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A B S T R A C T   

Synthetic Plant Protection Products (PPPs) are a key element for a large part of today’s global food systems. 
However, the transport of PPPs and their transformation products (TPs) to water bodies has serious negative 
effects on aquatic ecosystems. Small streams in agricultural catchments may experience pronounced concen-
tration peaks given the proximity to fields and poor dilution capacity. Traditional sampling approaches often 
prevent a comprehensive understanding of PPPs and TPs concentration patterns being limited by trade-offs 
between temporal resolution and duration of the observation period. These limitations result in a knowledge 
gap for accurate ecotoxicological risk assessment and the achievement of optimal monitoring strategies for risk 
mitigation. We present here high-frequency PPPs and TPs concentration time-series measured with the auton-
omous MS2Field platform that combines continuous sampling and on-site measurements with a high-resolution 
mass spectrometer, which allows for overcoming temporal trade-offs. In a small agricultural catchment, we 
continuously measured 60 compounds at 20 minutes resolution for 41 days during the growing season. This 
observation period included 8 large and 15 small rain events and provided 2560 concentration values per 
compound. 

To identify similarities and differences among the compound-specific concentration time-series, we analysed 
the entire dataset with positive matrix factorisation. Six factors sufficiently captured the overall complexity in 
concentration dynamics. While one factor reflected dilution during rainfall, five factors identified PPPs groups 
that seemed to share a common history of recent applications. The investigation per event of the concentration 
time-series revealed a surprising complexity of dynamic patterns; physico-chemical properties of the compounds 
did not influence the (dis)similarity of chemographs. Some PPPs concentration peaks led while others lagged by 
several hours the water level peaks during large events. During small events, water level peaks always preceded 
concentration peaks, which were generally only observed when the water levels had almost receded to pre-event 
levels. Thus, monitoring schemes relying on rainfall or water level as proxies for triggering sampling may lead to 
systematic biases. 

The high temporal resolution revealed that the Swiss national monitoring integrating over 3.5 days under-
estimated critical concentration peaks by a factor of eight to more than 32, captured 3 out of 11 exceedances of 
legal acute quality standards (the relevant values in the Swiss Water Protection Law) and recorded 1 out of 9 
exceedances of regulatory acceptable concentrations (the relevant values for the PPPs registration process). 

MS2Field allowed for observing unexpected and overlooked pesticide dynamics with consequences for further 
research but also for monitoring. The large variability in timing of concentration peaks relative to water level 
calls for more in-depth analyses regarding the respective transport mechanisms. To perform these analyses, 
spatially distributed sampling and time-series of geo-referenced PPPs application data are needed.   

1. Introduction 

Synthetic Plant Protection Products (PPPs) are an integral 

component of a large part of today’s food systems at the global scale 
(Popp et al., 2013). Against the benefits of reduced crop losses, a number 
of serious negative side effects have been known for a long time. For 
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example, PPPs and their transformation products (TPs) can reach sur-
face water bodies, degrading their quality for both human consumption 
and environmental health (Gustavsson et al., 2017). The exposure of 
streams to PPPs varies strongly in time, with typically rather low con-
centration levels except during episodic events. PPPs losses depend 
strongly on the timing between applications and the occurrence of 
hydro-meteorological drivers (Leu et al., 2004; Spycher et al., 2018; 
Stehle et al., 2013). This holds especially true for small streams in 
agricultural catchments (Halbach et al., 2021). Such small streams 
contribute a large fraction of the entire stream length (Wohl, 2017) and 
play an important ecological role (Biggs et al., 2016). 

