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Abstract
Our study uses regional-scale maps to quantify carbon storage and sequestration from different land use types to evaluate 
the effects of future land use scenarios. We developed an integrated modeling approach to assess the spatiotemporal impacts 
of land use/cover change (LUCC) on the provision and value of the carbon storage and sequestration during the historical 
period (2000–2019) and predicted scenarios (2019–2046) in the Jiroft plain, Iran. We integrated several analytic tools for 
our analysis, which was comprised of Google Earth Engine (GEE), Cellular Automata Markov Chain (CA-MC) model, 
Intensity Analysis (IAA), and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. Our results 
demonstrate that: (1) agriculture and urban expansion led to a considerable decrease in carbon storage, mainly due to rapid 
deforestation from 2000–2019; (2) if the historical trend continues under the business as usual (BAU) scenario, it will lead 
to considerable social costs due to the loss of stored carbon in the plain (2,624,113 Mg) with an annual average sequestration 
loss of −475,547 Mg; (3) the downward carbon sequestration trend could potentially be reversed by employing the envi-
ronmentally sound planning (ESP) scenario that is estimated to save 3,705,491 Mg in carbon storage, with annual average 
sequestration gain of + 605,830 Mg. The design scenarios provide a useful guide for policymakers and local governments to 
help understand the potential outcomes of the various development strategies, which will ultimately lead to more effective 
ecosystem management.

Keywords Carbon storage and sequestration · Google Earth Engine · InVEST · Spatial–temporal dynamics · Jiroft plain · 
Iran

Introduction

Ecosystem services (ESs) refer to ecological processes' 
benefits and their effectiveness for human well-being (Yua 
et al. 2019). Land use/cover change (LUCC) has a significant 
impact on the supply and value of multiple ESs, especially 
climate regulating services, due to fundamental changes that 
occur in the structure and function of forests, agriculture, 
and other ecosystems over time (Fu et al. 2017). Such spati-
otemporal LUCCs lead to an increase in some services' pro-
vision and value while concurrently decreasing others (Yuan 
et al. 2019), mainly in arid regions (Maestre et al. 2016). As 
vulnerable ecosystems to human disturbance, these regions 
cover approximately 40% of the Earth’s land surface (MA 
2005). According to White and Nackoney (2003), approxi-
mately 1.4 billion Asian people live and depend on drylands. 
These ecosystems often are regarded as unproductive, but 
they provide a variety of essential ESs to sustain well-being, 
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such as carbon sequestration (Egoh et al. 2016; Lü et al. 
2014).

Carbon sequestration describes the long-term carbon 
storage in soil, plant, and other forms to either mitigate or 
slow down climatic change (Canadell and Raupach 2008; 
Eggleston et al., 2006; Gallant et al., 2020). In this context, 
terrestrial ecosystems, including forest, orchard, and agricul-
tural ecosystems, play an essential role in carbon cycling (Sil 
et al. 2017). Among terrestrial ecosystems, agriculture often 
acts as a source of greenhouse gases (Kanime et al. 2013), 
while forests and orchards are usually involved in the seques-
tration of atmospheric carbon (Scandellari et al., 2016). 
Orchards can secure considerable quantities of atmospheric 
carbon due to their structure, long life cycle, and low or null 
soil tillage (Ceschia et al. 2010). Forests can also sequester 
large quantities of atmospheric carbon through photosyn-
thesis (IPCC 2005). The carbon is stored in plant tissues 
during the photosynthesis of orchards and forests, especially 
in the woody parts (Hauck et al. 2013). On the other hand, 
forest and orchard degradation can intensify climate change 
(Gibbs et al. 2007; Sil et al. 2017). The effect of escalating 
climate change directly relates to the supply and value of the 
climate regulating services. De Groot et al. (2012) argued 
that among the main types of terrestrial biomes (including 
forests, grasslands, and woodlands), approximately 50% of 
their total monetary value is dedicated to climate regulation 
services.

Various publications of the Intergovernmental Panel on 
Climate Change (IPCC 2000; 2005; 2006) and the United 
Nations (UNDP 2015) shed light on the connection between 
carbon storage and sequestration and LUCC. Recent liter-
ature has assessed the climate regulation service by con-
sidering their biophysical quantities and economic value, 
particularly in different arid regions (Bagstad et al. 2013; 
Crossman et al. 2013; Maes et al. 2016; Sil et al. 2017; 
Stringer et al. 2012). Many studies have also shown that Iran 
has experienced impacts of climate change, and this trend 
continues (Abbaspour et al. 2009; Mansouri Daneshvar et al. 
2019). Therefore, anthropogenic disturbance's cumulative 
effects simultaneously with climate change have significant 
negative consequences on the ESs, particularly on carbon 
storage and sequestration. These cumulative effects high-
light the importance of providing integrated environmental 
assessments.

However, in developing countries such as Iran, past mod-
eling and environmental assessments of ESs were limited 
by the lack of high-quality data (Adelisardou et al. 2021) 
and appropriate modeling tools. Besides, existing studies 
concentrate on a specific individual timepoint, ignoring a 
temporal trend of changes in natural ecosystems and their 
services (Yavari and Bahreini 2001). There is an urgent need 
to address the issues mentioned above by considering the 
dynamics of spatio-temporal impacts of LULC policies on 

the ESs, such as carbon sequestration and storage for the 
historical trends and future prediction scenarios.

Various international scientific groups advocated apply-
ing the Integrated Valuation of Ecosystem Services and 
Tradeoffs (InVEST) model as a new generation of ESs 
assessment model (Keller et al. 2015; Leh et al. 2013; Red-
head et al. 2016; Sánchez-Canales et al. 2012). On the other 
side, carbon storage and sequestration as one of the most 
common regulating services were quantified and mapped by 
researchers (Nackoney 2003; Stringer et al. 2012; Kanime 
et al. 2013; Jiang et al. 2017; Wang and Qie 2018; White, 
R.P.; Yang et al. 2020). Although various studies of link-
age the LUCC with carbon storage and sequestration have 
been internationally carried out, the target area of studies is 
mainly focused on cities and coastal ecoregions (Zhao et al. 
2016), mountainous regions (Zhao et al. 2018), and flood 
plains (Lininger et al. 2019). In comparison, InVEST has 
not been applied to quantify the ES value of carbon seques-
tration in arid agro-urban ecosystems (Favretto et al. 2016; 
Lu et al. 2018). Current research to estimate and predict 
the change level of carbon considered four carbon pools, 
including aboveground biomass, belowground biomass, 
soil organic carbon, and dead organic matter. Similar stud-
ies were limited in their scope to changes of carbon stor-
age in the soil organic carbon pool (Egoh et al. 2011) and 
the belowground biomass pool (Shangguan et al. 2014), 
throughout the past to present.

Our study overcame the aforementioned environmental 
assessment problems in developing countries by develop-
ing an integrated modeling approach. The InVEST carbon 
model, GEE coding, Cellular Automata Markov Chain 
(CA-MC) model, and the Intensity Analysis (IA) method 
were used to measure spatiotemporal impacts of LUCC on 
carbon storage and sequestration for historical (2000–2019) 
and future (2019 -2046) trends in a dryland ecosystem. The 
Jiroft plain, an arid agro-urban ecosystem, as one of the most 
suitable parts of the Iranian plateau for tropical crop culti-
vation, which has experienced severe LUCC (Agricultural 
Organization of Jiroft County 2013), was selected as the case 
study. The objectives of our integrated modeling were to:

1. Investigate the LUCC process in the Jiroft plain at the 
landscape scale through GEE coding, design a future 
scenario by applying the CA-MC model and the IA 
method;

2. Model carbon storage and sequestration and explore the 
mechanisms using InVEST;

3. Quantify provision and value in carbon storage and 
sequestration associated with LUCC;

4. Understand the spatial distribution and characteristics of 
carbon storage and sequestration over time based on the 
landscape scale to achieve comprehensive knowledge for 
decision-making processes of ecosystem management.
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Material and methods

Study area

The Jiroft plain is part of the Jazmourian Basin in Southern 
Kerman, Iran. The boundary was determined at the land-
scape scale, which was suitable to achieve a balance among 
multi-objectives, including production, conservation, and 
livelihood benefits over time and adapt to changing con-
ditions (Cordingley et al. 2016; Luo et al. 2019; Sandker 
et al. 2010; Sayer et al. 2017). Different criteria, including 
elevation of the plain, Halil Roud River existence as the 
mainstream, human settlements, farmland, and other land 
use, were considered to define the boundary of the pilot 
landscape unit (Agricultural Organization of Jiroft County 
2013). The plain is located in arid regions ranging from 
28°12'N to 29°13'N and 57°15'W to 57° 17’W (Fig. 1). The 
mean annual temperature and precipitation range from −4 
to + 45 °C and 140 to 170 mm, respectively. The altitude 
varies between 456 and 1318 m above sea level (masl), and 
the overall slope is from north to south (Jiroft Municipal 
Statistics Bureau 2017; Kerman Municipal Statistics Bureau 

2015). This plain is one of the most suitable parts of the Ira-
nian plateau for tropical crop cultivation, with an area of 36 
491  km2. It has a vital role in providing multiple ESs (e.g., 
agriculture), on which the local population depends on live-
lihood (Agricultural Organization of Jiroft County 2013).

Methods

In our study, an integrated model based on the impacts of 
two different LUCC scenarios on the spatial and temporal 
provision and value of carbon storage and sequestration was 
developed. The general workflow to achieve the integrated 
model is shown in Fig. 2. Our methodology consisted of 
four main stages: (1) determination of structural LUCC of 
the case study from 2000–2019 through the comparison 
and analysis of the basic land use/ land cover (LULC) using 
GEE coding and the IA method; (2) design of future LULC 
scenarios to 2046 applying CA-MC and (3) calculation of 
carbon stock from 2000–2019 and; (4) spatial change of the 
carbon sequestration value under the future scenarios using 
the InVEST model.

Fig. 1  Location of the study area—the Jiroft plain, Iran
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Data description of LULC prepared by GEE

We used GEE (Sidhu et al. 2018) to carry out simultane-
ous temporal and spatial LUCC analysis based on satellite 
imagery collection. The image classification in GEE was 
performed by using the support vector machine (SVM) algo-
rithm. The SVM is a nonparametric classifier based on sta-
tistical learning theory that was initially proposed by Kavzo-
glu and Colkesen (2009). Landsat and Sentinel images were 
used to separate the agriculture from the forest, orchard, and 
the other land-use categories. In selecting the appropriate 
image from a collection of Landsat images, surface reflec-
tance criteria including cloud-free or zero cloud cover and 
the summer season (July–September) were considered. Also, 
to include only relevant data that supports the purpose of the 
visualization, the filer on image collection was used (Google 
Earth Engine 2012).

