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Abstract
The inclusion of environmental flow requirements (EFRs) in global water scarcity assessments is
essential to obtain a reasonable representation of the water scarcity status. However, at a global
scale, the quantification of EFRs is subject to large uncertainties resulting from various methods.
So far, it is unclear to what extent the uncertainties in EFRs affect global water scarcity assessments.
In this study, we examined the differences between EFR estimation methods and quantified their
effects on spatially explicit water scarcity assessments, based on reconstructed global water
withdrawal data and naturalized streamflow simulations. The global mean EFRs estimated by
different methods ranged from 129 m3 s−1 to 572 m3 s−1. Consequently, with the fulfillment of the
EFRs, the area under water scarcity ranged between 8% and 52% of the total global land area, and
the affected population ranged between 28% and 60% of the total population. In India and
Northern China, 44%–66% and 22%–58% of the country’s land area, respectively, is affected by
water scarcity; this percentage is higher than that found in other countries. The effects of different
EFRs on water scarcity assessment are large in many regions, but relatively small in regions that
experience intensive water use due to anthropological activities (such as Northern China and
India). Through this study, we have put forth the need for the reconciliation of the estimates of
EFRs to produce more reasonable and consistent water scarcity assessments.

1. Introduction

Water scarcity often indicates a shortage of regional
water resources and may pose significant threats to
food security and the human living environment.
Water scarcity has increased over the past decades
(Wada et al 2011, van Vliet et al 2021) and is pro-
jected to increase further in the future due to climate
change and increasing water demands (Hanasaki et al
2013, Schewe et al 2014). In addition to human water
demands, environmental flow requirements (EFRs)

maintaining the health of river ecosystem is also a key
component in water scarcity assessment (Smakhtin
et al 2004). However, EFRs often conflict with anthro-
pological water use (Richter 2010, Pastor et al 2019),
and the fulfillment of EFRs may impose large restric-
tions on the human appropriation of water resources
from rivers (Hoekstra and Mekonnen 2012, Hana-
saki et al 2013, Wada et al 2016). EFRs are neces-
sary for the calculation of the Sustainable Develop-
ment Goal 6.4.2 indicator of water stress (FAO 2019).
Notably, EFRs have been considered in recent water
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scarcity assessments (Liu et al 2016a, 2019); however,
varying river regime conditions make the estimation
of EFRs both complex and difficult and, therefore,
there is a need for further studies, particularly for
large-scale assessments (Poff et al 2010, Pastor et al
2014).

In previous studies, ecologically and hydrologic-
ally based approaches have been applied to estim-
ate the EFRs on different scales (Richter et al
1997, Arthington et al 2006, Acuña et al 2020).
In large-scale water scarcity assessments, the meth-
ods used to estimate EFRs are mostly hydrologic-
ally based (Pastor et al 2014), mostly relying on the
streamflow/runoff (owing to the lack of informa-
tion on ecological habitat conditions). Some hydro-
logically based approaches (Tennant 1976, Tessmann
1980) consider the ecological health status of rivers
to some extent. However, for simplicity, the global
EFRs estimated using these methods often assumed a
‘fair to good’ ecological status (Jägermeyr et al 2017,
Pastor et al 2019).

In recent literature, EFRs are considered to be
an explicit component in water scarcity assessment
(Smakhtin et al 2004, Wada et al 2011, Liu et al
2019). This is because the appropriation of stream-
flow to meet EFRs is necessary to maintain the health
of the river ecosystem, which is important for sus-
tainable economic and social development. There-
fore, in water scarcity assessment, EFRs should be
explicitly represented as an indispensable water user
with a high priority, instead of assigning them leftover
water resources (after human water use). The EFRs
estimated by various methods have been used in
water scarcity assessments at river basin and global
scales (Pastor et al 2014, Theodoropoulos et al 2018).
The wide range of EFRs used in previous studies
has led to large uncertainties and inconsistencies
in global water scarcity assessments with respect to
their magnitude and spatial distributions. The extent
to which different EFR estimates can affect water
scarcity assessment is unclear to date. Consequently,
it is difficult to determine the affected areas and
the number of people suffering from water scarcity
and develop appropriate policies to address water
challenges.

This study explicitly investigates the uncertain-
ties in surface water scarcity assessments stemming
from EFR methods, on a global, regional, and
basin scale. The spatial characteristics of the EFRs
related to hydroclimatological features were elabor-
ated, and the area and population affected by sur-
face water scarcity were quantified to demonstrate
the effects of different estimates of EFRs on the
assessments. This study also contributes to improv-
ing the understanding of the heterogeneity of the
estimates of EFRs on a global scale and the underly-
ing hydrological mechanisms linked to hydroclimate
conditions.