A proper observation of the full exposure situation in small streams is 
an important basis for understanding the underlying transport mecha-
nisms, to derive mitigation measures specifically addressing these flow 
processes and for designing optimal monitoring programs. However, it is 
a challenge to achieve a comprehensive exposure assessment (Lorenz 
et al., 2016). First, a large set of compounds has to be covered in the 
analytical effort (Curchod et al., 2020; Kiefer et al., 2021; Moschet et al., 
2015; Schreiner et al., 2021; Spycher et al., 2018). There has been 
substantial progress in the last years in this regard and many monitoring 
programs cover tens to hundreds PPPs and TPs. Nevertheless, this im-
plies a serious need of resources for being accomplished. There also 
exists a trade-off between temporal resolution and duration of the 
observation period to limit the analytical effort. The optimal monitoring 
strategy then very much depends on the overarching objective of the 
exposure assessment (Strobl & Robillard, 2008). If the focus is on testing 
whether chronic water quality criteria are fulfilled, time-averaged 
sampling is adequate and established methods of active or passive 
sampling can be used (Miège et al., 2015). Often there is also an interest 
in assessing concentration peaks against acute water quality criteria 
because of their ecotoxicological relevance (Liess et al., 2021). A 
frequently used solution for such situations is an event-driven sampling 
scheme. Given that many studies have revealed sharp increases of PPPs 
concentrations during rainfall and high discharge events, 
high-resolution sampling is triggered by proxies such as rainfall occur-
rence or discharge increases (Lefrancq et al., 2017). Sampling occurs at 
low temporal resolution outside of the events, when low concentration 
levels are expected. Despite the fact that the basic idea behind this 
approach is empirically well-founded, it leads to a biased exposure 
assessment. Any concentration fluctuations prior to the triggering event 
and those occurring after the sampling devices are full, remain unno-
ticed. The proxies also imply a certain threshold below which no data 
are obtained. While proxy-driven sampling can effectively reduce the 
number of samples, it goes with the risk of blind spots caused by 
mechanisms not linked to the chosen proxies. Indeed, data from a 
monitoring campaign of 12-hours composite samples in five small 
agricultural catchments (Spycher et al., 2018) over a 6-months period 
revealed that large rain-driven events cannot be the only cause behind 
elevated PPPs concentrations. 

In summary, obtaining a comprehensive PPPs exposure assessment 
in streams is a challenge because traditional sampling and measurement 
techniques are limited by trade-offs between the number of analytes, 
temporal resolution and the duration of the observation period. To 
overcome these limitations, we have developed the MS2Field platform 
providing an autonomous workflow that combines continuous high- 
frequency sampling with on-site measurement with a high-resolution 
MSMS instrument (Stravs et al. 2021). 

In this paper, we presented a comprehensive PPPs and TPs exposure 
dataset obtained using MS2Field in a small agricultural catchment. The 
study aimed at elucidating the variability of PPPs and TPs dynamics in 
an area characterised by a large variety of PPPs-intensive crops to study 
(1) how the concentration dynamics compared relative to rainfalls and 
water level dynamics across compounds with different physico-chemical 
properties and (2) to which degree acute PPPs levels were under-
estimated by the Swiss monitoring program based on time-composite 
sampling. We also addressed the degree to which the observed PPPs 

dynamics informed about sources and flowpaths. To these ends, we 
combined our concentrations dataset with public regulatory information 
on PPPs approval and with event-driven samples representing specific 
transport mechanisms (tile drains and surface runoff). 

The selected catchment was known for the frequent detection of a 
wide range of different PPPs (Spycher et al., 2018) and belonged to the 
10% of Swiss agricultural catchments classified in the top-three classes 
of an aggregated PPPs pollution risk potential (Koch & Prasuhn, 2021). 
Here, we targeted 60 compounds at 20-minutes temporal resolution 
continuously for 41 days encompassing different hydro-meteorological 
conditions (large rain events, small events and low-flow periods) dur-
ing the growing season of 2019. 