Accuracy assessment

The accuracy of each classification in the GEE is defined 
as an error matrix called a confusion matrix (Congalton, 
1991), representing the validation accuracy. Therefore, to 
assess accuracy in the SVM classifier, the confusion matrix 
was applied (Stehman, 1997). The accuracy is estimated 
from training data compared to each class's actual data 
that obtained from Google Earth (2015). In the accuracy 

assessment step, 75 points were derived from each classified 
image and uploaded to Google Earth Pro. Also, these images 
were the basis for calculating the overall accuracy and also 
evaluating the classification accuracies.

Change detection of LULC through the Intensity 
Analysis (IA) method

Detection of LUCC is an effective way to determine the 
human effects on the ESs (Yirsaw et al. 2017). The intensity 
analysis (IA) of LUCC as a top-down hierarchical account-
ing framework (Sang et al. 2019) focuses on the absolute 
amount of LUCC (Zhou et al. 2014) and the intensity of 
transformation (Teixeira et al. 2016). This method consists 
of three levels, including interval, category, and transition 
(Pontius et al. 2013). In this study, the IA method at the 
category level was considered for the detection of LUCC. 
The intensity change of each category within a specific time 
interval was evaluated at this level. The IA method uses 
uniform intensity (U), annual loss intensity (Lti), and annual 
gain intensity of (Gtj) to explain LULC for a specific cat-
egory. If Lit or Gtj is higher than U, then that category is an 
active loser or gainer. Otherwise, the category is defined as 
a dormant loser or gainer (Sang et al. 2019).

Fig. 2  The general workflow 
of detecting spatial–temporal 
changes in carbon storage and 
sequestration

Cellular Automata 
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(CA-MC) model 
implementation
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Cellular Automata–Markov chain (CA‑MC) model 
implementation

The prediction of the future LULC dynamics is a complex 
process. This complexity involves various factors, such as 
economic and social conditions, ecological constraints, and 
different stakeholders' perspectives in managing future plans 
(Cassidy et al. 2010; Singh et al. 2015). Therefore, apply-
ing the proper prediction method that considers different 
future scenarios can help understand these complex pro-
cesses. In this study, the CA-MC model in TerrSet software 
(version18.31) was used to simulate two different future 
LULC scenarios, which we termed environmentally sound 
planning (ESP) and the business as usual (BAU) scenarios. 
The CA-MC is recognized as the most promising method 
among many LULC scenario modeling tools, which analy-
ses both spatial and temporal dynamics of complex systems 
(Regmi et al. 2017; Wu et al. 2019). The MC sub-model is a 
stochastic process that analyses the probability of a change 
from one state to another at the temporal dimension (Zhou 
et al. 2012). The CA sub-model conceptualizes the spatial 
dimension of LUCC (Hamad et al. 2018). This sub-model 
consists of a collection of cells organized in an arbitrary 
form of cells inside a grid-like structure (Ghosh et al. 2017). 
The temporal and spatial state of neighboring cells has an 
effect on each cell’s state (Reddy et al. 2017). In this study, 
to define neighborhoods of each cell of the category, 5 × 5 
pixels were applied as a standard contiguity filter (Hamad 
et al. 2018). The historical LULC layer from 2000 to 2010 
was used for the calibration phase of the CA-MC model. 
Also, the image of 2019 was considered for validating the 
predictions of CA-MC. Finally, the Kappa index of agree-
ment was used to evaluate the model’s performance during 
the calibration of the BAU and ESP scenarios.

The first scenario, BAU, is a reference case scenario based 
on the historical trajectories (2000–2019), which considers 
social, economic, and population growth (Samie et al. 2017). 
This scenario assumes that the historical trend will continue 
until 2046 based on the conditional probability images with-
out constraints based on the real conditions (Hamad et al. 
2018). In this scenario, the resultant LULC change patterns 
for the future occur based on their historical trajectories. It 
is noteworthy that the historical trend of urbanization in the 
Jiroft is changing. The lack of sufficient facilities for thecur-
rent and next generation (Jiroft Municipal Statistics Bureau, 
2017) and climate change impacts (the temperature in this-
area reaches about 60 degrees) have increased the migration 
rate from the Jiroft to the other cities(Kerman MunicipalSta-
tistics Bureau, 2018). That this increasing migration rate is 
reflected in future forecasts.

The second scenario, ESP, depicts the future LULC by 
considering some limitations in controlling the development 
and preventing deforestation through management programs. 

In this regard, conditional probability images were replaced 
with multi-criteria evaluation-derived (MCE-derived). 
Hence, it is possible to regulate the future trajectory of 
the change in LULC depending on various environmental 
influences, increasing migration rate, physical boundary 
conditions, economic and social conditions, ecological con-
straints, as well as stakeholders' perspectives and desires. 
These criteria effectiveness termed as Boolean operations 
or linear combinations can be evaluated regarding a specific 
objective (Malczewski 1999). As output, suitability map lay-
ers are generally constructed with respect to their objective 
(e.g., a LULC-category). The needed information for this 
scenario includes the rate of population growth and the mini-
mum necessary land area to meet each individual demand in 
the Jazmourian basin, which was obtained from the Kerman 
Province Land Use Planning Report (Kerman Province Land 
Use Planning Report 2014).

Modeling of carbon storage and sequestration 
through InVEST

The carbon module uses a simplified carbon cycle to esti-
mate the amount of static carbon storage and dynamic 
sequestration for each cell in a specific region (He et al. 
2016; Tallis et al. 2013). This module considers four carbon 
pools, including aboveground carbon density, belowground 
carbon density, soil organic carbon, and dead organic matter 
(Tallis et al. 2013). The calculation of the carbon storage C 
m, i, j in a given grid cell (i, j) with land use type “m” can be 
achieved by Eq. 1 (Aalde et al. 2006):

In this formula, A is the real area of each grid cell (ha). 
Also, Ca m, i, j, Cb m, i, j, Cs m, i, j, and Cd m, i, j are the above-
ground carbon density, belowground carbon density, soil 
organic carbon density, and dead organic matter carbon 
density (i, j), respectively. Finally, carbon storage “C” and 
carbon sequestration “S” can be calculated by Eqs. 2 and 3 
for the whole case study region (Aalde et al. 2006):

In Eq. 3,  CT2 and  CT1 demonstrate static carbon storage 
in years T2 and T1 (T2 > T1). The needed data for running 
the carbon storage model were the LULC map and the bio-
physical table containing columns of LULC, ‘C_ above,’ 
‘C_below,’ ‘C_soil,’ and ‘C_dead.’ The required biophysical 
data are presented in Table 1, which was obtained from sam-
pling and field experiments by Liang et al. (2017) and the 
InVEST user’s guide (Sharp et al. 2020). The data regarding 

(1)Cm,i,j = A ×

(

Cam,i,j + Cbm,i,j + Csm,i,j + Cdm,i,j
)

(2)C =

∑n

m=1
Cm,i,j

(3)S = CT2
− CT1
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the carbon sequestration model were a current and future 
LULC scenarios map for calculating the net change of car-
bon storage pixel by pixel over time.

The last part of carbon modeling is estimating the eco-
nomic value distribution of carbon sequestration/loss (not 
storage) under each scenario over time. This function, Eq. 4, 
requires three inputs, including I) “V,” the monetary value 
of each unit of carbon, II) “r,” a monetary discount rate, and 
III) “c,” the change in the value of carbon sequestration over 
time (Tallis et al. 2013):

Unfortunately, the long-term data related to the social cost 
of land-use change, especially the destruction of orchards 
and forests in Iran, could not be found. Therefore, the data 
from international studies of economic value related to the 
study area's conditions were considered (IPCC 2006).

The first input “V” is estimated based on the social 
cost of carbon (SCC) that is released Mg of carbon in the 
atmosphere in case of excess of the threshold. Some stud-
ies (Haight et al. 2020; Melaku Canu et al. 2015) estimated 
the total values of carbon sequestration as SCC based on 
the damages caused by releasing an additional ton of car-
bon in the atmosphere. There are some sufficient criteria 
to determine this value, including differences in landscape, 
applied discount rate, and carbon cost and benefit of carbon 
sequestration. Estimated values for each ton of carbon range 
widely from $32 US dollars (Nordhaus 2007) to $326 US 
dollars (Stern 2007). To estimate the cost of loss per ton 
of carbon or the benefit from storing per ton of carbon, an 
alternative method is to regard the equivalent cost of carbon 
sequestration per ton. This method considers the cost of stor-
ing carbon by public facilities such as power plants (Socolow 
2005; Socolow and Pacala 2006; Tol 2017). The mentioned 
studies estimated this price equal to be approximately $110 

(4)

value − seqx = V
sequestx

yr_fut−yr_cur

∑

yr=fut−yr−cur−1

t=0

1
(

1 +
r

100

)t(

1 +
c

100

)t

US dollars. In our study, the same cost per ton of carbon 
was considered.

The second input, “r,” is the discount rate that expresses 
the preference of the community over immediate benefits 
and future benefits. Based on the cost–benefit evaluation of 
an environmental assessment by the US government, this 
input is set to 7% in the carbon module of InVEST. This rate 
varies for different landscape conditions and local require-
ments. According to the Iranian studies economic valuation, 
the discount rate of 12% was considered in our research (Ira-
nian statistical Yearbook 2017).

The third data, “c,” reports the change of carbon price 
in the form of the annual rate. These data demonstrate the 
sequestered carbon value resulting from emissions impact 
on damages associated with expected climate change. The 
default value is set to zero. A number greater than zero 
means that the social value of carbon sequestration in the 
future is less than its value of the present time. In our study, 
due to attention the high probability of exacerbation of the 
impacts induced by climate change, the default value of zero 
was considered.

Results and discussion

Results

Detection of LUCC by IA method

Figure 3 and Table. 2 show the land use and land occupa-
tion patch classifications under different scenarios, includ-
ing historical trend, and the BAU and ESP scenarios using 
GEE. The overall accuracy of classification of 2000, 2010, 
and 2019 was 86.8, 84.6, and 87.5%, respectively. The major 
types of LULC in the Jiroft plain were unused-land, for-
est, urban, agriculture, and water. From 2000 to 2019, the 
urban category as the most dynamic land feature that fol-
lowed by agricultural land demonstrated stable increasing 
trends according to the historical directions of growth. We 
projected that the increasing trend in urban land cover would 
continue in both the BAU and ESP scenarios from 2019 
to 2036. Conversely, the future growth of agriculture was 
limited under the ESP scenario. However, the unused-land 
showed the largest decrease, followed by forest and water. 
The unused-land decreased sharply from 2000 to2019, and 
this reduction continued under the ESP scenario and then 
increased under the BAU scenario in 2046. The trend of 
forest decreased dramatically under historical and the BAU 
scenario and increased under the ESP scenario. Finally, 
the least dynamic category with the minimum areal extend 
in the Jiroft plain was water. The areal extent of the water 
decreased from in 2000 under the different scenarios.

