cli-
mate change, using a lysimeter to construct a reference
model. Moeck et al. (2020b) evaluated the impact of un-
certainties in hydraulic conductivities and boundary
conditions on flow pathways for a managed aquifer
recharge system. Finally, Stoll et al. (2011) made use of
groundwater and climate models to assess the impact of
climate change on water fluxes, and the uncertainties tied
to downscaling large-scale to local-scale models.

Regardless of these different approaches, estimates of
annual groundwater recharge as well as the ratio of re-
charge to precipitation are in satisfactory agreement be-
tween all of these studies. This serves as an indirect val-
idation of the methods applied in this study, and shows
that the magnitude of groundwater recharge found here
for the Kempttal catchment is in a similar range as what
is found by other independent studies.

Discussion

The results presented in this study have indicated that reason-
able estimates of surface runoff and groundwater recharge for
an urbanizing catchment can be obtained with minimal data
using empirical methods. Comparing annual groundwater re-
charge estimates with Swiss case studies found in literature
further served as a useful tool to confirm that the results found
here are within a credible range. In spite of satisfactory

Fig. 8 Annual time series
comparing recharge estimates via
water balance. Solid lines
represent the mean value from all
simulations, and shaded areas
represent the standard deviation

Fig. 9 Comparison of annual recharge estimates with HBV Light model
results for overlapping years 2013–2016
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performance, uncertainties persist in the estimation of surface
runoff on shorter timescales. This highlights the difficulty in
capturing specific processes that influence the runoff response
(and resulting groundwater recharge) without more robust da-
tabases. However, the necessity to characterize such responses
in ungauged, data-poor catchments has been widely recog-
nized (Hrachowitz et al. 2013). Better constraining physical
catchment properties such as topography, vegetation type, or
land use, may be of equal, or even greater, value for improving
understanding of flow processes in the absence of robust, high
temporal resolution databases (e.g. Carlier et al. 2018; Moeck
et al. 2020a; Tweed et al. 2007). Indeed, an important step in
all CN-based methods is the determination of soil types
(USDA Natural Resources Conservation Service 1986). In
the case of the SME method, constraining maximum catch-
ment potential retention and soil moisture using physical
catchment characteristics could improve estimates of surface

runoff without increasing the demand for on-the-ground mea-
surement data.

Assessment of conventions in estimation methods

An important step in this study was to critically assess appro-
priate values of the parameters used in both runoff estimation
methods. For the well-known hydrograph separation using a
recursive digital filter, the commonly used value for the filter
parameter α = 0.925 was interrogated by exploring a wider
range of parameter values, as suggested in several recent stud-
ies (e.g. Li et al. 2014). It has long been recognized that at least
in some catchments, pre-event baseflow plays a significant
role in the storm runoff response (Klaus and McDonnell
2013), which would be better represented by lower values of
α. It is believed that variations in the filter parameter should
regularly be included in uncertainty analysis when applying
the RDF to a hydrograph.

With respect to the SME method, by implementing the
exponential decay factor through the API in place of P5, the
method is one step closer to representing a more continuous
accounting of soil moisture, removing the assumptions tied to
catchment dryness prior to a user-defined window as identi-
fied by the authors of the method. Use of the API could be
further strengthened by adjusting k as a function of time in
order to account for seasonal differences in catchment mois-
ture retention. Some authors have additionally determined the
value of this decay factor as a function of physical processes
within a given catchment (Descroix et al. 2002).

The second modification to the SME method, of rerouting
a fixed percentage of rainfall directly into runoff, was an at-
tempt to capture some of the runoff dynamics that are inherent
in urban areas with impervious surfaces, albeit in a simplified
manner. In future work, it would be of great value to include a

Table 4 Compilation of groundwater recharge studies across Switzerland in comparison to this study (data in italic). Note: values for this study are
averaged over the entire 12-year period and appear in italic font

Study P [mm/year] GWR [mm/year] GWR Notes Distance to Kempttal
Catchment (km)

Study
Scale

Land use
[% P]

This study 1,095 448 41% Kempttal Catchment 0 25 km2 Mixed

Stoll et al. (2011) 1,135 588 52% Baltenswil, Aathal aquifer 12 9 km2 Agriculture

Minnig et al. (2018) 947 374 40% Dübendorf Municipality 12 13.6 km2 Urban

Epting et al. (2021) 1,178 681 58% Eulach Catchment 15 9.3 km2 Urban

Moeck et al. (2016) 900 543 60% Zürich Reckenholz
lysimeter

20 Plot scale Agriculture

Baillieux et al. (2015) 980 510 52% Wohlenschwil 50 3 km2 Agriculture

Epting et al. (2021) 1,111 554 50% Ergolz Catchment 83 – Mixed

Moeck et al. (2020b) 730 423 58% Hardwald, Basel-Landschaft 97 10 km2 Mixed

Epting et al. (2021) 1,296 793 61% Birs Catchment 100 50 km2 Urban

Mdaghri-Alaoui and
Eugster (2001)

865 297 35% Areuse River delta 180 – Mixed

Fig. 10 Annual average groundwater recharge as a function of
precipitation for study sites across Switzerland
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measure of the level of connectivity of impervious surfaces if
using this approach. The assumption that impervious surfaces
are 100% impermeable could also be explored; as noted by
previous authors, roads sometimes portray ‘leaky’ behavior,
such that some level of infiltration occurs in these areas as well
(Fidal and Kjeldsen 2020).