2. Methods 

Study area 

We studied a small agricultural catchment in the Swiss Plateau close 
to Lake Constance. A previous monitoring using 12-hours composite 
samples revealed exceedances of acute quality standards (AQS) and that 
rain-driven water level peaks lasted shorter than 12-hours, thus sug-
gesting that higher frequency was necessary to separate peaks dynamics 
(Spycher et al., 2018). The topographic catchment covered about 2 km2. 
The land use in the area encompassed cereal (mainly wheat) fields 
(18%), orchards (17%), berries (9%), horticulture (3%), grasslands 
(29%), forest (19%), urban area (1%) (Source: Swiss Federal Office of 
Topography, Fig. 1). The altitude ranged between 400 m and 500 m with 
a median slope of about 3%. The sampling site was located downstream 
at the closure of the catchment, but sufficiently upstream to avoid in-
fluences of the lake. A water level gage managed by the cantonal envi-
ronmental office took measurements at the sampling site every 15 
minutes. A meteorological stations (MeteoSwiss) was located 1.8 km 
from the sampling site and recorded rainfall every 10 minutes. No 
wastewater treatment plant discharged in the stream. The catchment 
was drained by tile drains, which connected an estimated additional 
surface of 0.7 km2 to the stream (Source: Planimpuls.ch, Fig. 1, map 
retrieved after the monitoring). Given the relatively high presence of 
PPPs-intensive crops and farmyards connected to the stream, the 

Fig. 1.. Study area. Landuse in 2019 specified in the legend at parcel level as 
color filled areas, weather station as red triangle, stream as open flow in blue 
line and as culvert in dashed white-blue line, sampling location at the catch-
ment outlet as yellow star, drainage network as black line, maintenance holes of 
the drainage network in black dots, topographic catchment as red thick line, 
outlets “D5” downstream and “D6” upstream of the drainage network moni-
tored by the Canton as yellow crosses (upstream runoff location “R” not dis-
played for protecting the privacy of the stakeholder involved). In the 
background, the true color image from the satellite Sentinel-2 taken on June 
24th, 2019. 
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catchment was ranked at high risk of PPPs pollution potential, together 
with 10% of Swiss agricultural streams (Koch & Prasuhn, 2021). 

Sampling campaigns 

High-frequency short monitoring 
The fully automated mobile unit MS2Field was used to collect and 

analyze water samples by means of high-resolution mass spectrometry 
with limits of quantification (LOQ) in the low range of ng/l at 20 mi-
nutes time resolution (the workflow and further technical aspects were 
explained in Stravs et al., (2021). Note that the sampling frequency of 20 
minutes shall be considered high in general for applications in surface 
water. The campaign covered part of the cropping season of 2019, 
spanning from May 27th to July 7th, collecting 41 days of observations. 
This application resulted in 2560 samples, which were analysed for 60 
compounds shortlisted upon a previous screening in the stream 
(Spycher et al., 2018). Data gaps due to the running of quality checks 
and maintenance of MS2Field were not included in the 2560 samples. 
Details on the chemical analyses are reported in Section S1. 

National low-frequency long monitoring (NAWA-Trend) 
The sampling location was part of the Swiss National Surface Water 

Quality Monitoring Network (Doppler et al., 2020). In the program 
NAWA-Trend, 3.5-days time-composite samples were collected during 
the spraying season between April-July (overlapping with the MS2Field 
campaign) and 14-days time-composite samples otherwise. Samples 
were collected with a MAXX sampler with cooling unit. After the com-
posite sample was collected, it was stored in insulated boxes with 
freeze-packs and transported to the laboratory in Schaffhausen 
(INTERKANTONALES LABOR) for chemical analysis. Details on the 
chemical analyses are reported in Section S2. 

Event sampling at specific locations 
During the cropping season of 2019, rain-triggered sampling devices 

(ISCO 6712, not refrigerating) collected event samples at two tile drain 
outlets and one surface runoff location. The drains were active only 
during wet conditions (Table 1). Each sample consisted of four pooled 
samples taken every 5 minutes in the first 20 minutes of water flow in 
the tile drain outlets and runoff location triggering the automatic 
sampler given the aim of the Cantonal authority to monitor the water 
quality during fast transport. Samples were collected within 12 hours 
from the activation and stored at 4 ◦C. In the same night, when tem-
peratures are lower than in the day, samples were stored in insulated 
boxes with freeze-packs and transported to the laboratory in Belp 
(Interlabor Belp) for chemical analysis scheduled for next morning. 
Details on the chemical analyses are reported in Section S3. 