Table 1  Carbon pools of different land-use types in the InVEST 
model (unit: Mg C  ha−1). Ca refers to the aboveground biomass; Cb 
to the belowground biomass; Cs to the soil organic carbon; and Cd to 
the dead organic matter, respectively

Land-use type Ca Cb Cs Cd

Agriculture 3 2 853.13 1.5
Forest 45.09 9.03 13.1 5.6
Unused land 0.1 1.9 0.8 0
Urban 0.4 0 1.73 0
Water 0 0 0 0
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The IA method was applied at the category level for 
three cross-tabulation attempts, including I) historical trend 
(2000–2019), II) BAU scenario (2019–2046); and III) ESP 
scenario (2019–2046). Compared to the historical profile 
(Fig. 4), the value of uniform change intensity was consider-
ably lower for the BAU (1.3%) and ESP (1.9%) scenarios.

Specifically, during the historical period (2000–2019), 
the unused-land, forest, and water were active losers and 
dormant gainers. In terms of the water body, because the 
water body in 2000 is of very low areal extent, it gradually 
decreased from 0.7 to 0.2% of the study area in 2019 due to 
agricultural activities. It means that although the water body 

represents a very low percentage of the study area in 2000, 
the intensity of its growth is significant relative to other 
land categories. In contrast, the urban and agricultural land 
covers were active gainers and dormant losers and depicted 
higher levels of gaining intensities as active gainers.

It is noteworthy that there were also important differences 
between the two predictive planning alternatives at the cat-
egory level. According to the BAU scenario (Fig. 4b), the 
urban and agricultural lands are dormant losers and active 
gainers. In contrast, the forest category is a dormant gainer 
and active loser. Also, in this scenario, the unused land class 
is dormant for both losing and gaining intensities. The water 

Fig. 3  LULC layers a 2000, b 2010, c 2019, d 2046 under business as usual scenario and, e 2046 under environmentally sound planning sce-
nario

Table 2  A comparison of the quantity of LULC changes from the baseline to the current situation and future scenarios

Land use class Area (Percent /Km2)

2000 2010 2019 2036-BAU 2036-ESP

Unused-land 81.3% (1297.01) 80.8% (1288.80) 74.73% (1191.94) 75.03% (1196.72) 71.3% (1137.7)
Forest 14.55% (232.20) 13.82% (220.57) 12.5%, (198.99) 7.5% (119.62) 14.85% (236.85)
Urban 0.33% (5.38) 0.95% (15.27) 6.6%, (105.55) 8.10% (129.19) 8.33% (132.86)
Agriculture 3.01% (48.10) 3.87% (61.80) 6.1% (97.42) 9.37% (149.45) 5.45% (86.92)
Water 0.77% (12.29) 0.53% (8.54) 0.1% (1.01) 0.02% (0.31) 0.01% (0.15)
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category shows a dormant loser. Under the ESP scenario 
(Fig. 4c), the urban category is the only active gainer among 
the different patterns of change. At the same time, the agri-
culture and unused-land became active in losing their inten-
sities. The urban class was an active gainer and a dormant 
loser during the historical trends and predictive scenarios, 
representing continuous growth from 2000 to 2046.

Measuring quantitative changes of carbon 
at the landscape

The InVEST carbon model's first outputs were the land-
scape's carbon storage maps under different scenarios, 
including historical growth trajectories, BAU, and ESP sce-
narios (Figs. 5a–e). Based on the historical growth trajecto-
ries, the urban and agriculture categories showed constant 
increasing trends from the north to the south of the region. 
Simultaneously, forests with a decreasing trend were dis-
tributed in the center of the plain. According to the modeled 
distribution, the carbon storage volumes increased within the 
center and reached a minimum in the northern and southern 
urban areas. The minimum amount of carbon was 0.8 Mg 
stored in the urban areas, and the maximum amount was 
19.4 Mg in forests. Also, the average carbon storage was 
9.7 ton/ha for the current landscape (2019). This value will 
change to 7.2 ton/ha and 11.3 ton/ha under the BAU and ESP 
scenarios in 2046, respectively.

A comparison of carbon storage and sequestration 
changes under different scenarios is shown in Fig. 6. The 
results of stored carbon showed a decrease from 4.6 mil-
lion Mg in 2000 to 3.1 million Mg in 2019. The BAU 
scenario results showed rapid land-use change caused by 
human activities from 2019 to 2046. The BAU scenario 
with rapid changes in land use caused by human activities 

in 2019–2046 was expected to decrease sequestered carbon 
by 2,624,113 Mg, with an average decrease in sequestra-
tion of −475,547 Mg. The carbon storage loss will occur 
mainly in the forest (Nonini and Fiala 2019). The ESP sce-
nario resulted in moderate protection of LUCC and led to a 
smaller disturbance by human activities. In this scenario, the 
carbon storage will decrease to 3,705,491 Mg from 2019 to 
2046, with an average sequestration of + 605,830 Mg. The 
obtained results from the carbon storage model showed that 
the ESP scenario, with a medium protective socioeconomic 
development, saved a large amount of stored carbon in com-
parison with the historical period and BAU scenario.

The second output of the carbon model (Fig. 7a, b) was 
carbon sequestration maps under BAU and ESP scenarios. 
Raster maps showed the difference in carbon stored between 
the current and future landscape. The values of this map 
included negative and positive ranges. The negative values 
indicate lost carbon, and positive values indicate sequestered 
carbon in Mg per pixel. Areas with the highest negative or 
positive values showed the most considerable LULC change. 
The result of the BAU scenario showed − 15.0 ton/ha as the 
maximum loss of carbon in the degraded forests. Also, 3.7 
ton/ha was measured as the maximum carbon sequestration 
capacity. Alternatively, in the destroyed landscape parts of 
the plain under the ESP scenario, the maximum carbon loss 
(2000–2019) will be − 11.2 ton/ha. The maximum seques-
tration in areas where the forest category will be restored is 
expected to reach + 15.0 ton/ha (Fig. 7b).

Carbon sequestration valuation

The carbon model's final output was the economic value 
distribution of carbon sequestration under different pre-
dictive scenarios, as shown in (Fig. 6c, d). Based on the 

Fig. 4  Intensity change of  category level in three time intervals: a historical time profile (2000–2019), b BAU scenario (2019–2046), and c ESP 
scenario (2019–2046)
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BAU scenario, a reduction of carbon sequestration of 
about − 475,547 tons will occur between 2019 and 2046. 
Considering US$ 110 as the cost per ton of carbon emis-
sion and 12% as the discount rate with this potential drop, 

the cost of damage in the next two decades will be about 
US$ 36 million. Additionally, in the case of implementa-
tion of the ESP scenario, the total potential of sequestra-
tion will increase to + 605,830 tons. Using the same cost 
per ton and discount rate, the net present value between 
2019 and 2046 will be about US$ 45 million. In the case of 
deforestation under the BAU scenario or forest rehabilita-
tion under the ESP scenario, the carbon loss's minimum cost 
showed − 470.4 and − 342.1 per ha, respectively. Also, the 
maximum carbon sequestration was estimated to be + 27.7 
per ha for the BAU scenario and + 470.7 for the ESP sce-
nario, respectively.

Discussion

Driving factors of LUCC and carbon dynamics

The integration of land use scenarios and the InVEST model 
can reduce the complexity of the issue of assessing the spa-
tial and temporal impact of LUCC on carbon storage and 
sequestration at the landscape scale, particularly in dryland 
ecosystems in developing countries that face high LUCC 

Fig. 5  Comparison of quantities of carbon storage from the baseline to the current situation and under the future scenarios of BAU and ESP

Fig. 6  Comparison of carbon storage and sequestration changes under 
different scenarios
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intensity. We detected LUCC patterns over time by compar-
ing the 2000, 2010, and 2019 LULC. We found that major 
LUCC trends (2000–2019) included the rapid expansion of 
agriculture and urban land cover; and sharp decreases in the 
forest and unused-land. Our findings regarding the LUCC 
pattern are similar to the results of other parts of the Jazmou-
rian basin (Mazaheri et al. 2013; Sanjari 2015). The main 
driving factors associated with the LUCC mentioned above 
in the Jiroft plain include several contributing factors, such 
as rapid population growth (Kanianska 2016) or the high rate 
of the population transfers from the rural areas to the cities 
(Jiroft Municipal Statistics Bureau 2017). Deforestation has 
led to an increase in agricultural and urban land use to meet 
the demand for rising food requirements and other funda-
mental needs of the society in the basin (Rahbarian and Sar-
doei 2014). It is noteworthy that the biophysical character-
istics of the basin (e.g., proper slope, elevation, fertile soil) 
have allowed for the cultivation of tropical crops. Another 
critical driving factor is the poor implementation of agricul-
tural development plans based on the background policies, 

which has led to moving the plain into a forbidden status in 
terms of agricultural activities in 2009 (Sanjari 2015).

If the historical trend (2000–2019) continues without any 
constraints (i.e., BAU scenario) over the next two decades, 
drastic degradation of natural covers such as forests will 
occur. Also, we anticipate a considerable reduction in carbon 
sequestration from converting the forests and unused-land to 
urban settlements and farmland. Various studies have shown 
that the growth of agricultural activities and human settle-
ments leads to the degradation of natural land use over time 
(Chuai et al. 2013; Fu. 2017; Sang et al. 2019). Grinand et al. 
(2017) estimated the average net loss of carbon storage for 
southeast Madagascar, where forest cover went from 10.7 
and 5.2% for the 30 and 100 cm layers, respectively. In other 
areas, Mahowald et al., (2017) found conversion from forest 
to cropland via deforestation led to carbon loss of 490 Pg C 
between 1850 and 2300, compared to a carbon loss of 230 
Pg C over the same time interval caused by climate change 
alone (230 Pg C).