2. Methods and data

2.1. Environmental flow requirements (EFRs)
estimation
Seven hydrologically based methods (table S1
(available online at stacks.iop.org/ERL/16/104029/
mmedia)), namely, the flow duration curve (FDC)
method (Q90 and Q50), Tennant method (1976),
Tessmann method (1980), variable monthly flow
(VMF) method (Pastor et al 2014), Q90/Q50 method
(Pastor et al 2014), and Smakhtin method (2004)
were used to estimate EFRs (Liu 2021). Most of
these methods are commonly used to determine
global EFRs (Jägermeyr et al 2017, Pastor et al 2019).
Two FDC percentages, Q90 (Gopal 2013) and Q50
(median) (USFWS 1981) which are key elements
of other methods (e.g. Q90/Q50, Smakhtin) and
straightforwardly comparable to others, were con-
sidered in this study. Q50 was not used as commonly
as Q90 but has been used in recent studies (Belmar
et al 2011, El-Jabi and Caissie 2019). The Tennant
method determines EFRs based on the mean annual
flow (MAF). The Tessmannmethod is a modification
of the Tennant method using different proportions
of the MAF and mean monthly flow (MMF), con-
sidering an intermediate season (Gerten et al 2013,
Pastor et al 2014, Jägermeyr et al 2017, Grantham
et al 2019, Mekonnen and Hoekstra 2020). The VMF
method follows the natural variability of river flow
and estimates the EFRs monthly in global assess-
ments. The Smakhtin method considers biophys-
ical and environmental flow conditions, defines low
flow requirements as Q90, and estimates high-flow
requirements based on MAF and Q90. The Q90/Q50
method estimates EFRs as Q90 streamflow for low-
flow seasons and Q50 for high-flow seasons (Pastor
et al 2014). Notably, in the initial application of the
Smakhtin method, regulated streamflow is used to
calculate the EFRs (Smakhtin et al 2004), which is
different from other methods. To be consistent in
this study, we used the naturalized streamflow for
the EFR estimation carried out using all the above
methods. EFRs of 10%, 20%, …, 90% of MAF and
Q80, Q70, and Q60 are also applied uniformly world-
wide in the water scarcity assessment for sensitivity
tests.

Inadequate ecological andmanagement data have
made it infeasible to consider the ecological status of
individual rivers on a global scale. To ensure the com-
parability of these methods, a fair ecological condi-
tion was assumed for the Tennant, Tessmann, VMF,
and Smakhtin methods. The low-flow and high-flow
seasons were defined according to theMMF andMAF
as per Pastor et al (2014); then, all EFR methods were
applied on a monthly basis. By definition, the EFRs
determined from the FDC based on all the records
over the duration of 120 months were found to be
constant.
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2.2. Water scarcity index (WSI)
The water scarcity index (WSI), defined as the ratio
of water withdrawal to water availability, is the most
widely used index for global water scarcity assessment
(Wada et al 2011, Hanasaki et al 2013, Liu et al 2019).
Water withdrawal is the sum of withdrawals of all sec-
tors (including agricultural, industrial, domestic, and
livestock sectors). However, human beings cannot use
all the available water resources because EFRsmust be
met to maintain river ecosystem health and for sus-
tainable social and economic development. For this
reason, EFRs have been included as a key component
in the indicator for assessing the sustainable develop-
ment goal (SDG) 6.4.2 on water scarcity (FAO 2019).
According to the Food and Agriculture Organization
(FAO) guidelines, only water in excess of EFRs can be
potentially utilized for or allocated to human activit-
ies. Hence, water scarcity is defined as the water with-
drawal of all sectors divided by the difference between
the total renewable freshwater resources and EFRs;
water availability is determined as the simulated nat-
ural streamflow with the EFRs deducted (Liu et al
2019). For comparison, we also calculated the tra-
ditional WSI without deducting the EFRs from the
available water.

Water scarcity is defined as WSI > 1 for the
assessments that explicitly consider EFRs, indicat-
ing that the available water is insufficient to meet
water demands. In previous studies, the threshold
for water scarcity was conventionally set as 0.4% or
40% (Alcamo et al 2003, Oki 2006, Wada et al 2011,
Hoekstra and Mekonnen 2012, Hanasaki et al 2018),
irrespective of whether EFRs are included. However,
there is confusion regarding the threshold because the
0.4 threshold without considering EFRs indicates that
40% of the water resources/streamflow can be appro-
priated for human water use. This implies that 60%
of the total water resources is allocated for environ-
mental flow and is not available for any other applic-
ation. So far, there has been no elaboration for only
allowing 40% of water resources for human users and
maintaining 60% in the rivers (potentially for envir-
onmental use). In our study, EFRs were estimated
explicitly, and the quantity was deducted from the
water availability. Thus, aWSI greater than 1 indicates
that water resources cannot meet the water demands
of humans and the natural environment simultan-
eously. In this case, the conceptual meaning of the
threshold of 1 is clear, although the desired threshold
can be closely related to societal choices (FAO 2019).
However, a threshold of 0.4 is still used for the WSI
calculated without the explicit consideration of EFRs.
Thus, the water scarcity assessment using threshold
1 can be compared with the traditional water scarcity
assessment applied without the explicit consideration
of EFRs.