Generation of concentrations time-series within the MS2Field platform 

Samples were measured by MS2Field using online solid phase 
extraction (oSPE)-LC-HRMS. Sample preparation and analysis are per-
formed by a programmable autosampler (PAL RTC, CTC Analytics) and 
HPLC pump (Rheos 2000, Flux Instruments) connected to a high- 
resolution mass spectrometer (Q-Exactive HF, Thermo Fisher). 

A volume of 500 – 750 µl was drawn every 20 minutes and a mix of 
84 isotope-labeled internal standards was automatically spiked. The 
sample was enriched using custom-packed SPE cartridges (XBridge BEH 
C18, 5 µm) and chromatographically separated by a conventional LC 
column (XBridge BEH C18, 3 µm, 125 2.1 mm × 5 cm) followed by 
electrospray ionization (positive/negative mode switching) in fullscan 
mode and injection to the QExactive HF mass spectrometer (Stravs et al., 
2021). 

Calibration curves were performed in Evian water using the method 
of internal standard calibration. For the calibration, 360 PPPs and TPs 
together with 84 internal isotope-labeled standards of PPPs and TPs 
were used. To control the analyte recovery in matrix and sample carry- 

over, spiked samples and Evian blanks, respectively, were analysed at 
regular intervals during on-site measurement. Quantification was per-
formed manually using the TraceFinder Software (Thermo Scientific) for 
a subset of 60 target compounds, which were selected based on the 
detection frequencies measured in previous more comprehensive studies 
of this catchment (Spycher et al., 2018). For the quantified compounds, 
LOQ values were in the range of 2 – 100 ng/l and the relative recovery 
was in the range of 48 – 139% (Section S1). 

Data exploration 
The high-temporal resolution time-series of PPPs concentrations 

were visually explored and analysed using RStudio 3.5.0 and the “dplyr” 
package. 

Hydrological classification 
The study period was divided into periods of different hydro- 

meteorological condition. The rationale behind the classification was 
to differentiate between periods when different transport processes may 
have been active. Large events generate discharge also by a hydrological 
response of the soils, while small events basically consist of runoff from 
hard surfaces. These hydrological differences cause different recession 
patterns in the hydrograph. The water level decline to pre-event con-
ditions after large rainfalls can last hours to days, while the recession 
after small events is quicker. Accordingly, we distinguished between 
“Large events” (“large”), “Small events” (“small”) and “Dry periods” 
(“dry”). Based on the rainfall and water level data, a threshold of the 
maximum rain intensity > than 1 mm/10 minutes provided a good 
separation between large and small events (Tables S5-S6). Only during 
“large” events, stream water levels exceeded 20.6 cm. Events were split 
into two by a 2 hours period without rainfall. “Dry” periods referred to 
days of the year with no rainfall and with a calculated standard devia-
tion of the water levels within a threshold to neglect the contribution of 
groundwater following rain events. In this manuscript, we will analyze 
the concentration time-series during large and small events. Dry periods 
will be the focus of a companion manuscript. 

Patterns elucidation by positive matrix factorisation 
In order to detect hidden similarities and differences in the complex 

set of concentration time-series, we performed a positive matrix fac-
torisation (PMF). PMF is a multivariate receptor model approach suit-
able to estimate the composition of a user-defined number of 
contamination sources (factors) and their contribution with respect to a 
given multispecies dataset of concentration values (Paatero, 1994). PMF 
allows each data value to be weighted, thus accounting for the uncer-
tainty in each measurement. 

The input dataset is a matrix X with n rows and m columns, where n is 
the number of observations and m is the number of chemical species. 
PMF reduces the number of chemical species m to a user-defined number 
of factors p, each with an estimated (time) profile, by calculating the 
contribution gi,k of each factor (k from 1 to p) to each individual sample (i 
from 1 to n) according to (1): 

X = FG + E, with xi,j =
∑p

k=1
fk,jgi,k + ei,j = ci,j + ei,j (1)  

where F is the factor profile matrix with p rows and m columns, G is the 
factor contribution matrix with n rows and p columns, E is the residual 
(error) matrix containing the elements ei,j resulting from the estimation 
of X and C is the matrix of the estimated concentrations (ci,j). 

