
1. Introduction
1.1. Regionalization of Hydrological Model Parameter Values

Continuous daily streamflow information is crucial for many practical purposes related to assessing and 
managing water resources or water-related hazards. However, many catchments of interest are poorly 

Abstract Model parameter values for ungauged catchments can be regionalized from hydrologically 
similar gauged catchments. Achieving reliable and robust predictions in ungauged catchments by 
regionalization, however, is still a major challenge. Here, we conduct a comparative assessment of 19 
regionalization approaches based on previously published literature to contribute new insights into 
their performance in different geographic regions. The approaches use geographical information, 
physical catchment attributes, hydrological signatures, or a combination thereof to select donor 
catchments and to subsequently transfer their entire parameter sets to the ungauged receiver catchment. 
Each regionalization approach was tested in a leave-one-out cross-validation with a bucket-type 
catchment model (the HBV model) using 671 gauged catchments in the United States with a diverse 
hydroclimatology. We then evaluated regionalization performance for several hydrograph aspects, 
compared it against calibration and regionalization benchmarks, and linked it to catchment descriptors. 
The results of this large-sample regionalization study can be summarized in three major lessons: (a) 
Catchments can benefit from a well-chosen regionalization approach independent of their geographic 
region and independent of how well they can be modeled or regionalized at best. (b) Almost perfect 
donors exist for most catchments and an excellent relative model performance can be reached for most 
catchments with current regionalization approaches. This implies that there is considerable potential for 
improvement in the prediction in ungauged catchments. (c) The ranking of regionalization approaches 
depends on how the predicted hydrographs are evaluated. These findings indicate that a multi-criteria 
evaluation is essential for a robust assessment of regionalization performance.

Plain Language Summary Information on streamflow is crucial for good water resources 
management including the mitigation of water-related hazards. However, for many catchments there is 
a lack of streamflow information. In such situations, streamflow is often estimated using hydrological 
models, whereby model parameterizations are transferred (i.e., regionalized) from hydrologically similar 
gauged catchments. Reliable estimates in data-scarce regions are still a major challenge in hydrology 
despite the large number of regionalization approaches proposed in the past decades. Here, we conduct a 
systematic and standardized assessment of 19 existing regionalization approaches using 671 catchments in 
the United States. Our findings suggest that widely used regionalization approaches can result in excellent 
model performance for most catchments, whereby approaches considering spatial proximity and any kind 
of volume information are among the most promising ones. While volume information is per definition 
missing in ungauged catchments, it could possibly be derived from a small number of field measurements 
or estimated through statistical analysis. However, the most suitable approach can vary considerably 
among catchments, and an improved understanding of the characteristics and parameter values of great 
donors and their relationship to an ungauged catchment will be key to advance regionalization further.
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gauged or ungauged and lack the required hydrological information. Streamflow predictions in ungauged 
catchments are traditionally based on hydrological models (Parajka et al., 2013), whereby model parame-
ter values in the ungauged catchment need to be inferred (regionalized) based on information from other 
gauged catchments (Blöschl & Sivapalan,  1995). Achieving robust and reliable predictions in ungauged 
catchments by regionalizing model parameters is a major challenge in hydrology (Hrachowitz et al., 2013).

Many approaches have been proposed to regionalize model parameters (see reviews by, e.g., He et al., 2011; 
Hrachowitz et al., 2013; Parajka et al., 2013; Razavi & Coulibaly, 2013). The most widely applied regionaliza-
tion approaches can be broadly classified into two groups: (a) regression-based methods that relate individu-
al model parameters to catchment characteristics (e.g., Seibert, 1999; Skaugen et al., 2015; Song et al., 2019) 
and (b) distance-based methods where entire parameter sets are transferred between hydrologically similar 
catchments using spatial proximity or catchment attributes (see early work by, e.g., Kokkonen et al., 2003; 
McIntyre et al., 2005; Oudin et al., 2008; Parajka et al., 2005), or any hydrological information available (e.g., 
Masih et al., 2010; Pool et al., 2019; Rojas-Serna et al., 2016) as a similarity metric. Regression-based ap-
proaches have been criticized for ignoring equifinality and the dependency of values for the different model 
parameters (Arsenault & Brissette, 2014; Bárdossy, 2007; McIntyre et al., 2005). Consequently, correlations 
between parameter values and catchment attributes are often weak or cannot be hydrologically justified 
(Oudin et al., 2008; Seibert, 1999; Skaugen et al., 2015). Distance-based approaches acknowledge parameter 
dependency by transferring entire parameter value sets; however, their success depends on identifying a 
suitable similarity metric. For example, spatial proximity may only be an appropriate similarity metric in 
data-rich regions (Lebecherel et al., 2016; Neri et al., 2020) or where hydrological processes vary smoothly 
in space (He et al., 2011). On the other hand, the use of catchment attributes for defining similarity can be 
confounded by the lack of characteristics representing hydrological processes (Oudin et al., 2010) or miss-
ing spatial patterns of characteristics controlling model parameter values (Merz et al., 2020).

While all these regionalization approaches have their strengths and weaknesses, there is a tendency toward 
a somewhat lower performance of regression-based methods than distance-based methods (Arsenault & 
Brissette, 2014; Bao et al., 2012; McIntyre et al., 2005; Oudin et al., 2008; Yang et al., 2018). However, blend-
ing regression with spatial proximity or attribute similarity (Arsenault & Brissette, 2014), combining spatial 
proximity and attribute similarity (Zhang & Chiew, 2009; Yang et al., 2018), or considering (regionalized) 
streamflow information (Masih et al., 2010; Pool et al., 2019; Rojas-Serna et al., 2016) can improve predic-
tions in ungauged catchments. The review of Parajka et al. (2013) further highlights the important role of 
climate for regionalization performance. While the performance is generally higher in humid catchments 
than in arid catchments, the most successful regionalization approach is likely different for a humid catch-
ment than an arid catchment. Yang et al. (2020) showed that climate may outweigh the difference between 
regionalization approaches even within a relatively narrow range of humid high-latitude climates. Despite 
these general tendencies, there is considerable disagreement among studies regarding choosing the most 
appropriate regionalization approach (He et al., 2011; Parajka et al., 2013; Razavi & Coulibaly, 2013). In-
deed, Parajka et al. (2013) found that the performance for a given approach typically differs more between 
studies than between approaches tested within a single study.

One reason for the lack of consensus among regionalization studies could be related to the use of different 
performance metrics. The choices related to these metrics can affect regionalization performance in multi-
ple ways. First, the performance metric used during the calibration process directly affects model parameter 
values (see review by, e.g., Efstratiadis & Koutsoyiannis, 2010). The calibrated parameter values of a gauged 
catchment are the foundation of regionalization and can significantly influence donor suitability (Singh 
et al., 2014) or regression models (Song et al., 2019). Calibration metrics have so far received little attention 
in regionalization studies, and their impact on the success of a given regionalization approach has not 
yet been explored in a comparative large-sample study. Second, performance metrics largely define which 
hydrograph aspects and catchment processes a simulation is evaluated on (e.g., Legates & McCabe, 1999; 
Madsen, 2000; Yilmaz et al., 2008). The separate consideration of several hydrograph aspects enables a com-
prehensive assessment of regionalization performance (e.g., Viglione et al., 2013; Rojas-Serna et al., 2016; 
Yang et al., 2020) and facilitates their comparison between studies (Parajka et al., 2013). Despite the benefits 
of such multi-objective evaluations, these are still not consistently applied. Finally, the success of regionali-
zation approaches is often judged based on the value of the chosen performance metric. However, the same 
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performance value can have a different meaning for different catchments. A value might be considered 
to have a good performance in one catchment (e.g., if hydrological processes are complex or observation 
uncertainty is high), while the same value might indicate a rather unsatisfactory performance in another 
catchment (e.g., if the hydrological response is strongly linked to precipitation or high-quality data are 
available). This complicates the comparison of model performance across catchments, in particular, if they 
have contrasting runoff regimes (Schaefli & Gupta, 2007; Seibert et al., 2018). Therefore, Seibert et al. (2018) 
advocated the use of relative model performance metrics that are based on an upper and a lower benchmark 
which are computed from simulations based on a local calibration and a random parameterization. In the 
context of regionalization, we suggest extending the concept of upper and lower benchmarks with region-
alization benchmarks.

