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 Summary 

Drought is a slow-onset phenomenon with devastating effects on many aspects of human livelihood. 

Drought events around the world have had significant impacts on agricultural production. Sub-Saharan 

Africa (SSA) is at the core of this threat because rainfed subsistence farming dominates the food 

production and where socio-economic infrastructure are often inadequately prepared to cope with 

disasters. The recurrence of droughts in the past decades has triggered many famines in SSA and is 

projected to increase as a consequence of climate change. There is therefore a need to develop a 

research framework, which quantifies the crop drought vulnerability and identifies influencing 

physical and socio-economic factors. This study applies a biophysical crop model to map out hotspots 

of maize drought vulnerability across SSA and investigates the physical and socio-economic drivers. 

The derived knowledge from linking vulnerability to socio-economic factors support strategies to 

mitigate the negative impacts of drought on agricultural production 

 To achieve the goal of the project, we first developed a user-friendly software to couple EPIC 

(Environmental Policy Integrated Climate) crop model to the SUFI-2 auto-calibration procedure 

(Sequential Uncertainty Fitting Procedure). The developed model (EPIC
+
) increases the reliability of 

simulated crop yield in replicating historic yield. It also greatly speeds up the calibration process with 

quantification of parameter ranges and prediction uncertainty. We calibrated three sets of parameters 

referred to as Planting Date, Operation (e.g., fertilizer application, planting density), and Model 

parameters (e.g., Harvest index, biomass-energy ratio, water stress harvest index) in three steps to 

avoid parameter interaction. The model performance is significantly improved with these three sets of 

calibration. We also found that the simulation results for the countries with less socio-political 

volatility improved most by calibration. For countries where agricultural production had increasing or 

decreasing trends, we suggested improving the calibration results by applying linear de-trending 

transformations.  

 The calibrated EPIC
+
 was then applied to develop a physical Crop Drought Vulnerability Index 

(CDVI) through linking the Drought Exposure Index (DEI) with the Crop Failure Index (CFI). Two 

different DEIs; DEIPCP and DEIPCP-PET were calculated. DEIPCP was derived from the cumulative 

distribution functions fitted to precipitation, and DEIPCP-PET was obtained from cumulative distribution 

functions fitted to the difference between precipitation and potential evapotranspiration. In addition, 

these indices were calculated for different time scales (i.e., X = 1, 3, 6, 9 and 12 months). Similarly, 

CFI was calculated by fitting a cumulative distribution function to maize yield simulated in EPIC
+
. 

Using a power function, curves were fitted to establish CFI and DEI relations. The highest correlation 
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between CFI and DEIPCP-PET in Central Africa was found at 1 month time scale, while in other parts of 

SSA, CFI was strongly correlated to DEIPCP-PET at 3 and 6 month time scales. The final results 

highlighted that Southern African countries and some regions of Sahelian strip are highly vulnerable to 

drought due to experiencing more water stress, whereas vulnerability in Central African countries 

pertains to temperature stresses. 

 In the next step, we quantified the physical and social CDVI. We applied a probabilistic 

framework combining DEIp (calculated in the previous step) with a physical or social Crop Failure 

Index (CFI). Maize yields, simulated with EPIC
+
, were used to build physical CFI, whereas the 

residuals of simulated and FAO recorded yields were used to construct social CFI. The construction of 

social CDVI is based on the idea that in some countries/areas, a mild drought can lead to a severe level 

of vulnerability due to the lack of social-economic capacity to adapt the drought impact, whereas in 

some other cases, a relatively severe drought may only cause a mild impact on yield because of the 

higher level of social adaptive capacity. The results showed that Southern and partially Central Africa 

are more vulnerable to physical drought as compared to other regions. Central and Western Africa, 

however, are socially highly vulnerable.  

 In the last step, we examined the extents to which socio-economic factors are influencing crop 

vulnerability to drought. Social CDVI, calculated based on the residual of simulated and FAO recorded 

yields, were related to potential socio-economic variables using the regression techniques. The key 

variables which have significantly influenced social CDVI were identified. The results showed that the 

level of fertilizer use strongly influences vulnerability. In general, countries with higher fertilizer 

application, human development index, and better infrastructure are more resilient to drought, thus 

have lower vulnerability. The role of government effectiveness was less apparent due to the generally 

low level and static status of this variable across the SSA countries over time.  

 In conclusion, the proposed methodologies provided a generic and comprehensive framework for 

quantifying different degrees of vulnerabilities and can be applied to different regions and scales. The 

comparison of physical CDVI and social CDVI revealed that societal factors cause higher level of 

vulnerability than physical variables in most SSA countries. Therefore, quantification of both 

vulnerabilities helps to better characterize droughts and identify regions where more investments for 

drought preparedness are required. Improving adaptations to drought through appropriate policies have 

become more important amid the expected intensification of drought in terms of frequency and 

severity in the future. 
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Zusammenfassung 

Dürren zeichnen sich durch einen schleichenden Beginn und verheerende Auswirkungen auf den 

Menschen und seine Umwelt aus. In verschiedenen Regionen der Welt hatten Dürren bereits grosse 

Beeinträchtigungen der landwirtschaftlichen Produktion zur Folge. Eine der gefährdetsten Regionen 

befindet sich in Afrika südlich der Sahara (ASS), wo Selbstversorgung ohne anthropogene 

Bewässerung weit verbreitet ist und wo die sozioökonomische Infrastruktur besonders verwundbar ist 

in Bezug auf Naturkatastrophen. Dürren verursachten viele Hungersnöte in ASS während den 

vergangenen Jahrzehnten und bedingt durch die Klimaänderung werden diese zunehmen. Der Einfluss 

von Dürren auf die landwirtschaftliche Produktion, inklusive der zugrundeliegenden 

sozioökonomischen Faktoren bedarf deshalb weiterer Froschung. In der vorliegenden Arbeit wird ein 

bio-physikalisches Erntemodell angewendet, um besonders dürreanfällige Maisanbaugebiete in ASS 

zu identifizieren und die physikalischen und sozioökonomischen Einflussfaktoren zu untersuchen. Das 

so erarbeitete Wissen kann verwendet werden, um die Auswirkungen von Dürren auf die 

landwirtschaftliche Produktion zu minimieren. 

Um diese Ziele zu erreichen, entwickelten wir eine benutzerfreundliche Anwendung, die das 

Erntemodell EPIC (Environmental Policy Integrated Climate) mit dem Kalibrierungsalgorithmus 

SUFI-2 (Sequential Uncertainty Fitting Procedure) koppelt. Diese Software (im Folgenden EPIC
+
 

genannt) produziert verlässlichere Vorhersagen von beobachteten vergangenen Ernten. EPIC
+
 

beschleunigt den Kalibrierungsprozess, die Bestimmung der Parameterunsicherheit sowie der 

Unsicherheiten der Vorhersagen. Die Parameter wurden in folgende drei Gruppen unterteilt: Zeitpunkt 

der Saat, Anbau (z.B. Düngung, Saatdichte) und Modellparameter (z.B. Ernteindex, Biomasse-

Energie-Verhältnis, Wasser-StressErnte Index). Die Kalibrierung erfolgte gruppenweise nacheinander, 

um Parameterinteraktionen zu vermeiden. Die Kalibrierung hat sich mit diesem dreistufigen Verfahren 

als wesentlich effizienter herausgestellt. Vor allem in Ländern mit kleiner sozio-politischer Volatilität 

führte die Kalibrierung zu besseren Modellergebnissen. Im Falle von Ländern mit zu- oder 

abnehmender landwirtschaftlicher Produktion hat sich die Bereinigung von linearen Trends bewährt, 

um die Kalibrierung zu vereinfachen. 

Das kalibrierte EPIC
+
-Modell wurde anschliessend verwendet um einen physikalischen Indikator 

für die Anfälligkeit auf Dürren (Crop Drought Vulnerability Index, CDVI) zu entwickeln, indem der 

Indikator für die Exposition in Bezug auf Dürren (Drought Exposure Index, DEI) mit demjenigen für 

die Anfälligkeit der Ernte (Crop Failure Index, CFI) verknüpft wurde. Es wurde zwischen zwei 

verschiedenen Expositionsindizes unterschieden: DEIP wurde von der kumulativen 

Niederschlagsverteilung abgeleitet und DEIR von der kumulativen Differenz zwischen Niederschlag 
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und Evapotranspiration. Zudem wurden diese Indizes für verschiedene Zeitskalen berechnet (d.h. X= 

1, 3, 6, 9 und 12 Monate). CFI wurde aus der kumulativen Maisernte (EPIC
+
) geschätzt. Die 

Beziehung zwischen CFI und DEI wurde durch Potenzfunktionen beschrieben. Die höchste 

Korrelation zwischen CFI und DEIR-1 fanden wir in Zentralafrika, wohingegen in andern Regionen in 

ASS der CFI stark mit DEIP-3 und DEIP-6 korreliert war. Am anfälligsten auf Dürren scheinen gemäss 

unseren Resultaten einige Südafrikanische Länder zu sein, sowie die westliche Sahelzone und Teile 

von Ostafrika. Der CDVI war eher tief in Zentralafrika, bedingt durch relativ viel Niederschlag und 

dem seltenen Auftreten von Dürrestress. 

Im nächsten Schritt haben wir den physikalischen und sozialen CDVI quantifiziert. Dazu haben 

wir ein probabilistisches Modell eingesetzt, das den DEI mit einem physikalischen oder sozialen CFI 

(Crop Failure Index) verbindet. Die Maisernten (simuliert durch EPIC
+
) wurden verwendet für den 

physikalischen CFI, wohingegen die Differenz zwischen simulierten und durch die FAO erfassten 

Ernten verwendet wurden um den sozialen CFI zu berechnen. Die Berechnung des sozialen CDVI 

basiert auf der Tatsache, dass es grosse Unterschiede in der sozialen Anpassungsfähigkeit und somit in 

der Anfälligkeit auf Dürre geben kann. Die Resultate zeigen, dass Gebiete in Süden und speziell im 

Zentrum Afrikas anfällig für physikalische Dürren sind. Soziale Faktoren spielen hauptsächlich in 

Zentral- und Westafrika eine Rolle für die Verwundbarkeit in Bezug auf Dürren.  

Im letzten Schritt haben wir untersucht inwiefern sich sozioökonomische Faktoren auf die 

Anfälligkeit auf Dürre auswirken. Die Beziehung zwischen sozialem CDVI und potenziellen 

sozioökonomischen Einflussfaktoren wurde durch Regressionsanalyse untersucht. Als stärkster 

Einflussfaktor wurde der Einsatz von Düngemitteln identifiziert. Generell zeigten sich Länder mit 

höherem Düngemitteleinsatz, höherem Entwicklungsstandard und besser ausgebauter Infrastruktur 

weniger anfällig für Auswirkungen von Dürren. Der Einfluss der Effizienz der Behörden war nicht 

offensichtlich, wahrscheinlich bedingt durch das allgemein tiefe Niveau und die kleine Varianz dieses 

Faktors in den untersuchten Ländern über die Zeit. 

Zusammenfassend stellen die hier entwickelten Methoden ein generelles und umfangreiches 

Instrument zur Quantifizierung verschiedener Grade der Anfälligkeit auf Dürren dar, die in 

verschiedenen Regionen und auf verschiedene Zeitskalen anwendbar sind. Der Vergleich des 

physikalischen und sozialen CDVI zeigten, dass in den meisten Ländern südlich der Sahara 

gesellschaftliche Faktoren mehr zur Anfälligkeit auf Dürre beitragen als physikalische Faktoren. 

Deshalb ist es wichtig, beide Gruppen von Faktoren miteinzubeziehen für ein verbessertes Verständnis 

von Dürren und für die Identifizierung von Regionen, in denen zusätzliche Investitionen für die 

Vorbereitung auf Dürren getroffen werden müssen. Durch die erwartete Zunahme der Stärke und 

Häufigkeit von Dürren wird es immer wichtiger, geeignete Massnahmen zu entwickeln, um deren 

Auswirkungen zu reduzieren. 
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Chapter 1 Introduction 

1.1. Background and motivation 

1.1.1 Principles of drought vulnerability: definitions and issues relating to the agricultural 

sector  

 Over the last two decades, worldwide concerns has been growing regarding the increase in the 

frequency and severity of droughts and their significant consequences on human and natural systems 

(Thornton et al., 2014). Drought and water stress affect plant growth and put agricultural systems 

under a heavy strain (Boyer et al., 2013). On the other hand, more than 25% of the current global 

population of 7 billion lives with food insecurity (Wheeler and Von Braun, 2013). The food demand 

will continue to increase as an additional 2.5 billion people will live by 2050 (Lipper et al., 2014). 

Faced with the concurrent challenge of increasing drought and food demand, there is an urgent need 

for developing effective polices that mitigate the impact of droughts and improve the resilience of 

society to drought. 

 The threat of food insecurity is more prominent in the less developed countries, such as those in 

Sub-Saharan Africa (SSA), where the livelihood of people heavily depends on agriculture. SSA has 

been and is still one of the regions of the world with low agricultural productivity due to a variety of 

factors ranging from nutrient depleted soils to lack of investment in infrastructure and adverse climate 

change (Folberth et al., 2014; Gaiser et al., 2010; Webber et al., 2014). On this sub-continent, drought 

is a part of natural climatic variability varying from lack of rain in one season to prolonged drought 

periods of up to several years. The weak adaptation capacity has made most of the SSA countries’ crop 

production vulnerable to drought (Challinor et al., 2007).  

 The crop drought vulnerability assessment is one of the most important schemes for the 

development of drought management plans. It provides the base to identify the root causes of drought 

impacts from physical and social aspects. However, vulnerability is a multidimensional and complex 

context (Sivakumar et al., 2014), and varies enormously across geography, income levels, livelihood 

types, and governance arrangements (O'Brien et al., 2004). Therefore, a broad diversity of drought 

vulnerability assessments has been conducted at different scales from national (Naumann et al., 2014; 

Simelton et al., 2009) to state, district, or farm levels (Antwi-Agyei et al., 2012; Keshavarz et al., 

2014; Murthy et al., 2015; Shahid and Behrawan, 2008). Commonly used approaches in drought 

vulnerability assessment include modeling (Challinor et al., 2010; Fraser et al., 2013), fuzzy system 

(Cheng and Tao, 2010; Sun et al., 2014), or curve assessment (Guo et al., 2016; Wang et al., 2013). 
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 A number of definitions have been proposed for vulnerability. The most widely used definition is 

from the IPCC (Intergovernmental Panel on Climate Change) Third Assessment Report which defines 

vulnerability as “a function of the character, magnitude, and rate of climate variation to which a 

system is exposed, its sensitivity, and its adaptive capacity” (IPCC, 2001). Therefore, vulnerability 

generally is described with three components, exposure, sensitivity, and adaptive capacity. “Exposure” 

is the likelihood of an occurring event. “Sensitivity” defines how a particular system will respond to a 

particular event. “Adaptive Capacity” is a measure of how a particular society withstands the impacts 

of drought. 

 Following the IPCC’s definition of vulnerability, Allen Consulting Group (2005) illustrated 

‘vulnerability’ diagrammatically (Figure 1.1) and explained that “exposure to a climate event 

combined with sensitivity to that event may be interpreted as potential harm. Furthermore, that 

potential impact might be exaggerated or compensated by adaptive capacity”. In the context of 

drought, “Drought Exposure (DEI)” is representative of frequency, magnitude, and duration of 

drought. “Sensitivity”, also referred to as “Crop Failure (CFI)”, is crop’s response to drought. 

“Adaptive Capacity (AC)” is representative of a variety of intrinsic or extrinsic factors exacerbating or 

mitigating drought vulnerability. 

 

 

Figure 1.1. Conceptual and diagrammatic model of vulnerability first proposed by Schroter et al. 

(2004) and later modified by Allen Consulting Group (2005) 

 

 Many studies attempt to conceptualize vulnerability. Most of them have been established on the 

three components, DEI, CFI, and AC. However, a variety of approaches have been followed in the 

literature to aggregate these components to build the Drought Vulnerability Index (DVI). Table 1.1 

summarizes some of the most implemented methods to aggregate DEI, CFI, and AC found in the 

literature. As shown in Table 1.1, methods 1-7 generally combined components of vulnerability 

linearly. Despite their simplicity, the main drawback of the linear aggregation is that the final DVI can 

vary within any range from 0 to ∞. This makes vulnerability classification and its spatial comparison 

across regions difficult. Method 8 attempts to assign various weights to each component. However, it 

also does not follow a standardized procedure for aggregation. The curve assessment method attempts 

to relate the components using different linear and nonlinear functions such as power or exponential 

Exposure Sensitivity 

Potential impact Adaptive capacity 

Vulnerability 
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equations. However, the existing studies that implemented this approach did not look at details of the 

severity of vulnerability after curve fitting. 

 

Table 1.1. Review of the construction of drought vulnerability built with the three components DEI, 

CFI, and AC 

Aggregation method Study Region 

1) 𝐷𝑉𝐼 = 𝐷𝐸𝐼 + 𝐶𝐹𝐼 − 𝐴𝐶 

Antwi-Agyei et al. (2012) 

Murthy et al. (2015) 

De Stefano et al. (2015) 

Liu et al. (2013) 

Damm (2009) 

Gbetibouo and Hassan (2005) 

Gbetibouo and Ringler (2009) 

Epule et al. (2017) 

Ghana 

India 

Europe 

Mongolia in China 

Germany 

South Africa 

South Africa 

Uganda 

2) 𝐷𝑉𝐼 =
𝐷𝐸𝐼+𝐶𝐹𝐼

𝐴𝐶
 

Assimacopoulos et al. (2014) 

Fontaine and Steinemann (2009) 

Zarafshani et al. (2016) 

Europe 

Washington DC or 

state? 

Iran 

3) 𝐷𝑉𝐼 =
𝐷𝐸𝐼+𝐶𝐹𝐼+(1−𝐴𝐶)

3
 Lindoso et al. (2014) Brazilian farming 

4) 𝐷𝑉𝐼 = 𝐶𝐹𝐼 + 𝐴𝐶 Wu et al. (2013) Yellow river in China 

5) 𝐷𝑉𝐼 =
𝐶𝐹𝐼

𝐷𝐸𝐼
 

Simelton et al. (2009) 

Simelton et al. (2012) 

Fraser et al. (2013) 

Huai (2016) 

China 

Global 

Global 

Australia 

6) 𝐷𝑉𝐼 = 𝑓(
𝐷𝐸𝐼×𝐶𝐹𝐼

𝐴𝐶𝐼
) Bryan et al. (2015) Australia 

7) 𝐷𝑉𝐼 = 𝐷𝐸𝐼 + 𝐶𝐹𝐼 + 𝐴𝐶 Wu et al. (2011) China 

8) Composite indicator:  

Assigning weights to different 

components. Aggregation methods 

varied in different studies. 

Shahid and Behrawan (2008) 

Zarafshani et al. (2012) 

Gbetibouo et al. (2010) 

Naumann et al. (2014) 

Brooks et al. (2005) 

Keshavarz et al. (2017) 

Wirehn et al. (2015) 

Bangladesh 

Iran farms 

South Africa 

Africa 

Africa 

Iran 

Sweden 

9) Curve assessment: The 

relationship between components 

is explained by fitting curves such 

as exponential, polynomial, or 

power functions 

Naumann et al. (2015) 

Wang et al. (2013) 

Guo et al. (2016) 

Jia et al. (2012) 

Europe 

China 

Global 

China 

 

 Another important issue is that the variables used to calculate DEI, CFI, and AC vary significantly 

from one study to the other. For example, Simelton et al. (2009) used precipitation to define DEI in the 

agricultural vulnerability assessment in China. Later, the group used soil water as the proxy variable to 

measure drought exposure at global scale (Simelton et al., 2012). A recent study by Naumann et al. 

(2015) at the European scale applied different drought indices namely, Standardized Precipitation 
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Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Reconnaissance Drought 

Index (RDI). Similarly, the variables used to formulate CFI varied in different studies. For example, 

Wang et al. (2011) used potential and actual yields, while Shahid and Behrawan (2008) employed crop 

land area as a measure of production. 

 The above brief review shows that vulnerability assessment should be improved in terms of 

standardizing its procedure to reflect its multidimensional characteristics. To address the challenge of 

crop drought vulnerability, it is important to develop an integrated approach in which the components 

of vulnerability are defined on a consistent and comparable basis with a reasonable spatial resolution. 

Such studies are still lacking in the literature and especially for SSA.  

 

1.1.2 Application of crop models for spatially-explicit drought vulnerability assessment 

 The dynamic process-based crop models can be used as a tool for a better understanding of 

interactions of food production, risk to drought, and their vulnerability. They mimic plant physiology 

and crop response to weather and climate using a set of equations. These models link various 

processes such as crop growth, water-soil interactions, photosynthesis and carbon assimilation, 

nitrogen, phosphorous-carbon cycles, and agricultural management. An appropriate crop model should 

be responsive to the key climate variables and be able to model main crops, cropping systems and 

management strategies.  

 So far, a number of crop simulation models with different levels of complexity have been 

developed. Among others, the Environmental Policy Integrated Climate (EPIC) model (Williams et al., 

1989), the Agricultural Production Systems sIMulator (APSIM) (Holzworth et al., 2015), the Decision 

Support System for Agrotechnology Transfer (DSSAT) (Jones and Sanyang, 2008), or the Lund-

Potsdam-Jena managed Land model (LPJmL) (Sitch et al., 2003) have been used to evaluate the 

impact of climate anomaly on crop production in different regions (Folberth et al., 2013; Liu et al., 

2016; Muller, 2013). 

 All crop models were initially developed for field scale studies. Over the last two decades and with 

increase in high resolution climate data, efforts have been made to extend their application to larger 

scales (Ewert et al., 2011; Liu and Yang, 2010) by dividing large areas into a number of subareas or 

girds. Many research groups have developed grid-based crop models to simulate crop productivity at 

different spatial extents. There is a general push towards increasing spatial resolutions (Liu et al., 

2009) in assessing impacts of climate change (Rosenzweig et al., 2013), and extreme weather events, 

such as drought (Schauberger et al., 2017). These models have a considerable level of complexity. 

However, to be used for different purposes such as drought risk assessments, they need to be calibrated 

and evaluated in the regions they are applied (Ewert et al., 2015). Generally, a crop model should be 

complex enough to capture the response of the crop to the environment, yet, the parameters of crop 

models should be estimated at a reasonable scale (Challinor et al., 2007).  
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 A large body of studies attempted to increase the reliability of crop modeling by increasing spatial 

resolution (Folberth et al., 2012), adjusting model parameters (Balkovic et al., 2013; Xiong et al., 

2016), or model structures (Muller et al., 2017). However, an important lack in implementation of crop 

models at large scale is to increase their reliability in terms of replicating historic yield for a long 

period of time. The first constraint to such work is the lack of detailed crop-specific input data to the 

model. A second drawback is a lack of access to tools which can speed up the model simulation, 

because crop calibration at large scale is an expensive procedure in terms of time and computation. 

Therefore, further improvements are needed to develop a calibration procedure that can speed up the 

calibration and increase the reliability of simulated yields. 

 

1.1.3 Crop drought vulnerability in the context of socio-economic conditions conferring 

adaptation 

 An important aspect requiring further investigation in the context of vulnerability is to understand 

why in some regions, small droughts can cause serious harvest loss (high CFI), whereas in some other 

regions, large droughts do not have such major effects on crop yields. The first case is representative 

of “sensitive” regions or high vulnerability, whereas the latter is a case of “resilient” with low 

vulnerability. In order to understand the possible reasons resulting in any of these two contrasting 

situations, biophysical as well as socio-economic factors should be taken into account in agricultural 

vulnerability assessment. Despite many studies on vulnerability assessment, little attention has been 

paid to quantify biophysical and socio-economic vulnerability separately and to measure the 

differences between them. 

  Apart from quantification of two aspects, many studies attempted to identify factors that influence 

adaptive capacity (Naumann et al., 2014; Stefano et al., 2015; Zarafshani et al., 2012). Such 

identification plays key role in defining strategies for mitigating the drought effects and vulnerability. 

This is important as countries that are extremely drought vulnerable also experience pressures such as 

population growth, poor infrastructure, resource depletion, weak governance, and poverty. Strategies 

that lessen pressures on resources, advance sustainable development, and enhance adaptive capacity 

can at the same time reduce the vulnerability to climate stresses. Therefore, understanding the relation 

between these factors and vulnerability is a prerequisite for targeting interventions to reduce the 

adverse impacts of drought.  

 

1.2. Objectives of the research 

 The overall objective of this study is to assess drought vulnerability in SSA by developing and 

applying a spatially-explicit crop model. Maize is taken as a case study because it is the staple food in 

most of the countries in SSA. The specific tasks are (Figure 1.2): 
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Task 1: To develop a grid-based SSA scale crop model linked with an uncertainty based calibration 

tool in an interface called EPIC
+ 

for the purpose of replicating historic maize yields (1980-2012); 

model parameters are estimated and the uncertainties associated with parameter identification are 

evaluated.  

Task 2: To apply the developed EPIC
+
 model for quantifying maize physical drought vulnerability at 

grid level using the interaction of DEI and CFI in a probability-based framework and map maize 

physical drought vulnerability. 

Task 3: To develop a framework that distinguishes physical crop drought vulnerability from socio-

economic vulnerabilities across SSA countries and identify the gaps between the two. 

Task 4: To link the crop drought vulnerability index (CDVI) to socio-economic determinants and 

identify factors important for mitigating crop drought vulnerability.  

 

 

Figure 1.2. Research framework explaining connections of different tasks  

 

1.3. Research outline and contents of dissertation 

 The dissertation consists of four research chapters (Chapters 2–5) and a general conclusion chapter 

(Chapter 6). 

 Chapter 2 introduces the EPIC
+ 

model which is an extended version of EPIC model linked with 

the Sequential Uncertainty Fitting algorithm for calibration. EPIC was applied to calibrate three sets of 

parameters referred to as planting date, agricultural operation parameters and model parameters in 

three steps to avoid parameter interactions. Using the FAO reported yields, crop and model parameters 

are separately determined for each country. 

Comparing two aspects 

Physical CDVI 

Social 

CDVI 

Socio-economic factors 

variables 

Regression model 

Data Preparation 

Development of a Python-

based EPIC+ model for 

calibration EPIC SUFI-2 

DEI CFI 

Quantification of maize 

physical drought 

vulnerability 

Mapping out physical and 

social CDVI 

Linking CDVI with socio-

economic factors 

Crop Drought Vulnerability Index 

CDVI 

Task 4 

Task 3 

Task 1 

Task 2 

Social CDVI 
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 Chapter 3 quantifies maize biophysical drought vulnerability using the outputs obtained from the 

calibrated EPIC
+ 

model. The developed crop drought vulnerability index links DEI to CFI in a power 

function. DEI and CFI were calculated based on cumulative distribution probability of precipitation 

and simulated maize yield. Vulnerability was then classified into five classes depending on the shapes 

of power function. 

 Chapter 4 uses the simulated crop yield and observed yields as a base to distinguish physical 

vulnerability from socio-economic vulnerability. The methodology measures the scope of each aspects 

and determines the hotspots of vulnerability on the two dimensions. 

 Chapter 5 presents the results on regression analysis which links crop drought vulnerability index 

to socio-economic factors from economic, human, resource, infrastructure and governance categories. 

The most influential factors are identified and their implications for vulnerability mitigation are 

discussed.  

 Chapter 6 draws the conclusions of the entire study regarding modeling, vulnerability and 

influential factors. The limitations of the study are discussed and three outlooks are recommended 

highlighting the importance for future study.  
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Abstract 

Process-based crop models are increasingly used to assess the effects of different agricultural 

management practices on crop yield. However, calibration of historic crop yield is a challenging and 

time-consuming task due to data limitation and lack of adaptive auto-calibration tools compatible with 

the model to be calibrated on different spatial and temporal scales. In this study, we linked the general 

auto-calibration procedure SUFI-2 (Sequential Uncertainty Fitting Procedure) to the crop model EPIC 

(Environmental Policy Integrated Climate) to calibrate maize yield in Sub-Saharan African (SSA) 

countries. This resulted in the creation of a user-friendly software, EPIC
+
, for crop model calibration at 

spatial levels of grid to continent. EPIC
+
 greatly speeds up the calibration process with quantification 

of parameter ranges and prediction uncertainty. In the SSA application, we calibrated three sets of 

parameters referred to as Planting Date (PD), Operation (e.g., fertilizer application, planting density), 

and Model parameters (e.g., harvest index, biomass-energy ratio, water stress harvest index, SCS 

curve number) in three steps to avoid parameter interaction and identifiability problems. In the first 

step, by adjusting PD parameters, the simulated yield results improved in Western and Central African 

countries. In the next step, Operation parameters were calibrated for individual countries resulting in a 

better model performance by more than 40% in many countries. In the third step, Model parameters 

were calibrated with significant improvements in all countries by an average of 50%. We also found 

that countries with less socio-political volatility benefited most from the calibration. For countries 

where agricultural production had trends, we suggest improving the calibration results by applying 

linear de-trending transformations, which we will explore in more detail in a subsequent study.  

 

2.1. Introduction 

 Process-based crop models are increasingly used to assess the impact of land use and climate 

change, management, and adaptation strategies in relation to agricultural production. They advance our 

understanding of crop behavior in macro-environment and assessment of potential crop production in 

different agricultural systems. Currently, different crop models are used widely. These include the 

EPIC (Environmental Policy Integrated Climate) model (Williams et al., 1989), DSSAT (Decision 

Support System for Agrotechnology Transfer) (Jones et al., 2003), APSIM (Agricultural Production 

Systems sIMulator) (Holzworth et al., 2014), ALMANAC (Agricultural Land Management 

Alternative with Numerical Assessment Criteria) (Kiniry et al., 2013), CROPSYST (Cropping 

Systems Simulation Model) (Stockle et al., 2003), and WOFOST (WOrld FOod STudies) (Van 

Ittersum et al., 2002), etc. These models have been implemented for a wide variety of applications 

from assessing the impact of climate change or increased carbon dioxide concentration in the 

atmosphere (Oliver et al., 2009; Stockle, 1992) to environmental pollution (Manevski et al., 2016). 