The PMF solution minimizes the objective function Q, while ac-
counting for the uncertainty (matrix U with elements ui,j) corresponding 
to (2): 

Q =
∑n

i=1

∑m

j=1

[xi,j −
∑p

k=1

(
gi,kfk,j

)

ui,j

]2

(2) 
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For the PMF analysis, concentrations < LOQ were set to half of LOQ 
for the corresponding compound, where LOQ is used instead of the limit 
of detection (LOD) because our automated sampling does not allow for 
calculating a LOD. The uncertainty (ui,j) is estimated as (Polissar et al., 
1998; Yang et al., 2013): 
⎧
⎪⎪⎨

⎪⎪⎩

IF xi,j > LOQj, ui,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
ai,j × xi,j

)2
+
(
LOQj

)2
√

IF xi,j ≤ LOQj, ui,j =
5
6
× LOQj  

where a is the measurement error. MS2Field does not allow for analysing 
duplicate samples so as to calculate the error as the median relative 
percentage (Baldwin et al., 2020). Thus, we use a procedure to calculate 
the error specifically for each compound (details in Section S4). The 
error varied from 1% to 11% (Table S4). 

Robust species shall be used for the PMF analysis. We used the 
signal/noise (S/N) ratio to assess the robustness of each chemical species 
for the PMF analysis, which is calculated as (3): 
(

S
N

)

j
=

1
n
∑n

i=1
di,j (3) 

Where di,j is a distance metric and it is calculated as:  

• di,j = 0 for xi,j ≤ LOQj;  
• di,j = (xi,j - ui,j) / ui,j for xi,j > LOQj . 

Based on the signal to noise ratio, chemical species were classified as:  

• Bad, if S/N ≤0.2;  
• Weak, if 0.2 < S/N ≤ 1;  
• Good, if S/N > 1. 

We performed the PMF analysis by means of the freely available 
software EPA-PMF 5.0 (Norris et al., 2014), which also provides the 
environment to perform error estimation analyses (Brown et al., 2015). 
The software excludes bad species for the analysis and it multiplies the 
uncertainty for weak species by 3. Detailed information on the model are 
in (Norris et al., 2014). 

There is no standard method to choose the number of factors a priori. 
Thus, we performed 20 model runs for each selected number of factor 
ranging from 2 to 13 (number of good chemical species minus 1). The 
model was run in the robust mode yielding Qrobust calculated as in (3 
excluding concentration values corresponding to an estimated error (ei,j 

=
⃒
⃒xi,j − ci,j

⃒
⃒) four times larger than the corresponding uncertainty (i. 

e., ei,j/ui,j > 4) to neglect possible outliers. 
To assess the stability of the PMF solution we verified that Qrobust did 

not vary substantially across the 20 runs for each choice of number of 
factors. The model prediction error (ei,j) should be close to the estimated 
uncertainty (ui,j) if the research problem is adequate for a PMF analysis 
and the estimated uncertainty is correct (Ulbrich et al., 2009). When this 
happens, each term ei,j/ui,j will tend to 1 and the expected value of Q 
(Qexp) will tend to the number of data points in X minus the degrees of 
freedom of the weighted-least-square problem solved by PMF as nmgood - 
p(n+mgood), with mgood being the number of good species (Paatero, 
1994; Ulbrich et al., 2009). So, to understand the quality of the PMF 
solution we looked that the ratio between Qrobust and Qexp tended to 1. A 
ratio smaller than one possibly indicates overestimation of the un-
certainties. We assessed the interpretability of the solutions for the 
factor profiles in relation with meteo-hydrological dynamics and local 
knowledge gained through field visits. For the selected solution, we 
carried a bootstrap analysis to assess the modeling error. 