The comparison of regionalization studies is further complicated by the varying diversity and number of 
study catchments. A considerable number of large-sample studies (including several tens to thousands 
of catchments) were conducted with relatively humid catchments of varying snowiness in Europe (see 
recent work by, e.g., de Lavenne et  al.,  2019; Neri et  al.,  2020; Merz et  al.,  2020; Yang et  al.,  2020) and 
Canada (e.g., Arsenault & Brissette, 2014; Razavi & Coulibaly, 2016). In contrast, studies including (semi-)  
arid catchments are less abundant and were often based on a smaller number of catchments (about 20 
to hundred catchments; Bao et al., 2012; Petheram et al., 2012; Post, 2009). The more recently published 
CAMELS large-sample data set with 671 catchments in the United States (Addor et  al.,  2017; Newman 
et  al.,  2015) may bring new insights into the spatially varying value of regionalization approaches. The 
large range of streamflow responses encountered in the CAMELS data set can further enhance the chance 
of finding hydrologically similar donor catchments and potentially reduce the risk of isolated catchments 
(Bárdossy, 2007; Oudin et al., 2010).

1.2. An Example of Opportunities and Challenges of Finding Suitable Donors in a Large-Sample 
Data Set

A fundamental question when using the donor catchment approach is whether there are suitable donors 
at all and how common these are. An initial analysis indicated opportunities and challenges of finding 
suitable donor catchments in the CAMELS data set. We calibrated the HBV model to all 671 catchments 
and, for each catchment, tested the other 670 catchments as a donor for the parameter values. Figure 1 
shows the percentage of donor catchments exceeding certain relative performance values (R*NP) as defined 
in Seibert et al. (2018). A relative performance value of zero corresponds to a donor catchment performing 

Figure 1. Opportunities and challenges of finding suitable donors in a hydrologically diverse large-sample data set 
with 671 catchments in the United States. Each of the 671 catchments was calibrated using RNP (see Section 2.2.2 
for more details), and the resulting parameter sets were evaluated for their performance as a donor for each of the 
other 670 catchments. Calibration and evaluation were conducted during the simulation period from October 1, 1989 
to September 30, 1999. The lines indicate the percentage of donor catchments giving a particular regionalization 
performance for a hypothetically ungauged catchment. The performance R*NP equals 0 for the regionalization with 
random parameter values and R*NP equals 1 for a local calibration of the hypothetically ungauged catchment.
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as well as randomly selected parameter sets. In contrast, a value of one corresponds to a donor catchment 
with a similar performance as calibrating the receiver catchment. From the line corresponding to a relative 
performance of zero, one can see that for 50% of the hypothetically ungauged catchments, more than 40% 
of the donor catchments perform at least as well as randomly selected parameter sets. For the other 60% 
of the donor catchments, one would be better off using random parameter sets. The set of potential do-
nor catchments becomes significantly smaller for higher relative performances. For a relative performance 
value of 0.7, half of the hypothetically ungauged catchments have at most 23 suitable donor catchments. 
However, at least three potential donors exist for 85% of the hypothetically ungauged catchments. When 
increasing the relative performance threshold further to 0.9, there is at least still one suitable donor catch-
ment for each of the hypothetically ungauged catchments. On the other hand, for 40% of the catchments, 
only one donor exceeds the performance threshold. In other words, although sometimes limited in number, 
potentially suitable donor catchments exist, but the challenge remains to find these suitable donors. What 
are their characteristics, and to which extent are the different regionalization approaches able to find these 
best donor catchment(s)?

1.3. Scope of This Study

Following the initial analysis presented in the previous section, we conducted a comparative assessment of 
19 distance-based regionalization approaches using the hydrologically diverse CAMELS data set with 671 
catchments in the contiguous United States. The approaches were defined based on previously published 
literature, whereby geographical information, physical catchment attributes, hydrological information, or 
any combination thereof was used to select donor catchments. The performance of the tested regionaliza-
tion approaches was evaluated in a leave-one-out cross-validation approach, and using the semi-distributed 
HBV-light model (Seibert & Vis, 2012). With the comparative assessment, we aim to contribute new insights 
into the performance of different regionalization approaches through a systematic comparison and a ho-
mogenized modeling protocol (i.e., identical model structure, as well as calibration and evaluation process-
es). In this study, we address three long-standing research questions from a new or extended perspective:

1.  What performance can be expected for predictions in different geographic regions?
 We address this question by introducing the idea of a regionalization benchmark. This benchmark 
provides a realistic reference of what could be achieved at best and what should be expected at least 
with regionalized parameter sets in different geographic regions.

2.  Is there a best regionalization approach?
 We complement the common practice of ranking regionalization approaches with an assessment of 
the robustness of such rankings when using different performance metrics. The ranking at the con-
tinental scale is accompanied by a catchment-specific search for the best regionalization approach.

3.  What makes a good donor catchment?
 With this question, we move beyond the classical search for the best regionalization approach and 
instead start exploring the characteristics and parameter sensitivity of the best available donor 
catchments.

2. Data and Methods
2.1. Study Catchments

This study is based on 671 catchments in the contiguous United States with minimal human influence 
(Newman et al., 2015). The catchments are distributed across the major watersheds of the United States 
(HUC2 region; USGS, 2020; Figure A1) and cover a wide range of climatic conditions, topographic aspects, 
and surface and subsurface properties (Table 1; Addor et al., 2017). The climatic conditions dominate the 
runoff response at the continental scale (Berghuijs et al., 2014; Jehn et al., 2020), which leads to five major 
runoff regimes (Brunner et al., 2020): (a) a New Year’s regime in the Northwest, (b) a snowmelt dominated 
regime in the Rocky Mountains, (c) an intermittent runoff regime in the central part of the United States, 
(d) a weak winter regime along the Atlantic Coast and in the Great Lakes region, and (e) a strong winter 
regime in the Appalachian region of the eastern United States. The runoff response within these regimes 
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is relatively diverse in the western regions, where topographic aspects and subsurface properties can vary 
considerably over short distances (Jehn et al., 2020).

Data for each catchment were retrieved from the CAMELS data set that provides daily hydrometeorological 
time series (Newman et al., 2015), and a large number of catchment attributes (Addor et al., 2017) aggre-
gated at the catchment scale. The meteorological time series for each catchment were derived from the 
spatially distributed Daymet data set (1 km by 1 km) by calculating area-weighted catchment mean values 
(Newman et al., 2015). Here, the meteorological data of Newman et al. (2015) was further used to calculate 
monthly potential evaporation with the Priestley-Taylor equation (Priestley & Taylor, 1972). Additionally, 
we extracted the wetland fraction of each catchment from the Global Lakes and Wetlands Database (Leh-
ner & Döll, 2004), and computed the catchment average recession slopes using the EflowStats R-package 
(USGS, 2014). The computed wetland fraction and recession slopes are provided in the Data Set S1. Detailed 
topographic information was obtained from the SRTM data (90 m by 90 m; Jarvis et al., 2008).

2.2. Rainfall-Runoff Model Structure and Calibration

2.2.1. The HBV Model

The regionalization approaches were used to transfer the model parameters of the HBV rainfall-runoff 
model (Bergström, 1976; Lindström et al., 1997). HBV is a bucket-type model, with four routines and 12 
parameters that simulate the hydrological response to daily temperature, daily precipitation, and long-term 
mean monthly potential evaporation. Temperature and precipitation are first input to the snow routine in 
which snow accumulation and melt are computed using a degree-day method. Snowmelt and rainfall infil-
trate into the soil routine from which actual evaporation and groundwater recharge occur as a function of 
soil water content and potential evaporation. The groundwater routine consists of a shallow storage with 
two outflows and a deep storage with one outflow that generate peak flow, intermediate flow, and baseflow, 
respectively. All three flow components are summed up and in the routing routine and transformed by a 
triangular weighting function to simulate discharge at the catchment outlet. More details on the model 
structure and parameters can be found in Seibert and Vis (2012) and the supporting information (Figure S2 
and Table S1).