 Early crop models were developed based on field studies and were driven by input data and 

parameters that had physical interpretations and represented various crop characteristics (Xiong et al., 
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2014). Their applications were later extended to regional, national, continental, or global levels. There 

is a growing literature on the application of crop models (Angulo et al., 2013a; Folberth et al., 2012a; 

Liu et al., 2007; Tao et al., 2009) to project future crop yields based on scenarios of climate change 

(Challinor et al., 2009; Lobell et al., 2011; Niu et al., 2009), management practices (Liu and Yang, 

2010; Saseendran et al., 2004; Vanuytrecht et al., 2014), and carbon sequestration (Causarano et al., 

2008; Doraiswamy et al., 2007). A starting point for application of crop models is to investigate if they 

adequately represent the reality and are able to replicate data from historic periods (Bryan et al., 2009; 

Webber et al., 2014) by calibration and validation of the model under certain ranges of uncertainties. 

This is of essence, as the knowledge gained from the historic analysis can validate the predictive 

correctness of the future crop simulation, enhance its reliability for assessing climate change impacts, 

and facilitate societal preparedness to deal with climate impacts (Challinor et al., 2009). 

 In the literature, automatic calibration of crop models is mostly tested on farms or small regions 

(Causarano et al., 2008; Sumathy et al., 2017), or on different crop varieties and parameters in each 

model (Ahmed et al., 2016; Sexton et al., 2016; Zhao et al., 2014). A few calibration programs such as 

SPOTPY (SPOTting Model Parameters Using a Ready-Made Python Package) (Houska et al., 2015) 

and PEST (Parameter Estimation) (Doherty, 2001) are available for use with different models. 

However, a major problem with implementing these algorithms is the lack of compatibility with the 

input/output format of crop model. Therefore, calibration of large areas is mostly performed manually 

by trial and error (Balkovic et al., 2013). Other common practices include:  

1) applying default parameters or using universally recommended values without accounting for the 

spatial variability of parameters (Balkovic et al., 2013; Folberth et al., 2012a);  

2) temporally aggregating observed yield and adjusting parameters based on deviation from long-term 

averages without considering temporal yield fluctuations (Liu et al., 2016; Xiong et al., 2016);  

3) spatially aggregating yields of large area and neglecting spatial variations of yields or parameters 

(Angulo et al., 2013a; Chun et al., 2016).  

 However, efforts to regionalize parameters and take into account temporal fluctuation of yield 

have often failed due to lack of data availability, knowledge of parameters, and efficient calibration 

models. Spatially detailed calibration of crop models on large areas is generally impractical by using 

manual approaches. The method used should enable implementation of different approaches to tune 

parameters within reasonable time and on multiple locations simultaneously. 

The goal of this study is to develop an auto-calibration procedure that fills the above needs and use 

it to simulate maize yield in SSA. To achieve this, we coupled the EPIC crop model with the 

calibration algorithm SUFI-2 (Sequential Uncertainty Fitting Procedure) (Abbaspour et al., 2004; 

Abbaspour et al., 2007) using a graphical user interface (GUI) written in Python (hereafter EPIC
+
). 

The user-friendly coupled program is referred to as EPIC
+ 

and is freely available upon request. EPIC
+
 

can be used to: 1) calibrate yield on different temporal and spatial scales using different criteria for 
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evaluating model performance, 2) identify spatial variability of parameters, and 3) speed up the 

calibration process. In this work, we obtained spatially distributed parameters for each country in SSA.  

 

2.2. Methodology 

2.2.1. Site description 

 SSA is home to over one billion people. Average annual precipitation across SSA is 795 mm yr
-1

, 

with diverse distribution ranging from 100 mm yr
-1

 in the Sahelian Strip to over 2,000 mm yr
-1

 in the 

Gulf of Guinea (Ward et al., 2016). The region contains very large dryland areas. Small landholders 

depend on agriculture as their primary livelihood source. Agricultural development in SSA is facing 

considerable challenges (Ward et al., 2016). Population increases and climate change have exacerbated 

the risk of hunger (Iglesias et al., 2011). Maize is the most widely grown crop and is a staple food in 

SSA, accounting for nearly 20% of the total calorie intake (Folberth et al., 2014). It is mostly 

cultivated under rainfed conditions with <3% of the area irrigated (Portmann et al., 2010). From the 

1990s to the 2010s average maize yields in SSA have increased from around 1.4 to 1.8 t ha
-1

, and from 

2.5 to 4.5 t ha
-1

 in South Africa, but are still at the very bottom of globally reported maize yields 

(FAO, 2012).  

 

2.2.2. Programs EPIC and SUFI-2  

 EPIC is designed to simulate crop-related processes at a specific site and operates on daily time 

step. The model offers different options to calculate potential evapotranspiration and agricultural 

operations and has been successfully applied to a wide range of agricultural studies under different 

climatic conditions, and different crops and management schemes (Balkovic et al., 2013; Folberth et 

al., 2014; Gassman et al., 2005). Further information on EPIC crop-related processes is given in 

Williams et al. (1989). We extended the application of EPIC from one to multiple sites using a GUI 

written in Python. This extension is done through dividing a country into a number of grids depending 

on the spatial resolution (e.g. 1
o
, 0.5

 o
, 0.25

 o
 or smaller) defined by the user and then treating each grid 

as a site. This flexibility allows the user to apply EPIC
+
 at field or continental scales. For example, 0.5

o
 

might be valid for applying EPIC at the continental scale, but is very coarse in field scale studies. 

Similarly, obtaining data at field scale for an entire continent is not feasible because of the large 

number of grids. In EPIC
+
, each country can also be split into a number of sub-regions and yields 

aggregated for that sub-region.  

 SUFI-2 is used to calibrate different agro-hydrologic projects. It is already coupled to the Soil and 

Water Assessment Tool (SWAT) to calibrate components such as hydrology (Abbaspour et al., 2015; 

Azari et al., 2016; Me et al., 2015), crop yield (Azimi et al., 2013; Faramarzi et al., 2010; Vaghefi et 

al., 2015), and sediment transport (Lemann et al., 2016; Monteiro et al., 2016). SUFI-2 is an iterative 
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procedure that accounts for parameter uncertainty from all sources (e.g., inputs, parameters, and model 

structure). Uncertainties are expressed through distributions assigned to parameters, which are 

described by a multivariate uniform distribution in a parameter hypercube. Latin hypercube is used to 

sample the parameters. The output uncertainty is quantified as the 95% prediction uncertainty band 

(95PPU) calculated at the 2.5% and 97.5% levels of the cumulative distribution function of the output 

variables (Abbaspour et al., 2007). Two indices quantify the goodness of model calibration and 

uncertainty level. These are P-factor and R-factor (Abbaspour, 2015). P-factor is the fraction of 

measured data bracketed by the 95PPU band and varies from 0 to 1, where 1 indicates 100% 

bracketing of the measured data within model prediction uncertainty. R-factor, on the other hand, is 

the ratio of the average width of the 95PPU band to the standard deviation of the measured variable. 

The SUFI-2 algorithm tries to achieve a high P-factor while keeping the R-factor as small as possible.  

 

2.2.3. EPIC
+
 architecture 

 The architecture of EPIC
+
 consists of four modules (Figure 2.1). The modules of “General 

settings” and “Operation settings” deal with the extension of EPIC from field to a desired level, and 

the modules of “Parameterization” and “SUFI-2 calibration” are for setting up calibration algorithm. 

The four modules together appear in a user-friendly workspace. The function of each module is briefly 

described as follows: 

i) In the “General settings” module, inputs of physiographic information of all desired grids within the 

selected region are defined. These include elevation, slope, rainfed harvested area, irrigated harvested 

area, as well as climate, soil, and sub region codes in ASCII format. EPIC files required for simulation 

are defined and the printing formats are provided. 

ii) In the “Operation settings” module, the agricultural operations from planting to harvest (such as 

tillage, planting, fertilization, and irrigation), the dates of each operations, and their relevant 

parameters are defined. Two options are available for defining agricultural operations (OPS1 and 

OPS2). OPS1 is used to calibrate planting date (PD). Using OPS1, PD for each grid can vary in a 

given range (e.g. between earliest and latest PD). OPS2 is used when the PD is fixed for each grid and 

when other parameters such as potential heat units (PHU) and fertilizer application rates need to be 

calibrated. 
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Figure 2.1. Schematic representation of the main window of EPIC
+
 and flow of the four modules. 

 

iii) In the “Parameterization” module, there are three categories of parameters: Operation (13 

parameters), Crop (56 parameters), and Model (85 parameters) parameters. The 13 Operation 

parameters, such as PHU, are stored in the TEMP.OPS file, the 56 Crop parameters, such as Harvest 
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Index (HI) are included in the CROPCOM.DAT file, and the 85 Model parameters, such as water 

stress-harvest index, are documented in the file PARM0810.DAT of EPIC. 

iv) In the “SUFI-2 calibration” module, parameters and their ranges are chosen for calibration. The 

sampled values, using a Latin hypercube scheme, are stored in corresponding EPIC files (e.g. 

TEMP.OPS, CROPCOM.DAT, and PARM0810.DAT). Python scripts are built for Windows and 

Linux operating systems to run EPIC on each grid cell. The Linux script is optimized to speed up the 

process of simulation and is more relevant for larger scale applications. After simulations, the desired 

output variable (e.g. yield) is extracted from EPIC output files and aggregated to a user-defined level 

(here national level) using the weighted areal averages based on rainfed (ARF) and irrigated (AIR) 

cultivated areas as shown in Eq 2.1 (Folberth et al., 2012b; Liu et al., 2007):  

 

𝑌𝑠𝑖𝑚 =
∑ 𝑌𝑅𝐹,𝑖×𝐴𝑅𝐹,𝑖

𝑛
𝑖=1 +𝑌𝐼𝑅,𝑖×𝐴𝐼𝑅,𝑖

∑ (𝐴𝑅𝐹,𝑖+𝐴𝐼𝑅,𝑖)𝑛
𝑖=1

       (2.1) 

 

where YRF,i and YIR,i are, respectively, rainfed and irrigated yields obtained from the model for grid i in 

t ha
-1

.  

 In the next step, SUFI-2 parameters, P-factor, and R-factor are calculated using a choice of 11 

different objective functions (Abbaspour, 2015). Upon acceptable values of P-factor and R-factor, the 

parameter ranges are considered as the calibrated parameter ranges of the study area (Figure 2.1). 

Otherwise, another iteration is performed using a set of new parameter ranges calculated based on the 

best parameter sets of the current iteration and the 95PPU band (Abbaspour et al., 2007). 

 

2.2.4. EPIC
+
 setup for SSA countries 

2.2.4.1. Input data for EPIC
+
 

 EPIC
+
 was applied to simulate maize yield in SSA countries at a spatial resolution of 0.5

o
 

aggregated to a national scale. All data required were prepared at this resolution and are summarized in 

Table 2.1. The site-specific input data include longitude, latitude, slope, and elevation (DEM). Soil 

database included parameters such as organic carbon content [%], pH, cation exchange capacity [mol 

kg
−1

], sand [%], silt [%], bulk density [t m
−3

], soil layer depth [m], and electrical conductivity [mmho 

cm
−1

]. Agricultural operations such as tillage, fertilizer application, planting and harvest dates were set 

chronologically in the model based on fixed dates obtained for each operation. Planting and harvest 

dates were obtained from the sources summarized in Table 2.1. Fertilizers application (nitrogen (N), 

phosphorus (P), and potassium (K)) and tillage were, respectively, done 15 and 10 days before 

planting (Wang et al., 2005).  
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 The total number of heat units required for a plant to reach maturity (PHU) was calculated for 

each grid based on the maximum and minimum temperatures, PD, and length of growing seasons 

(Sacks et al., 2010). The heat unit (HU) accumulation for a given day is calculated as: 

 

𝐻𝑈 = 𝑇𝑎𝑣𝑔 − 𝑇𝑏𝑎𝑠𝑒             𝑖𝑓  𝑇𝑎𝑣𝑔 > 𝑇𝑏𝑎𝑠𝑒           (2.2) 

 

where Tavg is the average daily temperature (
o
C) and Tbase is the plant’s base temperature for growth (8 

o
C for maize). The total number of heat units required for a plant to reach maturity (in m days) is 

calculated as: 

 

𝑃𝐻𝑈 = ∑ 𝐻𝑈𝑑
𝑚
𝑑=1          (2.3) 

 

We calibrated our model for the period 1970-2012, considering the first 10 years as equilibrating 

period for soil moisture and nitrogen initial conditions. The reported results are thus for the period of 

1980-2012. The annual maize yields reported by FAO for different countries (FAO, 2012) were used 

as observed yield values (Yobs). As far as we know, the FAO reported data are the only publically 

available source for maize yield time series in SSA. 

 

Table 2.1. Summary of input data and their sources used for simulating maize in SSA. All data were 

transformed into 0.5
o
x0.5

o
 resolution 

Input data Description Resolution Year Source 

DEM, Slope 
Digital elevation model 

GTOPO30 

1 km 

(5″x5″) 

Edition  

2004 

U.S. Geological Survey 

(2004) 

 

ARF 

 

Rainfed cultivated area 
10 km 

(5′x5′) 

 

2000 

MIRCA2000
1
version 1.1  

Portmann et al. (2010) 

 

Climate 
Daily maximum and minimum 

temperature, precipitation, solar 

radiation, relative humidity, 

wind speed, CO2 concentration 

50 km 

(0.5
o
x0.5

o
) 

1970-2012 
 

WFDEI
2
 meteorological 

forcing data  

Weedon et al. (2011) 

Soil Soil map and database  10 km (5′x5′) 2006 ISRIC-WISE
3
 

 Batjes (2006) 

Planting and 

harvesting 

dates 

Based on temperature linked to 

crop calendar  

50 km 

(0.5
o
x0.5

o
) 

1990s to 

early 2000s 

 SAGE
4
 

Sacks et al. (2010) 

Fertilizer Fertilizer use (N, P, K) National 2002 FertiStat (FAO, 2007) 
1 Monthly Irrigated and Rainfed Crop Areas 

2 WATCH-Forcing-Data-ERA-Interim 
3 International Soil Reference and Information Centre-World Inventory of Soil Emission Potentials 
4 Center for Sustainability and the Global Environment 
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2.2.5. Efficiency criteria, sensitivity analysis, and parameterization 

As model efficiency criteria, we used coefficient of determination, R
2
, and standardized root mean 

square error (RSR) (Singh et al., 2005). The two functions consider different charactrisitics of the yield 

series. R
2
 describes the level of linearity between the two signals and varies between 0 and 1, with 1 

being the best value. RSR is a measure of the difference between the observed and simulated yields. It 

varies between 0 and ∞, where 0 is the best value. RSR was used as the objective function, Q, 

expressed as: 

𝑄 = 𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=

√∑ (𝑌𝑜𝑏𝑠,𝑡−𝑌𝑠𝑖𝑚,𝑡)2𝑌
𝑡=1

√∑ (𝑌𝑜𝑏𝑠,𝑡−�̅�𝑜𝑏𝑠)2𝑌
𝑡=1

       (2.4) 

where Yobs,t and Ysim,t are observed and simulated yields, respectively. Parameter sensitivities were 

determined by calculating a multiple regression system where the parameters are regressed against the 

objective functions as:  

 

𝑄 = 𝛼 + ∑ 𝛽𝑖𝑏𝑖
𝑚
𝑖=1                              (2.5) 

 

 Where α is he constant of regression and βi is the coefficient of parameter bi. A t-test is used to 

identify the relative significance of each parameter. The sensitivities given above are estimates of the 

average changes in the objective function resulting from changes in each parameter, while all other 

parameters are changing. This gives relative sensitivities based on linear approximations and, hence, 

only provides partial information about the sensitivity of the objective function to model parameters. 

In this analysis, the larger, in absolute value, the value of t-stat, and the smaller the p-value, the more 

sensitive is the parameter.  

 To minimize parameter interaction and consequently identifiability problems, in Step 1 we ran 50 

simulations with planting dates alone and then fixed the parameters to their best values (i.e., the values 

that produced the smallest objective function) for each grid within a country (Table 2.2). The SAGE 

planting dates used in this study were the results of compilation from six sources and contain three 

variables: earliest time for planting date, latest time for planting date, and mean planting date. As 

highlighted by Sacks et al. (2010), the SAGE approach has several limitations such as: 1) the variables 

being estimated are at the country or relatively large scales; and 2) the observation data used to 

estimate planting dates are mostly for the period of 1990s and early 2000s. Therefore, it does not 

capture changes in other time spans. To partially overcome this limitation for the period of our study 

(1980-2012), we let the PDs vary within the earliest and the latest dates proposed by SAGE for 

different countries using grid-based parameterization feature we embedded in EPIC
+
.  
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Table 2.2. Default parameters and initial parameter ranges (uncertainties) used in Steps 1 to 3 of the 

proposed calibration procedure.  

  
Parameters Description 

Default 

values 
Initial ranges 

S
te

p
 1

 

P
la

n
ti

n
g

 

d
at

e 

PD Planting date 
Gridded 

data 

AC3 [earliest date, 

latest date] 

S
te

p
 2

 

O
p

er
at

io
n
 

p
ar

am
et

er
s 

PHU Potential heat unit [0C] *1 RC4[-0.45, 0.45] 

Pdensity Planting density [Plant m-2] 5 RC [-0.45, 0.45] 

N-app  Maximum annual nitrogen application [kg.ha-1] *2 RC [-0.45, 0.45] 

K-app Potassium application rate [kg ha-1] 6 RC [-0.45, 0.45] 

BFT0 Nitrogen fertilizer trigger [-] 0.85 RC [-0.45, 0.45] 

P-app Phosphorus application rate [kg ha-1] *2 RC [-0.45, 0.45] 

S
te

p
 3

 

C
ro

p
 

p
ar

am
et

er
s 

WA Biomass-energy ratio [kg ha-1 MJ-1 m2] 40 AC [30, 40] 

HI Harvest index [-] 0.4 AC [0.35,0.55] 

TOPC Optimal temperature for plant growth [0C] 25 AC [22, 40] 

TBSC Minimum temperature for plant growth [0C] 8 AC [7, 9] 

WSYF Lower limit of harvest index [-] 0.01 AC [0.01, 0.03] 

WCY Fraction of water in crop [-] 0.15 AC [0.12, 0.18] 

M
o

d
el

 

p
ar

am
et

er
s PARM(03) 

Water stress harvest index [-] 

(sets fraction of growing season when water stress 

starts to reduce HI) 

0.50 AC [0.48, 0.52] 

PARM(42) 

SCS curve number index [-] 

(regulates the effect of potential evapotranspiration in 

driving the SCS curve number retention parameter) 

1.2 AC [1.25, 1.35] 

1 The default values are calculated based on Eqs.2&3 for each grid  
2 The default values are obtained from FertiStat database (FAO, 2007) for each grid 
3 AC indicates an absolute change where the initial parameter value in replaced by another value 
4 RC indicates a relative change where initial parameters are multiplied by (1+ a given value) 

 

 In Step 2, we calibrated six Operation parameters, which were suggested by Niu et al. (2009) and 

Wang et al. (2012) to be the most sensitive parameters (Table 2.2), and again fixed them to their best 

values. We calibrated fertilizer rates because the available data represented values for the years around 

2002. As we did not have the temporal variability of fertilization application rate, we allowed a 

relative change of ±45% and calibrate it for different countries. 

 In Step 3, we calibrated six Crop and two Model parameters (Table 2.2), which are highlighted in 

the literature as the most sensitive parameters for crop yield (Gaiser et al., 2010; Wang et al., 2005; 

Wang et al., 2012). These parameters are identified separately for each country and are the same for all 

grids within a country. A range of variability is defined for each parameter (Table 2.2), where the 

maximum and minimum bounds were obtained from values reported in the literature (Table S2.1 in 

Supplementary material). 
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2.3. Results 

2.3.1. Country level model performance with default parameters 

 Country-level annual simulations with default parameters showed poor results in most countries 

(Figure 2.2). However, depending on the country, the goodness of fit varied considerably. For 

instance, the model overestimated maize yields in Angola, Benin, and Ghana, but underestimated in 

Mauritania, Namibia, or Tanzania. It is also noted that long-term averages (1980-2012) in countries 

like Burkina Faso and Nigeria showed remarkable agreement as overestimation in some periods were 

offset by underestimation in other periods (Figure 2.2). In these countries, the difference between the 

long-term averages of simulated and observed yields were nearly 0 (Figure S2.1). Hence, obtaining 

good fits based on average long-term data does not necessarily mean we have a good model of crop 

yield. We therefore conclude that the default parameters did not have a fine enough spatial resolution 

to be applicable to the entire SSA countries. 

 

 

Figure 2.2. Annual simulated crop yields based on default parameters (non-calibrated model) 

compared with FAO reported yields during 1980-2012. 
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In general, the default model underestimated maize yield in the Horn of Africa, Southern Africa, 

and parts of Western Africa (Figure S2.1), whereas it overestimated it in Central Africa and other parts 

of Eastern and Western Africa. The RSR for 13 countries ranged from 3 to 38, whereas 27 countries 

had RSRs between 1.05 and 3. The R
2
 values were larger than 0.2 only in 8 countries: Cameroon, 

Central African Republic (CAR), Kenya, Mauritania, Namibia, Niger, Togo, and Tanzania (Figure 

2.2). As highlighted by Kenya and CAR, a good R
2
 does not mean a satisfactory simulation, as a 

model can systematically over or under predict the measured data. Overall, the long-term average 

maize yield corresponded poorly with FAO reported yields over SSA (R
2
=0.02 and RSR=1.89) (Figure 

2.3a) indicating the necessity for calibration.  

 

 

Figure 2.3. Comparison of the long-term average maize yield reported by FAO and simulated yields 

over SSA countries under four situations: a) EPIC default parameters, b) after adjusting planting data, 

c) after adjusting Operation parameters, and d) final calibration of Crop and Model parameters.  

 

2.3.2. Calibration of planting date (PD) (Step 1) 

 In the first step of calibration, we adjusted the grid-based PD. This led to a reduction of biases 

between the long-term average simulated and observed yields as the R
2
 of country-based long-term 

average yield increased from 0.02 to 0.16 and RSR improved from 1.89 to 1.26 (Figure 2.3b). 

However, the improvement in the simulated yields was not equally shared by all countries. Substantial 
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variations were seen in terms of RSR improvement over SSA (Figure 2.4a). While some countries like 

Madagascar, Zimbabwe and Sire-Leon improved by more than 50%, others like Uganda, Malawi, and 

Angola hardly showed any significant improvement (Figure 2.4a).  

 

Figure 2.4. a) The relative improvement in RSR [%] achieved owing to implementing Step 1 in each 

country; b) spatial variation of PD based on SAGE data, c) Spatial variation of PD obtained after 

applying Step 1. 
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 The time series country-based yields (Figure S2.2 in Supplementary material) showed 

significant improvements in R
2
 for some countries such as Chad, Mauritania, and Niger, where the 

values increased from 0.14, 0.26, and 0.20 to, respectively, 0.22, 0.31, and 0.29 as a result of PD 

adjustment. In these countries, RSRs were around 1 or less, indicating closer agreements. 

The spatial distribution of PD based on the SAGE data does not show significant variation within 

a country in most cases (Figure 2.4b). The adjusted values obtained in Step 1 of calibration (Figure 

2.4c) showed higher spatial variation. On the average, Western and Central Africa benefited most from 

PD adjustment in terms of RSR values (Figure 2.4a). At the same time these regions showed the 

highest country-based variations in PD (Figure 2.4c), which may indicate a resolution problem in the 

SAGE data. 

 

2.3.3. Calibration of Operation parameters (Step 2) 

 In this step, the six Operation parameters were allowed a relative change of within ±45%. 

Calibration of the six Operation parameters led to a further improvement in the simulated maize yields 

as the long-term average yields improved from R
2
 of 0.16 in Step 1 to 0.76 in Step 2 (Figure 2.3c). A 

further decrease was also seen in the RSR values from 1.26 to 0.48 (Figure 2.3c). The country-based 

decreases in the RSR values showed that more than 50% improvement were made in Kenya and 

Burundi from Eastern Africa; Democratic Republic of Congo (DRC), Republic of Congo (ROC), and 

Angola from Central Africa; Namibia and South Africa from Southern Africa; and Benin, Sire Leon, 

and Guinea from Western Africa (Figure 2.5a). After the two steps of calibration, countries the least 

improved were Botswana, Ethiopia, and Tanzania, which are mostly in East Africa. The time series 

yield data (Figure S2.3) indicated R
2
>0.25 accompanied by RSR<1.5 in seven countries: Kenya, Chad, 

Lesotho, Mauritania, Namibia, Niger, and Tanzania.  

The final calibrated parameters differed widely from country to country (Figure 2.5b-g) with larger 

values in countries such as Kenya, DRC, ROC, and Angola. In these countries, a significant mismatch 

was noted between observed and simulated yields in Step 1 (Table 2.3). The calculated PHU values 

were underestimated for mostly Central and Eastern Africa (except Horn Africa) countries, while 

overestimated for Southern and Western Africa (Figure 2.5b). 

The default Pdensity was on the average underestimated for Eastern and Southern Africa and 

overestimated for Central and West Africa (Figure 2.5c). The default N-app values were overestimated 

for most Eastern SSA, while K-app was overestimated for Southern and most Eastern Africa and 

underestimated for Central and Western Africa (Figure 2.5d, e). The default BFT0 and P-app were 

overestimated for some countries and underestimated for others with no specific pattern (Figure 2.5d, 

e). 

The result of a sensitivity analysis at this point indicated that PHU and Pdensity were the most 

sensitive parameters in all countries (p-values=0, t-stats>>tcritial) with N-app being the third most 
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sensitive parameter (Table S2.2). K-app was not sensitive over the entire region, but it was locally 

sensitive for some countries. BFT0 and P-app were the least sensitive parameters for maize in SSA. 

 

 

Figure 2.5. a) The relative improvement in the RSR values after implementation of Step 2; the y-axis 

indicates the percentage of improvement as compared to Step 1. b-g) The best relative changes from 

their initial values in Operation parameters obtained after implementation of Step 2. 
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Table 2.3. The final country level values of Operation parameters obtained from SUFI-2 algorithm 

in Step 2. 

   Country 
PHU

*
 N-app P-app K-app Pdensity BFT0 

[
o
C] [Kg ha

-1
] [Kg ha

-1
] [Kg ha

-1
]  [Plant m

-2
] [-] 

E
as

te
rn

 A
fr

ic
a 

Kenya 2088 35.41 9.4 5.6 5.84 0.75 

Tanzania 1662 6.9 5.9 5.4 5.65 0.89 

Ethiopia 2004 16.01 9.9 5.1 6.22 0.82 

Eritrea 1937 5.43 4.5 6.1 5.38 0.94 

Somalia 1852 4.5 5.1 6.1 5.58 0.75 

Zambia 2363 25.7 6.8 6.0 5.44 0.75 

Uganda 2306 13.2 5.2 6.5 5.67 0.90 

Rwanda 2583 4.9 3.9 5.5 4.36 0.95 

Sudan 2276 9.8 5.7 6.0 6.00 0.75 

Madagascar 2251 14.9 5.2 5.8 4.72 0.93 

Comoros 2014 6.1 4.9 6.2 4.36 0.92 

Malawi 2236 17.2 4.7 5.6 5.49 0.75 

Burundi 2277 4.4 4.9 6.7 5.47 0.81 

Mozambique 2791 6.5 5.6 5.3 5.13 0.86 

Zimbabwe 2805 48.15 4.55 5.8 4.83 0.92 

C
en

tr
al

 A
fr

ic
a 

DRC 2107 8.3 5.5 6.9 4.45 0.89 

Chad 1456 12.0 5.0 5.8 4.39 0.87 

Gabon 1438 7.9 5.7 6.5 5.63 0.75 

CAR 1620 8.9 4.7 6.6 4.34 0.82 

Cameroon 2108 8.9 4.7 6.7 4.39 0.95 

ROC 2066 12.9 5.2 5.3 4.61 0.83 

Angola 2539 14.5 5.3 5.5 5.68 0.74 

S
o
u
th

er
n
 A

fr
ic

a Botswana 1881 26.3 15.2 5.1 5.74 0.85 

Lesotho 2445 21.8 16.8 5.7 5.65 0.91 

Namibia 1914 37.2 4.4 5.5 5.84 0.83 

South Africa 1796 66.6 13.5 5.4 5.62 0.89 

Swaziland 2004 6.1 5.4 5.3 5.47 0.86 

W
es

te
rn

 A
fr

ic
a 

Niger 1767 5.5 2.8 5.4 4.60 0.95 

Gambia 1670 4.3 3.1 5.5 5.71 0.84 

Togo 1670 2.6 2.9 6.0 4.22 0.95 

Benin 1733 7.4 3.2 6.7 4.39 0.85 

Sire Leon 2278 5.6 3.0 5.7 4.48 0.85 

Ghana 1846 23.5 2.9 5.5 4.30 0.75 

Senegal 1690 12.2 3.1 6.2 5.68 0.75 

Guinea 2166 5.21 2.6 6.7 4.81 0.81 

IvoryCoast 2210 13.3 2.6 6.3 4.50 0.82 

Nigeria 1551 6.8 2.8 6.2 5.54 0.75 

Burkina Faso 1690 9.7 2.6 6.6 5.10 0.92 

Mali 2007 10.1 3.2 6.1 5.14 0.77 

Mauritania 1518 15.8 3.4 6.0 5.44 0.95 

* The mentioned PHUs are the average of grids within each country. 
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2.3.4. Calibration of Crop and Model parameters (Step 3) 

In the last step of calibration, six Crop and two Model parameters (Table 2.2) were adjusted. 

The best value of the objective function was reached in 6 iterations of 50 simulations each. A major 

amendment was made to the parameters in this step, where R
2
 for long-term average yield increased to 

0.93 (from 0.76 in Step 2) and RSR decreased to 0.21 (from 0.48 in Step 2) (Figure 2.3d). The 95PPU 

uncertainty bands bracketed a large number of observed data for the period of 1980-2012. As indicated 

by the P-factors (Figure 2.6), in all countries more than 30% of observed data was bracketed by the 

simulated 95PPU band. The low P-factors in countries such as Madagascar, Togo, and Burundi were 

mainly due to presence of trend in the yield (due to factors like technology and variety change), which 

was not accounted by models. In majority of the countries P-factors were >50% and R-factor were <2. 

In some countries, such as Guinea, the R-factor was larger indicating larger uncertainty in maize yield 

prediction. Higher R-factors were also noticed in the countries with trends in yield, where EPIC
+
 

attempted to increase P-factors at the expense of larger R-factors. 

 

 

Figure 2.6. P-factor versus R-factor. P-factor is the percentage of observed data bracketed by the 

95PPU. R-factor is the width of the 95PPU band representing predictive uncertainty. 