If the land use policies for the conservation of the forests 
under the ESP scenario are adapted, the costly process of 

Fig. 7  a–b Comparison of 
quantities of carbon sequestra-
tion under the future scenarios 
of BAU and ESP; c–d economic 
value of carbon sequestration 
under the future scenarios of 
BAU and ESP
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the historical trend can potentially be halted or reversed. 
Ontl et al. (2020) has noted that the active restoration of 
the degraded tropical rainforests of the Western Ghats, 
India, could promote recovery of its carbon storage within 
7–15 years of rehabilitation.

Explanation of carbon at fine spatial and temporal 
scales

According to Fang et al. (2007) and Zhang et al. (2015), 
forests have the highest amount of carbon density at about 
19.4 Mg. The minimum amount of carbon was 0.8 Mg stored 
in urban land cover, which is in agreement with the literature 
(Chuai et al. 2013; Zhang et al. 2015). The amount of carbon 
storage decreased from 4.6 million Mg in 2000 to 3.1 million 
Mg in 2019, with average sequestration of -1.5 million Mg. 
This decreased amount of carbon storage was due to LULC 
converting from forest to agriculture and urban land cover. 
In terms of carbon loss storage and sequestration potential, 
Lü et al. (2014) showed that the expansion of agriculture and 
urban land cover led to a significant reduction in the social 
cost of carbon (SOC) over time. Also, the study by Wang 
et al. (2016) showed that the transition from agriculture to 
urban areas had considerable impacts on the SOC.

In the BAU scenario, as a result of human activities, we 
estimated a reduction of about 2.6 million Mg in carbon 
storage with average sequestration loss of -475,547 Mg from 
2019 to 2046. Lü et al. (2014) showed that the expansion of 
agricultural and urban land led to a significant reduction of 
SOC. Also, in terms of carbon stock loss and the possibility 
of atmospheric release, there could be costs up to US$ 36 
million at the landscape scale. This result is similar to find-
ings from Liang et al. (2017) regarding carbon loss storage 
and sequestration potential due to the conversion of forest 
to agriculture and the urban land cover.

Based on the results of carbon modeling under the ESP 
scenario, carbon storage will increase to 3.7 million Mg 
from 2019 to 2046, with average sequestration of + 605,830. 
According to this increase, a net present value of about US$ 
44,543,304 will be generated over the next two decades 
(2019–2046). The reason for this increase was the preserva-
tion of forests and restoration of agricultural land cover to 
forests, which will lead to the prevention of carbon emis-
sions. Cheng et al. (2013) demonstrated that transitioning 
from agriculture to forest led to a considerable increase in 
the SOC. Liang et al. (2017) showed that the most carbon 
storage could be saved with restrictive policies that strictly 
protect the forests. Also, results by Lü et al. (2014) sup-
port our findings that the transition from grassland to semi-
shrubby would bring significant carbon sequestration ben-
efits. Boix et al. (2009) and Poeplau and Don (2013) both 
demonstrated that the SOC would increase significantly by 
converting the agricultural land to forests.

The results of the carbon modeling showed that the aver-
age amount of carbon stored was different in the different 
regions. The estimated annual average amount of carbon in 
our study was 9.71 ton/ha in 2000, while Sil et al. (2017) 
estimated a value equivalent to 47.21 ton/ha, and Muñoz-
Rojas et al. (2011) reported a value of 15.84 ton/ha. Dif-
ferences in these values are likely due to the differences 
in land cover types for each area, climatic conditions, and 
geographical context (Li et al. 2020; Polasky et al. 2011). 
Our study also estimated the carbon sequestration rate to 
be − 0.95 ton/ha under the BAU scenario and 1.01 ton/ha 
under the ESP scenario. Sil et al. (2017) estimated the car-
bon sequestration rate to be about 1.4 ton/ha in the mountain 
region, while Ribeiro et al. (2011) estimated it to be about 
1.1 ton/ha in the coastal zone. The main contributing reason 
for this difference between carbon sequestration rates may be 
due to the intensified trend of LUCC within different areas 
(Brovkin et al. 2013). For instance, our results showed a 
severe decrease in forest and orchard protection that would 
likely extend under the BAU scenario. In contrast, the LUCC 
trend in Sil et al. (2017) showed a continuous increase in 
forest cover under the forest scenario. Our study's calculated 
sequestration rate under the ESP scenario was similar to 
those estimated by Sil et al. (2017).

Economic valuation

Our economic valuation of carbon sequestration resulted in 
a minimum of US$ -470.41  ha−1  yr−1 and a maximum of 
US$ 27.72  ha−1  yr−1 under the BAU scenario, and a min-
imum of US$ −342.09  ha−1  yr−1 to a maximum of US$ 
470.41  ha−1  yr−1 under the ESP scenario. Our results are 
in line with Sil et al. (2017), who found that the value of 
carbon sequestration with a different carbon price ranged 
from a minimum of US$ 13.5  ha−1  yr−1 when converting 
forest to grassland. The maximum was US$ 217  ha−1  yr−1 
when grassland was converted back to forest. Padilla et al. 
(2010) showed that in the case of intense human activities 
(conversion of forest to human settlement and farmland), 
the spatial distribution of carbon sequestration value varied 
from a minimum of US$ -1361.23  ha−1  yr−1 to a maximum 
of US$ + 230.43   ha−1   yr−1. In the landscape conserva-
tion scenario, this value ranged from a minimum of US$ 
-1349.24  ha−1  yr−1 to a maximum of US$ 1361.23  ha−1  yr−1. 
The different carbon price (US$ 67 per Mg carbon) used 
in their study was higher than the value used in our study. 
The differences between our results reflect the uncertainty 
of the economic valuation of carbon storage (Sil et al. 2017) 
and the preferences of future societies on climate mitigation 
(Fleurbaey et al. 2019), which are mainly derived from dif-
ferent prices of carbon and emission trajectories.



5940 International Journal of Environmental Science and Technology (2022) 19:5929–5944

1 3

Limitation and policy lesson

We recognized some limitations in our study. Firstly, we rec-
ognize the difficulties of directly sampling the carbon pools 
for precise measurements of carbon storage. Therefore, there 
remains a considerable level of uncertainty in the calculated 
values of carbon storage and sequestration, which could be 
an area of future research. Secondly, we carried out LULC 
classification considering five broad classes that lacked a 
detailed carbon storage and sequestration assessment. Future 
work may include a finer resolution of LULC categories to 
increase the accuracy of carbon storage values. However, 
the current land use categories were resolved high enough 
to meet our study objectives.

Nevertheless, our study highlights the integration of ESs 
in the context of spatial planning and land use management 
through the preparation of spatial ESs maps at the regional 
scale. The outputs of this integrated assessment demonstrate 
that there is potential monetary value associated with the 
carbon storage and sequestration. We have shown that ESs 
maps can be used to identify hot spots with high supply of 
multiple ESs. These results provide a useful guide to quan-
tify changes in carbon storage and sequestration that are 
driven by LUCC (Figs. 5, 6).

Additionally, we estimated the potential opportunity 
cost to farmers as a consequence of implementing the ESP 
scenario, as opposed to the BAU scenario. The difference 
in agricultural land use between BAU and ESP scenarios 
is 4.1%. Potential agricultural land forfeited between BAU 
and ESP scenario = catchment area × 4.1% = 36, 491  km2 × 
4.1% = 1,496  km2. Conversion from  km2  to acre: 1,496 
 km2 × 247 acre/km2 = 369,701 acres. The 2016 gross value 
of wheat production was US$ 206.35 per planted acre 
(Schaffer et al., 2018). Therefore, the maximum economic 
loss per year between BAU and ESP from not planting wheat 
is: 369,701 acres x US$ 206.35/acre = US$ 76.4 Million/
year. Projecting the BAU and ESP scenarios out over the 
next 25 years until 2046 and assuming that the agricultural 
land is fully utilized for all 25 years (i.e., agricultural expan-
sion is not gradual), the potential gross value of loss wheat 
protection between BAU and ESP scenario is: US$ 76.4 
Million/year × 25 years = US$ 1.91 billion. US $1.91 bil-
lion represents the potential loss in agricultural production 
between the BAU and ESP scenarios over the next 25 years. 
In comparison, the value of carbon sequestration over the 
next 25 years in the ESP scenario has been estimated to be 
worth US$ 44.5 million.

In fact, the environmental cost of LUCC for the short-
term economic benefit of the farmer has been associated 
with a reduction in the value and provision of carbon storage 
and sequestration ecosystem services over time. It is worth 
noting that the Jiroft plain is an arid ecosystem that depends 

mainly on groundwater for irrigation. Severe groundwa-
ter depletion has been observed in the region since 2000 
(Adelisardou et al. 2021), where groundwater levels have 
declined by up to 17 m (Agricultural Organization of Jiroft 
County 2017). Although it may appear that you can have 
all the agricultural land plus increase the forests, the cur-
rent rate of agricultural expansion is unsustainable in the 
Jiroft plain’s arid climate. As explained previously, the rate 
of groundwater extraction for irrigation is currently causing 
rapid depletion of groundwater storage. Furthermore, projec-
tions of climate change suggest that periods of low rainfall 
and drought will occur with greater frequency in the Jiroft 
plain, thus exacerbating the already dry conditions. Finding 
a sustainable trade-off between forests and agricultural land, 
given the variety of stakeholders, is a matter of optimizing 
land use in a dynamic and complex socio-ecological system.

Indeed, continued deforestation poses a serious threat to 
the residents' long-term well-being in the Jiroft plain. The 
BAU scenario is limited to only short-term economic ben-
efits for the local farmers and regional stakeholders through 
continued agricultural expansion. It is important to note that 
the BAU scenario is fundamentally unsustainable because 
over-expansion of agricultural land use has the potential to 
lead to local groundwater depletion and soil erosion issues 
that can eventually render the land agriculturally unproduc-
tive. Furthermore, our results show that the BAU scenario 
will dramatically reduce the overall carbon sequestration ser-
vices within the Jiroft plain, which may lead to intensified 
climate change (e.g., droughts) over the long-term.

As forest cover continues to decline, ESs management 
through effective land management policies should be car-
ried out (Bren d’Amour et al. 2017). The ESP scenario can 
be used as a guide to conserve the arid ecosystem at the 
landscape scale by applying local plans and training pro-
grams for the local communities. The development of pay-
ment schemes for ESs could be a way of protecting arid 
regions that tend to be overlooked locally. Implementing 
the land use scenario that emphasizes a reduction of carbon 
dioxide emissions (REDD + scenario) could offer a way for-
ward (UN-REDD Programme 2008). This scenario estimates 
the rate of excess carbon sequestration and then discusses 
the issue of paying for ESs. REDD + is a policy that finan-
cially rewards efforts to reduce deforestation and carbon 
emissions in developing countries. In this case, preventing 
deforestation and preserving excess carbon means reducing 
the economic damage associated with climate change.