With regard to groundwater recharge methods, the defini-
tion of recharge in the HBV Light model was critically
assessed. When applying this model as a tool to estimate re-
charge specifically to the aquifer, the underlying conceptual
model was adjusted in a way that input from the unsaturated
zone was subtracted from the recharge term. In the first itera-
tion of the model, using the recharge estimate without consid-
ering the soil-moisture variablesQ0 andQ1, estimates of more
than 70% of rainfall becoming recharge were consistently
found, which is considerably higher than what is found with
the water balance and with other values found in the literature
noted in Table 4. With the adjustment made in the current
study, HBV Light results are in close agreement with empir-
ical water balance estimates, with the exception of extreme
years.

Differences in estimations as a function of data input

When comparing simplified pluviometric versus hydrograph-
ic methods to estimate runoff, many differences are drawn
directly from the data input. Indeed, differences in even the
most accurate of estimates are to be expected, as each data
type only contains part of the story. For this reason, determin-
ing one method as being ‘better’ is evasive. The pluviometric
calculations made here inherently assume an immediate re-
sponse to rainfall, and that the amount of precipitation serves
as the upper limit of potential surface runoff. For its part,
streamflow is an integrated signal of any present runoff inputs
and their relative time lags. While most of the information that
is being sought is present in the signal, the difficulty lies in
accurately identifying and separating these different signals
(Klaus and McDonnell 2013). In addition, using a
hydrograph to estimate direct storm runoff has an inherent
assumption that all storm runoff is directly routed into a
stream, which is not always the case (Brandes et al.
2005). In the Kempttal catchment, the dynamics of sewer
effluent and combined sewer overflow, for example, are a
notable source of uncertainty when using hydrograph sep-
aration. Such inputs, if not properly quantified, could lead
to over-estimations of surface runoff from precipitation.
However, the strength of comparing different approaches
comes from the same source as their difficulties; there is a
potential to use such discrepancies in estimates to identify
system unknowns. When possible, it is always suggested to
apply multiple methods when estimating the water balance
using empirical methods and minimal data.

Importance of the runoff–recharge relationship

There are many important sources, processes, and interactions
that impact groundwater recharge. The current study was mo-
tivated by the fact that runoff carries particular importance
with regard to water quality. This increased risk of quality
degradation is notably relevant in human-impacted areas due
to the cocktail of chemicals that are present in such environ-
ments (e.g. Barlow et al. 2012; Hollender et al. 2018).
Pollutants carried with runoff from the surface can make their
way into the groundwater in several ways—through the use of
infiltration basins, through combined sewer overflow during
storms, and through groundwater interactions with quality-
impacted surface water, to name a few.

As a final consideration, when studying changes in the
water cycle in a changing environment, it is important to keep
in mind that relative changes of each input are occurring on
top of the absolute changes of each. While the latter was the
focus of the current study, it is nonetheless worth mentioning
that increases in runoff do not necessarily signal a decrease in
overall groundwater recharge. Particularly in urban areas, the
observed increases in surface runoff that result from impervi-
ous surfaces can be accompanied by decreases in actual
evapotranspiration due to these same impervious surfaces,
which can in fact lead to an increase in recharge rather than
a decrease in these areas (Barron et al. 2013; Brandes et al.
2005; Minnig et al. 2018). While these relative changes were
beyond the scope of this study, the interested reader may refer
to literature (Appleyard 1995; Bhaskar et al. 2015; Feng et al.
2012; Sharp 2010;Wittenberg and Sivapalan 1999) for a more
in-depth discussion on the feedback between ET, runoff, and
recharge.

Summary and conclusions

This study has compared multiple methods to estimate surface
runoff and its impact on groundwater recharge in the small
urbanizing Kempttal catchment on the Swiss Plateau.
Straightforward methods with low data requirements were
chosen in order to test their appropriateness in changing envi-
ronments. Two approaches to estimate surface runoff—one
pluviometric and one hydrographic—were applied, with mod-
ifications that attempt to better capture soil-moisture account-
ing and to explicitly account for runoff from impervious sur-
faces. The results were used in a water balance to calculate
groundwater recharge for the shallow, unconfined aquifer
within the study catchment. To evaluate the accuracy of these
water balance estimates, a comparison was made to additional
estimates of groundwater recharge using the conceptual HBV
Light model. Finally, these recharge estimates were assessed
against several literature studies from similar catchments in
Switzerland. From these results, an approximate range of
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groundwater recharge was obtained on a spatial scale, offering
insight into the sources of uncertainty in both runoff and
groundwater recharge estimates.
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