 

At this step, the results for many countries showed significant improvement as illustrated in 

Figure 2.7, where the 95PPU is also shown. The RSRs decreased to values around 1 or less in all 

countries. The most significant changes occurred in Uganda, and Gambia, where the R
2
 increased from 

0.08, and 0.06 (in Step 2) to 0.4, and 0.33, respectively, followed by Ethiopia, Swaziland, Zambia, and 
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Sudan where the R
2
 improved from 0.01, 0.04, 0.11, and 0.04 to 0.20, 0.22, 0.27, and 0.17, 

respectively. Overall, 16 countries showed R
2 
above 0.20. 

 

 

Figure 2.7. Comparison of the FAO reported (red line) and simulated maize yields expressed as 

95PPU prediction uncertainty band (green bound) and best simulation obtained from RSR criteria (blue 

line) in 40 countries in SSA during 1980-2012.  

 

The final calibrated Crop parameter ranges showed large variability in different countries (Tables 

2.4&2.5) (Figures S2.4&S2.5). WA ranged between 30 and 43 kg ha
-1

 MJ
-1

 m
2
. The ranges were higher 

in Madagascar, Somalia, Malawi and Burundi in Eastern Africa, and CAR in Central Africa, whereas 

they were lower in Comoros, Gabon, Cameroon, Benin, and Mauritania. The lower bound within the 

later countries were 30 kg ha
-1

 MJ
-1

 m
2
.  
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Table 2.4. The final ranges of Crop parameters in Step 3. The values inside brackets indicate the 

best parameters.  

 
Countries 

WA HI TOPC TBSC WSYF WCY 

[kg ha-1MJ-1m2] [-] [0C] [0C] [-] [-] 

E
as

te
rn

 A
fr

ic
a 

Kenya 34-39(37) 0.40-0.48(0.46) 24-29(27) 7.5-8.3(7.8) 0.02-0.035 (0.03) 0.16-0.19(0.17) 

Tanzania 35-39(36) 0.42-0.52 (0.50) 28-34(34) 7-9 (7.1) 0.01-0.03(0.03) 0.13-0.17(0.16) 

Ethiopia 31-38(38) 0.33-0.44 (0.35) 20-27(26) 8-9.5(9.3) 0.005-0.02(.006) 0.12-0.18(0.16) 

Eritrea 33-40(39) 0.48-0.56 (0.52) 26-35(28) 5.7-7.3(7.3) 0.022-0.04(0.03) 0.11-0.17(0.16) 

Somalia 35-42(40) 0.39-0.49 (0.40) 20-26(24) 7-9(7.3) 0.05-0.07 (0.06) 0.1-0.15 (0.12) 

Zambia 30-38(33) 0.44-0.52(0.44) 26-35(33) 8.1-9(8.9) 0.02-0.03 (0.03) 0.15-0.18(0.18) 

Uganda 33-38(38) 0.40-0.49(0.48) 30-35(31) 8.4-9.4 (8.6) 0.014-0.04(0.02) 0.12-0.18(0.16) 

Rwanda 30-36(31) 0.30-0.41(0.31) 28-32(30) 6.9-7.8(7.1) 0.024-0.04(.035) 0.13-0.17(0.15) 

Sudan 33-38(36) 0.38-0.44(0.39) 20-26(20) 8-9 (8.05) 0.05-0.06(0.055) 0.15-0.18(0.17) 

Madagascar 36-41(39) 0.32-0.38(0.36) 21-27(26) 8.5-9.5 (8.7) 0.024-0.04 (0.02) 0.12-0.16(0.13) 

Comoros 30-35(34) 0.30-0.38(0.33) 20-28(24) 8.3-9.6(8.5) 0.03-0.045(0.04) 0.13-0.16(0.14) 

Malawi 36-42(40) 0.37-0.45(0.38) 20-26(25) 8.8-10(10) 0.01-0.02(0.018) 0.11-0.14(0.13) 

Burundi 37-41(39) 0.30-0.37(0.31) 20-28(27) 7-8.5(7.7) 0.02-0.03(0.03) 0.11-0.15(0.14) 

Mozambique 33-40(37) 0.35-0.45 (0.35) 22-30(28) 7-9(8.3) 0.01-0.03(0.03) 0.13-0.15(0.14) 

Zimbabwe 30-37(36) 0.32-0.44(0.34) 27-35(35) 6-8(7.9) 0.02-0.03(0.02) 0.15-0.18(0.16) 

C
en

tr
al

 A
fr

ic
a 

DRC 33-38(35) 0.31-0.40(0.35) 26-32(27) 7.6-8.5(8.1) 0.03-0.05 (0.03) 0.11-0.13(0.12) 

Chad 30-40 (38) 0.35-0.53(0.39) 22-34(28) 7-9(8.9) 0.01-0.03(0.02) 0.15-0.18(0.16) 

Gabon 34-38(36) 0.33-0.38(0.35) 32-35(33) 7.6-8.8(8.5) 0.005-0.03(0.01) 0.12-0.18(0.15) 

CAR 39-43(39) 0.30-0.36(0.30) 20-25(25) 7.5-9(7.6) 0.02-0.03(0.03) 0.13-0.18(0.15) 

Cameroon 30-34 (31) 0.36-0.45(0.41) 30-35(33) 8.3-9.4(8.5) 0.03-0.04(0.03) 0.11-0.16(0.12) 

ROC 34-39(37) 0.34-0.42(0.36) 21-28(25) 8.2-9(8.9) 0.02-0.04(0.02) 0.14-0.17(0.16) 

Angola 36-39(37) 0.32-0.39(0.35) 23-28(25) 7.7-8.3(8.0) 0.01-0.03(0.03) 0.12-0.16(0.14) 

S
o
u
th

er
n
 

A
fr

ic
a 

Botswana 30-40(38) 0.35-0.50(0.38) 22-33(24) 7-9(8.9) 0.01-0.03(0.02) 0.12-0.18(0.14) 

Lesotho 31-37(32) 0.35-0.47 (0.36) 27-35(27) 6.2-8(7) 0.005-0.02(0.02) 0.14-0.18(0.14) 

Namibia 36-40(39) 0.40-0.47 (0.43) 24-28(26) 7.1-8(7.6) 0.028-0.04(0.03) 0.10-0.16(0.15) 

South Africa 36-39(37) 0.42-0.50 (0.45) 28-33(30) 7.1-8(7.6) 0.035-0.04(0.04) 0.10-0.15(0.13) 

Swaziland 32-39(33) 0.40-0.48 (0.44) 31-35(33) 8-9(8.6) 0.02-0.03(0.02) 0.12-0.18(0.13) 

W
es

te
rn

 A
fr

ic
a 

Niger 30-40(30) 0.35-0.53 (0.40) 22-33(32) 7-9(8.0) 0.01-0.03(0.024) 0.15-0.18(0.17) 

Gambia 32-37(33) 0.30-0.35 (0.33) 20-29(28) 7-8.8(7.6) 0.03-0.05(0.04) 0.15-0.18(0.16) 

Togo 33-39(35) 0.30-0.40 (0.33) 20-34(33) 6.9-8.3(7) 0.01-0.02(0.011) 0.11-0.14(0.14) 

Benin 30-36(32) 0.33-0.45 (0.32) 22-33(26) 6.5-8.2(8) 0.02-0.03(0.021) 0.11-0.16(0.13) 

Sire Leon 31-37(36) 0.31-0.37(0.35) 31-35(32) 7.5-8.7(8.4) 0.01-0.02(0.019) 0.15-0.18(0.17) 

Ghana 30-34(33) 0.30-0.35(0.32) 30-35(31) 7.5-9(8.7) 0.01-0.02(0.019) 0.15-0.18(0.16) 

Senegal 33-39(36) 0.30-0.46 (0.32) 22-34(29) 7.5-8.5(8) 0.0 1-0.02(0.018) 0.12-0.14(0.13) 

Guinea 35-40(35) 0.31-0.40(0.34) 21-30(26) 8-9(8.7) 0.04-0.06 (0.06) 0.12-0.16(0.15) 

Ivory Coast 30-40(35) 0.36-0.50(0.41) 22-35(26) 7-9(8.7) 0.01-0.03 (0.02) 0.14-0.16(0.15) 

Nigeria 35-39(37) 0.30-0.40(0.37) 26-34(31) 7-9.5(9.1) 0.02-0.03(0.03) 0.12-0.18(0.15) 

Burkina Faso 31-40(31) 0.40-0.48(0.41) 21-33(22) 7.8-10(8.9) 0.02-0.04(0.02) 0.13-0.16(0.13) 

Mali 31-39(33) 0.35-0.55(0.45) 22-35(34) 7-9(8) 0.01-0.03(0.03) 0.15-0.18(0.17) 

Mauritania 32-35(34)  0.48-0.53(0.51) 24-34(26) 7.6-9(8.8) 0.04-0.08(0.05) 0.15-0.18(0.16) 
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Table 2.5. The final ranges of Model parameters PARM(03) and PARM(42). Values inside rackets  

indicate the best parameter values. 

 
Countries 

PARM(03) PARM(42)  

 [-] [-] 

E
as

te
rn

 A
fr

ic
a 

Kenya 0.44-0.48(0.45) 1.18-1.29(1.25) 

Tanzania 0.48-0.52 (0.49) 1.25-1.33(1.32) 

Ethiopia 0.43-0.49 (0.44) 1.20-1.30(1.23) 

Eritrea 0.49-0.51 (0.51) 1.27-1.33(1.31) 

Somalia 0.30-0.35 (0.31) 1.27-1.34(1.27) 

Zambia 0.47-0.50 (0.48) 1.31-1.36 (1.35) 

Uganda 0.52-0.55 (0.52) 1.35-1.46 (1.45) 

Rwanda 0.46-0.49 (0.49) 1.31-1.37 (1.35) 

Sudan 0.42-0.48 (0.42) 1.20-1.30(1.30) 

Madagascar 0.47-0.49 (0.48) 1.30-1.40(1.39) 

Comoros 0.47-0.52 (0.50) 1.20-1.30(1.28) 

Malawi 0.47-0.49 (0.48) 1.34-1.4 (1.39) 

Burundi 0.43-0.46 (0.44) 1.25-1.34 (1.28) 

Mozambique 0.48-0.52 (0.49) 1.28-1.33 (1.29) 

Zimbabwe 0.49-0.51 (0.51) 1.23-1.31 (1.24) 

C
en

tr
al

 A
fr

ic
a 

DRC 0.48-0.54 (0.51) 1.17-1.26(1.18) 

Chad 0.48-0.52 (0.49) 1.25-1.35 (1.29) 

Gabon 0.44-0.51 (0.49) 1.25-1.33 (1.34) 

CAR 0.45-0.48 (0.47) 1.25-1.32 (1.32) 

Cameroon 0.48-0.50 (0.50) 1.25-1.30 (1.25) 

ROC 0.51-0.55 (0.53) 1.24-1.31 (1.27) 

Angola 0.47-0.50 (0.49) 1.29-1.39(1.34) 

S
o
u
th

er
n
 

A
fr

ic
a 

Botswana 0.48-0.52 (0.51) 1.25-1.35(1.26) 

Lesotho 0.49-0.52 (0.49) 1.20-1.30(1.27) 

Namibia 0.48-0.51 (0.50) 1.25-1.32(1.29) 

South Africa 0.49-0.51 (0.50) 1.22-1.31(1.26) 

Swaziland 0.50-0.52 (0.51) 1.19-1.27(1.25) 

W
es

te
rn

 A
fr

ic
a 

Niger 0.48-0.52 (0.50) 125-1.35(1.31) 

Gambia 0.45-0.51 (0.46) 1.23-1.26(1.24) 

Togo 0.48-0.51(0.49) 1.23-1.31(1.24) 

Benin 0.47-0.50 (0.50) 1.22-1.31(1.24) 

Sire Leon 0.49-0.51 (0.51) 1.30-1.34(1.33) 

Ghana 0.45-0.50 (0.48) 1.23-1.33(1.25) 

Senegal 0.49-0.51 (0.51) 1.28-1.33(1.25) 

Guinea 0.44-0.50 (0.47) 1.25-1.31(1.26) 

Ivory Coast 0.48-0.52 (0.51) 1.25-1.35(1.34) 

Nigeria 0.50-0.52 (0.5) 1.22-1.28 (1.23) 

BurkinaFaso 0.43-0.48 (0.47) 1.25-1.38 (1.36) 

Mali 0.48-0.52 (0.52) 1.25-1.34 (1.29) 

Mauritania 0.49-0.52 (0.50) 1.23-1.31 (1.28) 
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For HI, overall higher ranges (>0.4) were obtained in the Horn of Africa, Southern Africa, Mali 

and Mauritania where the yields were underestimated. In Central Africa and some Western African 

countries, the ranges were below 0.35. TOPC showed higher variability in Eastern and Central Africa 

compared to Southern and Western Africa where the ranges were between 22 and 35 
o
C. More 

variability of TBSC was noticed in Eastern Africa. Similar variations were observed for WSYF, WCY 

(Table 2.4) (Figure S2.4) and PARM(03) and PARM(42) (Table 2.5) (Figure S2.5). The relatively large 

parameter ranges in Tables 2.4 and 2.5 indicate the inadequacy in the concept of the “best” solution 

and the need to express the uncertainty in the calibration results. 

After the final step of calibration, 15 countries remained with R
2
 < 0.1. A probable reason could 

be large errors in reported yield, or disruption of agricultural activities due to wars and social unrests. 

We hypothesized that simple manipulation of reported observed data by linear de-trending techniques 

would help to improve the calibration results. This idea was tested for 18 countries (Figure 2.8). We 

found that the calibrated R
2
 improved significantly in 6 countries including Angola, Botswana, 

Burkina Faso, Burundi, Comoros, and Madagascar with values above 0.2 (Figure 2.8). There was not a 

significant increase in R
2
 of other countries. The RSR values decreased in a few countries such as 

Botswana, Burkina Faso, Madagascar, Somalia, Sudan, and Togo. The RSR values for some countries 

like Guinea and Ivory coast remained rather high. The reason is related to linear trends in yield in 

these countries. De-trending resulted in almost constant yield for all years.  

Overall, the results show that linear de-trending is not promising for all countries and trend 

removal requires testing the performance of different techniques and evaluating their performances. 

Testing other methods was beyond the scope of this paper. The simple linear technique in this study 

was mostly helpful to improve the P-factor and the R-factor (Figure S2.6).  
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Figure 2.8. Comparison of the FAO reported (red line with dots) and simulated maize yields expressed 

as 95PPU prediction uncertainty band (green bound) and the best simulation (blue line) in 18 countries 

that linear de-trending was applied. 

 

2.4. Discussion and conclusion 

2.4.1. Country level maize calibration 

In the last decades, SSA has been the focus of attention in many studies due to the low 

productivity, existing potential for improvement, as well as a high vulnerability to climate change 

(Conceicao et al., 2016; Webber et al., 2014). However, poor data status affects the ability of decision 

makers to make the right management decisions to increase the crop yield (Beguy, 2016). Therefore, 

there is a need to advance crop modeling to generate reliable output by improving their performance 

through calibration and uncertainty analysis, understanding the inter-annual yield variability, and 

identifying model parameters on various spatial scales. In this work, we achieved these objectives by 

creating EPIC
+
 to calibrate a maize model for individual SSA countries. We also identified the 

important parameters at the national level.  

We did not find much literatures to compare our results, as we considered a long time-span of 

multiple decades. Folberth et al. (2012a) obtained R
2
 values of 0.25 for the entire SSA countries for the 

year 2000. Liu et al. (2007) provided results on the country level with much high R
2
 values of (0.8-0.9) 
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for wheat, however, the results were also only for the year 2000. Jones and Thornton (2003) simulated 

maize in Africa using DSSAT (Decision Support System for Agro-technology Transfer) and obtained 

a poor agreement with R
2
 of 0.03 mainly due to the lack of crop-specific land use at the time of the 

study. Through calibrating each country individually, we obtained a higher R
2
 of 0.92 for the entire 

SSA. Although our results are not directly comparable to the other studies, we found that EPIC
+
 was 

capable of estimating reasonable biophysical plant growth parameters for maize, which can be used as 

a base for testing further adaptation strategies in SSA.  

After three steps of calibration, we obtained satisfactorily performances at the country level for 

most countries. In some countries such as South Africa, Kenya, and Tanzania where the quality of 

input data are higher, we obtained more satisfactory results as indicated by lower RSR and higher R
2
 

values. RSRs for all countries were between 0.8 and 2 and the final R
2
 values for 44% of the countries 

were >0.2. Although the RSR values were within acceptable ranges for maize yield, R
2
 remained quite 

low for a few countries. We attributed these discrepancies to probable errors in the reported yield data 

and the social volatility and wars in these countries in the past 30 years.  

The reported annual yield trends in different countries show different patterns. Grassini et al. 

(2013) described six statistical models describing time series trends in historic crop yield and found 

yield stagnation in e.g., DRC, Eritrea, and Ghana or Linear-upper plateau pattern in e.g., Ivory Coast, 

Burundi, and Madagascar. Ben-Ari and Makowski (2014) also found high inter-annual maize 

variability especially in Southern Africa and decomposed variables into three informative components. 

In this paper, we tested the effect of manipulation of past yield by trend analysis on the calibration 

results for several countries in SSA. Although we only used a simple linear trend, we found quite 

promising results for some countries. However, our initial test in 18 countries showed that linear de-

trending is not effective for all cases and testing other de-trending methods are necessary. In a 

subsequent publication, we will explore in more details the effect of different de-trending techniques 

on calibration for countries affected by different societal conflicts.  

The developed EPIC
+
 can be applied for calibration of crop yields at different scales (field, region, 

country). The present study mainly considers SSA at the country level. The major limitation for 

calibration of crop models at smaller scales (e.g., sub-national and field) is the lack of observed yield 

data. This restricts determination of crop parameters at local level. Besides, even at the country level, 

the quality of the FAO data is questionable specially in under-developed countries (Lee et al., 2013). 

Adjusting the Crop and EPIC parameters at the sub-national scales increases their reliability, as these 

parameters are usually defined based on experimental data. Such detailed parameter estimation is only 

feasible for small-scale studies and is too ambitious for the entire SSA. In this study, we could only 

estimate the parameters and their uncertainties at the country level, as the only available time series 

yield data existed at this level. To the best of our knowledge, this has not been done before for SSA. 

To demonstrate the capability of EPIC
+
 in estimating parameters at the field level, we tested the model 
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at six fields in Burkina Faso where observed maize yields were available during 2002-2007. 

Comparing simulated and observed yields shows promising results at the field scales where the P-

factor and the R-factor values indicated a better performance of calibration at the field scale. 

 

2.4.2. Parameter regionalization in SSA countries 

The initial parameters used in this study came from different sources at different resolutions. After 

calibration, we identified parameters with better spatial definitions. Folberth et al. (2012a) and 

Therond et al. (2011) pointed out that next to plant growth parameters, a reliable estimation of planting 

date is important for a more accurate simulation of crop growth. On the large scales, PD contains large 

uncertainties stemming from poor spatial resolutions to the data source. In this study, after calibrating 

PD, there was a significant improvement in the simulation results, and we obtained a better 

identification of the spatial resolution for planting date for different regions in SSA. Using the 

available PD adjustment function in EPIC
+
, we considered planting date as a calibration parameter and 

adjusted it between the earliest and the latest planting dates. This feature could be used to determine 

the best possible dates to achieve the highest yields according to climate conditions. 

Calibration of Operation parameters also made a significant improvement in the results indicating 

the existence of large uncertainties in the default parameters we had used. In fairness to the fertilizer 

data used in this study, the FertiSat data was collected over a short time period of 1998 to 2004. 

However, because of a lack of more data, we used it for the entire period of this study. We assessed 

the impact of adjusting the Operation parameters such as fertilizer application and PHU by applying 

the relative change option in EPIC
+
. In some countries with significant mismatch between observed 

and simulated yields in Step 1 (e.g. Kenya, DRC, or ROC), the adjusted values were higher. More 

detailed analysis on parameters uncertainty and spatial aggregation methods required more detailed 

data about agricultural activities at the field level which were not available at the scale of our study. 

The parameter Pdensity was identified as one of the most sensitive parameters. Finding the 

optimum Pdensity has been the focus of attention in many studies (Deng et al., 2012; Overman and 

Scholtz, 2011). Folberth et al. (2012a) suggested a Pdensity value of between 2 and 6 plant m
-2

, and 

used a value of 4 plant m
-2

 for the entire Africa. Tatsumi (2016) applied higher ranges from 5.6 to 9.0 

plant m
-2 

and used ensemble mean of 7.9 plant m
-2 

for USA, which reflects the high productivity in 

USA compared to SSA. We parameterized Pdensity on the country level and found values ranging 

between 4.2 to 6.2 plant m
-2

. 

The calibration of Crop and Model parameters made a substantial improvement in the simulation 

results. The adjusted HI for most countries ranged between 0.30-0.55 with most countries below 0.44. 

This is smaller than the 0.55 suggested by Kiniry et al. (1995), or the range of 0.45-0.60 suggested by 

Wang et al. (2005) in Wisconsin regions, and 0.5 of Balkovic et al. (2013) for Europe. However, our 

value for SSA corresponds well with the smaller values of 0.35 reported by Folberth et al. (2012a), and 

0.4 reported by Gaiser et al. (2010). Variations in HI within a crop are mainly attributed to differences 
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in crop management (Yang and Zhang, 2010) and therefore is low in SSA compared to global average. 

Jensen et al. (2003) suggested HI range of 0.22-0.34 for Tanzania based on their analysis of maize 

yield prior to 2000, which is smaller than our range of 0.42-0.52. The major reason for this 

discrepancy is due to a significant increase in maize yield after 2000, which leads to a higher HI for 

Tanzania. Yunusa and Gworgwor (1991) suggested HI of 0.10-0.32 for Nigeria, which is also smaller 

than our suggested ranges of 0.26-0.40 as the country has seen a significant increase in maize yield 

since the last decade. 

The parameter WA measures dry biomass, including roots, produced per unit of intercepted 

photosynthetically active radiation under non-stressed condition. EPIC suggests a default value of 40 

kg ha
-1

 MJ
-1

 m
2 

for maize (Sharpley and Williams, 1990). Kiniry et al. (1995) applied the same value 

in northern Great Plains regions, and Balkovic et al. (2013) used it for the whole Europe. Wang et al. 

(2005), suggested a range of 30-45 kg ha
-1

 MJ
-1

 m
2
, which is wider than the final ranges we obtained 

for each country. Bulatewicz et al. (2009) suggested 47 kg ha
-1

MJ
-1

m
2
 for Sheridon region in Kansas, 

which is higher than the maximum upper bound in our study (43 kg ha
-1

MJ
-1

m
2 
in CAR) mainly due to 

irrigation. WA in EPIC is assumed to be only based on data with no stress. The 35 and 35.4 kg ha
-1

 MJ
-

1
 m

2
 values reported by Causarano et al. (2008) for Iowa and Causarano et al. (2007) at Alabama, 

respectively, are close to our best values obtained for countries such as Guinea, South Africa, Sire 

Leon, and smaller than most Eastern African countries. 

The TOPC and TBSC are the next two important parameters. Temperature is a key factor affecting 

the rate of crop growth. Crop responses to temperature differ among crop varieties and throughout 

their life cycle (Hatfield and Prueger, 2015). At any given stage of development, it is possible to define 

the “minimum temperature” below which a plant will not grow, “suboptimal temperatures” where a 

further increase in temperature will result in increased growth, and “optimal temperatures” when 

growth is at its maximum. However, the growth phases are not defined explicitly in EPIC. Therefore, 

these two parameters are more representative of the entire plant growth stages and should be adjusted 

by calibration. Our final adjusted TOPC for some Central and Eastern Africa countries were between 

19-25 
o
C and higher in other countries. Balkovic et al. (2013) applied a fixed value of 22.5 

o
C, and 

Bulatewicz et al. (2009) estimated 27.2 
o
C. The adjusted TBSC varied between 7.5-9 

o
C in SSA. 

Bulatewicz et al. (2009) considered an initial range of 5-15 
o
C and a final value of 8.2 

o
C while a value 

of 8 
o
C was suggested by Kiniry et al. (1995).  

Folberth et al. (2012a) and Gaiser et al. (2010) applied a value of 0.01 for WSYF for the entire 

Africa. The final adjusted ranges we found varied significantly from one country to the other within 

the range 0.005 to 0.06. For PARM(03) and PARM(42), Wang et al. (2005) suggested ranges between 

(0.3-0.7) and (0.5-2), respectively. For all these parameters, we narrowed down these ranges and 

defined an optimized range for each specific country.  

Overall, the process of crop model calibration at large scale contains different levels of uncertainty 

such as heterogeneity in agricultural operations and their relevant parameters, the size and 
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discretization of the study area, the uncertainty of input data, the parameterization strategies, and the 

methods of aggregation. As many factors may significantly influence the model performance and 

representative parameters, implementing different calibration strategies and using expert information 

to assess the parameters are highly recommended to avoid distortion of final values. In this study, we 

compared the important parameters with previous works at SSA and other places across USA. 

 

2.4.3. The EPIC
+
 tool for calibration purposes 

EPIC
+
 is a promising tool with a user friendly GUI for calibration of the EPIC model. The 

program has several advantages: 

 use of variable spatial scales (grid, country, regional or continent) and time scale (years to 

decade);  

 ease of implementing different strategies for agricultural operations based on a flexible crop 

calendar in each grid; the ability to fit all EPIC parameters;  

 possibility to run parallel EPIC
+
 under the Linux environment, which substantially speeds up 

the calibration process;  

 the compatibility in format with the optimization algorithms in the SWAT-CUP program, 

which allows for expansion of EPIC
+
 to include other optimization techniques such as Particle 

Swarm Optimization (PSO).  

There is also potential for future investigation of other uncertainty analysis techniques such as 

Bayesian approaches, which are based on the theorem of the conditional probability. This approach 

may provide a more comprehensive information on the relative uncertainty of parameters and their 

impacts on capturing regional variability in crop yield (Angulo et al., 2013b). Such levels of flexibility 

in structure gives opportunities to test different strategies for increasing the reliability of input data as 

well as improving the model performance.  

The EPIC
+
 structure is designed to fulfill the five criteria of broadness, modularity, independency, 

scalability, and accessibility identified by Houska et al. (2015) for a package development. Holzworth 

et al. (2015) emphasized on the speed as well. As the design of EPIC
+
 structure is consistent with the 

SWAT-CUP program, other calibration techniques such as PSO, Generalized Likelihood Uncertainty 

Estimation, Markov Chain Monte Carlo can be easily embedded. Therefore, EPIC
+
 is considered as a 

broad package, which is applicable to any scale. The model has several modules for the parameter 

adjustment, objective function selection, and output saving. The SUFI-2 algorithm in EPIC
+
 is directly 

obtained from SWAT-CUP, which can be independently applied to calibration of many other models. 

EPIC
+
 execution is accessible in Windows and Linux environment. Future studies can also explore the 

impact of downscaling model inputs such as fertilizer rate on calibration performance. Therefore, in 
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the presence of high-resolution data, the procedure remains valid and EPIC
+
 can be applied to increase 

the accuracy of estimated parameters. 

 

2.4.4. Limitation of study and future perspectives 

A major limitation of this study is the lack of detailed observed data, especially observed yields on 

regional scales. This was a constraining factor in exploring model performance at sub-country and 

regional levels. Global soil datasets were used without calibration of their parameters. Literatures 

shows that EPIC is sensitive to aluminum tolerance index (ALT) and critical aeration factors (CAF), 

and field capacity (Gaiser et al., 2010; Wang et al., 2012). So, the effect of soil parameter uncertainty 

on crop yield calibrations requires further investigation. In addition, sensitivity analysis is not included 

in EPIC
+
. We will include and yield trend analysis in the further development of EPIC

+
. 
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2.6. Supplementary material  

 

 

Figure S2.1. Distribution of the difference between FAO-reported and simulated long-term average 

yields in four SSA regions. Simulated yield is based on average default parameters. Difference is 

converted to the percentage change related to the FAO-reported average yield. 
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Figure S2.2. Annual simulated crop yields after Step 1 compared with the FAO-reported yields 

characterized by two efficiency criteria (RSR and R
2
) at country level during 1980-2012. 
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Figure S2.3. Annual simulated crop yields after Step 2 compared with the FAO-reported yields 

characterized by two efficiency criteria (RSR and R
2
) at country level during 1980-2012.  
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Figure S2.4. The final ranges of Crop parameters (red bar) obtained from the SUFI2 algorithm 

after Step 3 at country level. The horizontal black dashed lines indicate the initial ranges 

considered in the calibration, the black circles show the best solution based on RSR. 
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Figure S2.5. The final ranges of Model parameters (red bar) obtained from the SUFI2 algorithm 

after Step 3 at country level. The horizontal black dashed lines indicate the initial ranges 

considered in the calibration, the black circles show the best solution based on RSR criteria. 

 

 

Figure S2.6. P-factor versus R-factor after implementing linear de-trending. P-factor is the percentage 

of observed data bracketed by the 95PPU. R-factor is the width of the 95PPU band representing 

predictive uncertainty. 

 



Chapter 2 

 

52 
 

Table S2.1. The initial ranges of the Crop and EPIC parameters which were calibrated in Step 3 of the 

proposed methodlogy and the maximum allowable ranges for each parameter obtained from the 

literature.  

  
Parameters Initial ranges 

Maximum allowable 

ranges 

Reference 

S
te

p
 3

 

C
ro

p
 

p
ar

am
et

er
s 

WA AC [30, 40] 30-45 (Wang et al., 2005) 

HI AC [0.35,0.55] 0.30-0.60 
(Folberth et al., 2012a; Jensen 

et al., 2003; Wang et al., 2005) 

TOPC AC [22, 35] 20-35 (Bulatewicz et al., 2009) 

TBSC AC [7, 9] 5-10 (Folberth et al., 2012b) 

WSYF AC [0.01, 0.03] 0.01-0.3 (Folberth et al., 2012b) 

WCY AC [0.12, 0.18] 0.12-0.18 ±45% from initial value of 0.45 

M
o

d
el

 

p
ar

am
et

er
s 

PARM(03) AC [0.48, 0.52] 0.3-0.7 (Wang et al., 2005) 

PARM(42) AC [1.25, 1.35] 0.5-2 (Wang et al., 2005) 

WCY: based on personal communication with model developer 
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Table S2.2. p-values (t-stats), and R
2
 obtained from multiple linear regression sensitivity analysis of 

Operation parameters. Parameters were allowed to change between (-0.45,0.45) from default values, 

highlighted boxes show most sensitive parameters. 