In this study, the water scarcity assessment is
presented as multi-year means, based on the monthly
WSI at grid cells over the 2001–2010 period. TheWSI

values were averaged over 10 years for each month.
The area under water scarcity (in percentage; Aws)
is the sum of areas of the grid cells with WSI > 1
(WSI > 0.4 for those without EFR) in specific region-
s/basins, portrayed as the percentage of total land
areas for each month, and is then, averaged over
the study period. Like Aws, the population affected
by water scarcity (Pws) is the sum of the population
within the grid cells with WSI > 1 (WSI > 0.4 for
those without EFR) in specific regions/basins, por-
trayed as the percentage of the total regional popu-
lation. Greenland and the grid cells having an annual
mean discharge of <5 m3 s−1 were excluded from the
calculation of Aws, Pws, and the following analysis.

2.3. Streamflow and water withdrawal data
Water availability was determined from the multi-
model simulations of the monthly natural stream-
flow of the NOSOC experiment, that is, without
the consideration of human impact (in pristine
condition), at a spatial resolution of half-degree.
The multi-model simulations were archived in the
Inter-Sectoral ImpactModel IntercomparisonProject
(ISIMIP) 2a dataset (Gosling et al 2017). Simulations
over the 2001–2010 period from six global hydro-
logical models (GHMs) were considered, includ-
ing DBH (Tang et al 2008, Liu et al 2016b),
H08 (Hanasaki et al 2008), LPJmL (Bondeau et al
2007, Biemans et al 2011), PCR-GLOBWB (Wada
et al 2014), and WaterGAP (Müller Schmied et al
2014). These GHMs were forced by three global
meteorological data, namely PGMFD v.2 (Sheffield
et al 2006), GSWP3 (http://hydro.iis.u-tokyo.ac.jp/
GSWP3/), and WFDEI (Weedon et al 2014) datasets.
The global 30 min drainage direction map (DDM30)
(Döll and Lehner 2002) was applied to the six GHMs
to obtain the river flow. The uncertainty in the
streamflow simulations has been documented in pre-
vious literature (Liu et al 2017, Zhao et al 2017) and is
not the scope of this study. Thus, monthly streamflow
medians were computed from the 18 combinations of
individual GHMs and individual forcings at each grid
cell to determine the water availability.

For water withdrawal, we used the global water
withdrawal data with a spatial resolution of half-
degree which was reconstructed based on the data
reported by the FAO and the GHM simulations dur-
ing 1971–2010 (Huang et al 2018). In this dataset, the
water withdrawal from the FAOAQUASTAT database
was used to adjust the global gridded of water with-
drawals simulated by four global hydrological mod-
els (H08, LPJmL, PCR-GLOBWB, and WaterGAP2)
from the ISIMIP2a dataset.

2.4. Regional analysis
Analysis was also performed based on river basins
and hot spot regions to examine the impacts of
EFRs on water scarcity over regions having differ-
ent hydroclimatic regimes. Hot spot regions were
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Figure 1. Differences in the estimates of environmental flow requirements (EFRs). (A) Mean, (B) minimum, and (C) maximum
EFRs; (D) coefficient of variation (CV) across the seven estimates of EFRs. Major river basins (blue lines) are shown in (A).

identified according to water scarcity conditions and
the intensity of water withdrawal (figure S1). Aws

and Pws were calculated for each hot spot region and
basin and averaged over the period. The mean aridity
index (AI, the ratio of total precipitation to potential
evapotranspiration) (Trabucco and Zomer 2019) was
calculated to represent the climatic conditions in indi-
vidual river basins. The map of global major basins
(figure 1(A)) was obtained from the FAO GeoN-
etwork (https://data.apps.fao.org/map/catalog/srv/
eng/catalog.search?id=30914%26;currTab=simple#/
metadata/7707086d-af3c-41cc-8aa5-323d8609b2d1,
accessed on 2021-7-10).