Physical attributes and hydrological signatures 5th percentile Median Mean 95th percentile

Area [km2] 22 341 808 2,921

Ariditya [–] 0.36 0.86 1.06 2.37

Precipitation seasonalityb [–] −1.14 0.08 −0.04 0.74

Snowfall fraction [–] 0.00 0.10 0.18 0.67

Wetland fraction [–] 0.00 0.00 0.16 0.95

Forest fraction [–] 0.00 0.81 0.64 1.00

Clay faction [–] 0.06 0.19 0.20 0.37

Runoff ratioc [–] 0.05 0.35 0.39 0.85

Mean daily discharge [mm/day] 0.07 1.13 1.49 5.38

Low flows (Q5) [mm/day] 0.00 0.08 0.17 0.65

High flows (Q95) [mm/day] 0.22 3.77 5.06 16.52

Mean half-flow date [Julian date] 135 174 183 246

Recession slope [mm/day] 0.04 0.09 0.11 0.20

Note. The catchment characteristics are divided into physical attributes and hydrological signatures. Histograms for the physical attributes and hydrological 
signatures are shown in Figure S1.
aAridity is defined as the ratio of potential evaporation to precipitation. bPrecipitation seasonality, whereby positive (negative) values indicate a tendency for 
summer (winter) precipitation. cRunoff ratio is defined as the ratio of discharge to precipitation.

Table 1 
Summary Statistics of Catchment Characteristics of the 671 Study Catchments
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In this study, we used the semi-distributed HBV-light version (Seibert & Vis, 2012), whereby each catchment 
was divided into elevation bands of 200 m. The semi-distributed character simulates snow dynamics and 
soil-water-related processes for each elevation band separately while keeping a single groundwater storage 
for the entire catchment. To create the semi-distributed forcing input, we linearly interpolated the catch-
ment mean temperature and precipitation data of the CAMELS data set from the area-weighted reference 
elevation to all elevation bands using a constant lapse rate of −0.6°C per 100 m (Wallace & Hobbs, 2006) 
and 10% per 100 m (Johansson, 2000), respectively. The methodology ensures that the catchment mean val-
ues of temperature and precipitation are unchanged compared to the Dayment data while representing an 
elevation effect on temperature and precipitation. For potential evaporation, we used a constant areal mean 
value within the entire catchment area.

2.2.2. Model Calibration

The HBV-light model was calibrated for each catchment using continuous daily discharge and meteorolog-
ical data between October 1, 1989 and September 30, 1999. The two years preceding the calibration period 
were used for model warming-up to start simulations from realistic initial storage values. Model parameter 
values were optimized within predefined feasible ranges (adapted from Seibert & Vis, 2012) using a genet-
ic algorithm (Seibert, 2000) that selected and recombined a randomly created initial population with 50 
parameter sets over 3,500 simulation runs. The optimization of parameter values was repeated 10 times to 
account for parameter uncertainty and equifinality (Beven & Freer, 2001).

We conducted two independent model calibrations using the Kling-Gupta efficiency RKG (Gupta et al., 2009) 
and its non-parametric variant RNP (Pool et al., 2018) as objective functions. Both objective functions com-
prise three error terms that are combined into a scalar using the Euclidean distance. The three error terms 
evaluate (a) mean discharge using the bias in mean discharge β, (b) flow variability using the bias in the 
standard deviation αKG for RKG and the absolute error in the normalized flow duration curve αNP for RNP, and 
(c) flow dynamics using the Pearson correlation rP for RKG and the Spearman rank correlation rS for RNP. Dif-
ferences in the formulation of the variability and dynamic terms of RKG and RNP were shown to be reflected 
in the simulated hydrographs. RKG tends to focus on the magnitude and timing of high flows, whereas RNP 
leads to a more balanced evaluation of a broad range of hydrograph aspects (Pool et al., 2018). The math-
ematical formulations of RKG (Equation 1; Gupta et al., 2009) and RNP (Equation 2; Pool et al., 2018) are as 
follows:

            
2 2 2

KG KG1 1 1 1PR r (1)

            
2 2 2

NP NP1 1 1 1SR r (2)

with:   Q Qsim obs/ ;   
KG sim obs

/ Q Q ; 
NP sim sim obs obs

         


1 1 2
1

/ / /
k

n

Q I k nQ Q J k nQ ; 
 Pearson correlation coefficientPE r ;  Spearman rank correlation coefficientSE r . Qsim and Qobs are simulated and 

observed discharge, Qsim (I(k)) and Qobs (J(k)) are simulated and observed discharge with rank k, n is the 
length of the time series, and σ is the standard deviation.

2.3. Regionalization

2.3.1. Regionalization Approaches

Many regionalization approaches have been proposed over the last decades for transferring entire pa-
rameter sets from gauged donor catchments to an ungauged receiver catchment (see reviews by, e.g., He 
et  al.,  2011; Parajka et  al.,  2013; Razavi & Coulibaly,  2013). In this study, we assessed the performance 
of 19 regionalization approaches that we defined based on previously published hydrological literature. 
The regionalization approaches follow two main strategies to select donor catchments: (a) Five approaches 
select donors from a prior catchment classification (Gottschalk et al., 1979). We chose five classifications 
representing a wide range of classification variables to ensure diversity in the selection of donors for re-
gionalization. The tested classifications are either based on geographical aspects (USGS, 2020), catchment 
attributes (Berghuijs et al., 2014), or hydrological signatures (Brunner et al., 2020; Jehn et al., 2020; Schaller 
& Fan, 2009) and consist of a varying number of classes and class members. For regionalization, all gauged 
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catchments within the same class as the ungauged catchment were selected as donor catchments. (a) 14 
approaches select donors from flexibly defined regions of similar catchments that are delineated specifical-
ly for every ungauged catchment (i.e., region of influence approach proposed by Burn, 1990). Catchment 
similarity was thereby defined using the Euclidean distance (Burn, 1990; McIntyre et al., 2005) in the geo-
graphical space, attribute space or signature space. Since these catchment descriptors have different units 
and distributions, they were standardized with a z-transformation before calculating the similarity metric 
(Milligan & Cooper, 1988). The three gauged catchments most similar to the ungauged catchment were 
finally selected as donors.

The suite of regionalization approaches evaluated in this study was complemented by four benchmark 
methods leading to a total of 23 methods to be tested for each study catchment. We grouped the tested meth-
ods into six major categories based on the type of information they use for the selection of donor catchments 
(for a description of the approaches, we refer to Table 2):

A)  Benchmark methods: Upper and lower benchmarks (UB, Best, LB, and US 670) were defined to evalu-
ate what could be achieved at best for a given catchment if there was complete information and what 
should be expected without any prior information (Seibert et al., 2018).

B)  Methods that do not include volume or distance information: Donor selection is based on catchment 
attributes (Attr; e.g., McIntyre et al., 2005; Zhang & Chiew, 2009; Oudin et al., 2010), climate classifi-
cation (Climate class; Berghuijs et al., 2014), or a random choice (Random; e.g., Zhang & Chiew, 2009).

C)  Methods that include distance information: Geographical information is the only criteria for selecting 
donor catchments in the spatial-proximity approach (Dist; e.g., Lebecherel et al., 2016; Neri et al., 2020; 
Oudin et al., 2008; Parajka et al., 2005), the catchment classification (Geogr class; USGS, 2020), and 
the direct transfer of the simulated hydrographs (Qsim transfer; e.g., Seibert, 1999). Spatial proximity 
can also be combined with catchment attributes to select donor catchments (Dist & Attr; e.g., Zhang & 
Chiew, 2009; Yang et al., 2018).