  
PHU Pdensity N-app K-app BFT0 P-app R

2
 

E
as

te
rn

 A
fr

ic
a
 

Kenya 0.0(144) 0.0(-17.7) 0.25(1.2) 0.65(-0.4) 0.08(1.8) 0.32(-1.0) 0.79 

Tanzania 0.0(506) 0.0(141.3) 0.19(1.3) 0.81(-0.2) 0.67(-0.4) 0.57(-0.6) 1.00 

Ethiopia 0.0(47.5) 0.0(41.4) 0.78(0.3) 0.29(-1.1) 0.69(-0.4) 0.73(0.3) 0.95 

Eritrea 0.0(290) 0.0(23.8) 0.50(-0.7) 0.45(-0.8) 0.07(1.8) 0.83(0.2) 0.87 

Somalia 0.0(211) 0.0(4.12) 0.0 (-8.4) 0.42(-0.6) 0.36(-0.9) 0.98(0.1) 0.69 

Zambia 0.0(182) 0.0(5.9) 0.27(-0.1) 0.11(-3.1) 0.01(0.1) 0.89(-0.8) 0.93 

Uganda 0.0(24.1) 0.0(24.3) 0.74(0.3) 0.02(2.3) 0.2(-1.3) 0.96(-0.0) 0.87 

Rwanda 0.0(27.1) 0.0(4.9) 0.0(4.1) 0.0(8.5) 0.24(1.2) 0.91(-0.1) 0.80 

Sudan 0.0(299) 0.0(-34.1) 0.0(3.1) 0.37(0.9) 0.69(-0.4) 0.0(3.4) 0.70 

Madagascar 0.0(102) 0.0(-17.6) 0.12(-1.6) 0.03(2.2) 0.47(-0.7) 0.44(-0.8) 0.62 

Comoros 0.0(41.7) 0.0(14.3) 0.0(3.3) 0.44(-0.8) 0.79(0.3) 0.92(-0.1) 0.82 

Malawi 0.0(781) 0.0(-21.6) 0.73(-1.1) 0.12(1.6) 0.41(-2.7) 0.44(-0.1) 0.87 

Burundi 0.0(14) 0.0(-13.6) 0.14 (1.5) 0.8(0.3) 0.05(-2.0) 0.35(-0.9) 0.98 

Mozambique 0.0(120) 0.0(23.9) 0.0(-10.2) 0.0(-13.5) 0.68(-0.4) 0.1(-1.7) 0.89 

Zimbabwe 0.0(72.8) 0.0(-9.6) 0.28(1.2) 0.09(0.3) 0.54(-0.3) 0.95(0.04) 0.94 

C
en

tr
al

 A
fr

ic
a
 

DRC 0.0(66.4) 0.0(-20.1) 0.06(1.9) 0.03(2.3) 0.88(-0.2) 0.79(0.3) 0.62 

Chad 0.0(86.1) 0.0(22.3) 0.01(-1.1) 0.52(-0.8) 0.74(0.9) 0.77(-0.2) 0.38 

Gabon 0.0(297.2) 0.0(24.4) 0.97(11.5) 0.0(3.5) 0.90(-0.3) 0.4(0.6) 0.33 

CAR 0.0(169.3) 0.0(-6.0) 0.31(2.7) 0.6(-0.6) 0.90(0.3) 0.8(-0.3) 0.96 

Cameroon 0.0(175.8) 0.0(-25.2) 0.01(6.4) 0.33(2.4) 0.12(0.6) 0.03(0.7) 0.89 

ROC 0.0(197.4) 0.0(-46.3) 0.0(1.0) 0.03(0.6) 0.87(0.1) 0.67(-0.3) 0.74 

S
o

u
th

er
n

 A
fr

ic
a 

Angola 0.0(227.4) 0.0(-22.8) 0.0(2.1) 0.21(-3.3) 0.46(0.4) 0.22(0.1) 0.99 

Botswana 0.0(1001) 0.0(-14.2) 0.04(-6.8) 0.0(2.2) 0.7(0.2) 0.89(0.4) 0.85 

Lesotho 0.0(117.6) 0.0(-35.9) 0.0(0.3) 0.27(-1.6) 0.53(0.8) 0.89(0.8) 0.38 

Namibia 0.0(169.1) 0.0(-6.0) 0.0(2.7) 0.0(-0.7) 0.68(0.3) 0.1(-0.3) 0.89 

South Africa 0.0(155.3) 0.0(-26.6) 0.25(2.7) 0.75(-0.9) 0.78(-1.6) 0.97(-2.2) 0.5 

Swaziland 0.0(120.4) 0.0(23.9) 0.0(-10.2) 0.15(-13) 0.08(-0.4) 0.66(-1.7) 0.85 

W
es

te
rn

 A
fr

ic
a
 

Niger 0.0(305) 0.02(98.9) 0.01(-3.9) 0.56(1.3) 0.07(-0.7) 0.53(-1.3) 0.17 

Gambia 0.0(1385) 0.0(39.3) 0.0(3.3) 0.72(-0.8) 0.69(0.4) 0.87(0.9) 0.31 

Togo 0.0(423) 0.0(6.8) 0.19 (4.8) 0.81(1.7) 0.67(0.8) 0.57(-0.6) 1.00 

Benin 0.0(347) 0.0(22.3) 0.0(3.0) 0.1(-1.5) 0.4(-1.8) 0.56(-0.4) 0.45 

Sire Leon 0.0(274) 0.0(34.8) 0.74(16.6) 0.02(-1.8) 0.2(0.1) 0.96(1.1) 0.87 

Ghana 0.0(1705) 0.0(5.6) 0.0(4.4) 0.07(1.1) 0.91(-0.6) 0.3(0.1) 0.95 

Senegal 0.0( 648) 0.0(-6.1) 0.06(-3.1) 0.03(-0.4) 0.88(-0.4) 0.79(0.2) 0.82 

Guinea 0.0(519) 0.0(-21.6) 0.0(8.2) 0.0(-0.3) 0.24(0.8) 0.91(-1.5) 0.55 

IvoryCoast 0.0(3835) 0.0(-26.4) 0.0(2.4) 0.37(2.5) 0.69(0.9) 0.0(-0.9) 0.93 

Nigeria 0.0(135) 0.02(68.9) 0.0(3.1) 0.43(1.5) 0.59(0.9) 0.01(-0.5) 0.94 

Burkina Faso 0.0(670) 0.0(2.43) 0.25(-2.7) 0.65 (0.6) 0.08(1.8) 0.32(-0.6) 0.79 

Mali 0.0(881) 0.0(-14.9) 0.0(0.2) 0.75(0.3) 0.42(-0.7) 0.13(0.6) 0.85 

Nigeria 0.0(243) 0.0(-4.9) 0.02(-3.1) 0.02(1.5) 0.36(0.8) 0.351.1) 0.89 

Mauritania 0.0 (74.7) 0.0(-35.9) 0.0(-1.1) 0.13(1.7) 0.43(-0.6) 0.27(-0.1) 0.27 
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2.7. Overview of EPIC
+
 and its architecture 

EPIC
+
 is the first version of EPIC with calibration capabilities. The purpose of developing EPIC

+
 is to 

extend its application from grid to region, country, and beyond. The base data required for simulation 

under 0.5
0
 resolution are also included in the package. Three software packages have been used to 

develop EPIC
+
: 

1) The EPIC executable files and FORTRAN source codes for Windows platform can be obtained 

from: http://epicapex.tamu.edu/model-executables/. The codes are compiled in both Windows and 

Linux. Both executable files are available in EPIC
+
. 

2) The SUFI2 uncertainty algorithm is used in the SWAT-CUP 5.1 package. This software is freely 

available from: http://www.neprashtechnology.ca/ 

3) All scripts for setting up the EPIC
+
 interface were coded in Python 3.4. Enthought Canopy freely 

downloadable from: https://store.enthought.com/downloads/#default. The wxPython Wrapper used 

for programming graphical user interfaces (GUI) of EPIC
+
 can be freely downloaded from: 

http://www.wxpython.org/download.php  

The EPIC
+
 interface consists of one main window with four modules: “General settings”, “Operation 

settings”, “Parameterization” and “SUFI2 calibration” (Figure S2.7). The first two modules allow 

extending the application of EPIC from the field scale to a larger region. The last two allow 

parameterization and calibration with uncertainty quantification using SUFI-2. An explanation of each 

module is given below. 

 

 

Figure S2.7. The EPIC
+
 main window 

 

2.7.1. Main window 

In this window, the user specifies the general information required to build a project. These include 

“project address”, “project name”, “study area”, “resolution of grids”, “crops to be simulated”, “start 

and end of simulations”, “warm up years”, and the “total number of runs in each calibration” (Figure 

S2.7).  

http://epicapex.tamu.edu/model-executables/
http://www.neprashtechnology.ca/
https://store.enthought.com/downloads/#default
http://www.wxpython.org/download.php
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2.7.2. General settings 

Three windows exist in this module: “Physiographic layer”, “Calibration settings”, and “Print settings” 

(Figure S2.8). 

o  In the “Physiographic layer”, the location of physiographic information is specified and includes: 

dem, slope, climate files, and soil files for each grid, and regional division if calibration is applied 

on a scale smaller than a country. The “RF harvested area”, and “IR harvested area” files are also 

defined, where RF stands for rainfed and IR stands for irrigated. 

 

 

Figure S2.8. The “Physiographic data” window 

   

o In the “Calibration settings”, the user defines the number of runs for calibration, and the location 

of EPIC original files (Figure S2.9). 

 

Figure S2.9. The “Calibration settings” window 

 

o  In the “Print settings”, the user defines the program outputs based on the desired variables (Figure 

S2.10).  
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Figure S2.10. The “Print settings” window 

2.7.3. Operation settings 

This module has two windows: “OPS1” and “OPS2” (Figure S2.11). In each window, the agricultural 

operations are defined differently depending on the objective and data of the user. Both windows are 

applicable in rainfed, irrigation, rainfed-irrigation systems. In “OPS1”, planting dates are fixed and 

provided to the program. In “OPS2” the user allows adjustment of planting date between earliest and 

latest time in each grid, i.e. planting date is considered as a calibrating parameter.  

 

 

Figure S2.11. “Operation settings” with its two embedded windows 

 

In both windows, Potential Heat Unit (PHU), fertilizer application rate (N, P, K), and irrigation 

application rate can be defined as a fixed value for all grids or different values for each grid. When the 

values are different for each grid, a .txt file with three columns: longitude, latitude, and value of the 

variable is defined. Different operations from planting to harvesting are as follows: 
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o Planting: Two options are available “plant in row” and “plant with drill”. This operation needs 

Planting density and PHU as input (Figure S2.12). In the “OPS1” window, the file indicates 

earliest and latest day of planting. In the “OPS2” window (Figure S2.13), only the day of planting 

is defined.  

o Tillage: It is possible to apply tillage operations in one crop calendar. The time of operation 

should be defined for each grid.  

o Pesticide. This operation needs time of operation and pesticide rate as input. 

o Irrigation: This operation needs time of operation and irrigation rate as input. 

o Fertilizer: N, P, K or others can be selected. Each one needs time of operation and Fertilization 

rate as input. 

o  Harvest: Two options are available “harvest with kill” and “harvest once”. They can be defined for 

specific grains and forages. The time of operation is also required 

o Kill crop: This operation also requires the time of operation as input. 

 

 

Figure S2.12. The “OPS1” window and its fields 
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Figure S2.13. Schematic representation of the “OPS2” window 

 

2.7.4. Parameterization 

The “Parameterization” module is for selecting parameters to be calibrated and their minimum and 

maximum values. This is available only in “OPS2” operation. The parameters are classified into three 

sets and chosen from three different windows. These are “Operation.OPS2”, “CROPCOM.OPS2” and 

“PARM0810.OPS2” (Figure S2.14).  

 

 

Figure S2.14. “Parameterization” with its three embedded windows 

 

o In “Operation.OPS2”, total number of parameters, and the number of parameters from each of 

three classes are defined (Figure S2.15). The parameter of the “Operation” class are related to 

agricultural operations like fertilizer application rate, irrigation rate, or planting density.  
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Figure S2.15. The “Operation.OPS2” window for parameterization of Operation parameters 

 

o In “CROPCOM.OPS”, the user edits parameters stored in the CROPCOM.DAT file of the original 

EPIC model (Figure S2.16). They are referred to as “Model parameters”. . 

 

  

Figure S2.16. The “CROPCOM.OPS2” window for parameterization of “Crop parameters” 

 

o In the “PARM0810.OPS2” window (Figure S2.17), the user edits parameters defined in the 

PARM0810.DAT file of the original EPIC model. They are referred to as “Model parameters”. 
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Figure S2.17.Tthe “PARM0810.OPS2” window for parameterization of Model parameters 

 

2.7.5. The SUFI-2 calibration 

The “SUFI2 calibration” window, executes the SUFI-2 algorithm step by step (Abbaspour et al., 2007, 

2015). The different steps include: parameter sampling and editing, EPIC execution, output extraction 

from EPIC output files, and calibration output results (plots, 95PPU, parameter ranges, values of 

objective functions). All these processes are implemented in three windows which are embedded in the 

SUFI2 calibration module: “SUFI2.pre”, one of “SUFI2.RUN”s, “SUFI2.POST” (Figure S2.18). 

 

Figure S2.18. “SUFI-2 calibration” with its six operation windows 
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o In “SUFI2.pre”, parameters are sampled using the Latin Hypercube sampling method and their 

values are stored in relevant files (Figure S2.19). The “Operation parameters” are edited using the 

OperationFile-EDIT (OPS2) tab. The “Crop parameters” are edited with the CROPCOM-EDIT 

(OPS2) tab, and the “Model parameters” are edited via PARM0810-EDIT (OPS2). 

 

 

Figure S2.19. The “SUFI2.pre” window and its four tabs 

 

o The “SUFI2.RUN” window is for running EPIC. Depending on the selected operation methods 

(Figure S2.19) and the operating systems, the user opens one of the four windows . Regardless of 

which is selected, project address, climate data address, soil data address, and management 

operation database address are specified (Figure S2.20). The scripts are then created and EPIC is 

executed for each script. 

 

Figure S2.20. schematic representation of the “SUFI2.RUN” window 

 

o In “SUFI2.POST” window, The user defines the objective function, the threshold, and address to 

observed yield data file (Figure S2.21). The user can then compare observed and simulated values 

with a choice of 11 different objective functions and calculate the 95 percent prediction 

uncertainty (95PPU) graph. 
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Figure S2.21. Schematic representation of the “SUFI2.POST” window 

 

EPIC
+
 produces different outputs stored in different .txt files in SUFI.OUT folder of project: 

 The values of different criteria in each country, p-factor and r-factor 

 the best simulated yield  

 best parameters 

 new parameter ranges 

Based on the criteria, p-factor, and r-factor values, the users decides whether to do another simulation 

or not. If these criteria are not satisfied , the new parameters are used as the initial ranges for the next 

iteration (Figure S2.7) 

 

2.7.6. The EPIC
+
 application for calibration at field scale 

The EPIC
+
 tool can be applied to any scales from field to country or continent. The required settings 

for field scale application is made in the “Physiographic data” Window (Figure S2.8). In the default 

EPIC
+
, all grids within a country are considered as one region. However, the user can treat a grid or a 

number of grids as one region by changing the physiographic layer. In other words, each country can 

be split into a number of regions. It is also possible to execute EPIC
+
 for those regions that observed 

yield data is available and exclude others from further assessment. We tested this feature of EPIC
+
 on 

six fields in Burkina Faso (Field1-Field6) where observed maize yields were available during 2002-

2007 (Figure S2.22).  
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Figure S2.22. The location of six fields in Burkina Faso (Field1-Field6) where maize yield are 

available during 2002-2007 

 

Comparing simulated and observed yields shows promising results at the field scale. The RSR 

values are below 1.5 in all six fields (Figure S2.23). The 95PPU uncertainty bands bracketed most 

observed data indicating high performance of field scale calibration. The P-factor values at the field 

level are larger than 0.5 and the R-factor values vary between 1.31 and 1.62, which are satisfactory. 

 

 Figure S2.23. Comparison of the FAO reported and simulated maize yields expressed as 95PPU 

prediction uncertainty band (green bound) and the best simulation (blue line) in six fields in Burkina 

Faso during 2002-2007. 
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Abstract 

Crop yields exhibit known responses to droughts. However, quantifying crop drought vulnerability is 

often not straightforward, because components of vulnerability are not defined in a standardized and 

spatially comparable quantity in most cases and it must be defined on a fine spatial resolution. This 

study aims to develop a physical crop drought vulnerability index through linking the Drought 

Exposure Index (DEI) with the Crop Sensitivity Index (CSI) in Sub-Saharan Africa. Two different 

DEIs were compared. One was derived from the cumulative distribution functions fitted to 

precipitation and the other from the difference between precipitation and potential evapotranspiration. 

DEIs were calculated for one, three, six, nine, and twelve-month time scales. Similarly, CSI was 

calculated by fitting a cumulative distribution function to maize yield simulated using the 

Environmental Policy Integrated Climate (EPIC) model. Using a power function, curves were fitted to 

CSI and DEI relations resulting in different shapes explaining the severity of vulnerability. The results 

indicated that in Central Africa the highest correlation was found between CSI and DEI obtained from 

the difference between precipitation and potential evapotranspiration in one-month time scale, while 

this was not the case for other parts of Africa, where CSI was strongly correlated to precipitation based 

DEI in three and six-month time scales. Our findings show that Southern African countries and some 

regions of Sahelian strip are highly vulnerable to drought due to experiencing more water stress, 

whereas vulnerability in Central African countries pertains to temperature stresses. The proposed 

methodology provides complementary information on quantifying different degrees of vulnerabilities 

and the underlying reasons. The methodology can be applied to different regions and spatial scales.  

 

3.1. Introduction 

Climate variability and mean temperatures are expected to increase across many regions of the 

world due to climate change (Rezaei et al., 2015). The agricultural sector exhibits known responses to 

climate anomalies, and this has huge impacts on food security. SSA as a home to one billion people 

(World Bank, 2016) is also at the core of this threat. The recurrence of droughts in the past decades 

has triggered many famines, resulting in the deaths of millions of people and food insecurity across the 

continent. In SSA, an estimated 41% of the population live on drought-prone lands (Svendsen, 2009). 

Rainfall variability has a large impact on food production of most countries and livelihoods of the 

people in the continent due to dependance of continent on rainfed agriculture (Hellmuth et al., 2007). 

The expected adverse impacts of climate change on crop production adds further risk to the future 

food security of the region (Liu et al., 2008; Muller, 2011; Roudier et al., 2011; Schlenker and Lobell, 

2010). Factors such as slow progress in drought risk management, increased population, and 

degradation of land and environment have aggravated the situation (Masih et al., 2014). The IPCC’s 

assessments of climate change impacts also suggest declining grain yield to be a likely future scenario. 

Therefore, understanding drought vulnerability is an important step to finding feasible solutions for 

mitigating drought impacts, overcoming food insecurity, and associated drought risks. 
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 According to the IPCC’s fourth assessment report, vulnerability is defined as the interaction 

between three constituent components: exposure, sensitivity, and adaptive capacity (Parry et al., 

2007). O'Brien et al. (2004) defined exposure as the degree of climate stress on a particular unit of 

analysis such as magnitude or frequency. It may be represented as either long-term changes in climate 

conditions, or by changes in climate variability, including the magnitude and frequency of extreme 

events. Sensitivity is described as the degree of influence of a variable on a system (in this paper, crop 

yield) when it is stimulated by climatic factors (Parry et al., 2007). Adaptive capacity has been defined 

as the capacity of a system to adjust to climate change effects to reduce the potential damages or to 

take advantage of associated opportunities. Vulnerability of a system, hence, entails both physical and 

socioeconomic aspects. Physical vulnerability refers to the properties of physical structures. It 

determines their potential damage when the system is exposed to disaster. Factors such as constructing 

infrastructure or irrigation systems can be used as adaptation strategies of a society to mitigate the 

impact of exposure. Providing a physical drought vulnerability index resulting only from intrinsic and, 

in particular, climatic variables would be very useful for water resources managers and policy makers 

to develop adaptation strategies to alleviate risks of crop failure in areas of high physical vulnerability. 

Therefore, the central focus of the present study is to assess the physical drought vulnerability.  

 Several methods are available for quantifying drought vulnerability. A large group of studies have 

assessed crop drought vulnerability which refers to the extent to which a drought of a given magnitude 

has an impact on agricultural production. Simelton et al. (2009) defined drought vulnerability through 

relating meteorological droughts to crop harvest loss to identify regions that are resilient or vulnerable 

to rainfall variation in China. Wu et al. (2004) established a relationship between the indicators of 

moisture supply and agricultural production through linking weekly-based Standardized Precipitation 

Index (SPI) (McKee et al., 1993) and Crop Specific Drought Index with the ratio of actual to potential 

yield. Fraser et al. (2013); Huai (2016); Simelton (2011), and Simelton et al. (2012) have applied a 

similar approach to determine physical vulnerability of crop production in other regions. These studies 

have the major limitation of using a simple ratio-based definition that does not allow comparison of 

vulnerabilities over different areas due to the lack of a standardized scale. As the ratios can vary over a 

large scale (or range) (0 to ∞), comparing drought vulnerability in different regions becomes very 

difficult. In addition, when the components of vulnerability (e.g. drought exposure or crop sensitivity) 

are calculated with different standards, their values vary within different ranges. Therefore, it is not 

possible to compare their severity of one component with the other with one base. In other words, a 

certain value for drought exposure or crop sensitivity might be representative of different severities 

under different standards. Overall, the current studies of drought vulnerability assessment suffer from 

the lack of standardized procedure for defining their components. 

 Another approach to define crop drought vulnerability is by curve fitting to find a relationship 

between drought intensity and yield loss variables. Wang et al. (2013) used physical vulnerability 

curves to define a relationship between drought intensity and yield loss. Jia et al. (2012); Naumann et 
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al. (2015), and Guo et al. (2016) have also provided physical drought vulnerability maps by fitting 

assessment curves through drought intensity and yield loss variables. Drought intensities were 

obtained from SPI and Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano 

et al., 2010). The drawback of studies based on fitting curve approaches is that the severity of 

vulnerability is not clearly explained according to the shape of the fitted curves. In other words, there 

is a lack of clarity on differentiating between different degrees of severity at different spatial and 

geographical locations. 

 Despite extensive studies on agricultural vulnerability assessment, most analyses have been 

performed at the country level (Brooks et al., 2005; Naumann et al., 2014; Naumann et al., 2015; 

Shahid and Behrawan, 2008), This is because crop databases are usually available at country level, 

which do not provide information on finer spatial coverage (Thornton et al., 2009). Regional crop 

yield data have been sparsely collected and are available for a limited period. SSA is a case where crop 

data is incomplete and in most cases of poor quality; hence the available data cannot explain the sub-

national heterogeneity. Crop drought vulnerability assessment studies in SSA are mostly done at 

country level. The sub-national studies of SSA are limited to specific regions, and are not applied at 

Pan-SSA level. The application of a crop model helps to obtain data at fine spatial resolution. 

Therefore, and for a better understanding of drought-failure relations on large scales, process-based 

physical crop models need to be used to obtain information on finer resolutions. Apart from providing 

spatial heterogeneity, crop models provide complementary concepts on identifying different stresses 

that a crop may experience during its growth periods. Linking a fine resolution conceptual crop model 

with vulnerability concepts has been less researched specially at continental scale such as SSA. 

 In recent years, input data (e.g. climate or soil data) required for crop models are usually available 

at grid level with different resolutions. Several studies have attempted to select the optimal grid cell 

resolution (Mearns et al., 2002; Orrego et al., 2014). de Wit et al. (2005), for example, concluded that 

the grid size of 50×50 km is an appropriate geospatial resolution. To address the above mentioned 

gaps, we quantify the physical vulnerability of maize to drought for SSA by simulating maize yield at 

0.5° resolution using the calibrated EPIC crop model. Maize was selected because it is a staple food 

crop covering about 20% of the calorie intake and 13% of the total cultivated land in SSA (FAO, 

2010). We specifically aim to address the following questions: 

1) How can grid level components of vulnerability (drought exposure and crop failure) be framed 

using a normalized metrics across SSA? And how should they be aggregated to better characterize the 

severity of crop drought vulnerability? 

2) What time scale of drought exposure indices does exert the strongest sensitivity on crop yield? 

3) Where are the vulnerability hotspots in SSA at sub-national level? and what are the underlying 

factors making one region physically more vulnerable to drought?  
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We demonstrate the utility of our approach in vulnerability assessment of maize in SSA by providing a 

vulnerability map and discuss the implications of our method for future researches and practices. 

 

3.2. Data and methods 

3.2.1. Study area 

 SSA is home to 1 billion people (World Bank, 2016) and is frequently struck by droughts. Rainfall 

variability has a large impact on food production of most countries and livelihoods of the people in the 

continent (Hellmuth et al., 2007). In SSA, an estimated 41% of the population (ca. 260 million) live on 

drought-prone lands (Svendsen, 2009). The recurrence of droughts in the past decades has triggered 

many famines, resulting in the deaths of millions of people and food insecurity across the sub-

continent. The expected adverse impacts of climate change on crop production in SSA adds further 

risk to the future food security of the region (Liu et al., 2008; Muller, 2011; Roudier et al., 2011; 

Schlenker and Lobell, 2010).  

 

3.2.2.  Crop model and calibration  

 Maize yield was simulated using an extended version of EPIC ( EPIC
+
, Kamali et al. (2018a)). 

EPIC is a field-scale crop model designed to simulate the different processes of farming systems as 

well as their interactions using data such as weather, soil, land use, and crop management parameters 

(Williams et al., 1989). EPIC operates on a daily time step and can simulate crop growth under various 

climate and environment conditions, as well as complex management schemes. Further information on 

EPIC crop-related processes is given in Williams et al. (1989). In order to extend the application of 

EPIC from field to the SSA scale, we divided the study area into 0.5°×0.5° grids and executed EPIC 

on each grid cell using a framework programmed in Python (Kamali et al., 2018a). 

 For model calibration, the developed framework was also coupled with the Sequential Uncertainty 

Fitting (SUFI-2) algorithm (Abbaspour et al., 2007). SUFI-2 was chosen because of its flexibility and 

efficiency compared with other algorithms (Uniyal et al., 2015; Yang et al., 2008). The algorithm 

calculates the uncertainty of model prediction and expresses the output as the 95% prediction 

uncertainty (95PPU), which is obtained through propagating parameter uncertainties. We calibrated 

the model at national level using recorded FAO yield (Yobs) during 1980–2012 (33 years). The yields 

were de-trended using a linear de-trending method which appeared to be a suitable approaches in most 

cases to remove any influence of technology or socio-economic factors (Osborne and Wheeler, 2013). 

We chose the Standardized Root Mean Square Error (RSR) (Singh et al., 2005) as the criterion to 

compare the performance of country-level simulated yield (Ysim) with Yobs as: 

 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=

√∑ (𝑌𝑜𝑏𝑠,𝑡−𝑌𝑠𝑖𝑚,𝑡)233
𝑡=1

√∑ (𝑌𝑜𝑏𝑠,𝑡−�̅�𝑜𝑏𝑠)233
𝑡=1

                                                                                             (3.1)  

 



Chapter 3 

70 
 

𝑌𝑠𝑖𝑚 was obtained from simulating irrigated and rainfed yields in the EPIC model on n grids within a 

country. It was then aggregated to the country level using weighted cultivated areal averages (Kamali 

et al., 2018a).  

 Two criteria in SUFI-2, r-factor and p-factor, judge the goodness-of-fit and the level of 

uncertainty of the model. The p-factor represents the fraction of measured data bracketed by the 

95PPU uncertainty band and varies from 0 to 1, where 1 means 100% of the measured data are 

bracketed by the model simulation (expressed as the 95PPU). Values around 0.5 are usually acceptable 

for crop simulation (Abbaspour et al., 2015). The r-factor is the average width of the 95PPU band 

divided by the standard deviation of the measured variable, which is a measure of the prediction 

uncertainty. The ideal value for the r-factor is 0, with an acceptable practical value of around 2 for 

crop yield and is defined as. 

 

𝑟 − 𝑓𝑎𝑐𝑡𝑜𝑟 =
1

33
∑ (𝑌𝑠𝑖𝑚,97.5,𝑡−𝑌𝑠𝑖𝑚,2.5,𝑡)33

𝑡=1

𝜎𝑜𝑏𝑠
                                                                                           (3.2)  

 

where 𝑌𝑠𝑖𝑚,97.5 and 𝑌𝑠𝑖𝑚,2.5 are the upper and lower boundaries of 95PPU and 𝜎𝑜𝑏𝑠 is the standard 

deviation of Yobs. A larger p-factor can be achieved at the expense of a larger r-factor. At acceptable 

values of r-factor and p-factor, the parameter ranges are taken as the calibrated parameters. More 

details on the parameters used for calibration are found in Kamali et al. (2018a). 

 

3.2.3.  Model inputs 

 All data required for EPIC simulation were prepared at 0.5
o
 resolution and are summarized in 

Table 3.1. These include site-specific data (longitude, latitude, slope, elevation), daily climate data 

(precipitation, solar radiation, maximum and minimum air temperature, relative humidity, and wind 

speed), and soil information (organic carbon content [%], pH, Cation exchange capacity [cmol kg
−1

], 

sand [%], silt [%], bulk density [t m
−3

], layer depth [m], and electrical conductivity [mmho cm
−1

]).  

 Agricultural operations, including tillage, fertilizer, planting, and harvest, require information such 

as dates of application (Table 3.1), fertilization rate, and potential heat unit. The operations were set 

chronologically, by applying fertilizers 10 days before planting (Wang et al., 2005) (Table 3.1). The 

total number of heat units required for a plant to reach maturity was calculated for each grid based on 

the maximum and minimum temperatures, planting date, and length of growing seasons using the 

methodology proposed by the Blackland Research Center (2010).   
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Table 3.1. Summary of the input data and the sources used for simulating maize in SSA. All data were 

transformed into a 0.5°x0.5° resolution. 