3. Results

3.1. Differences in the estimated environmental
flow requirements (EFRs)
The estimatedmeanmonthly EFRs (figure 1(A)) gen-
erally show patterns similar to those of streamflow
(figure S1), that is, EFRs are high in wet regions
and low in arid regions. Specifically, EFRs are gener-
ally large in the Amazon River, Congo River, Yangtze
River, and several rivers in tropical regions and high
latitudes. In our study, the minimum (figure 1(B))
and maximum (figure 1(C)) EFRs showed similar
spatial patterns to the mean EFRs. The coefficient
of variation (CV) indicates the relative differences
between these EFRs across the world, which is lar-
ger than 0.5 in more than 70% of the global land
areas and ∼1 in most arid regions (figure 1(D)). The
mean monthly EFRs showed significant differences
among the EFRmethods in many regions (see figures
S2 and S3 in the supplementary information (SI) for
the EFRs for high, low, and intermediate flow).

The estimated global mean EFRs by different
methods were quite distinct from each other in terms
of theirmean values and seasonal cycles (figure 2(A)).
The Q50 and Q90 EFRs were constant in all months
because they were determined from the FDC estim-
ated for the entire period. The EFRs estimated using
the Q90/Q50, Tessmann, VMF, and Tennant methods
showed similar seasonal patterns, with larger values
from March to July; the global mean EFRs estimated
using the Smakhtin method were larger from May
to November. Global mean EFRs calculated using
Q50 were the largest (428 m3 s−1), followed by those
calculated using Q90/Q50 (308 m3 s−1). The Ten-
nant method provided the smallest global mean EFRs
(96 m3 s−1), followed by the VMF EFR (174 m3 s−1).
The Tessmann, Smakhtin, and Q90 methods had rel-
atively similar global mean EFRs of 243 m3 s−1,
221 m3 s−1, and 213 m3 s−1, respectively.

The basin EFRs estimated using Q50 were always
the largest, while the smallest basin EFRs are often
obtained using the Smakhtin, Q90, and Tennant
methods. The EFRs estimated using the VMFmethod
often lay between those estimated using all the meth-
ods. The basin EFRs generally increased with the AI
(figure 2(B)), that is, the EFRs of wetter basins were
larger than those of the drier ones. This trend, estim-
ated from the EFRs obtained using all the methods, is
more significant for dry basins (AI < 0.65) than wet
basins (AI⩾ 0.65).

3.2. Water scarcity assessments with and without
the consideration of environmental flow
requirements (EFRs)
The mean monthly WSIs with and without the con-
sideration of EFRs over the 2001–2010 period are
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Figure 2. Differences in environmental flow requirements (EFRs) at the global and basin (N = 229) scale. (A) Global mean EFRs
estimated by different methods during 2001–2010. The numbers in colors indicate mean EFRs for different methods. (B) Basin
EFRs versus basin aridity index (AI). AI < 0.65 indicates dry conditions. The solid black lines indicate the ordinary regression (for
quantile 50th) and the dashed black lines denote the quantile regressions for the 25th and 75th percentiles.

shown in figure 3. Water scarcity indicated by the
WSI without EFRs was mostly found in Central Asia,
South Asia, East Asia, Western North America, and
North Africa (figure 3(A)). In our study, the extent of
water scarcity estimated was generally consistent with
previous studies (Oki 2006, Wada et al 2011), except
for larger areas found in North Africa and Central
Asia. Compared to the traditionalWSI, a larger extent
of water scarcity was indicated by the Q50 and Tess-
mann WSIs, while less water scarcity was indicated
by other WSIs with EFRs. Notably, WSIs with EFRs
showed distinct spatial patterns across different EFR
methods. The WSI with Q50 EFRs appears to be the
largest, showing WSI values >1 in more than half
of global land areas covering both humid and arid
regions (figure 3(C)), and most WSI values range
between 0.8 and 1.2 (see the inner plot). Although
the EFRs estimated by the Tessmann method showed
spatial patterns similar to those of Q50, the WSI
with Tessmann EFRs shows a smaller extent of water
scarcity compared to the WSI with Q50 EFRs. The
WSI values with Tessmann EFRs showed a wider
histogram than Q50, and high values were largely
found in arid regions (figure 3(F)). WSIs calculated
using Q90 (figure 3(B)), Smakhtin (figure 3(F)), and
Q90/Q50 (figure 3(I)) EFRs were similar in terms of
their spatial patterns and relative frequencies. The rel-
ative frequency of the WSI using Tennant EFRs was
different from the WSI obtained using the EFRs by
Q90, Smakhtin, and Q90/Q50; specifically, the Ten-
nant WSI showed more values less than 0.2 and more
values greater than 1 (figure 3(D)). The WSIs estim-
ated using VMF EFRs (figure 3(G)) showed sim-
ilar spatial patterns and relative frequency distribu-
tions compared to the WSIs estimated without EFRs
(figure 3(A)).

The Aws showed evident zonal patterns, indicated
by large variations across latitudes, for all the WSI
estimations (figure 4(A)). The Aws was generally the
largest between latitudes 10◦ N and 45◦ N, home
to a large human population, followed by the zones
between 40◦ S and 20◦ S. Relatively large percent-
ages were also found at high latitudes, for example,
between 60◦ S and 40◦ S and between 70◦ N and
80◦ N, for the WSIs estimated using Tessmann and
Q50 EFRs.