From science to policy, this ensemble of results could 
be used to provide an essential basis for decision-making 
regarding planning and management in similar arid land-
scapes. Therefore, the planning frameworks at the regional 
and national scales should use LULC types that not only pre-
serve existing carbon stock level but also to promote higher 
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sequestration with different land cover. Future management 
policy should focus on continuous monitoring actions for 
both the LULC pattern and carbon pools dynamic to reduce 
the uncertainty of the predicted model and increase the capa-
bility of an ES-based approach to provide superior support 
in the policy process.

Conclusion

Our main object was to consider the spatiotemporal impacts 
of land use/cover change intensities on carbon storage 
and sequestration, as well as the associated cost of those 
changes. Such estimates in developing countries, such as 
Iran, have typically been associated with poor quality data 
concerns, weak technical knowledge to implement appro-
priate assessment methods, and centralization on a single 
timepoint. We overcame these limitations by integrating 
Google Earth Engine, Intensity Analysis, Cellular Automata 
Markov Chain, and the InVEST model, which we applied 
to the Jiroft plain in southeastern Iran. Dynamic analysis of 
carbon storage and sequestration provision and value at the 
landscape scale under different scenarios was performed. 
Our results indicated that land use/cover change can strongly 
influence the spatial pattern of carbon storage and sequestra-
tion in the Jiroft plain over time.

Furthermore, there was a substantial monetary value 
associated with carbon storage and sequestration in the 
Jiroft plain. The future landscape under different scenarios is 
likely to affect this value. Under the environmentally sound 
planning scenario, the potential of the plain for regulating 
ecosystem services such as carbon storage and sequestration 
was higher than the business as usual scenario. The down-
ward carbon sequestration trend could be reversed under the 
environmentally sound planning scenario estimated to save 
3,705,491 Mg in carbon storage, with an average seques-
tration gain of + 605,830 Mg. Under the business as usual 
scenario, loss of stored carbon could be (2,624,113 Mg) with 
an average sequestration loss of -475,547 Mg. Therefore, the 
areas with a high potential of losing carbon storage under the 
business as usual scenario (i.e., expanding agricultural and 
urban land cover) and gaining carbon sequestration under 
the environmentally sound planning scenario (i.e., forests) 
must exclusively be protected during the development of 
future land use/cover change policies. This ensemble of 
results could provide an integrated dynamic framework to 
the authorities for developing a systematic decision-making 
process by considering the spatiotemporal change on carbon 
storage and sequestration. This integrated process considers 
a combination of several criteria (e.g., environmental protec-
tion, sustainable agriculture, controlled development) and 
could be applied to similar dryland ecosystems regarding 
their planning and management.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13762- 021- 03676-6.

Acknowledgements The authors would like to thank the support 
provided by the Iran National Science Foundation (grant number: 
98012044), the National Natural Science Foundation of China, grant 
number 41861134038 and Eawag (Academic Transition Grant).

Author Contribution FA contributed to conceptualization, methodol-
ogy, software, writing—original draft preparation. WZ contributed to 
data curation, reviewing, and editing. RC contributed to reviewing and 
editing. PM contributed to data curation and reviewing. TM helped in 
reviewing and editing. JSS contributed to supervision and validation.

Funding Open Access funding provided by Lib4RI – Library for the 
Research Institutes within the ETH Domain: Eawag, Empa, PSI &  
WSL. 

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aalde H, Gonzalez P, Gytarsky M, Krug T, Kurz WA, Lasco RD, 
Martino DL, McConkey BG, Ogle S, Paustian K (2006) Generic 
methodologies applicable to multiple land-use categories. IPCC 
guidelines for national greenhouse gas in, n.d

Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing 
the impact of climate change on water resources in Iran. Water 
Resour Res. https:// doi. org/ 10. 1029/ 2008W R0076 15

Adelisardou F, Jafari HR, Malekmohammadi B, Minkina T, Zhao W, 
Karbassi A (2021) Impacts of land use and land cover change 
on the interactions among multiple soil-dependent ecosystem 
services (case study: Jiroft plain Iran). Environ Geochem Health 
43(10):3977–3996. https:// doi. org/ 10. 1007/ s10653- 021- 00875-5

Agricultural Organization of Jiroft County (2013) The situation, data 
Qual. Cultiv. Jiroft county. Kerman, Iran

Agricultural Organization of Jiroft County, 2017. situation, data Qual. 
Cultiv. Jiroft county. Kerman, Iran

Bagstad KJ, Semmens DJ, Winthrop R (2013) Comparing approaches 
to spatially explicit ecosystem service modeling: a case study 
from the San Pedro River. Arizona Ecosyst Serv 5:40–50. https:// 
doi. org/ 10. 1016/j. ecoser. 2013. 07. 007

Boix-Fayos C, de Vente J, Albaladejo J, Martínez-Mena M (2009) 
Soil carbon erosion and stock as affected by land use changes at 
the catchment scale in Mediterranean ecosystems. Agric Ecosyst 
Environ 133:75–85. https:// doi. org/ 10. 1016/j. agee. 2009. 05. 013

Bren d’Amour C, Reitsma F, Baiocchi G, Barthel S, Güneralp B, Erb 
K-H, Haberl H, Creutzig F, Seto KC (2017) Future urban land 
expansion and implications for global croplands. Proc Natl Acad 
Sci 114:8939–8944. https:// doi. org/ 10. 1073/ pnas. 16060 36114

Brovkin V, Boysen L, Arora VK, Boisier JP, Cadule P, Chini L, Claus-
sen M, Friedlingstein P, Gayler V, van den Hurk BJJM, Hurtt GC, 

https://doi.org/10.1007/s13762-021-03676-6
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1029/2008WR007615
https://doi.org/10.1007/s10653-021-00875-5
https://doi.org/10.1016/j.ecoser.2013.07.007
https://doi.org/10.1016/j.ecoser.2013.07.007
https://doi.org/10.1016/j.agee.2009.05.013
https://doi.org/10.1073/pnas.1606036114


5942 International Journal of Environmental Science and Technology (2022) 19:5929–5944

1 3

Jones CD, Kato E, de Noblet-Ducoudré N, Pacifico F, Pongratz J, 
Weiss M (2013) Effect of anthropogenic land-use and land-cover 
changes on climate and land carbon storage in CMIP5 projections 
for the Twenty-First Century. J Clim 26:6859–6881. https:// doi. 
org/ 10. 1175/ JCLI-D- 12- 00623.1

Canadell JG, Raupach MR (2008) Managing forests for climate change 
mitigation. Science 320:1456–1457. https:// doi. org/ 10. 1126/ 
scien ce. 11554 58

Cassidy L, Binford M, Southworth J, Barnes G (2010) Social and eco-
logical factors and land-use land-cover diversity in two provinces 
in southeast Asia. J Land Use Sci 5:277–306. https:// doi. org/ 10. 
1080/ 17474 23X. 2010. 500688

Ceschia E, Béziat P, Dejoux JF, Aubinet M, Bernhofer C, Bodson 
B, Buchmann N, Carrara A, Cellier P, Di Tommasi P, Elbers 
JA, Eugster W, Grünwald T, Jacobs CMJ, Jans WWP, Jones 
M, Kutsch W, Lanigan G, Magliulo E, Marloie O, Moors EJ, 
Moureaux C, Olioso A, Osborne B, Sanz MJ, Saunders M, Smith 
P, Soegaard H, Wattenbach M (2010) Management effects on 
net ecosystem carbon and GHG budgets at European crop sites. 
Agric Ecosyst Environ 139:363–383. https:// doi. org/ 10. 1016/j. 
agee. 2010. 09. 020

Cheng X, Yang Y, Li M, Dou X, Zhang Q (2013) The impact of agri-
cultural land use changes on soil organic carbon dynamics in the 
Danjiangkou Reservoir area of China. Plant Soil 366:415–424. 
https:// doi. org/ 10. 1007/ s11104- 012- 1446-6

Chuai X, Huang X, Lai L, Wang W, Peng J, Zhao R (2013) Land 
use structure optimization based on carbon storage in several 
regional terrestrial ecosystems across China. Environ Sci Policy 
25:50–61. https:// doi. org/ 10. 1016/j. envsci. 2012. 05. 005

Congalton RG (1991) A review of assessing the accuracy of classifica-
tions of remotely sensed data. Remote Sens Environ 37:35–46. 
https:// doi. org/ 10. 1016/ 0034- 4257(91) 90048-B

Cordingley JE, Newton AC, Rose RJ, Clarke RT, Bullock JM (2016) 
Can landscape-scale approaches to conservation management 
resolve biodiversity-ecosystem service trade-offs? J Appl Ecol 
53:96–105. https:// doi. org/ 10. 1111/ 1365- 2664. 12545

Crossman ND, Burkhard B, Nedkov S, Willemen L, Petz K, Palomo 
I, Drakou EG, Martín-Lopez B, McPhearson T, Boyanova K, 
Alkemade R, Egoh B, Dunbar MB, Maes J (2013) A blueprint 
for mapping and modelling ecosystem services. Ecosyst Serv 
4:4–14. https:// doi. org/ 10. 1016/j. ecoser. 2013. 02. 001

de Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat 
L, Christie M, Crossman N, Ghermandi A, Hein L, Hussain S, 
Kumar P, McVittie A, Portela R, Rodriguez LC, ten Brink P, 
van Beukering P (2012) Global estimates of the value of ecosys-
tems and their services in monetary units. Ecosyst Serv 1:50–61. 
https:// doi. org/ 10. 1016/j. ecoser. 2012. 07. 005

Eggleston H, Buendia L, Miwa K, Ngara T, Tanabe K (2006) IPCC 
guidelines for national greenhouse gas inventories. Institute for 
Global Environmental Strategies, Hayama, Japan

Egoh B, Bengtsson J, Lindborg R, Bullock J, Dixon A, Rouget M 
(2016) The importance of grasslands in providing ecosystem 
services: opportunities for poverty alleviation. In: Potschin M, 
Haines-Young R, Fish R, Turner RK (eds) Routledge Handbook 
of Ecosystem Services. Routledge, London and New York, pp 
978–113802

Egoh BN, Reyers B, Rouget M, Richardson DM (2011) Identifying pri-
ority areas for ecosystem service management in South African 
grasslands. J Environ Manage 92:1642–1650. https:// doi. org/ 10. 
1016/j. jenvm an. 2011. 01. 019