Input data Description Resolution Year Source 

DEM, Slope 
Digital elevation model 

GTOPO30 

1 km 

(5″x5″) 

Edition 

2004 

U.S. Geological Survey 

(2004)  

 

ARF 

 

 Rainfed cultivated area 

 

10 km 

(5′x5′) 

 

2000 

 

MIRCA2000
1
version 1.1 

Portmann et al. (2010) 

Climate Daily maximum and 

minimum temperature, 

precipitation, solar radiation, 

relative humidity, wind 

speed, CO2 concentration 

50 km 

(0.5
o
x0.5

o
) 

1970-2012 WFDEI
2
 meteorological 

forcing data Weedon et 

al. (2011) 

Soil Soil map and database  10 km 

(5′x5′) 

2006 ISRIC-WISE
3
 

Batjes (2006)  

Planting & 

harvesting 

dates 

Based on temperature linked 

to crop calendar  

50 km 

(0.5
o
x0.5

o
) 

1990s to 

early 2000s 

 SAGE
4
 

Sacks et al. (2010) 

Fertilizer Fertilizer use National 2002 FertiStat (FAO, 2007) 
1 Monthly Irrigated and Rainfed Crop Areas 

2 WATCH-Forcing-Data-ERA-Interim 
3 International Soil Reference and Information Centre-World Inventory of Soil Emission Potentials 

4 Center for Sustainability and the Global Environment 

 

3.2.4.  Components of crop drought vulnerability 

 The definition of crop drought vulnerability is based on linking the Drought Exposure Index (DEI) 

to the Crop Sensitivity Index (CSI). DEI measures the degree of stress on the system and CSI indicates 

the response of the system to the respective stress. Two definitions of DEI are used and compared. 

DEIPCP is derived from precipitation (PCP) and DEIPCP-PET is derived from the difference between 

precipitation and potential evapotranspiration (PCP-PET) in a similar procedure as that used for 

calculating SPI and SPEI. Potential evapotranspiration is calculated using the Hargreaves method 

(Hargreaves and Samani, 1985). The SPI and SPEI are computed by first fitting a probability 

distribution function to precipitation and (PCP-PET), respectively. The associated Cumulative 

Distribution Functions (CDF) are subsequently estimated and transformed to a normal distribution. 

The SPI (or SPEI) and its associated CDFPCP (or CDFPCP-PET) are transferable to each other (Figure. 

3.1). In this paper, we directly use CDFPCP and CDFPCP-PET to define DEIs as: 

 

𝐷𝐸𝐼𝑃𝐶𝑃 = 1 − 𝐶𝐷𝐹𝑃𝐶𝑃          

𝐷𝐸𝐼𝑃𝐶𝑃−𝑃𝐸𝑇 = 1 − 𝐶𝐷𝐹𝑃𝐶𝑃−𝑃𝐸𝑇          
(3.3) 
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 The above definitions calculate the exceedance probability of different intensities of drought as 

described in Table 3.2, which was implemented by Carrão et al. (2016) for drought assessment. The 

DEI ranges from 0 to 1, with 1 indicating the highest exposure to drought. CDFs smaller than 0.5 are 

representative of drought situations, whereas values larger than 0.5 indicate non-drought conditions. 

Five classifications could be defined between 0 and 1: wet, near normal, mild to moderate drought, 

severe to extreme drought, and exceptional drought (Svoboda et al., 2002) (Table 3.2). More details on 

the procedure to calculate DEI are explained in Kamali et al. (2018b) 

 

 

Figure 3.1. Schematic representation of transforming precipitation (PCP), the difference between 

precipitation and potential evapotranspiration (PCP-PET), and simulated rainfed yield (Yield) into 

their cumulative distribution functions (CDFPCP, CDFPCP-PET, CDFYield) and then into Drought 

Exposure Indices (DEIPCP, DEIPCP-PET), and Crop Sensitivity Index (CSI), respectively. 

 

Table 3.2. Five categories of cumulative distribution functions (CDFPCP, CDFR, CDFPCP, CDFPCP-PET,  

CDFYield) and equivalent Drought Exposure (DEI) and Crop Sensitivity Indices (CSI). 

Category CDFPCP, CDFPCP-PET, CDFYield DEIPCP, DEIPCP-PET, CSI 

Wet 0.692 to 1.00 0.00 to 0.308 

Near normal 0.308 to 0.692 0.308 to 0.692 

Mild to moderate 0.115 to 0.308 0.692 to 0.885 

Severe to extreme 0.023 to 0.115 0.885 to 0.997 

Exceptional 0.00 to 0.0230 0.977 to 1.00 

DEIPCP, DEIPCP-PET,CSI 

0.5 
0 

1 

0.5 

CDFPCP, CDFPCP-PET, CDFYield 

0

0 

1 

0.5 

CDFPCP, CDFPCP-PET, CDFYield 

 

PCP, PCP-PET, Yield 



Chapter 3 

73 
 

 Different probability distribution functions can be fitted to P and R. Based on the literature, we 

chose a 2-parameter gamma distribution as the probability distribution function (Bordi et al., 2001; 

Lloyd-Hughes and Saunders, 2002). A log-logistic distribution was selected for CDFPCP-PET (Begueria 

et al., 2014; Vicente-Serrano et al., 2010) where the parameters of distribution were calculated from 

the unbiased probability weighted method (Begueria et al., 2014). We also tested the suitability of five 

one, three, six, nine, and twelve-month time scales for DEIs. DEIPCP at the X-month time scale was 

obtained from total precipitation over the last X months. For example, DEIPCP at three-month time 

scale and at the end of March accumulates the precipitation of January, February, and March of the 

year. The same notation is used for DEIPCP-PET. Similarly, a suitable probability distribution function 

is fitted to the simulated YRF at the grid level and CSI is derived from the associated cumulative 

distribution function (CDFYield) as: 

      

𝐶𝑆𝐼 = 1 − 𝐶𝐷𝐹𝑌𝑖𝑒𝑙𝑑  (3.4) 

  

3.2.5. Crop drought vulnerability 

 The concept of vulnerability was adapted from the work done by Simelton et al. (2009). 

According to their definition, if a drought with high magnitude triggers a low harvest loss, then the 

region is “resilient”, meaning that vulnerability is low. Conversely, if a small drought results in a high 

crop failure, then the case is “sensitive” and highly vulnerable. Therefore, the level of vulnerability is 

determined by relating DEI to CSI. In this paper, we translated this concept into the shape of power 

function obtained from fitting a curve to DEI and CSI. The different shapes of fitted curves explain 

how crop sensitivity increases/decreases in relation to drought exposure. Vulnerability is then defined 

by a power function relating DEIPCP (or DEIPCP-PET) to CSI as: 

 

𝐶𝑆𝐼 = (𝐷𝐸𝐼𝑃𝐶𝑃)𝛽 

𝐶𝑆𝐼 = (𝐷𝐸𝐼𝑃𝐶𝑃−𝑃𝐸𝑇)𝛽 
(3.5) 

 

 The β values were obtained by fitting the above power functions to DEIs and CSI. The values of β 

explain the degree of vulnerability and as elaborated in section 2.4, we defined DEI and CSI with the 

same base, meaning that a certain value of CSI or DEI have the same meaning in terms of severity 

level. This facilitates measuring the degree of vulnerability based on the shape of power function. As 

shown (Figure 3.2), vulnerability becomes smaller as β increases. In the simplest form, β=1 means that 

the relationship between DEI and CSI is linear. From agricultural point of view, this explains cases 

where a certain degree of DEI results in the same severity of CSI (medium vulnerability). The power 

function curves falling above the linear curve (β=1) for β>1 representing more vulnerable situation. 

This means that a certain value of DEI causes higher severity of CSI. Conversely, β>1 means that 

occurring droughts lead to lower CSI. 



Chapter 3 

74 
 

 

Figure 3.2. Schematic representation of the Crop Drought Vulnerability Index (CDVI) based on the 

different β values. 

 

3.3. Results 

3.3.1. The performance of EPIC crop simulator 

The RSR values for simulated maize before and after calibration (Table 3.3) indicate significant 

improvement in model performance after calibration. The RSR values for all countries except 

Democratic Republic of the Congo, decreased to around 1 or less. In the latter country, however, RSR 

decreased significantly from 45.9 to 6.27. The main reason for high RSR in this country is a reported 

constant yield of 0.8 t ha
−1

 for the entire 33-year period, which is not realistic. The p-factor with 

values around 0.5 or more in all countries indicates that nearly 50% of observed data are bracketed 

within the 95PPU band, which are satisfactory values for crop calibration during the time span of 33 

years. Their values are smaller than 2.5 and in most countries even smaller than 2, which is acceptable 

for yield simulations as suggested by Abbaspour et al (2007). 
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Table 3.3. Country-level results of the EPIC calibration with the SUFI-2 algorithm based on RSR 

before and after calibration, p-factor and r-factor (Eq. 3.3) criteria. More Details are explained in 

Kamali et al. (2018a) 

  Country 
RSR  

Before calibration  

RSR 

After calibration 
p-factor r-factor 

E
as

te
rn

 A
fr

ic
a 

Burundi 3.94 1.38 0.55 1.80 

Comoros 1.28 1.13 0.42 1.95 

Eritrea 2.32 1.45 0.58 1.98 

Ethiopia 1.66 0.91 0.52 1.81 

Kenya 6.85 0.86 0.61 1.74 

Madagascar 6.06 1.42 0.79 2.54 

Malawi 1.40 0.94 0.45 2.25 

Mozambique 2.79 1.12 0.61 1.56 

Rwanda 1.44 1.08 0.43 1.04 

Somalia 1.96 1.22 0.42 1.08 

Sudan 1.76 1.33 0.48 1.05 

Tanzania 1.94 1.20 0.58 0.94 

Uganda 1.40 0.85 0.58 2.48 

Zambia 1.41 0.89 0.45 1.31 

Zimbabwe 3.80 1.12 0.37 1.67 

C
en

tr
al

 A
fr

ic
a 

Angola 6.90 0.99 0.88 2.38 

Cameroon 1.29 1.00 0.48 1.38 

Central African Republic 2.49 1.16 0.49 0.74 

Chad 1.23 0.84 0.66 2.05 

Democratic Republic of the Congo 45.9 6.27 0.48 1.05 

Gabon 5.33 1.35 0.70 1.95 

Republic of Congo 19.3 2.16 0.88 2.39 

S
o
u
th

er
n
 A

fr
ic

a Botswana 1.45 1.39 0.52 2.33 

Lesotho 1.99 1.27 0.42 2.45 

Namibia 2.42 1.02 0.42 1.23 

South Africa 1.88 0.92 0.55 0.79 

Swaziland 3.23 1.06 0.42 1.49 

W
es

te
rn

 A
fr

ic
a 

Benin 3.38 0.99 0.70 1.83 

Burkina Faso 1.18 0.97 0.52 1.07 

Djibouti 4.87 1.20 0.70 2.73 

Gambia 1.74 0.93 0.82 2.97 

Ghana 5.36 1.07 0.52 1.14 

Guinea 8.45 1.96 0.45 2.02 

Ivory coast 2.40 1.08 0.48 1.44 

Mali 1.23 0.98 0.55 1.55 

Mauritania 1.98 1.18 0.61 2.25 

Niger 1.67 0.85 0.70 1.88 

Nigeria 1.16 0.98 0.70 1.84 

Sierra Leone 9.59 1.09 0.53 2.07 

Senegal 1.05 0.92 0.86 2.44 

Togo 4.23 1.26 0.52 1.18 
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3.3.2. Drought exposure indices in SSA 

The monthly values of DEIPCP and DEIPCP-PET calculated at the country level for three and twelve-

month time scales (Figures S3.1 and S3.2) indicated a number of dry periods with different severities 

during 1980–2012. DEIPCP and DEIPCP-PET at three-month time scale showed higher frequencies of dry 

and wet periods than DEIPCP and DEIPCP-PET at twelve-month time scale which distinguish between 

short- and long-term droughts. The spatial comparison of DEIPCP and DEIPCP-PET at twelve-month time 

scale shows a general agreement in characterizing drought periods (Figures 3.3 and S3.3). Both 

indices indicated that SSA countries experienced more severe droughts with longer persistency during 

1980–1995 than 1996–2012. The 1982–1985 and 1992–1996 periods were identified as the two most 

extreme drought periods in many countries. Between 1982 and 1985, all countries in Western and 

Southern Africa experienced severe to extreme droughts. Eastern Africa was mostly exposed to severe 

to extreme drought in 1984. During 1992–1996, many Southern and Central African countries were 

exposed to severe to extreme droughts as identified by both indices.  

  

 

Figure 3.3. The grid level annual spatial distribution of precipitation based Drought Exposure Index 

(DEIP-12) during 1981–2012 

 

 After 1995, both DEIPCP and DEIPCP-PET at twelve-month time scale showed fewer droughts, but 

with different severities in the two indices. DEIPCP-PET at twelve-month time scale indicated more 

droughts, whereas based on DEIPCP at twelve-month time scale, SSA was in a near normal status. Such 

differences were more obvious in Central Africa in 2005 and in Western Africa in 2002 and 2009, 

where only near normal droughts were noticeable based on DEIPCP at twelve-month time scale. The 

differences between drought events in the two indices arose most likely from changes in temperature 
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rather than precipitation. The Mann–Kendall test (Figure S3.4) also confirmed significant increases in 

maximum and minimum temperatures in most SSA countries, except for some regions in Somalia, 

Ethiopia, Burkina Faso, and Ivory Coast (Figure S3.4). Increasing temperature resulted in more 

drought events than was discernable only with DEIPCP at twelve-month time scale. The precipitation 

trend showed insignificant increases in almost all SSA countries, resulting in less drought 

characterization after 1995. 

 

3.3.3. The relation between DEI and CFI 

 To define the most representative timescales, we calculated the grid-level correlation coefficient of 

CSI with DEIPCP (and DEIPCP-PET) in one, three, six, nine, twelve-month time scales (Figure 3.4). A 

rolling metric was used to calculate each time scale. This means that for example DEI of three-month 

time scale on March 1989 was derived from precipitation summed over January, February, and March 

of that year. After calculating monthly DEIs, the most relevant time span of each year was selected 

using the planting and maturity dates (growing season) at each grid. Therefore, the average of monthly 

DEIs over growing season resulted in yearly DEI. After calculating the correlation coefficient between 

yearly DEIs and CSI, from the five time scales, we selected the one with the highest correlation with 

CSI. 

 For both indices, the correlation coefficient was larger in Southern Africa, Horn of Africa, and 

Sahelian countries where the values were mostly above 0.5. In these regions, the three and six-month 

time scales, with values mostly larger than 0.75, had the highest correlation. In Southern Africa, 

DEIPCP and DEIPCP at three and six-month time scale had higher correlation than DEIPCP-PET at the same 

time scale indicating that agriculture was more influenced by precipitation than temperature. The 

correlation coefficient values in Central African countries were generally low (values were below 0.5), 

however, higher values were found with DEIPCP-PET. At one and three-month time scale. Overall, 

DEIPCP and DEIPCP-PET at twelve-month time scale were least correlated to CSI in SSA countries, 

especially in Central Africa (Figure 3.4). The values were mostly below 0.5 (or even 0.1), indicating 

that longer time periods were not as representative for agricultural drought vulnerability assessments 

as shorter timescales. 
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Figure 3.4. The correlation coefficient between precipitation based Drought Exposure Index (DEIP) 

and Crop Failure Index (CFI) (top row); and the Drought Exposure Index based on the residual of 

precipitation and potential evapotranspiration (DEIR) and CFI  (bottom row) in 1, 3, 6, 9 and 12-month 

timescales 

 

3.3.4.  Country-level and grid-level crop drought vulnerability in SSA 

 At each grid point and from each time scales of DEIPCP and DEIPCP-PET, we chose the one with the 

highest correlation with CSI for vulnerability analysis. The power function was then fitted to the 

relation of DEIPCP (or DEIPCP-PET) and CSI (Eq. 3.4). For the country analysis, we calculated the 

average and 95PPU bands for all grids within a country (Figures 3.5 and S3.5). The shape of average 

fitted curves and the β values varied from one country to another, indicating that each country has a 

different type of vulnerability curve described in Figure 3.2. Using DEIPCP and based on the β values 

of smaller than 0.9 (Figure 3.5), countries such as Central African Republic of Congo, Madagascar, 

Zimbabwe, and Mauritania were identified as high vulnerability countries. The average β for these 

countries are 0.88, 0.9, 0.85, and 0.88 respectively. The β<1 value indicate that the average curves lay 

above the y=x line. This means that a certain intensity of DEIPCP results in a higher intensity of CSI 

(Figure 3.2). In countries such as Kenya, the average β values are larger than 1 representing low 

vulnerability. In other words, the fitted curve falls below y=x, which is associated with lower crop 

sensitivity during drought. 
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Figure 3.5. Country-level comparison of the interaction between precipitation based Drought Exposure 

Index (DEIPCP) and the Crop Sensitivity Index (CSI) using power curves fitted to each grid within a 

country. The grey band indicates 95PPU and the blue line is the average curve obtained from all fitted 

curves to grids of a country. The average, minimum, and maximum values of β are shown as: β= 

average β [minimum β, maximum β] 

 

 We also found that there is a significant difference between the maximum and minimum β values 

obtained from grids within a country indicating that the degree of vulnerability vary significantly from 

one region to another (Figures 3.5 and S3.5). For example in Tanzania the β values varies between 0.4 

and 1.5. To understand the spatial vulnerability, the spatial distribution of CDVIs were mapped out at 

each grid cell based on β. The maps indicated that most parts of SSA experienced a certain level of 

vulnerability as the β values are smaller than 1.05 in most regions. The CDVI map based on linking 

DEIPCP to CSI shows that Southern Angola, Zimbabwe, and Zambia from Southern Africa, Central 

Africa countries, and some Sahelian countries such as Sudan and Mauritania with β values smaller 

than 0.9 are most vulnerable (Figure 3.6). 

 Comparison of CDVI maps based on DEIPCP and DEIPCP-PET shows that there is general agreement 

between the most vulnerable countries, however, the CDVI map based on DEIPCP-PET showed slightly 

higher vulnerability. As expected measuring drought exposure based on a combination of precipitation 

and temperature variables can better represent vulnerability as both have significant impacts on crop 

growth. 
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Figure 3.6. Spatial distribution of maize drought vulnerability based on the five types of CDVI defined 

in Figure 3.2 

 

 In order to identify the possible factors what makes a region more vulnerable to drought, we 

calculated the correlation coefficient between simulated yield and three types of stresses (water stress, 

nitrogen stress, and temperature stress) during its growth period. We explored the influence of these 

stresses in four stages of crop growths (emergence, heading, anthesis, and maturity) (Figure 3.7). In 

Southern and Eastern African countries as well as in Sahelian strip countries, water stress was the 

limiting factors for maize growth. Within these regions, the correlation coefficient between crop yield 

and water stress was above 0.5. The role of water stress was more apparent during heading and 

anthesis stages of crop growth. In Central African countries, despite the high amount of rainfall 

(Figure S3.6), higher vulnerability of maize to drought was observed. As shown, there is significant 

correlation between maize yield and temperature in these regions. We also noticed that CDVI map 

based on the relation of DEIPCP-PET and yield showed higher vulnerability. In Western African 

countries, maize growth is more vulnerable to drought due to experiencing more Nitrogen stress 

specially during heading and anthesis stages. 
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Figure 3.7. Correlation coefficient between simulated maize yield and different stress types (top row: 

water stress, middle row: Nitrogen stress, and bottom row: temperature stress) at four stages of maize 

growth i.e. emergence, heading, anthesis, and maturity.  

 

3.4. Discussion  

 This paper quantifies maize drought vulnerability in SSA by linking probability-based DEI 

(Drought Exposure Index) with CSI (Crop Sensitivity Index) using a power function. CSI was 

obtained from the physically based EPIC crop model at the grid level and the fitted curve explaining 

the interaction of these two components. Our study assesses the impacts of drought conditions on crop 

yield during growing season. We answer the three questions raised in the introduction in three below 

sub-sections. 

3.4.1. The effectiveness of standardized approach for vulnerability assessment 

 Concerning the first question, we used the probability-based procedure to define normalized DEIs 

and CSI. This approach advances current approaches in several ways. First, the standardized metrics 

are more robust compared to the ratio-based definitions in current literature (Huai, 2016; Simelton et 

al., 2009). In addition, the standardized definition facilities their comparison with other most widely 

used drought indices such as the Palmer Drought Severity Index (PDSI) (Palmer, 1965) or drought 

indices based on joint distribution functions of different variables (e.g. precipitation and soil moisture) 

found in the study of Hao and AghaKouchak (2014). Finally, defining components of vulnerability 

with the same base facilitates interpretation of fitted curves obtained from their aggregation in a power 

function. 
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Our approach was tested for SSA countries with two drought exposure indices (DEIPCP and DEIPCP-

PET). The work has built the foundation to be applied in different regions on different spatial scales. It 

provides a methodological template to compile a larger range of drought exposure indices to capture 

uncertainties associated with variables that may be incorporated to defined drought exposure. Finally, 

our proposed approach requires and also has the future potential for including the third dimension of 

vulnerability i.e. adaptive capacity defined by the IPCC, which we will explore next. 

 

3.4.2.  The impact of different timescales of DEIPCP and DEIPCP-PET 

 The drought events identified based on DEIPCP and DEIPCP-PET at twelve-month time scale were 

consistent with actual droughts in SSA reported in recent literature (Anderson et al., 2012; Masih et 

al., 2014). For example, both indices highlighted the two extreme drought periods of 1982–1985 and 

1992–1996 reported by Masih et al. (2014) or the prolonged drought in Sudan after 2000 reported by 

Elagib and Elhag (2011). We found some differences in drought periods identified by DEIPCP and 

DEIPCP-PET at twelve-month time scale. For example, drought events occurring after 2006 in Central 

Africa and some Eastern African countries such as Somalia and Djibouti (Dutra et al., 2013) were 

better recognized by DEIPCP-PET than DEIPCP, which showed only mild droughts. DEIPCP-PET is based on 

both temperature and precipitation, where a combination of climate events (e.g. low precipitation and 

high temperature) may cause significant impact on a system, as discussed by Mazdiyasni and 

AghaKouchak (2015). We also found some differences in the drought events calculated at different 

time scales. Due to these differences and also because of the differences in the DEIPCP and DEIPCP-PET 

severities (in some countries), their suitability for crop vulnerability assessment should be evaluated in 

detail. As also mentioned by Masih et al. (2014), the suitability of drought indices should be evaluated 

according to the sector it influences. In this study, we selected the most appropriate time scale for the 

agricultural sector based on their correlation with CSI.  

 The correlation coefficient between DEIPCP (and DEIPCP-PET) at different time scale with CSI 

showed overall smaller values in Central Africa and some Western African countries such as Nigeria, 

Ghana, and Cameroon. This is related to high precipitation in these regions exceeding 1000 mm yr
−1

 

(Figure S3.6). In some countries such as Gabon, Liberia, and South Nigeria the yearly precipitation is 

above 2000 mm yr
−1

. Therefore, crops are less exposed to water stress. In other words, while these 

regions might be exposed to meteorological drought, the amount of precipitation remains sufficient for 

crop growth and therefore agricultural drought does not happen. In these region, the correlation of 

DEIPCP-PET with CSI is slightly higher than DEIPCP and CSI. This suggests that within these regions 

both precipitation and temperature should be considered as variable to determine drought exposure. 

On the other hand, in Southern Africa and Sahelian countries with yearly precipitation below 660 

mm y
−1

, the correlation between DEIPCP (and DEIPCP-PET) with CSI is larger than 0.8 with higher values 

for DEIPCP compared to DEIPCP-PET meaning that precipitation is a more limiting factor than 

temperature for these regions. 
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 Concerning the second question, the comparison of different timescales of DEIPCP showed that the 

highest correlations of DEIPCP with CSI were for three and six-month timescales and mostly in the 

Southern African and Sahelian countries. This corroborates the studies of Manatsa et al. (2010) and 

Rouault and Richard (2005). Labudová et al. (2016) also found that the three-month timescale 

correlated very well with maize yield in the Danubian Lowland and the east Slovakian Lowland. 

Overall, DEIPCP and DEIPCP-PET at twelve-month time scale were the least correlated with CSI 

compared to other timescales. This is because the twelve-month time scale is based on the 

accumulation of precipitation over the last 12 months. Therefore, the weight of single months becomes 

smaller and less significant. However, water shortage at certain phonological periods may be more 

important than at other phonological periods. For example, much greater losses could be expected as a 

result of prolonged water stress during the tasselling and ear formation stages of corn growth (Cakir 

(2004) than during vegetative growth.  

 

3.4.3. Comparison of maize drought vulnerability in different countries 

 With the help of a process-based crop model, maize yields were obtained on a 0.5° grid level and 

vulnerability hotspots were identified with the same resolution, which is a more reasonable resolution 

for vulnerability assessment for sub-national studies. One advantage of our approach was that the 

applied crop model was coupled with SUFI-2 calibration technique which increased the reliability of 

simulated yields. We believe this is important, since our calibration procedure provided the possibility 

of taking into account the temporal variability for over three decades, which is long enough to cover 

various weather conditions. The evolution of drought exposure in Figure 3.3 and S3.3 indicates that 

within this time span all grids experienced extreme wet to dry conditions. It is clear that any calibrated 

model does not apply to conditions beyond which it was calibrated for, but as EPIC is a physically 

based model, it should simulate well given a given set of condition if known.  

 With the aim of EPIC, we added deeper insights on different underlying stresses making maize of 

one region physically vulnerable. The vulnerability maps (Figure 3.6) showed that Southern Africa 

and some Sahelian countries were found to be high vulnerable regions due to experiencing more 

periods of water stress as a result of low precipitation (Figures 3.7 and S3.6). Central Africa were 

vulnerable due to temperature stress and for this reason we found that drought exposure based on the 

difference between precipitation and potential evapotranspiration (DEIPCP-PET) showed higher 

vulnerability compared to DEIPCP. Other studies assessed the impact of temperature on maize growth 

(Butler and Huybers, 2015; Deryng et al., 2014; Gourdji et al., 2013). Gourdji et al. (2013) for 

example found that crops ate physiologically sensitive to temperatures in the reproductive stage. Here, 

we noticed highest correlation to temperature during heading and anthesis. EPIC does not consider 

crop phenology explicitly, therefore we could not specify separate critical temperature for each growth 

stage of crop. Future studies can attempt to upgrade model to overcome this limitation. 
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3.5. Conclusion 

 The physical drought vulnerability maps on the fine spatial resolution provide the geographical 

bases for identifying vulnerable hotspots at sub-national scale. Such improved understanding is 

important for early warning on drought vulnerability. It also enables sub-national, national, and 

international policy makers to prioritize proactive and reactive agricultural adaptation strategies in 

response to drought. The approaches developed here can be used to project the vulnerability under 

future scenarios of climate change and measure the long-term impacts of droughts on food production. 

It is, however, important to emphasize that propose of mitigating policies for local and regional 

farmers, managers, and engineers by strategies such as changing the land use to grow more drought 

resistant crops and varieties, providing adequate water infrastructures or water use to combat water 

stress will need additional information and studies. 

 One of the limitations of this study is the lack of detailed input data such as temporal variability of 

cultivated area at the grid level. In addition, some FAOSTAT yield data are of poor quality in SSA. 

But, unfortunately, this is the only available source for the moment and is a general problem of any 

study in the region. However, this limitation does not significantly influence the robustness of the 

methodology and the general results derived because the vulnerability assessments were based on 

rainfed maize yield simulated on the grid level using the EPIC crop model which has a unit of t ha
−1

. 

The results can be easily validated as more regional data become available. 
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3.7. Supplementary material 

 

Figure S3.1. Country-level time series of monthly DEIPCP (precipitation based Drought Exposure 

Index) and DEIPCP-PET (Drought Exposure Index based on the difference between precipitation and 

potential evapotranspiration) at three-months time scale during 1980–2012 
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Figure S3.2. Country-level time series of monthly DEIPCP (precipitation based Drought Exposure 

Index) and DEIPCP-PET (Drought Exposure Index based on the difference between precipitation and 

potential evapotranspiration) in 12-month time scale during 1980–2012 
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Figure S3.3. The grid-level annual spatial distribution of DEIPCP-PET at the twelve-month time scale 

(Drought Exposure Index based on the difference between precipitation and potential 

evapotranspiration) during 1981–2012 

 

 

Figure S3.4. Drought trend based on Mann–Kendal trend analysis comparing: a) precipitation, b) 

minimum temperature, and c) maximum temperature during 1980–2012  
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Figure S3.5. Country-level comparison of the interaction between precipitation based Drought 

Exposure Index (DEIPCP-PET) and the Crop Sensitivity Index (CSI) using power curves fitted to each 

grid within a country. The grey band indicates 95PPU and the blue line is the average curve obtained 

from all fitted curves to grids of a country. The average, minimum, and maximum values of β are 

shown as: β= average β [minimum β, maximum β] 
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Figure S3.6. The spatial distribution of yearly precipitation (mm yr
−1

) in SSA obtained from climate 

datasets used in this study is WFDEI-CRU (WATCH-Forcing-Data-ERA-Interim-Climate Response 

Unit) 
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Abstract 

Drought as a slow-onset phenomenon inflicts important losses to agriculture where the degree of 

vulnerability depends not only on physical variables such as precipitation and temperature, but also on 

societal preparedness. While the scopes of physical and social vulnerability are very different in 

nature, studies distinguishing these two aspects have been lacking. In this study, we address the 

physical and social aspects of drought vulnerability of maize (CDVIphy and CDVIsoc) in Sub-Saharan 

Africa (SSA). To quantify vulnerability, we applied a probabilistic framework combining a Drought 

Exposure Index (DEI) with a physical or social Crop Failure Index, CFIphy or CFIsoc, respectively. DEI 

was derived from the exceedance probability of precipitation. Maize yields, simulated using the 

Environmental Policy Integrated Climate (EPIC) model, were used to build CFIphy, whereas the 

residual of simulated and FAO recorded yields were used to construct CFIsoc. The results showed that 

Southern and partially Central Africa are more vulnerable to physical drought as compared to other 

regions. Central and Western Africa, however, are socially highly vulnerable. Comparison of CDVIphy 

and CDVIsoc revealed that societal factors cause more vulnerability than physical variables in almost 

all SSA countries except Nigeria and South Africa. We conclude that quantification of both drought 

vulnerabilities help a better characterization of droughts and identify regions where more investments 

in drought preparedness are required. 

 

4.1. Introduction 

 Crops exhibit known responses to climate variability (Challinor et al., 2009). Crop models can 

predict the vulnerability of food production to drought (Fraser et al., 2013). However, drought 

vulnerability is a complex, context-specific concept (Naumann et al., 2014) and its definition has 

evolved over time. According to the IPCC (Intergovernmental Panel on Climate Change) Forth 

Assessment Report (2011), vulnerability is defined as the degree to which an environmental or a social 

system is exposed to adverse effects of climate change and is a function of exposure, sensitivity, and 

adaptive capacity (IPCC, 2007; Nelson et al., 2007; Parry et al., 2007; Wilby and Wigley, 1997). The 

IPCC Fifth Assessment Report emphasizes on the social aspect of drought vulnerability (IPCC, 2013). 