The seasonality of global Aws showed distinct
differences across the WSIs (figure 4(B)). The Aws

showed little variation over months for the WSIs cal-
culated using VMF and Tennant EFRs and the WSI
calculated without EFRs. The WSIs calculated using
Q50 and Tessmann EFRs indicated larger Aws val-
ues from October to January (compared to other
months). The WSIs calculated using Q90, Smakhtin,
and Q90/Q50 EFRs showed almost the same Aws

values, with relatively large Aws from January to
March and August to September. The WSI calculated
without EFR estimated the globalAws as 16% on aver-
age. The Aws indicated by the WSI calculated using
Q50 EFRs was the largest (54%), followed that cal-
culated using Tessmann EFRs (45%). The WSIs cal-
culated using Q90, Q90/Q50, Tennant, and Smakhtin
EFRs indicated Aws values of 21%–23%, and the WSI
calculated using VMF EFRs indicated the same global
Aws (16%) as that calculated without EFRs.

The seasonality of Aws showed regional differ-
ences, as well as differences between the EFR meth-
ods, as demonstrated by the six hot spot regions
(figure 4(B)). In America and Europe (in North
Africa, Arabia, and Australia), the Aws values indic-
ated by the WSIs calculated using Q50 EFRs were lar-
ger (smaller) than those calculated using Tessmann

5
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Figure 3.Mean water scarcity index (WSI) over the 2001–2010 period. (A) WSI estimates without consideration of EFRs
(NOEFR). (B)–(H) WSI estimates with different EFRs. Inner plots show the relative frequencies of WSI over the world. The black
boxes identify the hot spots of water scarcity.

EFRs; however, the Aws values for Northern China
and India were similar. The Aws calculated using Q90
EFRs was slightly lower than that calculated using
Q90/Q50 EFRs, and both were very close to the Aws

values calculated using Smakhtin EFRs. The Aws cal-
culated using Tennant EFRs was small in Europe
(9%), while the Aws calculated using VMF EFRs was
relatively small in all regions. Aw calculated without
EFR was often large in arid/semiarid regions, such as
North Africa, Arabia, and Northern China.

The WSIs without EFRs provided Pws estima-
tions of 34% of the global population, while the
WSIs with EFRs indicated that 30%–60% of the
global population is experiencing water scarcity, on
average (figure 4(C)). The WSIs with Q50 (61%)
and Tessmann (50%) EFRs indicated the largest
population experiencing water scarcity, while the
WSIs with Q90, Tennant, Smakhtin, VMF, and
Q90/Q50 indicated 35%, 30%, 35%, 31%, and 36%
of the global population experiencing water scarcity,

respectively. Notably, on a global scale, less popu-
lation experienced water scarcity in boreal summer
(July–September) than other seasons.

The impact of the different EFRs on water
scarcity assessment in terms of the affected area
(Aws) and affected population (Pws) at the basin level
(figure 5(A)) showed similar differences to those
at the global and regional levels. The Aws and Pws
were large (40%–60%) in most basins, indicated by
the WSIs calculated using Q50 and Tessmann EFRs,
and relatively small for those calculated using Q90,
Smakhtin, Tennant, and VMF EFRs. The Aws and Pws
were relatively larger in arid basins (AI < 0.65) and
wet basins (AI ⩾ 0.65). The relationships between
the∆Aws (changes in Aws compared to those without
EFRs) and AI are distinct for the FDC-basedmethods
(e.g. Q90) and MAF/MMF-based methods (e.g. Ten-
nant and Tessmann) at the basin level (figure 5(B)).
The ∆Aws increased with AI when the Q90, Q50,
Smakhtin, and Q90/Q50 methods were used and
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Figure 4.Water scarcity assessment during 2001–2010. (A) The area under water scarcity (Aws; %) of the total land area of
individual latitudes. (B) Aws for the globe and hot spot regions. The mean Aws values are provided on the right side of the inner
plots. The inner plots for regions share the same x- and y-axes as the global one. The letters labeled for the x-axis denote the
12 months. The regional values are computed from the grid cells within the rectangles, which mainly cover (1) Western United
States, (2) Europe, (3) North Africa and Arabia, (4) India, (5) Northern China and Southern Mongolia, and (6) Australia,
respectively. (C) Total population under water scarcity (Pws; %) of global population for each month averaged over the period
2001–2010.

decreased with the AI when the Tennant and Tess-
mann methods were used (see also table S2). Water
scarcity in terms of affected areas and population
increased with EFRs, with respect to the proportions
of the MAF (figure 5(C)) and quantiles (figure 5(D)).
In particular, the Aws and Pws values estimated by
individual FDC-based methods showed less differ-
ences between basins than individual MAF-based
methods, and they were more distinct between the
quantiles than the MAF, even in wet basins.