D)  Methods that include volume information: Here, it is assumed that it is possible to estimate hydrolog-
ical signatures for the ungauged catchment (e.g., Masih et al., 2010) or to directly conduct a number 
of discharge measurements. Such hydrological information can be used to select donors from a water 
balance or a signature classification (WB class, Regime class, and Sign class; Brunner et al., 2020; Jehn 
et al., 2020; Schaller & Fan, 2009), to choose donors based on the similarity in the signature space (Sign; 
e.g., Masih et al., 2010) or the combined signature and attribute space (Attr & Sign), or to determine 
donors based on their ability to reproduce measured streamflow aspects (Vol and RMSE; e.g., Pool 
et al., 2019; Rojas-Serna et al., 2016; Viviroli & Seibert, 2015).

E)  Methods that include distance and volume information: The approaches tested here consider spatial 
proximity and signature similarity (combined with attribute similarity; Dist & Vol, Dist & Sign, and Dist 
& Attr & Sign) or use spatial proximity and discharge measurements to select donor catchments (Dist 
& RMSE; e.g., Pool et al., 2019; Rojas-Serna et al., 2016). These approaches also require either estimates 
of hydrological signatures or a small number of local point observations.

F)  Methods without the transfer of parameter values: Finally, we evaluated the prediction performance 
when directly transferring the observed hydrographs from the spatially closest catchments (Qobs trans-
fer; e.g., Parajka et al., 2015; Patil & Stieglitz, 2012; Razavi & Coulibaly, 2016). We considered this ap-
proach as a separate category as it does not include a hydrological model.

Note that some of the tested approaches share one or more criteria to select donor catchments, leading to 
the selection of similar donor catchments. The percentage of common donors for all combinations of re-
gionalization approaches is shown in Figure S3.

2.3.2. Performance Evaluation

The regionalization approaches were applied in a leave-one-out cross-validation, where each catchment 
was treated as ungauged at a time, and its streamflow was simulated with the information of the donor 
catchments. More specifically, each donor catchment provided its 10 calibrated parameter sets to the un-
gauged catchment. This resulted in 30 model parameterizations if donors were selected from flexibly de-
fined similarity regions or 40 to 2,300 model parameterizations if the selection of donors was based on a 
prior catchment classification. All parameterizations were used to simulate streamflow in the ungauged 
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Approach Source of parameter values

Benchmark methods

UB – The upper benchmark corresponds to the local calibration of a catchment.

Best Flexible The three best donor catchments (defined by RNP) available from the pool of all 670 
potential donors are used as donors.

LB – The lower benchmark consists of 1,000 randomly selected parameter values.

US 670 Flexible All 670 potential donor catchments are used as donors.

Methods that do not include volume nor distance information

Climate class Fixed All catchments within the same climatic group as the ungauged catchment are 
selected as donors. Donor selection is based on the catchment classification of 
Berghuijs et al. (2014) in which aridity, precipitation seasonality, and snowfall 
fraction are used for classification (see Figure A1 for a map of the classification). 
Ungauged catchments that did not belong to any class were excluded from the 
evaluation.

Random Flexible Three randomly selected catchments from all 670 potential donor catchments are used 
as donors.

Attr Flexible The three catchments most similar to the ungauged catchment in terms of attributes 
are selected as donors. Similarity was defined as the Eucledean distance calculated 
from area, aridity, precipitation seasonality, snowfall fraction, wetland fraction, 
clay fraction, and forest fraction. This approach is also known as the attribute-
similarity approach or the physical-similarity approach (e.g., McIntyre et al., 2005; 
Oudin et al., 2010; Zhang & Chiew, 2009).

Methods that include distance information

Geogr class Fixed All catchments within the same geographic area as the ungauged catchment are 
selected as donors. Donor selection is based on the major watershed regions 
(HUC2) defined by the U.S. Geological Service (USGS, 2020; see Figure A1 for a 
map of the classification).

Dist Flexible The three catchments that are spatially closest to the ungauged catchment are selected 
as donors. The coordinates of the catchment centroids were used to calculate 
the Euclidean distance between catchments. This approach is also known as the 
spatial-proximity approach (e.g., Lebecherel et al., 2016; Neri et al., 2020; Oudin 
et al., 2008; Parajka et al., 2005).

Dist & Attr Flexible The three catchments that are spatially closest (Dist) and most similar to the ungauged 
catchment in terms of attributes (Attr) are selected as donors.

Qsim transfer Flexible Simulated hydrographs are transferred from the three catchments that are spatially 
closest to the ungauged catchment.

Methods that include volume information

WB class Fixed All catchments within the same water balance group as the ungauged catchment 
are selected as donors. Donor selection is based on a catchment classification, 
according to Schaller and Fan (2009) in which groups are defined based on 
the tendency to lose or gain groundwater (see Figure A1 for a map of the 
classification). Ungauged catchments that did not belong to any class were 
excluded from the evaluation.

Sign class Fixed All catchments within the same hydrological signature group as the ungauged 
catchment are selected as donors. Donor selection is based on an adapted 
version of the catchment classification of Jehn et al. (2020) in which runoff 
ratio, mean annual discharge, low flows (Q05), high flows (Q95), mean half-flow 
date, and recession slope are used for classification (see Figure A1 for a map of 
the classification). Ungauged catchments that did not belong to any class were 
excluded from the evaluation.

Regime class Fixed All catchments with the same hydrological regime as the ungauged catchment are 
selected as donors. Donor selection is based on the catchment classification of 
Brunner et al. (2020) in which the functional form of the hydrograph is used for 
classification (see Figure A1 for a map of the classification).

Table 2 
Description of the 18 Regionalization and 4 Benchmark Approaches Tested in This Study
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catchment from October 1, 1989 to September 30, 1999. The individual simulations were then aggregat-
ed to an  ensemble mean hydrograph by calculating their mean for each day. We used ensemble mean 
hydrographs rather than median hydrographs, because the ensemble mean conserves the total simulated 
discharge volume, and it was shown to outperform predictions with the single best parameter set (Neri 
et al., 2020; Seibert & Beven, 2009).

The comparison of all regionalization approaches was based on their simulation performance. Performance 
for the simulated ensemble mean hydrograph was assessed in terms of RKG, RNP, and each of their three er-
ror components (β, αKG, and rp for RKG and β, αNP, and rS for RNP). We also calculated the relative performance 
R* (Seibert et al., 2018), which relates the performance of a particular regionalization approach (RR) to the 
performance of an upper benchmark (RU) and a lower benchmark (RL). The relative performance was de-
fined as R R R R R

     R L U L
/ . The majority of the presented results are based on a model calibration 

with RNP, and evaluate regionalization performance in terms of RNP or R*NP, β, αNP, and rS. Calibration and 
evaluation results for RKG are used in the robustness assessment. The absolute performance values for all 
calibrations and evaluations done in this study are provided in Data Set S2.

Table 2 
Continued

Approach Source of parameter values

RMSE Flexible The three catchments with the smallest root mean square error for 12 observations in 
the (hypothetically) ungauged catchment are used as donors. The 12 observations 
were selected according to Pool et al. (2019) and included the annual peak and 
its five first recession days combined with observations at the 15th of every other 
month.

Vol Flexible The three catchments with the smallest volume error for the (hypothetically) 
ungauged catchment are used as donors.

Sign Flexible The three catchments that are most similar to the ungauged catchment in terms 
of hydrological signatures are selected as donors. Similarity was defined as the 
Eucledean distance calculated from runoff ratio, mean annual discharge, low 
flows (Q05), high flows (Q95), mean half-flow date, and recession slope.

Attr & Sign Flexible The three catchments that are most similar to the ungauged catchment in terms of 
attributes (Attr) and hydrological signatures (Sign) are selected as donors.

Methods that include distance and volume information

Dist & Vol Flexible The three catchments that are spatially closest (Dist) and have the smallest volume 
error (Vol) for the ungauged basin are selected as donors.

Dist & RMSE Flexible The three catchments that are spatially closest (Dist) and are among the catchments 
with the smallest root mean square error for 12 observations (RMSE) in the 
ungauged catchment are selected as donors.