 From the agricultural point of view, although the direct impact of precipitation shortfall is crop 

yield reduction, the underlying cause of this vulnerability to meteorological drought can be beyond the 

natural scope (Naumann et al., 2014). Generally speaking, “physical vulnerability” induces yield loss 

only due to water stress during crop growth, but reduced production in a drought event has multiple 

factors. Stressors making one region vulnerable may be different for another region and are highly 

dependent on the degree of development and socio-economic status of a particular community (Antwi-

Agyei et al., 2012). Reasons like political, economic, and social conditions significantly exacerbate 

drought impacts especially in developing countries (Bashir and Schilizzi, 2013; O'Brien et al., 2004). 
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Turner and Dumas (2013) found that in many cases social factors dominate. These assessments 

indicate that climate change can affect crop production well beyond the physical drought stresses.  

 Given its complexity, many studies have conducted vulnerability quantification at different levels, 

from developing qualitative methods (Derbile, 2013; Fussel and Klein, 2006; Luers et al., 2003), to 

building and validating composite indicators (Carrão et al., 2016; Naumann et al., 2014; O'Brien et al., 

2004), and to identifying factors influencing vulnerability (Antwi-Agyei et al., 2012; Bryan et al., 

2009; Malcomb et al., 2014). The results show that some regions are at a higher risk of severe or even 

total crop production loss (Muller et al., 2011; Roudier et al., 2011) for a relatively mild drought. In 

countries of Sub-Saharan Africa (SSA), poverty limits installing adaptation measures to drought 

(Masih et al., 2014; Shi and Tao, 2014); therefore, the physical and social vulnerability to drought can 

be very different. However, few studies on drought vulnerability have measured the difference 

between physical and social drought vulnerability or highlighted their relative importance (Terence et 

al., 2017; Zarafshani et al., 2012). Therefore, there is a need to develop methods that quantify both 

aspects of drought vulnerability simultaneously. Such level of understanding is important to propose 

effective adaptation measures to drought and to enhance the resilience of agricultural production 

(Cooper et al., 2008).  

  This study bridges the existing gap in quantification of the two aspects of drought vulnerability 

for maize in SSA. A process-based EPIC crop model is used to simulate maize yields to derive 

information on crop’s physical response to climate variability (Iglesias et al., 2012; Lobell and Burke, 

2010). The reported yields by FAO reflect the impacts of both physical and social factors. We quantify 

maize drought vulnerability by incorporating drought exposure and crop failure indices in a 

probability framework. The regions that are physically and socially highly vulnerable are identified 

and implications of the two aspects of drought vulnerability are discussed. 

 SSA was chosen here because it is the home to 1 billion people (World Bank, 2016) frequently 

struck by droughts. Rainfall has large spatial and temporal variability in the region with significant 

impact on food production and livelihoods of the people (Hellmuth et al., 2007). The recurrence of 

droughts in the past decades has triggered many famines, resulting in the death of millions of people 

and food insecurity across the sub-continent. The expected adverse impacts of climate change on crop 

production in SSA add further risk to the future food security of the region (Liu et al., 2008; Muller, 

2011; Roudier et al., 2011; Schlenker and Lobell, 2010). 

 

4.2. Methodology 

4.2.1. Simulation and calibration of maize yield using EPIC 

 Crop yield was simulated using EPIC
+
 which is an extended version of EPIC coupled with the 

Sequential Uncertainty Fitting (SUFI-2) algorithm for calibration (Kamali et al., 2018).  EPIC is a bio-

physical agronomic model developed in the mid-1980s (Williams et al., 1989). The crop growth 
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module of EPIC estimates crop yield by multiplying the above ground biomass at maturity with a 

water stress adjusted harvest index (Williams et al., 1989). The model operates on a daily basis and 

takes into account all relevant processes of soil–crop–atmosphere system, climate data, management 

data such as a leaf area index, a crop parameter for converting energy to biomass, and fertilizer 

deficiencies (Williams et al., 1989). Validation studies with EPIC applications on different scales have 

demonstrated satisfactory results in previous works (Causarano et al., 2008; Gaiser et al., 2010; Liu et 

al., 2013; Wang et al., 2012). 

 EPIC is originally a field-scale model. In EPIC
+ 

as a spatially explicit model, the EPIC application 

is extended to larger scales using a Python framework following the work by Kamali et al. (2018). The 

framework divides the region of study into a numbers of grids based on a specified resolution (here 

0.5°) and executes EPIC on each grid cell. The site-specific input data included longitude, latitude, 

slope, elevation (DEM), climate, soil, crop calendar, fertilizer, and soil (Table 4.1). All input data were 

converted into 0.5° resolution. 

 

 

Table 4.1. Summary of the input data and the sources used for simulating maize in SSA. All data were 

transformed into a 0.5°x0.5° resolution. 

Input data Description Resolution Year Source 

DEM, Slope 
Digital elevation model 

GTOPO30 

1 km 

(5″x5″) 

Edition 

2004 

U.S. Geological Survey 

(2004)  
 

ARF 

 

 Rainfed cultivated area 

 

10 km 

(5′x5′) 

 

2000 
 

MIRCA2000
1
version 1.1 

Portmann et al. (2010) 

Climate 
Daily maximum and 

minimum temperature, 

precipitation, solar radiation, 

relative humidity, wind 

speed, CO2 concentration 

50 km 

(0.5
o
x0.5

o
) 

1970-2012 
 

WFDEI
2
 meteorological 

forcing data  

Weedon et al. (2011) 

Soil Soil map and database  10 km 

(5′x5′) 

2006 ISRIC-WISE
3
 

Batjes (2006)  

Planting & 

harvesting 

dates 

Based on temperature linked 

to crop calendar  

50 km 

(0.5
o
x0.5

o
) 

1990s to 

early 2000s 

 SAGE
4
 

Sacks et al. (2010) 

Fertilizer Fertilizer use National 2002 FertiStat (FAO, 2007) 
1 Monthly Irrigated and Rainfed Crop Areas 

2 WATCH-Forcing-Data-ERA-Interim 
3 International Soil Reference and Information Centre-World Inventory of Soil Emission Potentials 
4 Center for Sustainability and the Global Environment 

 

 In the developed framework, EPIC
+
 is equipped with the Sequential Uncertainty Fitting (SUFI-2) 

algorithm for automatic calibration (Abbaspour et al., 2004). The SUFI-2 algorithm maps all 

uncertainties in the output on the parameter ranges. The uncertainty is quantified by the 95% 

prediction uncertainty (95PPU) calculated at the 2.5% and 97.5% levels of cumulative distribution of 
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an output variable obtained through the Latin Hypercube Sampling in the parameters space. Two 

criteria, r-factor and p-factor, judge the goodness-of-fit and the level of uncertainty of the model. The 

p-factor criterion represents the fraction of measured data bracketed by the 95PPU uncertainty band 

and varies from 0 to 1, where 1 means 100% of the measured data are bracketed by the model 

simulation (expressed as the 95PPU). Values around 0.5 are usually acceptable for crop simulation 

(Abbaspour et al., 2015). The r-factor criterion is the average width of the 95PPU band divided by the 

standard deviation of the measured variable, which is a measure of the prediction uncertainty. The 

ideal value for r-factor is 0, with an acceptable practical value of around 2 for crop yield.  

 We simulated the maize for the years 1970-2012. Considering the first 10 years as equilibrating 

period for soil moisture and nitrogen initial conditions, we calibrated the model for the period 1980-

2012. The Standardized Root Mean Square Error (RSR) criterion proposed by Singh et al. (2004) was 

selected as the objective function in the SUFI-2 algorithm to compare the performance of country level 

simulated yield (Ysim) with national level FAO yield (Yobs) (FAO, 2012) as: 

 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=

√∑ (𝑌𝑜𝑏𝑠,𝑡−𝑌𝑠𝑖𝑚,𝑡)233
𝑡=1

√∑ (𝑌𝑜𝑏𝑠,𝑡−�̅�𝑜𝑏𝑠)233
𝑡=1

                                                                                         (4-1)  

 

𝑌𝑠𝑖𝑚 was obtained from simulating irrigated (YIR) and rainfed (YRF) yields in EPIC on n grids within a 

country and is then aggregated to country level using weighted areal averages as (Folberth et al., 

2012): 

 

𝑌𝑠𝑖𝑚 =
∑ 𝑌𝑅𝐹,𝑖×𝐴𝑅𝐹,𝑖+𝑌𝐼𝑅,𝑖×𝐴𝐼𝑅,𝑖

𝑛
𝑖=1

∑ 𝐴𝑅𝐹,𝑖
𝑛
𝑖=1 +𝐴𝐼𝑅,𝑖

                                                                                                  (4-2) 

 

where AIR and ARF are respectively irrigated and rainfed cultivated areas in each grid.    

 We simulated maize for the years 1970-2012. Considering the first 10 years as equilibrating period 

for soil moisture and nitrogen initial conditions, we calibrated the model for the period 1980-2012. 

Model calibration was implemented in three steps (Kamali et al., 2018). In the first step, planting dates 

at grid level were adjusted in 50 simulations and their values were fixed. In the next step, parameters 

related to agricultural operations including potential heat unit, planting density and different 

fertilization application rates (Nitrogen, Phosphorous, and Potassium) were calibrated. The best values 

were used as fixed values for the next step. Finally and in the last step, six Crop parameters (Biomass-

energy ratio, Harvest index, Optimal temperature for plant growth, Minimum temperature for plant 

growth, Lower limit of harvest index, Fraction of water in crop yield) and two Model parameters 

(Water stress harvest index and SCS curve number index) highlighted as the most sensitive parameters 
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in literature were calibrated (Wang et al., 2012; Xiong et al., 2014). More details on the initial ranges 

of parameters are found in Kamali et al. (2018). 

 

4.2.2. Conceptualizing crop drought vulnerability 

 Crop Drought Vulnerability Index (CDVI) was built with the Drought Exposure Index (DEI) as a 

measure of the degree of stresses on the system; and the Crop Failure Index (CFI) as the response of 

the system to the stress. 

 

4.2.3. Definition of Drought Exposure Index (DEI) 

 DEI is derived from the Standardized Precipitation Index (SPI) (McKee et al., 1993). SPI is 

calculated first by fitting a two-parameters gamma distribution function to precipitation (PCP). Once 

the probability distribution function is determined, the Cumulative Distribution Function (CDFPCP) is 

calculated and the inverse normal function is applied to obtain SPI. This means that SPI and its 

associated CDFPCP can be converted to each other. We define DEI by using CDFPCP , which was 

described by a two-parameters gamma distribution (Bordi et al., 2001b; Lloyd-Hughes and Saunders, 

2002): 

 

𝐷𝐸𝐼 = 1 − 𝐶𝐷𝐹𝑃𝐶𝑃                                                                                                        (4-3) 

 

 We tested the performance of normal, log-normal and two-parameter gamma distribution 

functions using the Kolmogorov-Smirnov (K-S) statistic test for the precipitation data. The results 

showed that all the three distributions show a good fit for all months and less than 5% of grid cells 

failed the test (Figure S4.1). The average p-values were slightly higher for the gamma distribution. A 

two-parameter gamma distribution was used. Other studies confirmed the suitability of gamma 

distribution function (Bordi et al., 2001a; Lloyd-Hughes and Saunders, 2002). 

 DEI varies between 0 and 1 with DEI>0.5 indicating drought situations and DEI<0.5 being 

equivalent to non-drought. Figure 4.1a presents the schematic representation of transforming PCP to 

CDFPCP, and CDFPCP to DEI. DEI-X is defined over different time scales (X = 1, 3, 6, 9, and 12-

month(s)). DEI-X at each month is obtained from total precipitation over the last X months. For 

example, DEI-3 at the end of February compares the December–January–February precipitation totals 

in that particular year with the December–January–February precipitation totals of all other years. We 

also defined five categories within the ranges of 𝐶𝐷𝐹𝑃𝐶𝑃 and DEI as: wet, near normal, mild to 

moderate drought, severe to extreme drought, and exceptional drought (Svoboda et al., 2002) (Table 

4.2). 
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Table 4.2. Five categories of cumulative distribution functions (CDFPCP, 𝐶𝐷𝐹𝑌𝑠𝑖𝑚
, 𝐶𝐷𝐹𝑌𝑜𝑏𝑠−𝑌𝑠𝑖𝑚

) and 

their equivalent Drought Exposure (DEI) and Crop Failure Indices (CFI). 

Category CDFPCP, 𝐶𝐷𝐹𝑌𝑠𝑖𝑚
, 𝐶𝐷𝐹𝑌𝑜𝑏𝑠−𝑌𝑠𝑖𝑚

 DEI, CFI 

Wet 0.692 to 1.00 0.00 to 0.308 

Near normal 0.308 to 0.692 0.0308 to 0.692 

Mild to moderate 0.115 to 0.308 0.692 to 0.885 

Severe to extreme 0.023 to 0.115 0.885 to 0.115 

Exceptional 0.00 or 0.0230 0.977 to 1.00 

 

4.2.4. Definitions of the physical and social Crop Failure Indices (CFIphy and CFIsoc) 

 The physical Crop Failure Index (CFIphy) considers only climatic influences and its computation is 

based on Ysim obtained from the calibrated EPIC, which is not influenced by social factors as (Figure 4. 

1b): 

 

𝐶𝐹𝐼𝑝ℎ𝑦 = 1 − 𝐶𝐷𝐹𝑌𝑠𝑖𝑚
                                                                                                        (4-4) 

 

According to this definition, crop failure occurs in years when CFI is larger than 0.5.   

 CFIsoc integrates the non-physical influence of drought on crop loss. It is important to point out 

that we do not aim to consider details of socio-economic factors influencing crop failure; but only 

imply that Yobs is based on a combination of social and physical factors, while Ysim merely considers 

the physical factors. Therefore, we use the residuals of Yobs and Ysim (Yobs-Ysim) to represent crop losses 

due to socio-economic factors and quantify it by CFIsoc as: 

 

𝐶𝐹𝐼𝑠𝑜𝑐 = 1 − 𝐶𝐷𝐹𝑌𝑜𝑏𝑠−𝑌𝑠𝑖𝑚
                                                                                             (4-5) 

 

 According to the above definition, crop failure occurs when Yobs is smaller than Ysim. Positive 

residuals mean that the region is able to produce more crop than expected, considering the climate 

influence; whereas negative residuals indicate that the region did not adapt to climate stresses (Figure 

4.1c). The five categories defined in Table 4.2 for DEI also remain valid for CFIphy and CFIsoc. 
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Figure 4.1. Schematic representation of transforming a) precipitation from its cumulative distribution 

function (CDFPCP) to the Drought Exposure Index (DEI); b) simulated maize yield (Ysim) from its 

cumulative distribution function (𝐶𝐷𝐹𝑌𝑠𝑖𝑚
) to the physical Crop Failure Index (CFIphy); and c) the 

residual of simulated and observed yields from its cumulative distribution function (𝐶𝐷𝐹𝑌𝑜𝑏𝑠−𝑌𝑠𝑖𝑚
) to the 

socio-economic Crop Failure Index (CFIsoc). 

 

4.2.5. Drought vulnerability definition based on incorporating DEI and CFI 

 The vulnerability of a system is defined as the ability to respond to variables of exposure. As the 

degree of exposure and the capacity to withstand them are uncertain, vulnerability is quantified 

𝐶𝐷𝐹𝑌𝑜𝑏𝑠−𝑌𝑠𝑖𝑚  

 

1 

𝐶𝐷𝐹𝑌𝑠𝑖𝑚  

0 

1 

0.5 

(Ysim)mean 

 

b) CFIphy 

1 

CFIphy 

𝐶𝐷𝐹𝑌𝑠𝑖𝑚  

0.5 

0.5 

CDFPCP 
CDFPCP 
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0 

1 

0.5 0.5 

PCPmean 

 

a)  DEI 

1 

DEI 

0.5 

𝐶𝐷𝐹𝑌𝑜𝑏𝑠−𝑌𝑠𝑖𝑚  

0 

0 

1 

0.5 

0 

0.5 

Yobs-Ysim=0 

c) CFIsoc 

1 

CFIsoc 

0.5 𝑌𝑠𝑖𝑚 > 𝑌𝑜𝑏𝑠 𝑌𝑠𝑖𝑚 < 𝑌𝑜𝑏𝑠 
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probabilistically (Foti et al., 2014). Physical (CDVIphy) and social vulnerabilities (CDVIsoc) are defined 

as the probabilities that CFIphy and CFIsoc , respectively, are larger than DEI (Foti et al., 2014); that is: 

 

𝐶𝐷𝑉𝐼𝑝ℎ𝑦 = 𝑃𝑟[𝐷𝐸𝐼 < 𝐶𝐹𝐼𝑝ℎ𝑦] = Pr [𝐷𝐸𝐼 − 𝐶𝐹𝐼𝑝ℎ𝑦 < 0] (4-6) 

𝐶𝐷𝑉𝐼𝑠𝑜𝑐 = 𝑃𝑟[𝐷𝐸𝐼 < 𝐶𝐹𝐼𝑠𝑜𝑐] = Pr [𝐷𝐸𝐼 − 𝐶𝐹𝐼𝑠𝑜𝑐 < 0]  

 

From probabilistic points of view, vulnerability depends on the mean, variance, and co-variance 

of DEI, CFIphy, or CFIsoc. From probabilistic points of view, vulnerability depends on the mean, 

variance, and covariance of DEI, CFIphy, or CFIsoc. Assuming 𝑍𝑝ℎ𝑦 = 𝐷𝐸𝐼 − 𝐶𝐹𝐼𝑝ℎ𝑦 and  𝑍𝑠𝑜𝑐 =

𝐷𝐸𝐼 − 𝐶𝐹𝐼𝑠𝑜𝑐 and in the case of non-Gaussian 𝑍𝑝ℎ𝑦 and 𝑍𝑠𝑜𝑐 , the above equations are written: 

 

𝐶𝐷𝑉𝐼𝑝ℎ𝑦 =
1

2
+

1

2
𝑒𝑟𝑓 [

(−𝜇𝐷𝐸𝐼 + 𝜇𝐶𝐹𝐼𝑝ℎ𝑦
)

√2𝜎𝑍𝑝ℎ𝑦

2
] 

(4.7) 

𝐶𝐷𝑉𝐼𝑠𝑜𝑐 =
1

2
+

1

2
𝑒𝑟𝑓 [

(−𝜇𝐷𝐸𝐼 + 𝜇𝐶𝐹𝐼𝑠𝑜𝑐
)

√2𝜎𝑍𝑠𝑜𝑐

2

] 

 

where erf() is the Gaussian error function, 𝜇𝐷𝐸𝐼 is the mean of DEI. More details on the 

derivation of above equations, their components and their influence on vulnerability are provided in 

Supplementary material (section 4.7). 

 

4.3. Results 

4.3.1. Calibration performance of EPIC 

The results of simulated maize given in terms of RSR before and after calibration (Table 4.3) 

indicated significant improvement in model performance after calibration. The RSR values for all 

countries except Democratic Republic of the Congo, decreased to around 1 or less. The RSR value for 

Democratic Republic of the Congo decreased significantly from 45.9 to 6.27. The main reason for 

high RSR in this country is a reported constant yield of 0.8 t ha
-1 

for the whole 33-year period which 

does not seem to be realistic. Comparison of the average of simulated and observed yields during 

1980-2012 shows that the differences are smaller than 0.1 t ha
-1 

in most countries suggesting 

satisfactory performance of the EPIC
+
 in simulating crop yields. 
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Table 4.3. Country level results of the EPIC calibration with the SUFI-2 algorithm based on RSR 

before calibration, RSR after calibration, p-factor and r-factor criteria (�̅�𝑜𝑏𝑠 is the average observed 

maize yield and �̅�𝑠𝑖𝑚 is the average simulated yield) obtained from the work by Kamali et al. (2018). 
 Country �̅�𝑜𝑏𝑠 �̅�𝑠𝑖𝑚 RSR  p-factor r-factor 

E
as

te
rn

 A
fr

ic
a 

Burundi 1.17 1.17 1.38 0.55 1.80 

Comoros 2.20 2.13 1.13 0.42 1.95 

Eritrea 0.63 0.39 1.45 0.58 1.98 

Ethiopia 1.78 1.80 0.91 0.52 1.81 

Kenya 1.67 1.69 0.86 0.61 1.74 

Madagascar 1.14 1.37 1.42 0.79 2.54 

Malawi 1.34 1.37 0.94 0.45 2.25 

Mozambique 0.68 0.64 1.12 0.61 1.56 

Rwanda 1.23 1.18 1.08 0.43 1.04 

Somalia 0.89 0.80 1.22 0.42 1.08 

Sudan 0.79 0.72 1.33 0.48 1.05 

Tanzania 1.48 1.10 1.20 0.58 0.94 

Uganda 1.59 1.62 0.85 0.58 2.48 

Zambia 1.85 1.86 0.89 0.45 1.31 

Zimbabwe 1.16 1.17 1.12 0.37 1.67 

C
en

tr
al

 A
fr

ic
a 

Angola 0.52 0.55 0.99 0.88 2.38 

Cameroon 1.81 1.79 1.00 0.48 1.38 

Central African Republic 0.94 1.05 1.16 0.49 0.74 

Chad 0.94 0.94 0.84 0.66 2.05 

Democratic Republic of the Congo 0.80 0.81 6.27 0.48 1.05 

Gabon 1.56 1.49 1.35 0.70 1.95 

Republic of Congo 0.76 0.75 2.16 0.88 2.39 

S
o
u
th

er
n
 A

fr
ic

a Botswana 0.29 0.30 1.39 0.52 2.33 

Lesotho 0.80 0.72 1.27 0.42 2.45 

Namibia 1.36 1.12 1.02 0.42 1.23 

South Africa 2.67 2.48 0.92 0.55 0.79 

Swaziland 1.35 1.39 1.06 0.42 1.49 

W
es

te
rn

 A
fr

ic
a 

Benin 1.03 1.08 0.99 0.70 1.83 

Burkina Faso 1.34 1.32 0.97 0.52 1.07 

Djibouti 1.80 1.84 1.20 0.70 2.73 

Gambia 1.30 1.29 0.93 0.82 2.97 

Ghana 1.37 1.46 1.07 0.52 1.14 

Guinea 1.23 1.27 1.96 0.45 2.02 

Ivory coast 1.51 1.73 1.08 0.48 1.44 

Mali 1.50 1.70 0.98 0.55 1.55 

Mauritania 0.70 0.67 1.18 0.61 2.25 

Niger 0.69 0.68 0.85 0.70 1.88 

Nigeria 1.44 1.39 0.98 0.70 1.84 

Sierra Leone 0.99 1.00 1.09 0.53 2.07 

Senegal 1.29 1.27 0.92 0.86 2.44 

Togo 1.08 1.19 1.26 0.52 1.18 
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4.3.2. Spatiotemporal pattern of DEI and CFIphy  

 To identify the most relevant time scale of DEI for vulnerability analysis, the correlation 

coefficients between DEI-1, 3, 6, 9, and 12 during growing seasons and CFIphy were calculated. The 

results showed higher correlation in Southern and Eastern Africa as well as Sahelian strip countries 

(mostly larger than 0.5) as compared to Central Africa and Southern regions of the Sahelian strip 

where the values ranged between 0.2 and 0.5 (Figure 4.2a-e). The lower correlation coefficient values 

in Central Africa and countries along the West coast of Western Africa are mostly related to high 

precipitation (larger than 1200 mm yr
-1

), which indicates that crop losses are not correlated to water 

stress. DEI-12 was least correlated with CFIphy, especially in most countries, indicating that longer 

exposure times are not adequate for agricultural loss assessment. DEI-3 and DEI-6 with the highest 

correlation coefficients in most cases were identified as the most representative time scales (Figure 4.2 

c, b).  

 

 

Figure 4.2. Correlation coefficients between different time scales of Drought Exposure Index (DEI) 

and physical Crop Failure Index (CFIphy) for maize. 

 

 For each grid, we selected the time scale with the highest correlation for subsequent analysis of 

vulnerability. The grid level DEI between 1980 and 2012 indicates that SSA experienced many severe 

to extreme drought periods (Figure 4.3). Between 1982 and 1984, almost all countries experienced 

drought situations. The Southern and Western Africa experienced severe to extreme drought in 1987. 

Later, and between 1992 and 1995, Central and Southern African countries experienced severe and 

extreme drought situations. Between 1999 and 2012, less drought exposure was evident. However, 

Southern and Central Africa experienced the least wet period and rainfall were mostly in the near 

normal situation during the last decades. Yearly CFIphy patterns (Figure 4.4) were approximately 

similar to the DEI patterns in Figure 4.3 for some regions whereas were different in others. The 
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drought period 1982-1984 significantly influenced Southern and Eastern Africa with severe to extreme 

intensity, whereas the Central African countries were least exposed to high CFIphy and were mostly in 

the near normal situations (Figure 4.4). This clearly shows that drought periods identified by DEI did 

not reflect with the same intensity in CFIphy. 

 

 

Figure 4.3. The grid level pattern of the annual Drought Exposure Index (DEI) during 1980 -2012.  

 

 

Figure 4.4. The grid level patterns of the annual physical Crop Failure Index (CFIphy) during 1980- 

2012.  
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4.3.3. Physical and social crop drought vulnerability  

 The CDVIphy and CDVIsoc calculated in this study (Eq. S4-4) quantifies vulnerability based on the 

interactions of DEIs and CFI for the 33 years of studied period and does not differentiate periods with 

high vulnerability from low ones. The CDVIphy distribution shows values larger than 0.46 in most SSA 

countries indicating that maize yield is vulnerable to climate variability (Figure 4.5a). Botswana, 

Zimbabwe, partially Mauritania, Western part of South Africa, and Central Tanzania with CDVIphy 

larger than 0.57 were identified as the most physically vulnerable regions. Namibia, Western Angola, 

north part of Central African Republic, and partially Democratic Republic of Congo with CDVIphy 

between 0.52 and 0.57 were placed in second vulnerable regions (Figure 4.5a). 

 

 

Figure 4.5. Spatial distribution of a) grid level physical maize drought vulnerability (CDVIphy); b) 

country level social maize drought vulnerability (CDVIsoc); and c) the residual of CDVIphy and CDVIsoc. 

The results are based on the average vulnerability of 33-years. 

 

 The average CDVIphy calculated at the country level showed a very different picture from CDVIphy. 

Overall, Western and Central African countries, Ethiopia, Zimbabwe, and Namibia were socially most 

vulnerable (CDVIsoc >0.52) compared with Eastern Africa, South Africa, Sudan, and Chad. Nigeria and 

Somalia were least vulnerable as the CDVIsoc was smaller than 0.46 (Figure 4.5b). Although, 
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Zimbabwe exhibited the highest degree of CDVIphy and CDVIsoc, the same was not true for countries 

like Madagascar, Mali, Benin, Burkina Faso, and Ivory Coast, where the degree of CDVIphy was not as 

high as CDVIsoc (Figure 4.5a,b). The CDVIphy and CDVIsoc values in Zimbabwe indicated that both 

climatic and social factors are the limiting factors for maize production in this country (Figure 4.5b). 

However, in other countries there was a large difference between CDVIphy and CDVIsoc, indicating a 

weak adaptive capacity of these countries to drought.  

 Due to lack of observed yields at grid level, we could calculate CDVIsoc only at country level. To 

compare the two vulnerability types at grid level, we assigned the calculated country level values of 

CDVIsoc to all grids within the country. The grid level residuals between two types of vulnerability i.e. 

CDVIphy -CDVIsoc was calculated at grid level (Figure 4.5c). In most countries, CDVIsoc was larger than 

CDVIphy meaning that social vulnerability is more critical for the region than the physical one. The 

residuals exceeded 0.1 in countries like Ivory Coast, Benin, Mali, Zimbabwe, and Madagascar. In 

contrast, South Africa, Botswana, and Nigeria with a lower degree of CDVIsoc were identified as 

drought-resilient countries. 

 We also compared the country level CDVIsoc with median, 25
th
 and 75

th
 percentiles of CDVIphy 

calculated at grid level (Figure 4.6). The results showed that CDVIsoc is larger than 75
th
 percentiles of 

CDVIphy in most countries (Figure 4.6) indicating that in most parts of a country, CDVIIsoc is larger than 

CDVIphy. Mauritania and Mali from Western Africa, Southern African countries, Gabon and Republic 

of Congo from Central Africa showed large variability in CDVIphy, meaning that the degree of 

vulnerability is spatially different and therefore various adaptation strategies might be required 

depending on the residual between physical and social vulnerability. In Tanzania, for example, 

CDVIsoc equals median of CDVIphy, however over 50% of area are socially more vulnerable.  

 

 

Figure 4.6. Country level comparison of the physical cumulative drought vulnerability indices CDVIphy 

(boxplot) and social indices CDVIsoc (red points). The boxplots show the 25
th
 and 75

th
 percentiles of 

the spatial variability of CDVIphy from grids within a country. 
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4.4. Discussion 

4.4.1. The effectiveness of proposed methodology for quantifying CDVIsoc and CDVIphy  

 This study demonstrated a method to distinguish and quantify physical and social crop drought 

vulnerability based on a quantitative assessment of DEI and CFI. Our analysis represents an important 

step forward in the current agricultural drought vulnerability assessment. Such level of understanding 

is particularly significant in SSA due to intrinsic climatic variability, reliance on rainfed agriculture as 

well as lack of coping infrastructure and resources of the society.  

 We applied a probabilistic methodology to define vulnerability and its components (DEI, CFI, 

CDVI). Integrating the probabilistic concept supports a more reliable inference of the likelihood and 

relevance of each index. Besides, it allows for explicit inclusion of thresholds, as all indices are 

transformed to the same range from 0 to 1 with five classes (Table 4.2). Using standardized definitions 

of DEI and CFI, one can normalize the degrees of severity for each single value, which facilitates the 

comparison on different spatial resolutions or with other available standardized indices in literature.  

 We inferred that the residual of the simulated and observed yields reflects the socio-economic 

indicator of vulnerability because the application of EPIC did not consider man-made effects such as 

developments in the agricultural machinery and technology. However, a certain degree of uncertainties 

associated with model simulation which might slightly influence our analysis. We accounted for 

model uncertainty by linking SUFI-2 to EPIC (details previously mentioned in Kamali et al. (2018)). 

The uncertainty in the observed yield, however, was more difficult to address and requires more 

details at smaller spatial scales. To partially account for it, we only took those observed yields, which 

were outside the 95% prediction uncertainty (95PPU) band of the simulated yields. The residual 

between Yobs and Ysim was also used in previous works as a criteria to distinguish regions that are 

resilient and sensitive to drought (Bryan et al., 2015).  