4. Discussion

4.1. Uncertainties in the estimates of
environmental flow requirements (EFRs)
The EFRs are subject to considerable uncertainty,
as indicated by the large differences in the results
obtained using the different methods. The differences
between the EFRs in terms of CV showed distinct
spatial and seasonal patterns; in particular, they were
larger in dry regions (compared to wet regions)

(figure 1). This pattern resembled the temporal vari-
ation in the streamflow (figure S1(B)), that is, a
high CV of EFRs was found in regions having highly
variable monthly streamflow. The CV of the EFRs
was most likely associated with streamflow variation,
which is a key factor in some EFR methods.

The single ecological status (‘fair’ condition)
across the world may also bring uncertainty into the
EFR estimates in regions that expect other ecological
conservation goals (Poff et al 2010). However, given
the difficulties in determining the ecological condi-
tions of rivers worldwide, using a uniform ecological
condition across theworldwould be a practical choice
for global assessment. The ecological management
classes may be a promising framework for estimat-
ing the EFRs that relate to the current or desired con-
dition of a river and are perceived as scenarios of
the environmental state of rivers (Sood et al 2017,
FAO 2019). It considers the ecological condition and
management perspectives for both natural (unmod-
ified) and human-disturbed river ecosystems. The
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Figure 5. Affected area and population by water scarcity at basin level. (A) Affected area (Aws) versus affected population (Pws)
indicated by water scarcity index (WSI) calculated with and without EFRs. (B) Changes in the affected area (∆Aws), indicated by
WSIs calculated using EFRs, compared to that without EFRs versus aridity index. The lines are linear regressions of∆Aws on AI.
(C) Affected area versus affected population for WSIs calculated using EFRs of 10% to 80% mean annual flow. (D) Affected area
versus affected population for WSIs calculated using EFRs based on flow duration curve. The small and large circles indicate arid
(AI < 0.65) and humid (AI⩾ 0.65) basins, respectively. The squares in (A), (C), and (D) denote the global values.

EFR estimates could be more reasonable by setting
different classes for regulated and unregulated rivers.
Meanwhile, increasing global ecological data (Sayre
et al 2014, Ghiggi et al 2019, Jeliazkov et al 2020) will
favor global water scarcity assessments with consider-
ation of ecological conditions.

According to the differences in EFRs (figure 2)
and their definitions, the EFRmethods can be roughly
grouped into two types. One type is MAF/MMF-
based, for example, Tennant, Tessmann, and VMF.
These methods show different levels of EFRs in
terms of the absolute values and the proportions
of MAF (figures 1 and S5), and the proportions of
MAF show little spatial heterogeneity (figure S4). The
other group is FDC-based, that is, the Q50, Q90,
and Q90/Q50 methods. The EFRs estimated by these
methods often largely differ from each other because
of the different percentiles used and show large spatial

variability in terms of the proportion of MAF (figure
S5). The Smakhtin method uses the information of
both Q90 and MAF, but has similar patterns as the
Q90 method. We noticed that, for the FDC-based
methods (i.e. Q90/Q50 and Smakhtin methods), the
ratios of EFRs to MAF calculated in this study were
different from the results of Pastor et al (2014). This
might be because we used the medians of multimodel
simulations of natural streamflow, while Pastor et al
(2014) used the LPJmL simulation only.

4.2. Effects of uncertainties in environmental flow
requirements (EFRs) on water scarcity assessment
The large discrepancy between the EFR methods is
the major source of uncertainty in the WSI estimates.
The uncertainty in terms of the standard deviation
(STD) across the WSI estimates with different EFRs
(figure S6(A)) is larger than the STD across the WSIs
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estimated from the streamflow simulation of indi-
vidual combinations of GHMs and global meteoro-
logical forcing (figure S6(B)). The uncertainty arising
from EFRs dominates the uncertainty in the WSI
estimates in most areas of the world (figure S6(C)).

The area and population affected bywater scarcity
showed small differences between the WSIs that used
the FDC-based EFRmethods, such as Q90, Q90/Q50,
and Smakhtin. These methods produced different
EFRs (figures 2 and S5), but the area and popula-
tion experiencing water scarcity showed similar spa-
tial patterns (figure 4). In contrast, the differences
between the WSIs with MAF (or MMF)-based EFRs
were more significant. The ∆Aws estimated using
FDC-based and MAF-based methods showed dis-
tinct responses to climate conditions at the basin level
(figure 5). This may be because the EFRs estimated
by the MAF-based methods accounted for spatially
uniform proportions of MAF across regions, irre-
spective of their climate conditions, while the FDC-
based EFRs accounted for different proportions of
MAF worldwide (figures S4 and S5). The sensitivity
test (figures 5(C) and (D)) showed that water scarcity
conditions were more different between FDC-based
percentiles than between the proportions of MAF.
Compared to each other, the FDC-based methods
estimated larger EFRs in wet basins and smaller EFRs
in dry basins, whereas theMAF/MMF-basedmethods
estimated smaller EFRs in wet basins and larger EFRs
in dry basins.