Favretto N, Stringer LC, Dougill AJ, Dallimer M, Perkins JS, Reed MS, 
Atlhopheng JR, Mulale K (2016) Multi-Criteria decision analysis 
to identify dryland ecosystem service trade-offs under different 
rangeland land uses. Ecosyst Serv 17:142–151. https:// doi. org/ 
10. 1016/j. ecoser. 2015. 12. 005

Fleurbaey M, Ferranna M, Budolfson M, Dennig F, Mintz-Woo K, 
Socolow R, Spears D, Zuber S (2019) The social cost of carbon: 
valuing inequality, risk, and population for climate policy. Monist 
102:84–109. https:// doi. org/ 10. 1093/ monist/ ony023

Fu Q, Li B, Hou Y, Bi X, Zhang X (2017) Effects of land use and 
climate change on ecosystem services in Central Asia’s arid 
regions: a case study in Altay Prefecture. China Sci Total Envi-
ron 607–608:633–646. https:// doi. org/ 10. 1016/j. scito tenv. 2017. 
06. 241

Gallant K, Withey P, Risk D, van Kooten GC, Spafford L (2020) 
Measurement and economic valuation of carbon sequestration 
in Nova Scotian wetlands. Ecol Econ 171:106619. https:// doi. 
org/ 10. 1016/j. ecole con. 2020. 106619

Ghosh P, Mukhopadhyay A, Chanda A, Mondal P, Akhand A, Mukher-
jee S, Nayak SK, Ghosh S, Mitra D, Ghosh T, Hazra S (2017) 
Application of cellular automata and Markov-chain model in 
geospatial environmental modeling- A review. Remote Sens 
Appl Soc Environ 5:64–77. https:// doi. org/ 10. 1016/j. rsase. 2017. 
01. 005

Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and esti-
mating tropical forest carbon stocks: making REDD a reality. 
Environ Res Lett 2:045023. https:// doi. org/ 10. 1088/ 1748- 9326/2/ 
4/ 045023

Google Earth (2015) Retrieved March 10, 2016, n.d. No Title
Google Earth Engine (2012) Retrieved February 5, 2014, from https: 

//earthengine. google. co., n.d. -
Grinand C, Maire GL, Vieilledent G, Razakamanarivo H, Razafimbelo 

T, Bernoux M (2017) Estimating temporal changes in soil carbon 
stocks at ecoregional scale in Madagascar using remote-sensing. 
Int J Appl Earth Obs Geoinf 54:1–14. https:// doi. org/ 10. 1016/j. 
jag. 2016. 09. 002

Haight RG, Bluffstone R, Kline JD, Coulston JW, Wear DN, Zook K 
(2020) Estimating the present value of carbon sequestration in 
U.S. forests, 2015–2050, for evaluating federal climate change 
mitigation policies. Agric Resour Econ Rev 49:150–177. https:// 
doi. org/ 10. 1017/ age. 2019. 20

Hamad R, Balzter H, Kolo K (2018) Predicting land use/land cover 
changes using a CA-Markov model under two different scenarios. 
Sustainability 10:3421. https:// doi. org/ 10. 3390/ su101 03421

Hauck J, Görg C, Varjopuro R, Ratamäki O, Maes J, Wittmer H, Jax 
K (2013) “Maps have an air of authority”: Potential benefits and 
challenges of ecosystem service maps at different levels of deci-
sion making. Ecosyst Serv 4:25–32. https:// doi. org/ 10. 1016/j. 
ecoser. 2012. 11. 003

He C, Zhang D, Huang Q, Zhao Y (2016) Assessing the potential 
impacts of urban expansion on regional carbon storage by link-
ing the LUSD-urban and InVEST models. Environ Model Softw 
75:44–58. https:// doi. org/ 10. 1016/j. envso ft. 2015. 09. 015

IPCC IPCC special report on carbon dioxide capture and storage (2005)
Cambridge University Press, U. K

IPCC Guidelines for National Greenhouse Gas Inventories (2006) 
Available at: http:// www. ipcc- nggip. iges. or. jp/ public/ 2006gl/ 
index. html

IPCC Special Report on Carbon Dioxide Capture and Storage (2005) 
Cambridge Univ Press. Cambridge

IPCC Special Report on Land Use Land-Use Change and Forestry 
(2000) Cambridge University Press, Cambridge

Iran statistical Yearbook (2017) Statistical Yearbook of Iran. Iranian 
Statistics Press, Tehran., n.d

Jiang W, Deng Y, Tang Z, Lei X, Chen Z (2017) Modelling the poten-
tial impacts of urban ecosystem changes on carbon storage under 
different scenarios by linking the CLUE-S and the InVEST mod-
els. Ecol Modell 345:30–40. https:// doi. org/ 10. 1016/j. ecolm odel. 
2016. 12. 002

Jiroft Municipal Statistics Bureau (2017) Stat. Yearb. Jiroft 1995–2017. 
Agric. Jahad Organ. Jiroft. Iran

https://doi.org/10.1175/JCLI-D-12-00623.1
https://doi.org/10.1175/JCLI-D-12-00623.1
https://doi.org/10.1126/science.1155458
https://doi.org/10.1126/science.1155458
https://doi.org/10.1080/1747423X.2010.500688
https://doi.org/10.1080/1747423X.2010.500688
https://doi.org/10.1016/j.agee.2010.09.020
https://doi.org/10.1016/j.agee.2010.09.020
https://doi.org/10.1007/s11104-012-1446-6
https://doi.org/10.1016/j.envsci.2012.05.005
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1111/1365-2664.12545
https://doi.org/10.1016/j.ecoser.2013.02.001
https://doi.org/10.1016/j.ecoser.2012.07.005
https://doi.org/10.1016/j.jenvman.2011.01.019
https://doi.org/10.1016/j.jenvman.2011.01.019
https://doi.org/10.1016/j.ecoser.2015.12.005
https://doi.org/10.1016/j.ecoser.2015.12.005
https://doi.org/10.1093/monist/ony023
https://doi.org/10.1016/j.scitotenv.2017.06.241
https://doi.org/10.1016/j.scitotenv.2017.06.241
https://doi.org/10.1016/j.ecolecon.2020.106619
https://doi.org/10.1016/j.ecolecon.2020.106619
https://doi.org/10.1016/j.rsase.2017.01.005
https://doi.org/10.1016/j.rsase.2017.01.005
https://doi.org/10.1088/1748-9326/2/4/045023
https://doi.org/10.1088/1748-9326/2/4/045023
https://doi.org/10.1016/j.jag.2016.09.002
https://doi.org/10.1016/j.jag.2016.09.002
https://doi.org/10.1017/age.2019.20
https://doi.org/10.1017/age.2019.20
https://doi.org/10.3390/su10103421
https://doi.org/10.1016/j.ecoser.2012.11.003
https://doi.org/10.1016/j.ecoser.2012.11.003
https://doi.org/10.1016/j.envsoft.2015.09.015
http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
https://doi.org/10.1016/j.ecolmodel.2016.12.002
https://doi.org/10.1016/j.ecolmodel.2016.12.002


5943International Journal of Environmental Science and Technology (2022) 19:5929–5944 

1 3

Kanianska R (2016) Agriculture and Its Impact on Land‐Use, Envi-
ronment, and Ecosystem Services, in: Landscape Ecology - The 
Influences of Land Use and Anthropogenic Impacts of Landscape 
Creation. InTech. https:// doi. org/ 10. 5772/ 63719

Kanime N, Kaushal R, Tewari SK, Raverkar KP, Chaturvedi S, Chatur-
vedi OP (2013) Biomass production and carbon sequestration in 
different tree-based systems of Central Himalayan Tarai region. 
For Trees Livelihoods 22:38–50. https:// doi. org/ 10. 1080/ 14728 
028. 2013. 764073

Kavzoglu T, Colkesen I (2009) A kernel functions analysis for support 
vector machines for land cover classification. Int J Appl Earth 
Obs Geoinf 11:352–359. https:// doi. org/ 10. 1016/j. jag. 2009. 06. 
002

Keller AA, Fournier E, Fox J (2015) Minimizing impacts of land use 
change on ecosystem services using multi-criteria heuristic 
analysis. J Environ Manage 156:23–30. https:// doi. org/ 10. 1016/j. 
jenvm an. 2015. 03. 017

Kerman Municipal Statistics Bureau (2015) Stat. Yearb. Kerman 1998–
2015. Agric. Jahad Organ. Kerman. Iran

Kerman Municipal Statistics Bureau (2018) Stat. Yearb. Kerman 1998–
2015. Agric. Jahad Organ. Kerman. Iran

Leh MDK, Matlock MD, Cummings EC, Nalley LL (2013) Quantify-
ing and mapping multiple ecosystem services change in West 
Africa. Agric Ecosyst Environ 165:6–18. https:// doi. org/ 10. 
1016/j. agee. 2012. 12. 001

Li L, Song Y, Wei X, Dong J (2020) Exploring the impacts of urban 
growth on carbon storage under integrated spatial regulation: a 
case study of Wuhan. China Ecol Indic 111:106064. https:// doi. 
org/ 10. 1016/j. ecoli nd. 2020. 106064

Liang Y, Liu L, Huang J (2017) Integrating the SD-CLUE-S and 
InVEST models into assessment of oasis carbon storage in north-
western China. PLoS ONE 12:e0172494. https:// doi. org/ 10. 1371/ 
journ al. pone. 01724 94

Lininger KB, Wohl E, Rose JR, Leisz SJ (2019) Significant floodplain 
soil organic carbon storage along a large High-Latitude River and 
its tributaries. Geophys Res Lett 46:2121–2129. https:// doi. org/ 
10. 1029/ 2018G L0809 96

Liping C, Yujun S, Saeed S (2018) Monitoring and predicting land 
use and land cover changes using remote sensing and GIS tech-
niques—A case study of a hilly area, Jiangle. China Plos One 
13:e0200493. https:// doi. org/ 10. 1371/ journ al. pone. 02004 93

Lu N, Wang M, Ning B, Yu D, Fu B (2018) Research advances in eco-
system services in drylands under global environmental changes. 
Curr Opin Environ Sustain 33:92–98. https:// doi. org/ 10. 1016/j. 
cosust. 2018. 05. 004

Lü Y, Ma Z, Zhao Z, Sun F, Fu B (2014) Effects of land use change on 
soil carbon storage and water consumption in an Oasis-Desert 
ecotone. Environ Manage 53:1066–1076. https:// doi. org/ 10. 
1007/ s00267- 014- 0262-6