Dist & Sign Flexible The three catchments that are spatially closest (Dist) and most similar to the ungauged 
catchment in terms of hydrological signatures (Sign) are selected as donors.

Dist & Attr & Sign Flexible The three catchments that are spatially closest (Dist) and are most similar to the 
ungauged catchment in terms of attributes (Attr) and hydrological signatures 
(Sign) are selected as donors.

Methods without the transfer of parameter values

Qobs transfer Flexible Observed hydrographs are transferred from the three catchments that are spatially 
closest to the ungauged catchment.

Note. The first column provides the label of each approach. The second and third columns provide detailed information about the selection of the donor 
catchments, that is, whether donors were selected from a predefined classification (fixed) or with a catchment-specific region of influence approach (flexible), 
as well as the physical attributes and hydrological signatures used for the selection. Approaches including volume information require either estimates of 
hydrological signatures (which can derived by regionalization) or a small number of local point observations.
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2.3.3. Parameter Values and Sensitivity

In addition to the assessment of regionalization performance, we also investigated whether the param-
eter values and parameter sensitivity of donor catchments are linked to those of an ungauged receiver 
catchment. The parameter space analysis was conducted for each ungauged catchment and its best donor 
catchment (defined by RNP). We first compared the parameter values of these two catchments by calculat-
ing the difference between the mean of the 10 calibrated parameter values. In a second step, we examined 
the parameter sensitivity of the donor and the receiver catchment. Parameter sensitivity was defined as 
the change in model performance (RNP) when a given optimized parameter value was changed by ±2.5% 
while all other parameters were fixed. For each catchment, we then calculated the fractional sensitivity of 

Figure 2. Spatial distribution of the model performance RNP for (a) the local calibration (UB), (b) the regionalization with random donors (Random), 
(c) regionalization with the best three available donors (Best), (d) regionalization with the best of the tested regionalization approaches (note that the best 
approach is catchment-specific), (e) potential when using the best three available donors (Best), and (f) the potential when using the best of the tested 
regionalization approaches. Model performance values were grouped into 10 equally sized quantiles (that is, each group contains 1 10/  of all 671 study 
catchments), which is indicated by the 10 colors. The red dashed line in the histogram indicates the median performance value. In (b), there were 44 
catchments with RNP between −0.2 and −11.6. In (e) and (f), R*NP corresponds to the percent improvement from a regionalization with random donors 
bounded by the local calibration.
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a  particular HBV model routine by taking the ratio of the sum of parameter sensitivities for a given routine 
and the sum of all parameter sensitivities.

3. Results and Discussion
3.1. Benchmarking Regionalization Performance in Different Geographic Regions

3.1.1. The Value of Using the Most Suited Regionalization Approach

With regionalization, one typically aims to reach high model performance values. Figures 2a–2d pro-
vide benchmark values for judging the goodness-of-fit of regionalization approaches within our study 
area. The best possible simulation performance was obtained by a local calibration (UB) with a median 
RNP of 0.89 over all catchments. When using a simple form of regionalization, such as the use of random 
donor catchments (Random), median RNP values were inferior (RNP of 0.69) to this local calibration. 
However, regionalization performance could be relatively close to a local calibration when the best 
available donors were used for predicting streamflow in an ungauged catchment (Best). The median 
performance of these best donors (RNP of 0.87) was identical to the performance of the best regionali-
zation approach found for a given catchment. This similarity suggests that the best possible regional-
ization performance can be reached for many catchments with one of the regionalization approaches 
tested in this study.

The relative performance values R*NP presented in Figures 2e and 2f show the value of using the best pos-
sible donors or regionalization approach as opposed to using randomly selected donors. The best donors 
improved the performance for all catchments and for more than half of the catchments resulted in an im-
provement of at least 93% (Figure 2e). A comparable improvement (91%) was observed for the best region-
alization approach found for a given catchment. However, its performance was worse than a regionalization 
with random donors in 8 out of the 671 catchments (Figure 2f). These results suggest that predictions in 
ungauged catchments can be surprisingly good if the most suitable donors are known. Similar conclusions 
were made by Beck et al. (2020) and Zhang and Chiew (2009), who compared an intelligent selection of 
donor catchments with a random selection of donors or parameter values. Since they were not explicit-
ly searching for a regionalization benchmark but rather testing (new) approaches, their performance im-
provement (about 42%–68%) was smaller than the one reported here. Despite the general benefit of a good 

Physical attributes and hydrological signatures RNP UB RNP Random RNP Best RNP best approach R*NP Best R*NP best approach

Area −0.03 −0.10 −0.03 −0.02 0.05 0.08

Aridity −0.53 −0.64 −0.61 −0.61 −0.01 −0.02

Precipitation seasonality −0.41 −0.23 −0.37 −0.3 0.03 0.14

Snowfall fraction 0.21 0.08 0.12 0.14 −0.23 −0.04

Wetland fraction 0.01 0.03 0 0 −0.08 0

Forest fraction 0.47 0.47 0.50 0.52 −0.03 0.02

Clay faction −0.18 −0.13 −0.13 −0.13 0.12 0.03

Runoff ratio 0.62 0.62 0.63 0.61 −0.15 −0.11

Mean daily discharge 0.63 0.67 0.67 0.65 −0.08 −0.07

Low flows (Q5) 0.46 0.49 0.44 0.43 −0.19 −0.12

High flows (Q95) 0.62 0.63 0.65 0.63 −0.08 −0.07

Mean half-flow date −0.23 −0.3 −0.33 −0.32 −0.18 −0.08

Recession slope −0.21 −0.01 −0.10 −0.05 0.22 0.17

Note. Correlations were calculated for the local calibration (UB), the regionalization with random donors (Random), the regionalization with the best three 
available donors (Best), and the regionalization with the best of the tested regionalization approaches (note that the best approach is catchments-specific). 
Significant correlations (p < 0.05) are marked in bold letters.

Table 3 
Spearman Rank Correlation Between Model Performance and Catchment Characteristics
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regionalization approach, this study and Zhang and Chiew (2009) and Beck et al. (2020) found catchments 
for which random donors or parameter values could be the better choice. Reasons for this observation could 
be the coincidence of randomly selecting great donors (Zhang & Chiew, 2009) or the lack of attributes rep-
resenting hydrological similarity (Oudin et al., 2010).

Figure 3. Model performance for the 671 catchments. Performance is shown for all tested regionalization approaches and benchmarks using (a) the total 
RNP score as well as (b) its variability component αNP, (c) its volume components β, and (d) its correlation component rS. Note that the order of regionalization 
approaches on the x-axis is different in (a–d) as they are sorted by increasing median performance. Regionalization approaches are colored according to their 
category. Approaches based on catchment classification are highlighted by non-filled boxes.
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3.1.2. Spatial Patterns in Performance

The simulation performance RNP strongly varied in space, and similar spatial performance patterns could be 
observed for the local calibration as for the regionalization approaches (Figures 2a–2d). To a large degree, 
the performance patterns followed the wetness gradients across the United States with the highest RNP val-
ues in the Pacific Northwest, the northern Rocky Mountains, and the eastern United States (Table 3). Other 
catchment attributes such as area, snowfall, or soil properties showed no clear relationship with RNP at the 
continental scale. The challenge of modeling relatively dry regions has been reported in several large-scale 
studies conducted in gauged (Arheimer et al., 2020; Mizukami et al., 2017; Poncelet et al., 2017) and hypo-
thetically ungauged catchments (Beck et al., 2020; Parajka et al., 2013; Petheram et al., 2012) and was largely 
attributed to the higher flow variability and non-linearity of rainfall-runoff processes in arid catchments 
(Parajka et al., 2013; Petheram et al., 2012; Poncelet et al., 2017; Seibert et al., 2018). However, geological, 
topographic, or land-use characteristics can be important controls on regionalization performance within 
climatically similar regions of the United States (Singh et al., 2014) and may explain the small-scale perfor-
mance differences observed in Figures 2a–2d.