 Moreover, the magnitude of socioeconomic factors is substantially larger in most of countries. 

Comparing Yobs with Ysim in countries such as Burkina Faso, Ghana, Ivory coast, and Nigeria (Figure 

S4.2), one can see significant agreement between the average of simulated and observed yields (Table 

4.3). However, the existing trend in observed yields cannot be related to modeling uncertainty, but 

stems from socioeconomic factors. It is clear that model uncertainty does not follow a trend (Figure 

S4.2). Therefore, not surprisingly, social vulnerability maps revealed clear differences between 

countries with a relatively strong economy such as Nigeria and South Africa, and Tanzania with other 

countries like Zambia and Ivory Coast where rather poor social adaptive capacity exacerbated 

vulnerability. 
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4.4.2. Implications of CDVIphy and CDVIsoc for SSA countries 

 We found that CDVIsoc was higher than CDVIphy for most countries revealing that there is a 

significant potential to increase maize yield by designing adaptation strategies and farmer-managed 

agricultural interventions. Using our vulnerability maps, one can identify promising hotspots for 

drought adaptation investment. Despite different initial assumptions, our results show some 

consistency with the findings of HarvestChoice (2013), where normalized potential maize yields were 

compared against actual yield. Their analysis also highlighted South Africa, Lesotho, and Tanzania as 

countries with high-level productivity despite low level of inherent potential yields. By contrast, 

Madagascar, Mali, and Senegal were marked as countries with a relatively large gap between actual 

and potential yields. The major difference between the outcomes of HarvestChoice (2013) and our 

results is that their actual yields, which encompassing the influence of both social and physical 

measures, were compared with potential yields, which was defined as the yield without any climate 

and nutrition stress; while we measured the gap according to the degree of exposure to climate 

stresses.  

 In this study, we do not discuss on the socio-economic factors which might influence 

vulnerability, as it is beyond the scope of this study and will be investigated in the follow-up study. 

However, the influence of these factors is reflected in the CVDIsoc. In Tanzania, for example, lower 

CVDIsoc may be related to research and extension efforts applied in the fields as well as the use of 

improved maize seeds (Stephen et al., 2014). While in Nigeria strategies such as using hybrid varieties 

of seeds, availability of subsidized fertilizer, as well as improved infrastructure and extension services 

may have helped to adapt to climate variability. The maize revolution in Nigeria advanced the country 

to the tenth largest producer of maize in the world, and the largest maize producer in Africa. 

Democratic Republic of Congo suffered from years of war and political upheaval, and continues to 

face significant humanitarian challenges. No significant improvement in maize yield is reported over 

the last three decades. In Kenya, maize yield increased after liberation, however, it showed a slight 

decline between 1980 and 2013 presumably due to a lack of access to credit and finance to enable 

adoption of improved seeds (Abate et al., 2015). 

 Finally, the degree of vulnerability might vary over time, but we here quantified it for the whole 

studied period. Therefore, the social vulnerability of Nigeria with high maize yield in the last decade is 

of the same magnitude in Somalia where highest maize yield was seen in the first decade. In Nigeria, 

the most significant changes occurred after 2000. On the other hand, Somalia had its peak in maize 

production in the 1980’s and the country experience an average of about 57% decrease over the last 

two decades in maize production in 1990’s and 2000’s due to famine, damages from pest, ethnic wars, 

and regime change. All these changes resulted in poor nutritional status of farmers, and fields being 

abandoned due to insecurity (Rashid and Zejjari, 1997). Similar situation occurred in Madagascar 

where yield increased after 2000 and therefore the country were placed as socially vulnerable regions. 
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4.5. Conclusion and limitation 

 Our proposed methodology quantified the physical and social crop drought vulnerabilities and 

highlights countries where adaptation capacities are weak. The results show that Southern and Eastern 

African countries are physically more vulnerable to drought as compared to other regions. Central and 

Western Africa, however, are socially highly vulnerable. Our analysis of social vulnerability was 

limited to the country scale due to the lack of spatially well-resolved crop yields which was the main 

limitation of this study. However, it is evident that the proposed methodology is valid and can be 

adapted to any spatial scale depending on the available data for the region. Smaller resolution of data 

will help to increase the reliability of the calibrated models and to better understand the effectiveness 

of adaptation strategies can be applied to each regions. Here, we assumed that social vulnerability is 

the same in all grids within the country and equals the average of the country. This study does not 

provide a detailed investigation of factors that influence the difference between physical and social 

vulnerability. However, our preliminary discussion of the social drought vulnerabilities in SSA 

countries shows that such a systematic analysis would provide a more reliable basis for analysis of 

crop production risks and failure in various regions.  
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4.7. Supplementary material 

 Defining Z as the difference between DEI and CFI, i.e. Z=DEI-CFI, Eq. 4.6 is written as: 

 

𝐶𝐷𝑉𝐼 = 𝑃𝑟[𝐷𝐸𝐼 − 𝐶𝐹𝐼 < 0] = 𝑃𝑟 [
𝑍 − 𝜇𝑍

𝜎𝑍
<

𝜇𝑍

𝜎𝑍
] (S4.1) 

 

where 𝜇𝑍 = 𝜇𝐷𝐸𝐼 − 𝜇𝐶𝐹𝐼 and 𝜎𝑧 = 𝜎𝐷𝐸𝐼
2 + 𝜎𝐶𝐹𝐼

2 − 2𝑐𝑜𝑣(𝐷𝐸𝐼, 𝐶𝐹𝐼). Depending on whether CFIphy or 

CFIsoc is used, the term CDVI is defined as CDVIphy or CDVIsoc. 𝜇𝐷𝐸𝐼, 𝜇𝐶𝐹𝐼, 𝜎𝐷𝐸𝐼, 𝜎𝐶𝐹𝐼, and 𝑐𝑜𝑣(𝐷𝐸𝐼,

𝐶𝐹𝐼) are mean, standard deviation and covariance of DEI and CFI respectively. The total change in 

vulnerability (dCDVI) are then expressed as a function of the individual contributions of changes in 

𝜇𝐷𝐸𝐼, 𝜇𝐶𝐹𝐼, 𝜎𝐷𝐸𝐼, 𝜎𝐶𝐹𝐼, and 𝑐𝑜𝑣(𝐷𝐸𝐼, 𝐶𝐹𝐼) as follows: 

 

𝑑𝐶𝐷𝑉𝐼 =
𝜕𝐶𝐷𝑉𝐼

𝜕𝜇𝐷𝐸𝐼
𝑑𝜇𝐷𝐸𝐼 +

𝜕𝐶𝐷𝑉𝐼

𝜕𝜇𝐶𝐹𝐼
𝑑𝜇𝐶𝐹𝐼 +

𝜕𝐶𝐷𝑉𝐼

𝜕𝜎𝐷𝐸𝐼
𝑑𝜎𝐷𝐸𝐼 +

𝜕𝐶𝐷𝑉𝐼

𝜕𝜎𝐶𝐹𝐼
𝑑𝜎𝐶𝐹𝐼

+
𝜕𝐶𝐷𝑉𝐼

𝜕𝑐𝑜𝑣(𝐷𝐸𝐼, 𝐶𝐹𝐼)
𝑑𝑐𝑜𝑣(𝐷𝐸𝐼, 𝐶𝐹𝐼) 

(S4.2) 

 In Eq. S4.2, each of the partial derivatives represents the sensitivity of the vulnerability to unit 

changes in each of the independent variables 𝜇𝐷𝐸𝐼, 𝜇𝐶𝐹𝐼, 𝜎𝐷𝐸𝐼, 𝜎𝐶𝐹𝐼, and 𝑐𝑜𝑣(𝐷𝐸𝐼, 𝐶𝐹𝐼). Considering 

normal distribution for Z, we can rewritten Eq. S4.2 as: 
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𝐶𝐷𝑉𝐼 = [2𝜋𝜎𝑍
2]−0.5 ∫ 𝑒

−
(𝑍−𝜇𝑍)2

2𝜎𝑍
2

0

−∞

𝑑𝑧 (S4.3) 

 

In the case of non-Gaussian Z, Eq. S4.3 corresponds to a First Order Second Moment approximation. 

Carrying out the integral of Eq. S4.3 yields: 

 

𝐶𝐷𝑉𝐼 =
1

2
+

1

2
erf [

(−𝜇𝐷𝐸𝐼 + 𝜇𝐶𝐹𝐼)

√2𝜎𝑍
2

] (S4.4) 

where erf() is the Gauss error function (also known as the probability integral).  
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Figure S4.1. K-S test results for precipitation on monthly data using (a) normal, (b) Log normal, and 

(c) gamma distributions. Red shading indicates rejection of probability distribution function at the 5% 

significance level 
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Figure S4.2. Comparison of the FAO reported (red line) and simulated maize yields expressed as 

95PPU prediction uncertainty band (green bound) and the best simulation (blue line) in  Burkina Faso, 

Ghana, Ivory coast, and Nigeria obtained from work by Kamali et al. (2018)  
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Abstract 

Drought events around the world have had significant impacts on agricultural production. Sub-Saharan 

Africa (SSA) is at the core of this threat, as agricultural production in most countries is rainfed and 

relies on precipitation. Socio-economic factors have tremendous influence on whether a farmer or a 

nation can adapt to these climate stressors. This study aims to examine the extents to which these 

factors affecting vulnerability to drought in SSA, using maize as a case study. In order to distinguish 

sensitive regions from resilient ones, we defined a crop drought vulnerability index (CDVI) calculated 

by comparing the actual recorded yield with the expected yield simulated by the Environmental Policy 

Integrated Climate (EPIC) model during 1990-2012. We then assessed the relationship between CDVI 

and potential socio-economic variables using the regression techniques. Key variables, which have 

significantly influence on CDVI. The results show that the level of fertilizer use is highly influential on 

vulnerability. In addition, countries with higher fertilizer application, human development index, and 

better infrastructure are more resilient to drought, thus have lower vulnerability. The role of 

government effectiveness was less apparent due to the generally low level and static status of the this 

variable across the SSA countries. We concluded that investing into infrastructure, improving fertilizer 

distribution and fostering economic development would all contribute to drought resilience amid the 

expected intensification of drought in terms of frequency and severity in the future.  

 

5.1. Introduction 

 Current world population already reached seven billion and by 2050 is estimated to increase to 

nine billion with the largest increase concentrated in South Asia and Sub-Saharan Africa (SSA) 

(Lipper et al., 2014; United Nations, 2015). Meeting world’s food demand requires doubling food 

production, which will dramatically increase the pressure on global agriculture resources (Foley et al., 

2011). On the other hand, climate change and increased temperature have exacerbated the situation 

due to occurrence of many drought events around the globe with major impacts on agricultural 

production. As agriculture in most countries of SSA is mostly rainfed, the region is at the core of this 

thread. Achieving food security in SSA is an enormous challenge give the currently weak institutions, 

poor infrastructure and high social dependence on degraded natural resources (Webber et al., 2014). 

Therefore, it is essential to incorporate socio-economic aspects in mitigating drought vulnerability in 

SSA. 

 Drought is a natural disaster and the degree of its impacts is well recognized in terms of the 

magnitude of vulnerability. Various definitions have been proposed for vulnerability. The 

Intergovernmental Panel on Climate Change (IPCC) defined vulnerability as a function of exposure, 

sensitivity, and adaptive capacity (IPCC, 2014). The fifth IPCC assessment report focused on socio-

economic aspects and prioritizing adaptation interventions. The adaptive capacity is the ability of a 

system to cope with the consequence of drought and represents the potential to implement measures 

that help reducing potential impacts (Adger, 2006). The quantification of adaptation capacity is a 
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challenge for two reasons. First, it is the latent property of a system and manifests only when the 

system is exposed to the shock (Williges et al., 2017). Second, it is space and time specific and 

therefore it is difficult to generalize a set of universal factors that enhance adaptive capacity in 

different regions over time. 

 Several studies attempted to incorporate adaptive capacity in the vulnerability assessment using 

different approaches such as aggregated quantitative indicators (Fraser et al., 2013; Simelton et al., 

2012; Yeni and Alpas, 2017) or semi-structured interviews (Bahadur Kc et al., 2017; Blauhut et al., 

2016; Bryan et al., 2015). Indicators of adaptive capacity have been also grounded in sustainable 

livelihood theory as proposed by Ellis (2000) which is based on different forms of assets to which 

people have access i.e. financial, human, resource, or physical assets. This approach calculates a 

composite index for each constituent asset. During the last two decades, many studies applied the 

sustainable livelihood concept in their analysis of vulnerability (Bryan et al., 2015; Huai, 2016; 

Keshavarz et al., 2017).  

 The use of indicators is one of the most common ways to define factors influencing vulnerability. 

Despite extensive research on these factors, improvement is required for identifying driving forces and 

choosing appropriate indicators to accurately determine the relationship between socio-economic 

factors and vulnerability (Vincent, 2007). A key question to answer is whether an improvement in a 

specific indicator can significantly reduce drought vulnerability. Detailed studies along these lines 

have been recently conducted at the European scale (Blauhut et al., 2015; Blauhut et al., 2016; 

Williges et al., 2017), Australia (Bryan et al., 2015; Huai, 2016, 2017), and in very limited cases at the 

global scale (Ericksen et al., 2011; Yeni and Alpas, 2017), but the issue has not been thoroughly 

addressed in SSA. Naumann et al. (2014) calculated composite indicators that reflect different aspects 

of vulnerability and adaptive capacity at Pan-African level. Their study, however, lacks an empirical 

and analytical framework that can clearly explain the direction and magnitude of effectiveness (or 

influence) of individual factors on vulnerability. This limitation impedes policy development to 

mitigate vulnerability. Several studies have used regression models to analyze the relationship 

between the socio-economic variables and crop drought vulnerability in some individual countries in 

SSA (Epule et al., 2017; Gbetibouo et al., 2010). However, these studies are case specific, and it is 

difficult to upscale their findings to the whole of SSA.  

 In assessing the factors influencing vulnerability to drought, most studies have conducted the 

investigation without considering the time series variations in different countries. Multivariable 

regression models used for these analyses often take the average situation of individual countries over 

a certain period. In reality, the level of vulnerability may be influenced by time and the severity of 

drought in different years. It is of importance to consider changes in vulnerability and factors influence 

it on temporal dimension. Nowadays, with increasing data availability even in developing countries, 

panel data analysis, referring to time series observations of a number of individual factors, provides 
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the larger basis for modeling the complexity of socio-economic factors influencing vulnerability than a 

single cross section or time series analysis (Hsiao, 2007). Such an analysis has not been conducted in 

the context of crop drought-vulnerability assessment in SSA. 

 In the literature, most studies quantifying the drought vulnerability are based on some kind of 

arithmetic aggregation of a number of representative components. Very few have quantified the 

drought vulnerability by comparing the expected crop yield under certain climate conditions with the 

actual recorded yield. The magnitude of the difference between modeled expectation and actual yield 

is an indicator for a country or region being ‘sensitive’ or ‘resilient’ to drought occurrence. Process-

based crop models are effective tools to measure how yield changes in response to climate variability 

or drought. Linking the drought vulnerability defined as distance between the expected and actually 

recorded yield with socio-economic variables may therefore inform the choice of management options. 

 The aim of this study is to identify socio-economic variables contributing to drought-vulnerability 

of maize production in SSA. In order to develop a quantitative framework we will proceed by: 

 1) structuring a definition of Crop Drought Vulnerability Index (CDVI) obtained from linking 

simulated yield from a crop model to the country level recorded yield data;  

2) cross-country comparison of adaptive capacity variables from economical, human, resource, 

infrastructure, and governmental categories in SSA;  

3) applying multivariable panel data regression analyses to identify socio-economic variables 

influencing CDVI for maize;  

4) discussing the implications of the results for mitigation of maize vulnerability to drought in SSA. 

The study builds on previous methodological work (Chapter 2) and its application to identify and 

discuss the physical and climatic factors affecting drought vulnerability in SSA (Chapter 3 and 4).  

 

5.2. Methodology 

5.2.1. Site description 

SSA is home to over one billion people with average annual precipitation of 795 mm yr
-1

 diversely 

distributing in different regions (Ward et al., 2016). Small landholders depend on rainfed agriculture 

as their primary livelihood source. Population increases and climate change have exacerbated the risk 

of hunger (Iglesias et al., 2011). Therefore, reducing crop vulnerability is essential for this region. 

Maize is the most widely grown crop and staple food in SSA (Folberth et al., 2014) and therefore 

represents a relevant case for this study. Since the last two decades, average maize yields in SSA have 

increased from around 1.4 to 1.8 t ha
-1

 with over 40% increase in South Africa, but are still at the very 

bottom of globally reported maize yields (FAO, 2012). 
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5.2.2. Quantifying drought exposure index 

 Drought exposure index, used in this study to separate drought from non-drought years, was 

obtained from the Standardized Precipitation Index (SPI). To obtain SPI, first a suitable cumulative 

probability distribution function (here Gamma distribution) (Bordi et al., 2001; Lloyd-Hughes and 

Saunders, 2002) is fitted to the precipitation. SPI is then obtained from applying the inverse normal 

function with mean 0 and standard deviation of 1 to the cumulative distribution function. Precipitation 

is obtained from grid level WFDEI (WATCH-Forcing-Data-ERA-Interim) meteorological forcing data 

(Weedon et al., 2011) aggregated to the national level using weighted areal average of maize 

cultivated lands (Portmann et al., 2010). The analysis was carried out for years 1990-2012. After 

transformation, 99.7% of data vary between -3 and 3. Negative values are representative of drought 

situations, whereas the positive values show non-drought cases (Table 5.1). The five classifications 

within this range i.e. [-3, 3] is defined as: wet, near normal, mild drought, moderate drought, and 

severe drought (Lloyd-Hughes and Saunders, 2002) (Table 5.1). We also tested the suitability of 1, 3, 

6, 9, and 12 months’ time scales. For each country, we selected the time scale with highest correlation 

with maize yield during growing season (see Chapter 2.3). 

 

Table 5.1. Five categories of the Standardized Precipitation Index (SPI) selected to separate drought 

and non-drought(Lloyd-Hughes and Saunders, 2002) 

category SPI or CDVI 

Wet 1.0 and more 

Near normal 0.0 to 1.0 

Mild  -1.0 to 0.0 

Moderate -1.5 to -1.0 

Severe -1.50 or less 

 

5.2.3.  Definition of Crop Drought Vulnerability Index (CDVI) 

 The vulnerability of a system is a function of its ability to respond to inherent stress variables. In 

this study, we specifically focus on maize vulnerability in response to the drought occurrences 

(drought exposure). The definition of maize CDVI followed the study by Bryan et al. (2015) in which 

CDVI was presented as the difference between the actual harvested yield and the expected yield. In our 

study, drought exposure is linked to vulnerability using a crop model, which simulates the impact of 

drought on maize yield. The yield simulated by a crop model reflects the influence of climate 

variability on crop production and therefore is representative of the expected yield (Y
Exp

). The actual 

yield (Y
Act

) is obtained from the reported yield at national level (FAO, 2010). Both, climate factors and 

socio-economic factors determine the recorded yield. 

 According to the above definition, if Y
Act

 is larger than Y
Exp 

(positive Y), then the region harvests a 

higher yield than expected meaning that it is resilient to the occurred climate condition and so the 



Chapter 5 

 

123 
 

vulnerability is low. However, in cases where Y
Exp

 is larger than Y
Act 

(negative Y), the maize production 

is sensitive to climate variability and consequently the vulnerability is high. The zero value of Y shows 

effective adaptation. For better spatial and temporal comparisons of Y across SSA, we normalized it 

using Z-score transformation (Potopová et al., 2015) calculated as:  

 

𝐶𝐷𝑉𝐼𝑡 =
𝑌𝑡−𝑀𝑒𝑎𝑛(𝑌)

𝑆𝑇𝐷(𝑌)
                                                                                                (5.1) 

 

where 𝑌𝑡 is the yield residuals for year t i.e. Yt= Yt
 Act

- Yt
 Exp

, 𝑀𝑒𝑎𝑛(𝑌) and 𝑆𝑇𝐷(𝑌) are the mean and 

standard deviation of the yield residuals. Similarly and using this transformation, CDVI can be 

classified into five classes as shown in Table 5.1. 

 We obtained Y
Exp

 from yields simulated in the EPIC (Environmental Policy Integrated Climate) 

model (Williams et al., 1989). EPIC is a field-scale crop model designed to simulate the different 

processes of farming systems as well as their interactions using data such as weather, soil, land use, 

crop management parameters (Williams et al., 1989). EPIC operates on a daily time step and is 

capable of simulating crop growth under various climate and environment conditions, as well as 

complex management schemes. Further information on EPIC crop-related processes is given in 

Williams et al. (1989). In order to extend the EPIC application to larger scales, we developed a 

spatially explicit EPIC interface (hereafter EPIC
+
) programmed in Python, which executes EPIC on 

each grid cell at the spatial resolution of 0.5° and aggregates the results to any desired scale (Liu et al., 

2016) (See Chapter 2). 

 

5.2.4.  Selecting socio-economic variables relating to CDVI 

To select the variables influencing CDVI, we used the following step-wise approach: 

1) Candidate socio-economic variables were collected as recommended by Brooks et al. (2005) and 

Naumann et al. (2014). The two studies together introduced over 50 socio-economic variables that 

might be important for climate vulnerability assessments at the national scale. We selected 17 

variables that were specifically relevant for drought vulnerability and had data available for more 

than 50% of the studied period (1990-2012). The list of variables, their definition, and the sources 

of data are provided in Table 5.2. The year 1990 was selected as the starting point. After that date, 

the relevant socio-economic data were available in most SSA countries. To fill the missing values 

of the remaining variables, we used the spline interpolation procedure applied also by Simelton et 

al. (2012). For some variables such as fertilizer use temporal variability was missing for several 

consecutive years. In these cases we used the average of years with available data. For 

convenience, we classified these variables into five categories as: economic, human, resource, 

infrastructure, and governance (Table 5.2).  
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2) The variables were expressed in a variety of statistical units, ranges or scales. They were 

transformed into a uniform dimension to avoid problems in mixing measurement units. We use the 

Z-score transformation as the normalization technique calculated as the ratio of the residual of the 

variable and its mean divided by the standard deviation as (Damm, 2009): 

 

𝑁𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑡,𝑖 =
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑡,𝑖−𝑀𝑒𝑎𝑛(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖)

𝑆𝑇𝐷(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖)
                                                                   (5.2) 

 

      Where 𝑀𝑒𝑎𝑛(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖) and 𝑆𝑇𝐷(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖) are the mean and standard deviation of variable i 

(i=1,2,…17) in year t. Eq. 5.2 converts all variables to a common scale with an average of 0 and 

standard deviation of 1. It is also consistent with the standardized scale of CDVI. For those 

variables such as Interest payment (Table 5.2), which are negatively correlated to CDVI, the 

inverse of values were used (i.e. 1/variable) in normalization. We did not transform variables of 

the governance category as they were already normalized during their development procedure 

(Kaufmann et al., 2010). 

3)  The influence of ‘multicollinearity’ is an important issue in regression models which can seriously 

distort the interpretation of a model (Tu et al., 2005). This is related to situations when predictors 

are correlated not just to the response variable, but also to each other. Therefore, some factors will 

be redundant. To avoid the redundancy of variables, a bivariate correlation matrix was constructed 

between Nvariables of each category. This helped us to evaluate the strength and direction of the 

linear relationships between the variables (Damm, 2009). The statistically most significant 

variables were selected and the rest was removed from further assessment. 

4) The selected variables of each country were averaged to obtain an aggregated value for the 

economic, human, resource, infrastructure, and governance categories. This facilitated the spatial 

comparison of selected aspects and provided insights into the adaptive capacity of different 

countries. 

5) Statistical regression models were constructed to analyze the role of selected variables in Step 3 for 

characterizing CDVI (see next section for details).  
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Table 5.2. Potential socio-economic variables influencing drought vulnerability and their definitions 

Category Variable Definition Unit 
E

co
n

o
m

ic
 GDP/capita Gross domestic product US$/capita per year 

Interest payment  Interest payments on external debt % GNI 

GNI  Gross national income US$/capita per year 

Agriculture GDP  Agriculture GDP % GDP in total GDP 

H
u

m
an

 

HDI Human development index ratio ranging from 0 to 1 

Health expenditure  Health expenditure per capita US$/capita 

Maternal mortality  Maternal mortality ratio per 100,000 live births 

Calorie intake  Calorie intake per capita per day Calorie per capita per day 

Food production index  

 

food crops that are edible and contain 

nutrients excluding coffee and tea. 

(average of 2004-2006 equals 100) 

ratio of each year to the 

base period (2004-2006) 

R
es

o
u

rc
e Agricultural area per capita land area that is either arable, 

under permanent crops, or under 

permanent pastures  

ha/capita 

Fertilizer use  Nitrogen fertilizer use tons per hectare  tons/ha per year 

In
fr

as
tr

u
ct

u
re

 Water access  % of population with access to improved 

drinking water source  

percentage 

Electricity access  % of rural population with access to 

electricity 

percentage 

G
o

v
er

n
an

ce
 

Control of corruption The extent to which public power is 

exercised for private gain, including both 

petty and grand forms of corruption, as 

well as "capture" of the state by elites 

and private interests 
 

normalized values ranging 

from -2.5 to 2.5 

Government effectiveness The quality of public and civil service, 

policy formulation and implementation, 

the degree of its independence to 

political pressures, the credibility of the 

government's commitment to policies 
 

normalized values ranging 

from -2.5 to 2.5 

Political stability  The likelihood that the government will 

be destabilized or overthrown by 

unconstitutional or violent means 
 

normalized values ranging 

from -2.5 to 2.5 

Voice & accountability The extent to which a country's citizens 

are able to participate in selecting their 

government, freedom of expression, 

freedom of association, and a free media 

normalized values ranging 

from -2.5 to 2.5 

Sources: The variables in the first four categories were obtained from the World bank (http://www.worldbank.org/). The 

variables for the governance category were obtained from Kaufmann et al. (2010) and can be downloaded from 

www.govindicators.org 

 

 

http://www.worldbank.org/
http://www.govindicators.org/
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5.2.5. Linking CDVI and socio-economic variables using regression models  

 Two model formulations were constructed and their results were compared to get some insights 

into the influence of temporal dimension on explanatory models. In both models, the socio-economic 

variables selected in Step 3 were considered as explanatory variables and CDVI as dependent variable. 

The first model (Model I) does not take into account temporal variability of explanatory and 

dependent variables. Only the average of explanatory and dependent variables were included. The aim 

of this model is to check if the temporally aggregated (variables during drought years) can explain the 

relation between socio-economic conditions and maize vulnerability. Model I is expressed as 

 

Model I: 𝐶𝐷𝑉𝐼̅̅ ̅̅ ̅̅
�̅� = 𝛼0 + 𝛽�̅�𝑖 + 𝜀𝑖                                                                       (5.3) 

 

 Where 𝐶𝐷𝑉𝐼̅̅ ̅̅ ̅̅
�̅� and �̅� stand for the average of CDVI and selected socio-economic variables for country 

i during drought years, 𝛼0 is a constant intercept term, and 𝛽 is a vector of coefficient for each 

explanatory variable and 𝜀𝑖  is the error term.   

 Model II takes into account the temporal dimension of socio-economic factors using the panel data 

statistical regression method. We compared the widely used fixed-effect and random-effect techniques 

to analyze panel data. The formulation for Model II is expressed as: 

 

Model II:  𝐶𝐷𝑉𝐼𝑖,𝑡 = {
𝛼0 + 𝛽𝑥𝑖,𝑡 + 𝜀𝑖,𝑡                   𝑖𝑓 𝑓𝑖𝑥𝑒𝑑 − 𝑒𝑓𝑓𝑒𝑐𝑡 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑      

𝛼0 + 𝛽𝑥𝑖,𝑡 + 𝜀𝑖,𝑡 + 𝑢𝑖         𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑒𝑓𝑓𝑒𝑐𝑡 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑
          (5.4) 

 

 where 𝐶𝐷𝑉𝐼𝑖,𝑡 is the dependent variable at time t for entity (country) i, 𝑥 stands for socio-

economic variables selected, 𝑢𝑖 is the random term. In this study, country was added as random factor 

in the random-effect model. Models were fitted with all socio-economic variables. The model was 

simplified by comparing versions with and without a certain explanatory term using Likelihood Ratio 

Tests. In each step, we removed insignificant terms until all remaining factors are significant at 1%, 

5% or 10% levels. MATLAB was used as the software for implementing the statistical regression 

models. 

 

5.3. Results 

5.3.1. Temporal and spatial patterns of CDVI 

 The spatial and temporal distribution of yearly drought exposure during 1990 and 2012 based on 

SPI showed many drought events in all SSA countries with higher severity from 1990 to 1996 

compared to the period 2000-2012 (Figure 5.1). Between 1990 to 1995, almost all countries 

experienced drought events. The most severe intensity occurred in 1992 in Southern Africa, in Central 

Africa during 1994-1995, and in Western Africa in 1990. From 1996 to 2012, less severe drought 

https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
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events were recorded. The severe droughts were only observed in Western African countries in 2002 

and in Eastern African countries in 2004. Other countries mostly experienced mild to moderate 

droughts (Figure 5.1). 

 

 

Figure 5.1. Country level spatial distribution of yearly SPI (Standardized Precipitation Index) during 

1990-2012; the classifications are in accordance to Table 5.1. 

 

CDVI calculated based on the difference between actual and expected yield identified sensitive 

and resilient countries during 1990 and 2012 (Figure 5.2). The expected yield was obtained from the 

crop model, which was only reflecting climate-induced production. By contrast, the recorded harvest 

yields was influenced by many socio-economic variables. Sensitive cases or high vulnerability had 

negative CDVI, whereas resilient cases with low vulnerability exhibited positive values. The yearly 

national level CDVIs showed many severe to moderate intensity of vulnerability during 1990-2012.   

During 1990-2012, CDVI showed similar temporal trends as SPI. Both indices showed higher 

vulnerability and drought exposure during 1990-1999 as compared to 2000-2012. However, the two 

indices displayed different pictures in terms of severity revealing that different countries had varying 

resiliency during drought. The Sothern African countries were less affected by extreme CDVI 

especially after 2000, indicating higher resiliency of these regions. For example, the moderate drought 

in 2012 in South Africa (Figure 5.1) did not cause the same level of vulnerability (Figure 5.2). The 

2011 drought occurred in most SSA countries (Figure 5.1) had different vulnerabilities across 

countries affected by the drought (Figure 5.2). An opposite situation occurred in 1999 where a wet 

condition resulted in moderate vulnerabilities in Western Africa.  
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Figure 5.2. Country level spatial distribution of yearly CDVI (Crop Drought Vulnerability Index) 

calculated based on the difference between the actual and expected yields. The classifications are 

defined in Table 5.1. 