Luo T, Xu M, Wang Z, Yu Z (2019) A comparative study on the per-
formance of three color schemes in landscape preference tests. 
J Environ Eng Landsc Manag 27:114–125. https:// doi. org/ 10. 
3846/ jeelm. 2019. 9805

MA (2005) Millennium Ecosystem Assessment. Ecosyst. Hum. Well-
Being Curr. State Trends, Press. Washington, DC

Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, 
Grizzetti B, Cardoso A, Somma F, Petersen J-E, Meiner A, Gela-
bert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K, Piroddi C, 
Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius 
V, Verboven J, Pereira HM, Bengtsson J, Gocheva K, Marta-
Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz J, Pérez-Soba 
M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, 
Czúcz B, Drakou EG, Zulian G, Lavalle C (2016) An indicator 
framework for assessing ecosystem services in support of the EU 
Biodiversity Strategy to 2020. Ecosyst Serv 17:14–23. https:// 
doi. org/ 10. 1016/j. ecoser. 2015. 10. 023

Maestre FT, Eldridge DJ, Soliveres S, Kéfi S, Delgado-Baquerizo M, 
Bowker MA, García-Palacios P, Gaitán J, Gallardo A, Lázaro R, 
Berdugo M (2016) Structure and functioning of dryland ecosys-
tems in a changing world. Annu Rev Ecol Evol Syst 47:215–237. 
https:// doi. org/ 10. 1146/ annur ev- ecols ys- 121415- 032311

Mahowald NM, Randerson JT, Lindsay K, Munoz E, Doney SC, Law-
rence P, Schlunegger S, Ward DS, Lawrence D, Hoffman FM 
(2017) Interactions between land use change and carbon cycle 
feedbacks. Global Biogeochem Cycles 31:96–113. https:// doi. 
org/ 10. 1002/ 2016G B0053 74

Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, 
New York

Mansouri Daneshvar MR, Ebrahimi M, Nejadsoleymani H (2019) An 
overview of climate change in Iran: facts and statistics. Environ 
Syst Res 8:7. https:// doi. org/ 10. 1186/ s40068- 019- 0135-3

Mazaheri M, Esfandiari M, Masihabadi MH, Kamali A (2013) 
Detecting temporal land use changes using remote sensing 
and GIS techniqes (Case study: Jiroft, Kerman Province). J. 
Appl. RS GIS Tech. Nat. Resour. Sci. 4. http: //isj.iup.ir/index.
aspx?pid=95744&jid=186

Melaku Canu D, Ghermandi A, Nunes PALD, Lazzari P, Cossarini 
G, Solidoro C (2015) Estimating the value of carbon sequestra-
tion ecosystem services in the Mediterranean Sea: an ecological 
economics approach. Glob Environ Chang 32:87–95. https:// doi. 
org/ 10. 1016/j. gloen vcha. 2015. 02. 008

Nonini L, Fiala M (2019) Estimation of carbon storage of forest bio-
mass for voluntary carbon markets: preliminary results. J For 
Res. https:// doi. org/ 10. 1007/ s11676- 019- 01074-w

Nordhaus W (2007) Economics: critical assumptions in the stern 
review on climate change. Science 317:201–202. https:// doi. org/ 
10. 1126/ scien ce. 11373 16

Ontl TA, Janowiak MK, Swanston CW, Daley J, Handler S, Cornett M, 
Hagenbuch S, Handrick C, Mccarthy L, Patch N (2020) Forest 
management for carbon sequestration and climate adaptation. J 
for 118:86–101. https:// doi. org/ 10. 1093/ jofore/ fvz062

Padilla FM, Vidal B, Sánchez J, Pugnaire FI (2010) Land-use changes 
and carbon sequestration through the twentieth century in a 
Mediterranean mountain ecosystem: implications for land man-
agement. J Environ Manage 91:2688–2695. https:// doi. org/ 10. 
1016/j. jenvm an. 2010. 07. 031

Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and 
fractions to different land-use changes across Europe. Geoderma 
192:189–201. https:// doi. org/ 10. 1016/j. geode rma. 2012. 08. 003

Polasky S, Nelson E, Pennington D, Johnson KA (2011) The impact 
of land-use change on ecosystem services, biodiversity and 
returns to landowners: a case study in the state of Minnesota. 
Environ Resour Econ 48:219–242. https:// doi. org/ 10. 1007/ 
s10640- 010- 9407-0

Pontius R, Gao Y, Giner N, Kohyama T, Osaki M, Hirose K (2013) 
Design and interpretation of intensity analysis illustrated by 
land change in Central Kalimantan, Indonesia. Land 2:351–369. 
https:// doi. org/ 10. 3390/ land2 030351

Rahbarian P, Sardoei AS (2014) Effects of drought stress and manure 
on dry herb yield and essential oil of Dragonhead Dracocphalum 
moldavica in Jiroft erea. Int J Biosci. https:// doi. org/ 10. 12692/ 
ijb/4. 9. 212- 217

Reddy CS, Singh S, Dadhwal VK, Jha CS, Rao NR, Diwakar PG 
(2017) Predictive modelling of the spatial pattern of past and 
future forest cover changes in India. J Earth Syst Sci 126:8. 
https:// doi. org/ 10. 1007/ s12040- 016- 0786-7

Redhead JW, Stratford C, Sharps K, Jones L, Ziv G, Clarke D, Oli-
ver TH, Bullock JM (2016) Empirical validation of the InVEST 
water yield ecosystem service model at a national scale. Sci Total 
Environ 569–570:1418–1426. https:// doi. org/ 10. 1016/j. scito tenv. 
2016. 06. 227

https://doi.org/10.5772/63719
https://doi.org/10.1080/14728028.2013.764073
https://doi.org/10.1080/14728028.2013.764073
https://doi.org/10.1016/j.jag.2009.06.002
https://doi.org/10.1016/j.jag.2009.06.002
https://doi.org/10.1016/j.jenvman.2015.03.017
https://doi.org/10.1016/j.jenvman.2015.03.017
https://doi.org/10.1016/j.agee.2012.12.001
https://doi.org/10.1016/j.agee.2012.12.001
https://doi.org/10.1016/j.ecolind.2020.106064
https://doi.org/10.1016/j.ecolind.2020.106064
https://doi.org/10.1371/journal.pone.0172494
https://doi.org/10.1371/journal.pone.0172494
https://doi.org/10.1029/2018GL080996
https://doi.org/10.1029/2018GL080996
https://doi.org/10.1371/journal.pone.0200493
https://doi.org/10.1016/j.cosust.2018.05.004
https://doi.org/10.1016/j.cosust.2018.05.004
https://doi.org/10.1007/s00267-014-0262-6
https://doi.org/10.1007/s00267-014-0262-6
https://doi.org/10.3846/jeelm.2019.9805
https://doi.org/10.3846/jeelm.2019.9805
https://doi.org/10.1016/j.ecoser.2015.10.023
https://doi.org/10.1016/j.ecoser.2015.10.023
https://doi.org/10.1146/annurev-ecolsys-121415-032311
https://doi.org/10.1002/2016GB005374
https://doi.org/10.1002/2016GB005374
https://doi.org/10.1186/s40068-019-0135-3
https://doi.org/10.1016/j.gloenvcha.2015.02.008
https://doi.org/10.1016/j.gloenvcha.2015.02.008
https://doi.org/10.1007/s11676-019-01074-w
https://doi.org/10.1126/science.1137316
https://doi.org/10.1126/science.1137316
https://doi.org/10.1093/jofore/fvz062
https://doi.org/10.1016/j.jenvman.2010.07.031
https://doi.org/10.1016/j.jenvman.2010.07.031
https://doi.org/10.1016/j.geoderma.2012.08.003
https://doi.org/10.1007/s10640-010-9407-0
https://doi.org/10.1007/s10640-010-9407-0
https://doi.org/10.3390/land2030351
https://doi.org/10.12692/ijb/4.9.212-217
https://doi.org/10.12692/ijb/4.9.212-217
https://doi.org/10.1007/s12040-016-0786-7
https://doi.org/10.1016/j.scitotenv.2016.06.227
https://doi.org/10.1016/j.scitotenv.2016.06.227


5944 International Journal of Environmental Science and Technology (2022) 19:5929–5944

1 3

Regmi RR, Saha SK, Subedi DS (2017) Geospatial analysis of land 
use land cover change modeling in Phewa Lake Watershed of 
Nepal by using GEOMOD model. Himal Phys. https:// doi. org/ 
10. 3126/ hj. v6i0. 18363

Samie A, Deng X, Jia S, Chen D (2017) Scenario-based simulation on 
dynamics of land-use-land-cover change in Punjab Province. Pak 
Sustain 9:1285. https:// doi. org/ 10. 3390/ su908 1285

Sánchez-Canales M, López Benito A, Passuello A, Terrado M, Ziv G, 
Acuña V, Schuhmacher M, Elorza FJ (2012) Sensitivity analysis 
of ecosystem service valuation in a Mediterranean watershed. 
Sci Total Environ 440:140–153. https:// doi. org/ 10. 1016/j. scito 
tenv. 2012. 07. 071

Sandker M, Campbell BM, Ruiz-Pérez M, Sayer JA, Cowling R, Kassa 
H, Knight AT (2010) The role of participatory modeling in land-
scape approaches to reconcile conservation and development. 
Ecol Soc. https:// doi. org/ 10. 5751/ ES- 03400- 150213

Sang X, Guo Q, Wu X, Fu Y, Xie T, He C, Zang J (2019) Inten-
sity and stationarity analysis of land use change based on 
CART algorithm. Sci Rep 9:12279. https:// doi. org/ 10. 1038/ 
s41598- 019- 48586-3

Sanjari S (2015) Evaluation of Land Use Change Trends in Jiroft Plain 
Using Remote Sensing Technique. First Sci. Congr. Dev. Promot. 
Agric. Sci. Nat. Resour. Environ. Iran, Tehran.(In Farsi)

Sayer JA, Margules C, Boedhihartono AK, Sunderland T, Langston 
JD, Reed J, Riggs R, Buck LE, Campbell BM, Kusters K, Elli-
ott C, Minang PA, Dale A, Purnomo H, Stevenson JR, Gunarso 
P, Purnomo A (2017) Measuring the effectiveness of landscape 
approaches to conservation and development. Sustain Sci 
12:465–476. https:// doi. org/ 10. 1007/ s11625- 016- 0415-z