While the regionalization performance RNP was catchment-specific, there was no evidence for a spatial 
organization of the relative performance R*NP (Figures 2e and 2f). The relationships between R*NP and the 
catchment attributes or signatures were consistently weak (Table 3). This suggests that the search for the 
best possible regionalization approach is of comparable value for many catchments independent of how 
well they can be modeled. Similarly, the findings of Beck et al. (2020) indicate that the benefit of region-
alization compared to using random parameters is not dependent on climate or topography. While their 
results were based on a distributed regression-based regionalization, our results represent the best possible 
regionalization of entire parameter sets.

3.2. In Search of the Best Regionalization Approach

3.2.1. A Ranking of Regionalization Approaches at the Continental Scale

We start the search for the best regionalization approach by comparing model performance at the continen-
tal scale (Figure 3). Simulations for all 671 catchments indicate that the performance difference between 
catchments is larger than between regionalization approaches. This is because most approaches have the 
potential to select donors that result in a model performance close to the upper benchmarks (UB and Best) 
for a limited number of catchments. However, the regionalization approaches differ considerably in their 
poorest performance values leading to clear differences in the suitability of the approaches for prediction 
in ungauged basins.

Figure 3a presents the ranking of regionalization approaches in simulating a range of hydrograph aspects 
(RNP; an equivalent figure for RKG is provided in Figure S4). Generally, the most promising and most widely 
applicable regionalization approaches combine information on spatial distance and volume for selecting 
donor catchments (median RNP of 0.82 and median RKG of 0.67). Approaches based on a single type of 
information (i.e., attributes, distance, or volume) and a flexible region of influence were located in the 
middle ranks. Volume seemed to be the best similarity indicator (median RNP of 0.80 and median RKG of 
0.66), followed by spatial proximity (median RNP of 0.79 and median RKG of 0.64) and catchment attributes 
(median RNP of 0.78 and median RKG of 0.62). Using the same information to select donors from a fixed 
catchment classification instead of a catchment-specific similarity region typically resulted in lower perfor-
mances (median RNP of 0.76 and median RKG of 0.58). Yet, classification-based regionalization approaches 
were still considerably better than the lower benchmarks or a random selection of donors (median RNP of 
0.7 and median RKG of 0.49).

There are some remarkable changes in the ranking described above if one looks at individual hydrograph 
aspects (Figures  3b–3d). For example, when simulating flow variability (αNP) volume-based approaches 
were most successful, which is reflected in the high rank of approaches considering hydrological signatures 
(Sign or Attr & Sign) or the high rank of Qobs transfer. The ranking for flow volume (β) was similar to that 
of the entire hydrograph, with the main difference being that climatic aspects (Climate class) could become 
a surprisingly good predictor for catchment similarity. Finally, using spatially close donors (Qobs transfer, 
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Figure 4. Robustness of the ranking of regionalization approaches. (a) Effect of a validation metric: robustness is defined as the change in rank if a different 
evaluation metric is used for a given calibration metric. The values for β are zero as β is identical for RNP and RKG. (b) Effect of a calibration metric: robustness is 
defined as the change in rank for a given evaluation metric if a different calibration metric is used. Note that the maximum possible change in rank is 21.
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all Dist approaches, or even Climate class) tended to be more important than using a volume-based donor 
selection for simulating streamflow dynamics (rS).

The general tendency of the suitability of regionalization approaches found at the continental scale agrees 
with previously reported results. Similar to the studies of Merz and Blöschl  (2004), Oudin et al.  (2008), 
Swain and Patra (2017), or Zhang and Chiew (2009), we found that distance-based approaches tend to out-
perform attribute-based approaches. This could be linked to the relatively high gauging station density in 
many humid regions of the United States (Lebecherel et al., 2016; Neri et al., 2020) or the lack of catchment 
attributes representing a wide range of catchment responses over large scales (Merz et al.,  2020; Oudin 
et al., 2010; Singh et al., 2014). In fact, Jehn et al. (2020) found that catchment attributes (excluding climatic 
aspects) can vary considerably within hydrologically similar regions in the United States and can often not 
sufficiently explain hydrological behavior. In contrast to catchment attributes or geographical information, 
basic hydrological information can provide a more direct measure of catchment similarity. While the high 
performance of volume-based regionalization approaches is not surprising, the implementation of such 
approaches can be restricted by data availability. However, it has been shown that even a small number of 
point observations (Pool et al., 2019; Rojas-Serna et al., 2016; Viviroli & Seibert, 2015) or regionalized signa-
tures (Masih et al., 2010) can significantly improve predictions, which makes volume-based approaches an 
interesting alternative to commonly used approaches. Our results further suggest that donors selected from 
a flexible region of influence are better predictors for the ungauged catchment than donors from a prior 
classification. This can be explained partly by the deterministic nature of the classifications (Burn, 1990) 
and a large number of (donor) catchments within each class. With an increasing number of catchments, 
the dissimilarity among catchments likely increases leading to decreased performance (Arsenault & Bris-
sette, 2014; Neri et al., 2020; Oudin et al., 2008; Yang et al., 2018). This is in agreement with Figure 1, which 
shows that the number of nearly perfect donors is limited, causing a large class to include, per definition, 
several less suitable donors.

Figure 5. The best regionalization approach for each of the 671 catchments as a function of the performance metric (RNP, αNP, β, and rs). Regionalization 
approaches are grouped by category. In the case that Qobs transfer was the best regionalization approach (F), the colors of the bar indicate the second best 
approach. Note the different y-axis scales.
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In contrast to the abundant number of studies comparing different regionalization approaches, studies 
that can be used to compare the absolute model performance in terms of RKG (rather than in terms of the 
Nash-Sutcliffe efficiency (Nash & Sutcliffe, 1970) or adapted versions of RKG as used by Beck et al., 2020 
and Merz et al., 2020) are still limited. Among these studies, Neri et al. (2020) found median RKG values 
between 0.6 and 0.75 for 209 Austrian catchments regionalized with attribute similarity or spatial proximity, 
which are similar performance values to the ones of this studies. Our performance values are, however, high 
compared to the global studies of Arheimer et al. (2020) and Beck et al. (2016), who used regressions and 
process-dependent classifications for regionalizing model parameter values and reported median monthly 
RKG values of 0.32 and 0.45.

3.2.2. Robustness of the Ranking of Regionalization Approaches at the Continental Scale

Many regionalization studies compare several regionalization approaches with the aim to determine the 
most suitable approach for a given set of catchments. Figure 4 shows how much such a comparison (i.e., 
ranking) of regionalization approaches could be influenced by the choice of performance metrics used for 
calibrating the hydrological model and evaluating its simulations. Our results suggest that the choice of the 
evaluation metric (Figure 4a) tends to have a stronger impact on the ranking than the use of different cali-
bration metrics (Figure 4b). More specifically, calibrating against RNP or RKG changed the performance of a 

Figure 6. (a) Spatial distribution and (b) selected catchment characteristics of the best regionalization category in terms of RNP. (c) Spatial distribution of the 
variability (standard deviation) in RNP among all tested regionalization approaches.
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particular regionalization approach by about 1.5 ranks. In contrast, evalu-
ating regionalization performance with RNP (including αNP and rS) or RKG 
(including αKG and rP) resulted in an average change of 3.2 ranks. Further-
more, the results indicate that the ranking of regionalization approaches 
is likely to be more robust when considering multiple hydrograph aspects 
(RNP or RKG) instead of a single hydrograph aspect (β, αNP, αKG, rS, or rP). 
The ranking based on streamflow dynamics (rS, or rP) was particularly 
sensitive to the choice of the performance metric. The described effect of 
performance metrics on the ranking of regionalization approaches varied 
among approaches. There was a slight tendency toward a more consistent 
ranking if distance was included in donor selection (e.g., Dist & Attr, Dist 
& Sign, Dist & Attr & Sign). The least robust ranking was observed for 
volume- or classification-based approaches (e.g., RMSE or RMSE & Dist, 
WB Class or Sign Class) and the direct transfer of observed hydrographs 
from nearby stations (Qobs transfer).