 

Overall, Southern African countries, Kenya, Tanzania, and Ethiopia from Eastern Africa, and 

Mali, Niger, Nigeria, Botswana, Chad and Central African Republic were more exposed to severe 

droughts whereas Central African countries, Madagascar experienced less severe droughts due to 

occurrence of higher rainfall (Figure 5.3a). On the other hand, CDVI showed a different picture as 

South Africa, Botswana, Mozambique, Nigeria, and Cameroon were less vulnerable (Figure 5.3b). The 

severity of vulnerability was lower than the severity of drought in countries such as Kenya, Tanzania, 

and Mali. 

 

 

Figure 5.3. Country level comparison of a) average SPI and b) average CDVI during 1990 to 2012. 
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5.3.2.  Socio-economic factors influencing CDVI 

The bivariate correlation coefficient values between normalized variables were calculated to 

identify variables that are significantly correlated to each other (Step 3). In the economic category, the 

highest correlation coefficient was found between GDP/capita and Interest payment with a value of 

0.64, between GDP/capita and GNI with 0.83, and between Interest payment and GNI with 0.59 

(Figure S5.1). This shows that the three variables have similar effect. Therefore, we selected 

GDP/capita and Agricultural GDP as the final variables from the economic category. 

In the human category, the correlation coefficient between the pairwise variables showed high 

correlation values between variables (Figure S5.2). For example, the correlation coefficient between 

HDI and Health expenditure is 0.84 and between Calorie intake and Food production index is 0.73 

(Figure S5.2). HDI was selected as the most representative variable, since it is a composite statistic of 

life expectancy, education, and per capita income and encompasses a more general aspect of human 

development. Besides, Food production index was selected due to the significant correlation with 

other variables. It was also an indicator for of human nutrition status and representative of health 

aspects (definition in Table 5.2). While HDI and Food production index were also correlated, we 

select both at this step and check the suitability of one or both for the regression model. We retained 

all variables in the resource and infrastructure categories due to their importance. Similarly, the 

correlation coefficient between pairwise four variables of the governance category showed values 

larger than 0.75 (Figure S5.3). As explained by Kaufmann et al. (2010) (Table 5.2), Government 

effectiveness is a more general indicator and encompasses political, rules, and regulatory aspects. 

Therefore, it was selected as the representative variable of this category. 

 

Table 5.3. The 9 socio-economic variables in the five categories (economic, human, resource, 

infrastructure, and governance) selected after the pairwise correlation analysis (Step 3) 

Category Variable 
5th, 50th, 95th percentiles 

Eastern SSA Southern SSA Central SSA Western SSA 

Economic  
GDP/capita 177, 330, 700  696, 3025, 4455 224, 911, 6060 253, 551, 924 

Agriculture GDP  16, 36, 50 3.4, 8, 11.6 7.2, 23.2, 52.3 6.7, 34, 48.5 

Human 

HDI  0.3, 0.39, 0.48 0.46, 0.6, 0.9 0.3, 0.4, 0.6 0.26, 0.39, 0.49 

Food production index  82, 93, 101 89,95,103 87, 90, 108 82, 88, 97 

resource 

Agricultural area 0.23,0.99,3.4 0.53, 3.2,5.8 1.1, 2.2, 21 0.43, 0.88, 12.3 

Fertilizer use 1.7, 5.7, 34 3.1, 7.8, 58 0.35, 3.5, 8.9 0.62, 7.8, 31 

Infrastructure  

Water resource access 32, 55, 78 54, 79, 95 45, 63, 84.6 44,63, 83 

Electricity access 0.9, 2.6, 16 2.0, 17, 47 1,13, 31 1, 8.2, 25 

Governance  Government effectiveness -1.4, -0.7, -0.4 -0.7, 0.2, 0.6 -1.8, -1.2, -0.6 -1.3,-0.8, -0.1 
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Overall, from the 17 initially selected variables, only 9 variables remained. As shown in Table 5.3, 

the absolute values of these variables vary significantly from one region to the other. For example, 

variables such GDP/capita, HDI, Fertilizer use are significantly larger in Southern SSA in terms of 

5
th
, 50

th
, 95

th
 percentiles. Agricultural GDP is significantly larger in Central Africa, while variables 

such as Food production index show approximately similar percentiles in the four SSA regions (Table 

5.3). 

 

 

Figure 5.4. Temporal variability of 9 selected socio-economic variables during 1990 and 2012; the 

variables are normalized using Z-score in SSA (DRC: Democratic Republic of Congo) 

 

The temporal variability of 9 selected normalized variables showed various patterns for different 

variables and countries. Regarding GDP/capita, almost all SSA countries, except Zimbabwe, Gambia, 

and Guinea showed an increasing trend with a rather steep slope after 2000 (Figure 5.4). Agricultural 
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GDP exhibited different temporal variability across different countries. Both HDI and Food 

production index show increasing trends all over SSA with the exception of Zimbabwe (see HDI) and 

Democratic Republic of Congo (see Food production index). As the temporal variability of Fertilizer 

use for years 1990-2000 was not available, we used the average of the period 2001-2012. In the case 

of the two infrastructure variables, Water resource access showed similar trends and values in all 

countries except Zimbabwe and Sudan, but Electricity access was more variable across countries. 

Concerning Government effectiveness, the large variability between countries masked any temporal 

trends (Figure 5.4). 

To see the spatial variability of selected socio-economic variables across countries in each 

category, we aggregated variables of each category into one indicator by calculating the average of 

their normalized values (Step 4). In all five categories, Southern African countries had higher values 

(higher adaptive capacity) in terms of the respective variables. In the economic category (Figure 5.5a), 

Western and Eastern SSA showed approximately similar low values. Other countries like Zimbabwe, 

Zambia, and Angola were placed between the highest and lowest with aggregated values between -

0.35 and 0. The human aspect showed lowest values in Ethiopia, Angola, Niger, and Mali followed by 

most Western African countries such as Angola and Namibia (Figure 5.5b). In the resource category, 

mostly Central Africa showed lowest values (between -0.85 and -0.35) (Figure 5.5c). The 

infrastructure exhibited a different picture with mostly low values for most Central and Eastern 

African countries (Figure 5.5d). All SSA countries showed very poor capacity in terms of Governance 

with the exception of Botswana and South Africa (Figure 5.5e). 

 

 

Figure 5.5. The spatial variability of aggregated indicators in five categories: a) economic, b) human, 

c) resource, d) infrastructure, e) governance obtained from the average of selected normalized socio-

economic variables in each category. 
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5.3.3.  Relations between time-invariant socio-economic variables and CDVI  

We calculated the average of 9 selected socio-economic variables (as explanatory variables) and 

CDVI (as dependent variables) during drought years (SPI<0) (Step 5). All variables were fixed at this 

step and a multiple regression model was constructed (Model I) to check the suitability of mean 

independent and dependent variables for model explanation, and then to determine which of the 9 

selected socio-economic variables can explain vulnerability of maize to drought. All variables were 

initially included in Model I. The model was then simplified by excluding those variables that were 

not significant at the 1%, 5%, or 10% levels and had no influence on the R
2
 values. We continued this 

procedure until all remaining variables were significant at the 1%, 5%, or 10% levels. The relatively 

low R
2
 value of 0.30 (Table 5.4) indicates that the time-invariant model is probably not sufficient. Of 

the 9 variables, only three including Agricultural GDP, Food production index , and Electricity access 

were identified as statistically significant variables, for reducing the vulnerability to drought. The 

highest β value for Agricultural GDP with value of -0.72 indicated that the factor was the most 

influential for reducing vulnerability followed by Electricity access (β=0.34) and Food production 

index (β=0.32). 

 

Table 5.4. The time-invariant socio-economic factors influencing maize drought vulnerability obtained 

from Model I. The average of socio-economic variables and CDVI were used in the analysis. Only 

variables that were significant at 1%, 5%, or 10% levels were included in the model. The empty rows 

(-) pertain to those that were not significant (SE: standard error). 

Model I: Fixed effect model using mean of 11 selected variables: R
2
=0.30 

Variable  β SE t-stat P-values 

Intercept  -0.01 0.1 0.01 0.9 

GDP/capita  - - - - 

Agriculture GDP   -0.72 0.25 -2.87 0.007 

HDI  - - - - 

Food production index  0.32 0.16 1.99 0.050 

Agricultural land   - - - - 

Fertilizer use (t/ha)  - - - - 

Water resource access   - - - - 

Electricity access  0.34 0.18 1.90 0.055 

Government effectiveness  - - - - 

 

5.3.4.  Assessing relations between time-variant socio-economic variables and CDVI  

The temporal variability of socio-economic variables (as explanatory variables) and CDVI (as 

dependent variables) were considered during 1980-2012. Since variables have both time and 
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individual (country) dimensions, panel data regression models were carried out. We tested and 

compared two different models. In the first model (Model IIa), variables during drought and non-

drought years (1980-2012) were included, while in the second model (Model IIb), only drought years 

were included. The main reason for comparing these two models was to check whether influential 

factors differ depending on climate stress. Besides, drought has long term effect and the influence of 

some factors might be revealed in non-drought years. We also performed a preliminary analysis to test 

the suitability of the fixed-effect and random-effect models in the panel-data regression analysis and 

noticed significant outperformance when country was added as a random effect in the model, 

emphasizing the importance of considering probable random differences between countries on the 

intercept of the model (Table 5.5). 

We started with variables in the economic category i.e. GDP/capita and Agricultural GDP and 

then added variables of other categories one by one to first check if their inclusion will improve the 

performance of the model and to test whether the added variable is a significant explanatory factor. 

The comparison was based on the Likelihood Ratio Test. The results show significant improvement as 

the R
2
 values are 0.63 in Model IIa and 0.60 in Model IIb (Table 5.5) over that from Model I. Model 

IIa slightly outperformed Model IIb. The SE values of the socio-economic variables were slightly 

lower compared to Model I in Table 5.4. This indicates that Model II is promising to identify factors 

that are important to reduce maize vulnerability to drought. Including temporal variability of indicators 

is critical to better characterize the effects of socio-economic factors on vulnerability mitigation.  

Comparison of influential variables of Model I with Model II shows that more factors were 

significant for vulnerability in Model II. Apart from the three significant variables of Model I, HDI, 

Agricultural land , and Fertilizer use were significant in Model IIa and Model IIb at 1%, 5%, or 10% 

levels. Government effectiveness was only significant in Model IIa. Besides, the influential factors of 

Model I, Agriculture GDP, Food production index, and Electricity access, were significant at 1% level 

(higher confidence), indicating their importance for vulnerability mitigation. All other variables were 

significant at 5% level. In both Model IIa and Model IIb, Food production index and Electricity access 

showed higher β values. 

Comparison of Model IIa with Model IIb showed that Government effectiveness was only 

statistically significant in Model IIa when all years were included. The β value for Fertilizer use was 

slightly higher in Model IIb compared with Model IIa, indicating that as drought was occurring, the 

influence of fertilizer application was becoming more important as an adaptation strategy. Besides, the 

β values of the human category i.e. HDI and Food production index were slightly higher, suggesting 

that their influence might be more important during drought (Table 5.3). The two variables of 

GDP/capita, and Water resource access were not significant in the three models. 
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Table 5.5. The time-variant socio-economic factors influencing maize drought vulnerability obtained 

from the random-effect panel data regression model (Model II). The time series of socio-economic 

variables were used in the analysis. Only variables that were significant at 1%, 5%, or 10% levels were 

included in the model. The empty rows (-) pertain to those that were not significant (SE: standard 

error). 

Model IIa: Random-effect regression model based on including drought and non-drought years: 

R
2
=0.63 

Variable  β SE t-stat P-values 

Intercept  -2.007 0.385 -5.2 <0.001 

GDP/capita  - - - - 

Agriculture GDP  -0.31 0.052 6.13 <0.001 

HDI  0.15 0.058 2.69 0.007 

Food production index  1.75 0.194 9.29 <0.001 

Agricultural land  0.099 0.047 2.08 0.037 

Fertilizer use  0.055 0.03 1.71 0.067 

Water resource access  - - - - 

Electricity access   1.962 0.329 5.94 <0.001 

Government effectiveness  0.176 0.067 2.90 0.0038 

Model IIb: Random-effect regression model based on only including drought years: R
2
=0.60 

Variable  β SE t-stat P-values 

Intercept  -2.02 0.408 -4.96 <0.001 

GDP/capita  - - - - 

Agriculture GDP  -0.23 0.072 3.05 0.02 

HDI  0.14 0.059 -2.02 0.04 

Food production index  1.82 0.273 6.604 <0.001 

Agricultural land   0.14 0.064 2.14 0.03 

Fertilizer use   0.10 0.045 1.95 0.050 

Water resource access   - - - - 

Electricity access   1.89 0.49 3.77 <0.001 

Government effectiveness  - - - - 

 

5.4. Discussion 

5.4.1. Changes in crop drought vulnerability 

This study assessed the relationship between maize drought vulnerability and socio-economic 

variables influencing vulnerability at the national level of SSA during 1990-2012. We identified those 

socio-economic factors that predispose an area’s maize harvest to be resilient or sensitive to drought. 

The residuals of simulated yield in the EPIC crop model and observed yield were identified as a 
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prominent indicator to resilient and sensitive with regard to drought vulnerability as the simulated 

yield can better reflect the dynamic of climate on rainfed maize production in SSA. This is 

advantageous over many other studies where the expected yields were calculated by implementing de-

trending methods such as third or fourth order auto-regression modeling (Potopová et al., 2015; 

Simelton et al., 2012), as such de-tending procedure does not reflect the accurate influence of climate 

variability on yield.  

The overall patterns resemble the insights that different countries exposed to different levels of 

drought are coping differently with the occurring drought. An interesting finding of our study is that 

maize vulnerability to drought has become less serious recent years. For example, while the drought 

exposure is higher in Eastern and Southern African countries due to lower amounts of rainfall 

occurring in these regions after 2000, the vulnerability of maize production is declining. This 

corroborates the results of Naumann et al. (2014) where these regions were less vulnerable. It suggests 

that there might be generic socio-economic factors that help mitigating vulnerability in different 

regions. We should emphasize that our analysis excluded extreme drought events occurred in late 

1980s over whole SSA. Including this period might significantly improve the assessment of changes in 

CDVI and factors influencing the trend. However, since most socio-economic variables were not 

available prior to the 1990s, this period was not included, which is a limitation of this study. 

 

5.4.2.  Major factors influencing drought vulnerability 

We constructed 17 potential socio-economic variables influencing maize drought vulnerability and 

classified them into five categories as economic, human, resource, infrastructure, governance. This 

classification helps disclosing different aspects of adaptive capacities and the relevant potential for 

reducing vulnerability. While this classification is not ideal and some indicators may fall in more than 

one category, it gives more details on adaptive capacity of different aspects. We also mapped the 

spatial and temporal dynamic of selected variables. Out of 17 variables, 9 remained after the 

collinearity analysis from which between 3-7 variables were significant in the regression models. The 

following conclusion can be drawn for the variables in each of the five categories: 

Economic category: GDP/capita was not a statistically significant factor. This is probably 

because the definition of HDI already encompass the economic status of a country. Agricultural GDP, 

as a more specific variable for agriculture, was associated with high vulnerability of maize in all 

models (Model I, Model IIa, and Model IIb) at 1% or 5% levels. The negative sign of β coefficient 

indicates that the large share of the. Agricultural GDP in total GDP can have significant effect for 

reducing the ability to cope with drought effect. A strong economy secures the system by facilitating 

implementation of coping strategies against environmental risk and drought exposure. It also provides 

possibility to higher investment in weather forecasting, which may help farmers to be prepared for 
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drought. A weak economy, often represented by the large share of agricultural sector in GDP, has the 

opposite effect (Patt and Gwata, 2002; Simelton et al., 2012; Vincent, 2007). 

Human category: Food production index was identified as a statistically significant factor in 

both time-variant and time-invariant models with relatively high positive β coefficient. The index is a 

measure of food nutritional status which is consistent with the situation in SSA where maize is one of 

the staple crops and its vulnerability can significantly influence human health status in Africa. It is 

also representative of economic conditions of a country. The effect of HDI in reducing vulnerability is 

apparent when time-variant factors were included. This suggest that more investment on increasing 

life expectancy and education (as components of HDI) will be helpful to reduce vulnerability. Bahadur 

Kc et al. (2017) also showed that increasing HDI can result in an additional 6.8 million tons of maize 

production at global level and the increase is more remarkable for developing countries such as Africa. 

Resource category: Three variables were representative of system’s natural resources from 

which only Agricultural land and Fertilizer use had significant roles. Both variables displayed more 

influential roles during drought periods (higher β coefficients in Model IIa and Model IIb). This 

suggests that fertilizer is increasingly used to mitigate the impact of drought on maize. The lower β 

coefficient of Fertilizer use compared to variables in other category might be related to missing values 

for the period 1990-2000 when most significant droughts occurred. The models used the average of 

2001-2012 to substitute the missing data. Obtaining more accurate values for fertilizer application in 

SSA will help to better understand the potential benefits. The statistical significance of Agricultural 

land warns that population growth together with limited land resources will be a significant threat for 

maize-based food security in the future. 

Infrastructure category: Water resource access showed no statistical significance in all 

models. This might be due to the temporal variation of this variable in Figure 5.4 which shows only a 

linear increasing trend with no significant variability across countries and inter-annually. By contrast, 

Electricity access with more regional variability (Figure 5.4) and with high β coefficients in all models 

is a better candidate. 

Governance category: Governance effectiveness was also identified as key factor for 

reducing vulnerability in Model IIa. As mentioned by Keshavarz and Karami (2013), adaptation at 

government level can help creating a set of effective, long-term plans and policies which may enhance 

the capacity to develop, revise, and execute drought policies. The variable was less significant in 

Model IIb because of using constant values for the period 1990-1995 (due to missing data) when 

extreme drought occurred. No significant variability was noticed in the variable Governance 

effectiveness during drought years.  
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5.4.3.  Comparison of models explaining the relationship between CDVI and socio-economic 

variables 

We tested the suitability of time-variant and time-invariant variables and concluded that including 

the temporal dimension of variables was necessary for the determination of socio-economic factors 

influencing drought. Drought is a time dependent phenomenon and is characterized by climate 

conditions for a certain period. Panel data regression was a method of choice to evaluate socio-

economic variables. As socio-economic variables differ significantly from one year to another, 

aggregating the severity of multiple drought years by calculating their average disguises the influence 

that a specific socio-economic variable might have in a certain year. Implementing panel data results 

in a more accurate inference of model parameters as these models usually have more degrees of 

freedom and more sample variability. 

We also compared the performance of the fixed-effect and random-effect models in panel data 

analysis using time-variant explanatory and independent variables. The results showed significant 

improvement in model performance when the country was added as a random effect. The major reason 

is that the fixed-effect model assesses only the net effect of the predictors (explanatory variable) on the 

outcome (dependent variable). Random effect takes into account the variation across country and is 

more suitable when the difference across countries have some influence on our dependent variable. 

The spatial maps of socio-economic factors in the five categories (Figure 5.5) indicate the country 

should be included as random effect to take into account the difference between countries on overall 

intercept. 

 

5.4.4. Limitation and conclusion of the study 

Overall, our results underline the suitability of regression models for identifying how socio-

economic factors influence the way that drought affected maize production between 1990- 2012 in 

SSA. Despite the usefulness, some limitations to the data used in this study call for caution in the 

interpretation and further empirical efforts to improve data quality. Our spatial scale lacks detail at the 

sub-national level, as socio-economic data and maize yield were reported at national level. As also 

mentioned by Conway and Schipper (2011); Simelton et al. (2009), regional or gridded data could 

identify which regions contribute most to national food insecurity. The World Bank databases 

reporting country level data were the only available sources with time series of socio-economic 

variables.  

There are also some other factors such as pest or disease that might have resulted in harvest loss 

and therefore increasing crop drought vulnerability. However, we did not have access to these types of 

crop failure data. Such levels of information will depend on farm-level surveys. Another limitation is 

that the selected explanatory variables are not crop specific or even agriculture specific. Other factors 
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such as heat or cold spells might have influenced crop vulnerability. However, such specifications 

demand more work at the farm scale, which takes into account other drivers of vulnerability.  

In conclusion, the current study was a preliminary but novel effort in identifying influential socio-

economic factors on drought vulnerability across SSA. The results and the approaches developed can 

be used as a baseline study for further attempts to analyze crop drought vulnerability and its 

mitigation. As the quality and resolution of the data improves, a better understanding of the interaction 

of variables and their effects on drought vulnerability will be achieved. 
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5.6. Supplementary material 

 

 

Figure S5.1. The visual representation of scatter plots generating correlation coefficient between 

normalized variabls of the economic category  
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Figure S5.2. The visual representation of scatter plots generating correlation coefficient between 

normalized variables of the human category  
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Figure S5.3. The visual representation of scatter plots generating correlation coefficient between 

normalized proxies of the governance category  
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Chapter 6 General conclusions and outlook 

6.1. General conclusion 

The goal of this study was to apply a specially explicit crop model to assess the impact of historic 

drought on crop yield in SSA and to quantify the physical and socio-economic crop drought 

vulnerability. With this aim, we developed a grid-based EPIC
+
 model programmed in Python to 

simulate crop yield under given climate and agronomic conditions with rigorous procedures for 

calibration and uncertainty analysis. Besides, we identified model parameters at the country level, 

instead of the continental level as commonly seen in previous studies. The output of the model 

provided a basis to quantify the biophysical and socio-economic crop drought-vulnerability indices. 

Finally, the regression techniques were applied to determine the key socio-economic factors, which 

make one region resilient or sensitive against drought occurrence. 

EPIC
+
 was tested to assure that it replicates maize yield during historic periods and captures the 

inter-annual maize yield variability in relation to climate anomaly. For the first time, we calibrated the 

EPIC crop model against observed maize yield over entire SSA for a time-span longer than 3 decades 

(33 years from 1980 to 2012) and estimated a separate parameter set for each individual country. Such 

detailed calibration is particularly important for drought-vulnerability assessment, since drought is a 

time-dependent phenomenon and it is necessary to capture temporal variability over long periods. 

Apart from the model performance, which was satisfactory compared to literature, for the first time we 

enhanced the reliability of grid-based maps of planting date by adjusting their grid values between the 

earliest and latest planting dates. The produced maps depicted more spatial heterogeneity within each 

country. We also obtained a better estimation of parameters related to agricultural operations such as 

fertilizer application rate or PHU, so that, their values become more representative for entire studied 

years. We finally measured the uncertainty associated with the Crop and Model parameters through 

achieving the best compromise between P-factor and R-factor as the two key criteria of the SUFI-2 

technique. Overall, the estimated values of parameters are particularly important for projecting future 

impacts of drought on crop yield and their values can be used as a base for many studies, Additionally, 

the developed EPIC
+
 model can be utilized on any application at any scale. 
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Having simulated maize yield at grid level, we quantified maize biophysical drought vulnerability 

for each grid through the relative change of crop failure in relation to change in drought exposure. Our 

proposed methodology for measuring vulnerability and its two components i.e. DEI and CFI had two 

specific and unique features, which made the study novel compared to the literature. First, both DEI 

and CFI were defined according to the same probability framework, therefore, their values varied 

within the same ranges i.e. [0, 1] and a certain value of DEI or CFI showed the same severity of crop 

failure or drought exposure. This facilitated not only the inter-comparison of two components, but also 

the spatial comparison of different grids regarding DEI or CFI. Second, after relating DEI to CFI in a 

power function, we classified vulnerability into five levels based on the shape of a power function. 

This was a significant new achievement in measuring the degree of the crop drought vulnerability. 

Overall, we found that Southern African countries and some regions of Sahelian strip are highly 

vulnerable to drought due to experiencing more water stress, whereas vulnerability in Central African 

countries pertains to temperature stresses. 

An important feature of drought is that its impacts are not the same in all regions and times. 

Sometimes a small drought has a major effect on agricultural production whereas a large drought 

might not trigger a serious crop failure. Therefore, in reality factors beyond physical variables 

(stemming from climate anomaly) influence the severity of vulnerability (called socio-economic 

vulnerability). Measuring the difference between biophysical and socio-economic vulnerability 

(CDVIphy and CDVIsoc respectively) was the core of the analysis. We defined DEI with the same 

procedure previously explained. Two different CFIs were used for defining CDVIphy and CDVIsoc. The 

comparison of the two vulnerability maps showed that socio-economic vulnerability was larger than 

physical vulnerability in all SSA countries revealing that SSA experienced more vulnerability than 

what is physically expected. The distance between CDVIphy and CDVIsoc was large in countries like 

Ivory Coast, Benin, Mali, Zimbabwe, and Madagascar. In contrast, South Africa, Botswana, and 

Nigeria with a lower degree of CDVIsoc were identified as drought-resilient countries, with smaller 

distance. Overall, Southern and partially Central Africa are more vulnerable to physical drought as 

compared to other regions. Central and Western Africa, however, are socially highly vulnerable. 

Having quantified the distance between physical and socio-economic vulnerability, in the last 

part of this study, we identified the socio-economic factors making countries in SSA resilient or 

sensitive to droughts. For the first time, we implemented the panel data regression analysis to take into 

account “temporal” together with country dimensions in the regression model. The finding of the 

analysis led us to propose a series of socio-economic factors being important for mitigating maize 

vulnerability to drought. We found that human development index and infrastructure play key roles in 

adaptation to occurring droughts. In addition, we also identified agricultural GDP, Fertilizer rate and 

Government effectiveness as factors explaining the differences in CDVI across regions and over time.  
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6.2. Limitations 

Based on the available data, the constructed EPIC
+
 model was calibrated as thoroughly as 

possible. However, the calibration procedure was restricted by the lack of some input data and also 

spatially observed maize yield data required for reducing the uncertainty in crop modeling. For 

example, we did not have records on temporal values of fertilizer application (or more specifically 

nitrogen) or rainfed cultivated area. As the fertilizer application values were only available at country 

level the same value was defined for all grids within a country in a given year. Moreover, as FAO 

yield data was at the country level, we calibrated the model and estimated parameters only at national 

level. Therefore, the spatial variability within a country could not be resolved. All of these limitations 

show that further improvement in model performance largely depends on the quality and resolution of 

data available for calibration. 

Besides, due to the lack of observed maize yield at sub-country level, socio-economic crop 

drought vulnerability was mapped at a national scale. Therefore, it was not possible to determine areas 

with higher socio-economic vulnerability within a country. We face similar data limitations to relate 

vulnerability to socio-economic factors. While the selected factors considered in the regression model 

are relevant for agricultural vulnerability, they are not exclusively related to agricultural practice. 

More specific information on factors like “farmers‘ insurance after crop failure” or “government 

subsides during drought” are critical and important to identify strategies for reducing vulnerability, but 

was not available at the scale of SSA.      

The structure of EPIC
+
 has some limitations. This study is the first application and validation of 

EPIC
+
. While the proposed calibration scheme used for SSA can in principle be adapted to any region, 

scale and crop, detailed evaluation of model performance is necessary, which was not feasible in this 

study due to time constraint. We encountered another limitation of EPIC itself for assessing the 

impacts of drought during different stages of crop growth. The EPIC structure does not consider crop 

phenology explicitly. Therefore, we only implicitly considered the influence of drought on crop yield 

during growing season by applying different time scales of drought exposure and did not measure crop 

failure at each separate growth stage. We could overcome this limitation by adjusting the subroutine 

equations of EPIC, but this was beyond the scope of this study.  

Last but not least, due to time constraint and lack of detailed information on crop varieties and 

despite the importance of other staple crops such as sorghum, millet and wheat, only maize was 

included for the analysis in this study. Modeling crops such as cassava, which contributes with a 

similar amount to the human diets in tropical regions of SSA is also difficult with the current modeling 

approach because cassava is a perennial crop and its cultivation may take from 12 to 36 months. Such 

detailed information is not available at the scale of SSA for crop modeling. Future research should 

consider the vulnerability and resilience of other crops in order to obtain a more complete picture of 

vulnerability of food system to drought in SSA.  
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6.3. Outlook 

There is a wide range of possible ways that could strengthen our study of crop drought  

vulnerability assessment for which EPIC
+
 was designed. Among them, I highlight the three most 

important projects to improve the model capabilities and to address key scientific issues of draught 

vulnerability (Figure 6.1):  

 Project-1: Extending the EPIC
+ 

features by embedding more windows for calibrating soil 

parameters and applying different calibration techniques. 

 Project-2: Upgrading EPIC capability for modeling crop phenology and defining biophysical 

vulnerability at different stages of crop growth. 

 Project-3: Assessing the impact of applying a combination of management scenarios and future 

climate-change scenarios to identify pathways for reducing crop drought vulnerability. 

 

Figure 6.1. Schematic representation of the three outlooks suggested for future development of this 

study 

 

The initial test of EPIC
+
 shows promising results at country scale. However, further improvement 

of EPIC
+
 in terms of incorporating other calibration tools such as Particle Swarm Optimization or 

Generalized Likelihood Uncertainty Estimation can be thoroughly tested. Besides, we only looked at 

the single objective calibration. As mentioned by Vrugt et al. (2003), multi-objective optimization can 

better capture all characteristics of the observed data that are deemed important. Embedding these 

techniques, we can further evaluate model performance. If spatially well resolved data become 
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available, future studies could look at the effectiveness of EPIC
+
 at smaller scales and against more 

observed variables such as evapotranspiration and soil moisture.  

Another important issue is to extend the discussion of drought stress and food security for climate 

studies in a more comprehensive manner with explicit consideration of crop phenology with evolution 

of different growth stages. This is important as for example, maize water requirement is low at early 

growth stages then reaches on peak at reproductive growth stages and during terminal growth stages 

requirement of water again lowers down. Therefore, droughts during maize reproductive stages caused 

the highest maize yield loss. A more detailed description of plant physiology could be implemented by 

adding some subroutines in the EPIC model for each growing stage. 

Finally, this study mainly focused on measuring vulnerability during historic period. It also lacks 

analysis on the effectiveness of management strategies such as irrigation application, changing 

planting date, or fertilization application rate for vulnerability mitigation. Such strategies should be 

evaluated based on trade-offs between available resources for food demand and environmental 

conservation. For example, increasing irrigation should be evaluated with requirements for 

environmental flows in river systems and fertilizer application should be assessed with a perspective 

of potential coastal eutrophication and greenhouse gas emissions. Aligning such a comprehensive 

understanding with future scenarios of climate change can help to identify strategies for a drought 

resilient crop production system. 
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