4.3. Implications for the choice of environmental
flow requirements (EFRs) in global water scarcity
assessment
EFR is a key component of the indicator for assess-
ing the SDGs on water scarcity (FAO 2019). The
large uncertainty in WSIs arising from different EFRs
suggests an urgent need to develop a more versat-
ile method or to reconcile the estimates of EFRs to
derive a consistent water scarcity assessment across
regions and river basins having varied hydrological
regimes worldwide. Currently, hydrological methods
or desktop approaches using global datasets, such as
the methods used in this study, are the most appro-
priate for a global assessment (FAO 2019). How-
ever, there is often no unique EFR method hav-
ing wide applicability to all hydrological regimes or
habitat types (Pastor et al 2014). Furthermore, the
determination of EFRs could be more complex in
the real world, as they are associated with desired
conservation goals, water quality, water withdrawals,
socioeconomic status, and hydroclimatological con-
ditions (Döll et al 2009, Acreman and Arthington
2018). In particular, human intervention, of which
the most impacts should be attributed to dams and
reservoirs, can alter hydrological regimes, result in
significant losses of river connectivity, impair river-
ine ecosystems worldwide (Grill et al 2019); how-
ever, they may also regulate streamflow to maintain

the designed EFRs during different seasons. Overall,
the methods explicitly addressing seasonality would
have a large potential for producing appropriate
EFRs because the intra-annual hydrological variation
is essential for maintaining river ecosystem health
(Richter et al 1996), while fixed unique percentages
(e.g. Q90 or 60%) seem inappropriate for large-scale
assessment (Armstrong and Nislow 2012).

The results of this study can help in the selection
of EFR estimation methods by applying the rule of
thumb (concerning hydrological regimes) that large
EFR estimates are acceptable if they do not cause
aggravated water scarcity. In this study, we assumed
that larger EFRs would generally favor better condi-
tions of the river ecosystem. However, EFR estim-
ates are often low in arid and semiarid regions, where
rivers are often ephemeral and intermittent streams.
In these regions, river ecosystems face more serious
challenges to maintain their normal conditions and
diversity with limited water (Gopal 2003). In this
case, it is imperative to address the seasonal variab-
ility of the EFRs, which can be inferred from hydrolo-
gical regimes. Thus, the methods that produce fixed
small EFRs (e.g. Q90, see figure 2(B)) may be a
practical choice but might not reveal the potential
water stress suffered in these regions. Q90/Q50 would
be more appropriate than Q90 because the former
estimates larger EFRs than the latter and results in
a slight aggravation of the water scarcity condition.
The Q50 method estimates the largest EFRs, indicat-
ing widespread water scarcity, even in humid regions
(figure 5). This implies that Q50 may not be suit-
able for wet regions because it may overstate the water
scarcity status during the dry season. In contrast,
the Tessmann method could be a good choice for
most wet regions because it estimates large EFRs and
does not cause significant water scarcity. This may
be due to the consideration of the seasonality of nat-
ural streamflow in the Tessmannmethod. The similar
impacts on water scarcity calculated using the Q90,
Smakhtin, Tennant, and VMF methods suggest that
the method that estimates the largest EFRs would be
a better choice in wet regions, but the one addressing
seasonality would bemore appropriate in dry regions.
In addition, the Tennant method (MAF-based) is
oftenmore suitable for riverswith stable flow regimes,
whereas the VMF method (MMF-based) is appro-
priate for those with larger hydrological variability.
This is in line with the findings of Pastor et al (2014).
These implications would favor future investigations
regarding the reconciliation of EFR methods or the
design of newmethods by taking into account hydro-
logical regimes, as well as ecological conditions, on a
global scale.