A major outcome of the robustness assessment is that the suitability of 
a regionalization approach is dependent on the hydrograph aspects that 
we aim to simulate. Similar findings were reported by Singh et al. (2014), 
who showed that the choice of a performance metric could change the 
importance of catchment attributes as a proxy for hydrological similarity. 
An evaluation of multiple hydrograph aspects is therefore crucial when 
ranking regionalization approaches and will likely facilitate the compa-
rability of results from different regionalization studies. To address the 
uncertainty related to the choice of regionalization approaches, it may be 
worth exploring the benefits of an ensemble regionalization approach. For 
example, Farmer and Vogel (2013) and Waseem et al. (2015) showed that 
performance-weighted ensembles often outperform individual approach-
es to predict streamflow signatures in ungauged basins. More recently, 
Razavi and Coulibaly (2016) and Swain and Patra (2019) successfully im-
plemented an ensemble regionalization approach to predict continuous 
streamflow in ungauged basins. While these studies typically applied a 
time-invariant weighting approach, Razavi and Coulibaly  (2016) chose 
to weight the simulations based on the daily performance in the gauged 
catchment. Our results suggest that a dynamic ensemble weighting may 
also be applied in prediction mode if regionalization approaches were 
weighted based on their performance for a particular flow condition.

3.2.3. The Best Regionalization Approach From a Catchment Perspective

The search for the best regionalization approach from a catchment perspective (that is, in a bottom-up 
approach) allows refining the performance trends observed at the continental scale. While the more lo-
cal perspective (Figure 5; see Figure S5 for example hydrographs) supports the continental-scale tenden-
cies (Figure 3), it also indicated that methods considered less suitable, if evaluated for all 671 catchments, 
could be the best choice for an individual catchment. Examples that support the general trends are the 
regionalization approaches Dist & Vol, Dist & Sign, and Vol or Sign. These regionalization approaches were 
the best approaches transferring entire parameters sets in terms of RNP for 22%, 12%, and 9% of the catch-
ments, respectively. In contrast, results for the approaches based on a signature classification (Sign class), 
a few point observations (RMSE), or attributes (Attr) indicate that the search for a best regionalization ap-
proach is to some degree catchment dependent. Using these approaches to select donors could be the best 
option in terms of RNP for 2%–4% of the ungauged catchments despite their relatively poor performance at 
the continental scale. A further remarkable observation was that the approach based on the direct transfer 
of observed streamflow from nearby catchments, Qobs transfer, had a varying performance for RNP, αNP, β, 
and rS at continental scale but was the most competitive option at the catchment scale as it was the best 
approach for 12%–52% of the catchments.

Figure 7. (a) Similarity of the three best available donors and the 
ungauged catchments. Similarity was defined as the average rank of the 
best three donors among all 671 catchments in the geographical, signature, 
and attribute space. (b) Regionalization performance of donors selected 
using similarity in spatial distance, signatures, or attributes. Performance 
(RNP) was evaluated by the average rank of the most similar donors among 
all 671 catchments. The gray line on top of each boxplot in (a) indicates the 
median value of the corresponding boxplot in (b) and vice versa.
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Given that the best regionalization approach varies among the 671 catchments it is essential to understand 
where a particular approach performs best. However, there was no evidence for a spatial clustering of the 
best regionalization approaches (or category of approaches; Figure 6a) or a strong relationship with catch-
ment characteristics (Figure 6b). Similar to the findings of He et al. (2011) and Razavi and Coulibaly (2013), 
our results indicate that predicting and choosing the best regionalization approach for an ungauged catch-
ment is still a major challenge. The transfer and interpolation of observed daily streamflow from nearby 
catchments (Qobs transfer) could therefore provide an interesting and valuable alternative to the transfer 
of model parameters if the causal relationship between precipitation and streamflow is not of interest (Pa-
rajka et al., 2015; Patil & Stieglitz, 2012; Razavi & Coulibaly, 2016). Furthermore, using the best possible 
regionalization approach is most important if performance differences among approaches are expected to 
be relatively large. Figure 6c shows that these differences varied considerably between catchments. Region-
alization performance thereby tended to be more dissimilar in the poorer modeled catchments (Figures 2c 
and 2d), which confirms results previously reported by Zhang and Chiew (2009). Consequently, choosing 
a good regionalization approach (or avoiding the use of an unsuitable one) is most challenging for poorly 
modeled catchments — however, the benefit of knowing the best possible regionalization approach is of 
comparable value for many catchments, independent of how well they can be modeled (Figures 2d–2f).

Figure 8. Parameter sensitivity and parameter values of the 671 hypothetically ungauged catchments and their best 
donor catchment. The subplots show the fraction of total parameter sensitivity contributed by parameters of (a) the 
snow routine, (b) the soil routine, (c) the response routine, and (d) the routing routine. The gradation (white to black) 
of the points indicates the difference in mean parameter values of the hypothetically ungauged basin and its best 
donor catchment. These differences are shown for the most sensitive parameter of each model routine. PTT, PFC, PK2, 
and PMAXBAS are the threshold temperature for snowfall, the maximum soil moisture storage, the storage (or recession) 
coefficient for interflow, and the length of the triangular weighting function. The red line is the average over a moving 
window of 29 values.
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3.3. Learning From the Best Donor Catchments

3.3.1. Importance of Catchment Characteristics for Selecting the Best Donor Catchments

We hypothesized that the catchment characteristics of the three best donor catchments available in the data 
set (Best) could help to identify important aspects for selecting suitable donors. To address this hypothesis, 
we first analyzed the similarity of each ungauged catchment and its three best donors in the geographical, 
signature, and attribute space using the Euclidean distance. The similarity for different characteristics was 
compared by ranking the similarity values of all potential donors and calculating the average rank of the 
three best donors (Figure 7a). Catchment similarity was generally highest for the hydrological signatures, 
followed by the spatial distance, and was smallest for the physical attributes. Similarity was typically higher 
for a combination of several signatures (Sign) and attributes (Attr) than for individual aspects (e.g., runoff 
ratio or area). Among the hydrological aspects, similarity was particularly high for streamflow volume (Vol), 
indicating that the three best donors resulted in a low relative error in streamflow predictions in the un-
gauged catchment. In a second step, we used spatial distance, signatures, or attributes to select donors and 
evaluated their performance in terms of RNP. Similar as for the characteristics, we calculated the average 
performance rank of the three most similar donor catchments (Figure 7b). The ranks of these most similar 
donors in the “performance space” are typically clearly worse than the ranks of the three best donors in the 
“characteristics space.” The smallest rank differences were observed for the combinations of Sign or Attr, 
and Dist.

Our findings indicate that using (seemingly) essential catchment characteristics for selecting donor catch-
ments does not necessarily lead to a good regionalization performance. One reason for this finding could be 
the spatial variability of the importance of catchment characteristics. For example, within the United States, 
geology and topography are important characteristics in humid mountainous regions, whereas land use is 
the most important proxy for hydrological similarity in humid plains (Singh et al., 2014). Furthermore, the 
study of Bárdossy et al. (2016) conducted with catchments in the eastern United States suggests that the 
temporal variability in catchment similarity could pose a considerable challenge for selecting a universal set 
of donor catchments. Given this variability, an improved understanding of catchment similarity at multiple 
temporal and spatial scales will be a foundation for advancing regionalization (He et al., 2011; Wagener 

Figure 9. (a) Spatial distribution of the most sensitive parameter within the most sensitive HBV model routine. (b) The most sensitive parameter of the most 
sensitive routine plotted in the Budyko-space (Eact is actual evapotranspiration, Epot is potential evapotranspiration, and P is precipitation). Catchments with 
more than 25% of precipitation falling as snow are marked with a cross. (c) Recession slope of catchments for which the snow routine (blue), soil routine 
(yellow), response routine (green), or routing routine (black) was the most sensitive HBV model routine. Note that the most sensitive HBV model routine was 
defined by taking the total sensitivity of a routine normalized by the number of parameters in that routine.
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et  al.,  2007). The search for new hydrologically relevant characteristics that describe regional and local 
hydrological processes (Merz et al., 2020) occurring at the surface and the subsurface (Oudin et al., 2010) 
could play a key role.