Scandellari F, Caruso G, Liguori G, Meggio F, Palese Assunta M, 
Zanotelli D, Celano G, Gucci R, Inglese P, Pitacco A, Tagliavini 
M (2016) A survey of carbon sequestration potential of orchards 
and vineyards in Italy. Eur J Hortic Sci 81:106–114. https:// doi. 
org/ 10. 17660/ eJHS. 2016/ 81.2.4

Shangguan W, Dai Y, Duan Q, Liu B, Yuan H (2014) A global soil 
data set for earth system modeling. J Adv Model Earth Syst 
6:249–263. https:// doi. org/ 10. 1002/ 2013M S0002 93

Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer 
R, Vigerstol K (2020) InVEST user’s guide. The Natural Capital 
Project, Stanford

Sidhu N, Pebesma E, Câmara G (2018) Using Google Earth Engine to 
detect land cover change: Singapore as a use case. Eur J Remote 
Sens 51:486–500. https:// doi. org/ 10. 1080/ 22797 254. 2018. 14517 
82

Sil Â, Fonseca F, Gonçalves J, Honrado J, Marta-Pedroso C, Alonso J, 
Ramos M, Azevedo JC (2017) Analysing carbon sequestration 
and storage dynamics in a changing mountain landscape in Por-
tugal: insights for management and planning. Int J Biodivers Sci 
Ecosyst Serv Manag 13:82–104. https:// doi. org/ 10. 1080/ 21513 
732. 2017. 12973 31

Singh SK, Mustak S, Srivastava PK, Szabó S, Islam T (2015) Predict-
ing spatial and decadal LULC changes through cellular automata 
Markov Chain Models using earth observation datasets and geo-
information. Environ Process 2:61–78. https:// doi. org/ 10. 1007/ 
s40710- 015- 0062-x

Socolow RH (2005) Can we bury global warming? Sci Am 293:49–55. 
https:// doi. org/ 10. 1038/ scien tific ameri can07 05- 49

Socolow RH, Pacala SW (2006) A plan to keep carbon in check. Sci 
Am 295:50–57. https:// doi. org/ 10. 1038/ scien tific ameri can09 
06- 50

Stehman SV (1997) Selecting and interpreting measures of thematic 
classification accuracy. Remote Sens Environ 62:77–89. https:// 
doi. org/ 10. 1016/ S0034- 4257(97) 00083-7

Stern N (2007) The economics of climate change. Cambridge Uni-
versity Press, Cambridge. https:// doi. org/ 10. 1017/ CBO97 80511 
817434

Stringer LC, Dougill AJ, Thomas AD, Spracklen DV, Chesterman S, 
Speranza CI, Rueff H, Riddell M, Williams M, Beedy T, Abson 
DJ, Klintenberg P, Syampungani S, Powell P, Palmer AR, Seely 
MK, Mkwambisi DD, Falcao M, Sitoe A, Ross S, Kopolo G 
(2012) Challenges and opportunities in linking carbon seques-
tration, livelihoods and ecosystem service provision in drylands. 
Environ Sci Policy 19–20:121–135. https:// doi. org/ 10. 1016/j. 
envsci. 2012. 02. 004

Tallis HT, Ricketts T, Guerry AD, Wood SA, Sharp R, Nelson E, Pen-
nington D (2013) Capital Project: Stanford. InVEST 2.5. 6 user’s 
Guid. Nat. Cap. Proj. Stanford, CA, USA

Teixeira Z, Marques JC, Pontius RG (2016) Evidence for deviations 
from uniform changes in a Portuguese watershed illustrated 
by CORINE maps: an Intensity Analysis approach. Ecol Indic 
66:382–390. https:// doi. org/ 10. 1016/j. ecoli nd. 2016. 01. 018

UN-REDD Programme, 2008. . https:// www. un- redd. org/
UNDP and climate change (2015) Available from https//www. undp. 

org/ conte nt/ undp/ en/ home/ libra rypage/ clima te- and- disas ter- resil 
ience-/ undp- and- clima te- change. html.

Wang S, Wang Q, Adhikari K, Jia S, Jin X, Liu H (2016) Spatial-
Temporal changes of soil organic carbon content in Wafangdian. 
China Sustainability 8:1154. https:// doi. org/ 10. 3390/ su811 1154

Wang X, Qie S (2018) When to invest in carbon capture and storage: a 
perspective of supply chain. Comput Ind Eng 123:26–32. https:// 
doi. org/ 10. 1016/j. cie. 2018. 06. 006

White RP, Nackoney J (2003) Drylands, people and ecosystem goods 
and services: a web-based geospatial analysis. World Resources 
Institute, Washington, D.C., USA

Wu H, Li Z, Clarke KC, Shi W, Fang L, Lin A, Zhou J (2019) Examin-
ing the sensitivity of spatial scale in cellular automata Markov 
chain simulation of land use change. Int J Geogr Inf Sci 33:1040–
1061. https:// doi. org/ 10. 1080/ 13658 816. 2019. 15684 41

Yang H, Huang J, Liu D (2020) Linking climate change and socio-
economic development to urban land use simulation: analy-
sis of their concurrent effects on carbon storage. Appl Geogr 
115:102135. https:// doi. org/ 10. 1016/j. apgeog. 2019. 102135

Yavari AR, Bahreini H (2001) Landuse planning, using simple capabil-
ity zoning method. Environ Stud 27:124–132

Yirsaw E, Wu W, Shi X, Temesgen H, Bekele B (2017) Land use/
land cover change modeling and the prediction of subsequent 
changes in ecosystem service values in a coastal area of China, 
the Su-Xi-Chang region. Sustainability 9:1204. https:// doi. org/ 
10. 3390/ su907 1204

Yuan K, Li F, Yang H, Wang Y (2019) The influence of land use 
change on ecosystem service value in Shangzhou District. Int 
J Environ Res Public Health 16:1321. https:// doi. org/ 10. 3390/ 
ijerp h1608 1321

Zhang M, Huang X, Chuai X, Yang H, Lai L, Tan J (2015) Impact of 
land use type conversion on carbon storage in terrestrial ecosys-
tems of China: a spatial-temporal perspective. Sci Rep 5:10233. 
https:// doi. org/ 10. 1038/ srep1 0233

Zhao S, Tang Y, Chen A (2016) Carbon storage and sequestration of 
Urban Street trees in Beijing. China Front Ecol Evol. https:// doi. 
org/ 10. 3389/ fevo. 2016. 00053

Zhao Z, Liu G, Mou N, Xie Y, Xu Z, Li Y (2018) Assessment of carbon 
storage and its influencing factors in Qinghai-Tibet plateau. Sus-
tainability 10:1864. https:// doi. org/ 10. 3390/ su100 61864

Zhou D, Lin Z, Liu L (2012) Regional land salinization assessment 
and simulation through cellular automaton-Markov modeling and 
spatial pattern analysis. Sci Total Environ 439:260–274. https:// 
doi. org/ 10. 1016/j. scito tenv. 2012. 09. 013

Zhou P, Huang J, Pontius R, Hong H (2014) Land classification and 
change intensity analysis in a Coastal Watershed of Southeast 
China. Sensors 14:11640–11658. https:// doi. org/ 10. 3390/ s1407 
11640

https://doi.org/10.3126/hj.v6i0.18363
https://doi.org/10.3126/hj.v6i0.18363
https://doi.org/10.3390/su9081285
https://doi.org/10.1016/j.scitotenv.2012.07.071
https://doi.org/10.1016/j.scitotenv.2012.07.071
https://doi.org/10.5751/ES-03400-150213
https://doi.org/10.1038/s41598-019-48586-3
https://doi.org/10.1038/s41598-019-48586-3
https://doi.org/10.1007/s11625-016-0415-z
https://doi.org/10.17660/eJHS.2016/81.2.4
https://doi.org/10.17660/eJHS.2016/81.2.4
https://doi.org/10.1002/2013MS000293
https://doi.org/10.1080/22797254.2018.1451782
https://doi.org/10.1080/22797254.2018.1451782
https://doi.org/10.1080/21513732.2017.1297331
https://doi.org/10.1080/21513732.2017.1297331
https://doi.org/10.1007/s40710-015-0062-x
https://doi.org/10.1007/s40710-015-0062-x
https://doi.org/10.1038/scientificamerican0705-49
https://doi.org/10.1038/scientificamerican0906-50
https://doi.org/10.1038/scientificamerican0906-50
https://doi.org/10.1016/S0034-4257(97)00083-7
https://doi.org/10.1016/S0034-4257(97)00083-7
https://doi.org/10.1017/CBO9780511817434
https://doi.org/10.1017/CBO9780511817434
https://doi.org/10.1016/j.envsci.2012.02.004
https://doi.org/10.1016/j.envsci.2012.02.004
https://doi.org/10.1016/j.ecolind.2016.01.018
https://www.un-redd.org/
http://www.undp.org/content/undp/en/home/librarypage/climate-and-disaster-resilience-/undp-and-climate-change.html
http://www.undp.org/content/undp/en/home/librarypage/climate-and-disaster-resilience-/undp-and-climate-change.html
http://www.undp.org/content/undp/en/home/librarypage/climate-and-disaster-resilience-/undp-and-climate-change.html
https://doi.org/10.3390/su8111154
https://doi.org/10.1016/j.cie.2018.06.006
https://doi.org/10.1016/j.cie.2018.06.006
https://doi.org/10.1080/13658816.2019.1568441
https://doi.org/10.1016/j.apgeog.2019.102135
https://doi.org/10.3390/su9071204
https://doi.org/10.3390/su9071204
https://doi.org/10.3390/ijerph16081321
https://doi.org/10.3390/ijerph16081321
https://doi.org/10.1038/srep10233
https://doi.org/10.3389/fevo.2016.00053
https://doi.org/10.3389/fevo.2016.00053
https://doi.org/10.3390/su10061864
https://doi.org/10.1016/j.scitotenv.2012.09.013
https://doi.org/10.1016/j.scitotenv.2012.09.013
https://doi.org/10.3390/s140711640
https://doi.org/10.3390/s140711640

	Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran)
	Abstract
	Introduction
	Material and methods
	Study area
	Methods
	Data description of LULC prepared by GEE
	Accuracy assessment

	Change detection of LULC through the Intensity Analysis (IA) method
	Cellular Automata–Markov chain (CA-MC) model implementation
	Modeling of carbon storage and sequestration through InVEST

	Results
	Detection of LUCC by IA method
	Measuring quantitative changes of carbon at the landscape
	Carbon sequestration valuation

	Discussion
	Driving factors of LUCC and carbon dynamics
	Explanation of carbon at fine spatial and temporal scales
	Economic valuation
	Limitation and policy lesson

	Conclusion
	Acknowledgements 
	References