4.4. Limitations in the estimates of water scarcity
index (WSI)
This study focuses on surface water scarcity
and estimates the surface water availability from
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streamflow. The total water availability might be
underestimated in some regions where streamflow,
groundwater, desalination water, and rainwater har-
vesting are available. As the world’s largest distrib-
uted store of freshwater, groundwater plays a crit-
ical role in sustaining ecosystems (Taylor et al 2013)
and is a major source of water availability in some
regions. The interactions between groundwater and
climate/surface water are very complex and vary over
space (Cuthbert et al 2019a); thus, the contributions
of groundwater to total water availability could dif-
fer significantly across regions. In the regions where
the water table is topography-controlled, ground-
water is often recharged by precipitation/river flow
during wet seasons and, in turn, recharges the river
flow during dry seasons. The long-term dynamics
of groundwater can be represented by river flow to
some degree, but in these regions, the seasonality
would not be well captured in the water availabil-
ity based on naturalized streamflow. In recharge-
controlled regions, such as the North China Plain
and the southwestern United States, groundwater
recharge is more episodic and often dominated by
losses from ephemeral flows or intense rainfall/flood-
ing events, with limited interactions between ground-
water and streamflow/climate (Cuthbert et al 2019a,
2019b). In these regions, water supply significantly
relies on groundwater, and thus, neglecting ground-
water may underestimate water availability and res-
ult in biased WSI estimates. However, it should be
noted that high groundwater abstraction and lack of
recharge from precipitation/river flow would result
in overexploitation or persistent groundwater deple-
tion (Wada et al 2010), which would not be sustain-
able and can lead to chronic severe water scarcity.
Overall, theWSI estimated without the consideration
of groundwater should be treated with caution in
regions having limited interactions between ground-
water and streamflow. Thus, incorporating ground-
water in future studies related to EFRs and water
scarcity assessment is a challenging but important
task.

Desalination water, rainwater harvesting, and
treated wastewater reuse could also be important
sources of water availability in some regions. Desal-
ination water is often used in coastal arid regions.
The total desalination water use is estimated to be
approximately 1%–4% of the global total water with-
drawal (Wada et al 2011, Hanasaki et al 2016, Gude
2017, van Vliet et al 2021). Rainwater harvesting is
considered to be an interim or primary water source
for domestic use in arid and semiarid areas (Lo and
Gould 2015), and the implementation of rainwa-
ter harvesting systems is strongly influenced by eco-
nomic constraints and local regulations (Campisano
et al 2017). Thus, overlooking the contribution of
desalination and rainwater to water availability may
introduce uncertainty to the WSI estimates in these
regions. In addition, the reuse of wastewater (∼1% of

global total water withdrawal) would increase water
availability, particularly in Asia (Jones et al 2021, van
Vliet et al 2021).

In this study, andmost water scarcity assessments,
surface water availability is determined by natural
streamflow. It should be noted that surface water
availability can be reallocated by human activities,
such as reservoir regulations. Thus, the calculation of
water availability without considering reservoir reg-
ulations may affect the WSI estimates. However, at
present, it is difficult to obtain accurate estimates of
water availability from regulated streamflow because
data on reservoir operations are generally not access-
ible in most countries. In the future, an online assess-
ment (similar to that conducted by Wada et al 2011),
which considers improved reservoir regulations, is
necessary to reduce the uncertainty in water availab-
ility quantification.

5. Conclusions

In this study, we examined the differences in the EFRs
estimated by several commonly used methods and
quantified the effects of the inclusion of EFRs on
global surface water scarcity. We used the FDC-based
(Q50 andQ90), Smakhtin, Tennant, Tessmann, VMF,
and Q90/Q50 methods. The results suggested large
discrepancies in the EFRs estimated using the differ-
ent methods. We found that the inclusion of EFRs
led to significantly different spatial and temporal pat-
terns of water scarcity. The global mean EFRs ranged
from 96 m3 s−1 to 428 m3 s−1, and the WSIs cal-
culated using different EFRs indicated that the area
experiencing water scarcity (WSI > 1) could vary
from 8% (VMF) to more than 52% (Q50) of the
global land areas, while the population experiencing
water scarcity could be underestimated by 28% (Ten-
nant) to 60% (Q50) of the global total. The areas
experiencing water scarcity indicated by theWSIs cal-
culated using the MAF/MMF-based and FDC-based
EFRs increased in many basins compared to those
calculated without considering EFRs. Moreover, the
increments of the areas calculated using the FDC-
based (MAF/MMF-based) EFRs increase (decrease)
with the AI of the basins. Overall, we deduced that the
representation of seasonality in hydrological regimes
is essential for producing appropriate EFRs in water
scarcity assessment. Thus, in this study, we under-
scored considerable discrepancies in global surface
water scarcity assessments caused by different EFR
methods.

However, a comprehensive and appropriate
assessment of surface water scarcity considering EFRs
remains a challenge to date. The uncertainty in EFR
estimates is one of the major underlying factors that
limit surface water scarcity assessment and hydro-
logical modeling. By addressing the discrepancies
in EFR estimates from different methods, this study
aims to improve surfacewater scarcity assessment and
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has instrumental value for water resource manage-
ment concerning competing water demands between
humans and the environment.We call formore atten-
tion to the reconciliation of EFRs estimated by differ-
entmethods formore reasonable global water scarcity
assessments.
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