A potentially interesting point to explore more in a future study is whether catchment characteristics 
could be used to exclude donors from the pool of potential donors, that is, switching from selecting suit-
able donors to a (combined) strategy where catchments are deselected based on their characteristics. 
Although streamflow volume, for example, seems to be an important characteristic of well-performing 
donor catchments, using it as a selection criterion is no guarantee for the suitability of the selected 
donors. However, since the best performing donor catchments rank high with respect to streamflow 
volume, it seems that poor streamflow volume performance is at least a guarantee for not being a suit-
able donor.

3.3.2. Parameter Values and Sensitivity of the Best Donor Catchments

A successful regionalization essentially relies on finding donor catchments that share similar parameter 
values as the ungauged target catchment. We, therefore, investigated to which extent the parameter val-
ues and the parameter sensitivity of the single best donor catchment are related to those of the ungauged 
receiver catchment (Figure 8). Despite the considerable scatter in parameter sensitivity, the hypothetically 
ungauged catchments and their best donor catchment tended to have a similar sensitivity for a particular 
HBV model routine. The relationship was strongest for the snow routine (Spearman rank correlation coeffi-
cient ρ equals 0.75), followed by the response and routing routine (ρ equals 0.55 and 0.53, respectively), and 
was weakest for the soil routine (ρ equals 0.48). While a similar sensitivity seemed to be important for a suc-
cessful parameter transfer, the values of the most sensitive parameter of a particular routine could be very 
different. The reason for this could be the dependency of parameter values (Arsenault & Brissette, 2014; 
Bárdossy, 2007; McIntyre et al., 2005), which can be expected to be particularly pronounced for parameters 
within the same model routine.

Figure 9 shows the spatial distribution of the most sensitive model routine. As could be expected, the snow 
routine was the most sensitive routine in the Rocky Mountains, Sierra Nevada, or the Great Lakes Re-
gion where snow processes dominate the runoff regime. The soil routine was particularly important in 
water-limited regions such as the Great Plains and the Southwest, or in regions with high actual evapo-
ration, such as the Florida Peninsula. Finally, the response routine and the routing routine were typically 
the most sensitive routines in energy-limited regions without considerable snowfall. This includes large 
regions of the Eastern United States and the Pacific Northwest. Within these regions, simulations tended to 
be more sensitive to the routing routine than the response routine if the recession slope was rather steep. 
The spatial distribution of the most sensitive HBV model routine across the United States confirms the 
findings of several HBV parameter sensitivity studies conducted at a local scale (Abebe et al., 2010; Medina 
& Muñoz, 2020; Pianosi & Wagener, 2016; Zelelew & Alfredsen, 2013) and reflects the large-scale variability 
in dominant hydrological processes. Applying the spatially distributed PRMS model in the United States, 
Markstrom et al.  (2016) used parameter sensitivity analysis to derive detailed maps of dominant hydro-
logical processes. While such maps are likely affected by the spatial resolution of a model, the temporal 
working scale, or the performance metric used to quantify sensitivity, they could be used for catchment 
classification (Markstrom et al., 2016). Indeed, the spatial pattern of the HBV model routine importance 
observed in this study followed the streamflow-based regime classification from Brunner et al. (2020). Their 
melt regime with spring and summer snowmelt floods is in the region of high snow routine importance, 
their intermittent regime with arid catchments and irregular precipitation events coincides with the region 
of high soil routine importance, and their precipitation-dominated regimes (winter regimes and New-Year’s 
regime) are regions of high response routine or routing routine importance. While parameter-similarity has 
previously been proven to result in high regionalization performance (Parajka et al., 2005), our findings 
further indicate that it would be interesting to explore the value of parameter-sensitivity classifications for 
the regionalization of model parameters to ungauged basins.
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4. Conclusions
A systematic assessment of 19 regionalization approaches was conducted using 671 U.S. catchments with a 
large variation in hydroclimatology and a homogenized modeling protocol (i.e., identical model structure, 
as well as calibration and evaluation processes). The assessment includes the introduction of a regionaliza-
tion benchmark to evaluate model performance across hydroclimates, the testing of the robustness of the 
ranking of regionalization approaches under different evaluation metrics, and the description of the best 
possible donor catchments in the attribute and parameter space. The main findings of this study can be 
summarized in three lessons:

Lesson 1 — Catchments in any geographic region can benefit from a well-chosen regionalization approach: 
The performance of streamflow simulations with both locally calibrated parameter sets and regionalized 
parameter sets strongly varied in space, whereby higher performance values could be achieved with in-
creasing wetness of a catchment. However, the relative performance (defined as the performance relative 
to an upper (local calibration) and lower (randomly chosen donors) benchmark) of the best regionalization 
approach for each catchment was generally high without a clear spatial pattern. In other words, catchments 
with very different hydrological characteristics can equally benefit from the careful choice of a regionaliza-
tion approach.

Lesson 2 — Almost perfect donors exist and an excellent relative model performance can be reached for most 
catchments with current regionalization approaches: Besides using an upper benchmark as a measure of how 
well a catchment can perform in general, we propose the use of a regionalization benchmark as a reference 
of what can be achieved at best when using regionalized parameter sets. Here, we used the best three donor 
catchments as a regionalization benchmark. Predictions based on these best three donors reached a perfor-
mance close to a local calibration, indicating that almost perfect donors exist for most catchments. Also, the 
best regionalization approach per catchment performed almost as well as the best three donors, suggest-
ing that regionalization strategies can identify suitable donors. Quantifying the characteristics of excellent 
donor catchments and defining a universal regionalization strategy to identify these donor catchments re-
mains challenging. Yet, our analyses highlighted that there is considerable potential for improvement in the 
prediction in ungauged catchments.

Lesson 3 — The ranking of regionalization approaches depends more on how the predicted hydrographs are 
evaluated than on how the donor catchments are calibrated: Our findings revealed that the ranking of region-
alization approaches, and the search for the best donor catchments, depends on which hydrograph aspects 
are considered. The choice of the evaluation metric tended to be of higher importance than the choice of 
the calibration metric. We, therefore, recommend making a multi-criteria evaluation an integral part of any 
comparative assessment of regionalization performance.

From a scientific perspective, our study showed that an excellent (relative) performance can be reached for 
most catchments with currently used regionalization approaches. The major challenge remains choosing 
the most suitable approach, whereby an improved understanding of the characteristics and parameter val-
ues of great donors and their relationship to an ungauged catchment will be key to advance regionalization 
further. From a practical perspective, our study suggests that distance and some volume information are 
among the most promising selection criteria for donor catchments. While volume information is per defi-
nition missing in ungauged catchments, it could be derived from estimated signatures or a small number 
of field measurements. If predictions under relatively stationary conditions are of interest, the transfer of 
observed daily streamflow from nearby catchments provides an interesting and valuable alternative to the 
transfer of model parameters.
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Appendix A: Catchment Classifications and Geographic Regions

Data Availability Statement
The data used in this study are publicly available. The hydrometeorological time series and most catchment 
characteristics were retrieved from Newman et al.  (2015) and Addor et al.  (2017). SRTM elevation data 
were extracted from Jarvis et al. (2008) and the spatial extent of wetlands was extracted from Lehner and 
Döll (2004). The streamflow recession slope was calculated with the EflowStats R-package (USGS, 2014). 
Data on wetland fraction and recession slope for each catchment are provided in the Data Set S1. The model 
performance value for each catchment, regionalization approach, calibration, and evaluation criteria are 
provided in the Data Set S2.

Figure A1. (a–e) Catchment classifications used for regionalization in this study. The spatial distribution of classes is shown in colors. Empty circles indicate 
catchments that could not be classified because they were not included in the reported classification (c and d), or because they could not be assigned to any 
class using the reported class boundaries (a). The number of unclassified catchments is 207, 0, 332, 28, and 0 for the climate, geographic, water balance, 
signature, and regime classification, respectively. (f) Geographic regions of the United States (NOAA, 2020).
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