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In their critical review1, Su, Smets, and co-authors extensively summarized studies on the role played by 

ammonia-oxidizing bacteria (AOB) in organic micropollutant (OMP) transformation using three levels of 

evidence: molecular, cellular, and community. They also comprehensively covered the abiotic reactions 

with the N-species formed from nitrification. We agree with the authors that some studies do support the 

important role played by AOB in the transformation of specific OMPs. However, we find that the authors’ 

conclusion, “AOB are the main drivers of OMP biotransformation during wastewater treatment 

processes” (p. 2173), does not stand up to proper scientific scrutiny. In the following, we will present our 

main arguments and provide the overlooked evidence contradicting the authors’ conclusion. (In the 

following, all page numbers and references to graphical elements refer to Su et al. 2020.1) 

Molecular level: One argument the authors used to demonstrate the dominance of AOB in OMP 

biotransformation was that many observed OMP biotransformation reactions could be catalyzed by AOB, 

including 1) hydroxylation, 2) O-dealkylation, 3) thioester oxidation, 4) dehydrogenation, and 5) 

nitration. However, except for nitration, all these reactions may also be catalyzed by enzymes other than 

ammonia monooxygenase (AMO), including monooxygenases, dioxygenases and other oxidoreductases 

from heterotrophs.2, 3 Many of those enzymes commonly occur in activated sludge communities.4, 5 Thus, 

detecting the same transformation products in sludge communities as in AOB pure cultures does not 

provide conclusive evidence for the dominant role of AOB in oxidative biotransformation of OMPs in 

wastewater treatment. 

Cellular level: The authors state that OMPs exhibiting specific functional groups are likely transformed 

by AMO. However, they neglect to mention the contradicting evidence from studies using various 

autotrophic ammonia oxidizers.6, 7 In those studies, seventeen OMPs were investigated that contain the 

functional groups listed in Table S1. Yet, only eight were transformed by the pure cultures, suggesting 

that AMO specificity is much higher than concluded by the authors. It is further interesting to note that 

the seventeen OMPs were selected because their biotransformation rates correlated with nitrification 

activity.8, 9 The findings thus highlight that correlation with nitrification does not necessarily point 

towards causality. 

Community level: The authors overlooked the evidence for OMP biotransformation contributed by 

microbial species other than AOB (i.e., heterotrophs) and hence did not provide a comprehensive and 

unbiased discussion. For instance, Men et al.8 provide an extensive study on the role of different 

microbial groups using AMO inhibitors. They found that transformation by heterotrophs dominated for 
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44 out of 55 OMPs studied, while for only four of them AOB played a major role. Although citing this 

study, the authors only mention the contribution of AOB while not acknowledging the role of 

heterotrophs. There are more reports10-13 not cited but demonstrating OMP biotransformation by other 

microbial groups.  Most recently, Kennes-Veiga et al.14 provide further evidence of efficient heterotrophic 

biotransformation of all the five compounds that positively correlated with nitrification in Figure 4. Thus, 

the statement on p. 2179 that “the abundance and significance of heterotrophic cometabolic enzymes in 

WWTPs is essentially unexamined, while the removal of OMPs through primary metabolism by HAB is 

assumed minimal” is inaccurate. Moreover, two of the three references for that statement are not 

supportive by contradictorily stating the equally important role of heterotrophs in OMP biodegradation.15, 

16   

Practical implications: The final suggestion (p.2183) to use bioreactors specifically enriched with 

ammonia oxidizers and anammox for OMP removal from secondary effluent sounds premature. Rather, 

conditions that support diverse microbial communities – which may overlap with conditions that support 

enriched ammonia oxidizers – have been shown to have the greatest efficacy for removing OMPs.12, 17 

Moreover, to our best knowledge, all cited studies on OMP transformation by ammonia oxidizers 

reported stable and incomplete transformation products. Whether the formation of those products 

coincides with reduced (eco-)toxicity is unclear. Thus, researchers repeatedly emphasized the importance 

of heterotrophs for complete degradation.15  

Collectively, we find that the conclusions of this review highlighting the dominant role of ammonia 

oxidizers in OMP transformation in wastewater treatment do not have sound literature support and may 

mislead the readers.  
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