Additional public data sets 

We explored the use of public data sets for the identification of 

potential source areas given the results of the PMF analysis and the 
measured time-series. We retrieved the database with regulatory infor-
mation compiled by the Swiss Federal Office for Agriculture (BLW 
database, at https://www.psm.admin.ch), which indicated the 
approved PPPs, the commercial products in which they can be found 
(together with additional active ingredients), the crop they are allowed 
for and the dosage. We linked this database with the land use at the 
parcel level to identify areas where the target compound could be 
potentially applied. 

3. Results 

The observation period covered a wide variety of hydro- 
meteorological conditions. We captured eight large events lasting be-
tween 1 and 8 hours and 15 small events, of which 12 lasting less than 1 
hour (Tables S5-S6), shown as gray and green bars, respectively, in 
Fig. 2. The total rainfall was 112.6 mm, with a maximum intensity of 
14.2 mm/10 minutes and an average intensity of 1.7 mm/10 minutes 
during rainfalls. 

Among 60 target compounds, 32 were detected above their LOQ by 
MS2Field (boxplots per compound in Figure S1). NAWA-Trend shared 43 
out of those 60 compounds, 24 compounds exceeded their LOQ during 
MS2Field (full time-series in Figures S2-S5) and 10 PPPs reached their 
maximum concentrations in the same period (Table S7). The concen-
trations measured with MS2Field spanned four orders of magnitude, from 
few ng/l to tens of µg/l. The PPPs, grouped by class, detected with the 
highest concentration were the fungicide fluopyram (≈30.9 µg/l), the 
herbicide napropamide (≈5.1 µg/l) and the insecticide thiacloprid 
(≈2.2 µg/l). The 95th quantile of all concentration values was ≈430 ng/l. 
We surprisingly measured elevated concentrations of the fungicide 
oxadixyl, which was withdrawn from the Swiss market in 2005. The 
mean concentration of this compound was ≈135 ng/l corresponding to 
the 4th highest mean concentration in our dataset (Figure S1). 

In the next subsections, we first presented the results of the PMF 
analyses that provided an overview on (dis)similarities between con-
centration time-series. Then, we showed the high-frequency concen-
tration dynamics of the compounds used for PMF in the most relevant 
time window; we attempted to reveal contamination sources with the 
support of auxiliary data sets based on patterns similarity. After, we 
depicted the concentration levels measured by proxy-triggered auto 
samplers to highlight the role of other flowpaths for stream pollution. 
Finally, we summarised the MS2Field dataset in relation with the acute 
exposure assessment and in comparison with the NAWA-Trend data. 

Fig. 2.. Overview of the monitoring campaign. Vertical bars in gold showed 
periods with data gaps due to maintenance of MS2Field. Water level shown as 
black line and rainfall intensity as black line on the reversed y-axis. Vertical 
green bars indicate small events (we highlight a period of 3 hours following the 
beginning of the event) and gray bars indicate large events with the number 
above identifying the large events (we highlight a period of 14 hours following 
the beginning of the event, thus events 2, 3 and 4 appear as one event on 
June 10th). 
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3.1. Positive matrix factorisation (PMF) 

Among the 32 compounds exceeding their LOQ, we kept the 17 
compounds classified with a sufficient signal to noise ratio according to 
(3) for the PMF analysis (Section S7). We selected the solution with six 
factors because the PMF model achieved good accuracies in predicting 
the measured concentrations, with an overall mean R2 of 0.68 (Figure S6 
and Table S8) and because the ratio Qrobust/Qexp decreased substantially 
from five to six factors and only slightly from six to seven factors 
(Figure S7). Five species were not fit well by the model (clothianidin, R2 

= 0.23, weak S/N ratio; fenhexamid, R2 = 0.36, good S/N ratio; 
myclobutanil, R2 = 0.23, good S/N ratio; simazine, R2 = 0.04, good S/N 
ratio; and thiacloprid, R2 = 0.28, weak S/N ratio). To obtain good model 
performance also for these compounds, model complexity would have to 
be substantially increased (Figure S6). 

The six factors of the final PMF model split in two groups: one factor 
that represented dilution during rainfalls and five factors that charac-
terised different event-driven dynamics (Fig. 3a). As expected for legacy 
contaminants, Factor 1 contribution to the measured concentrations of 
the legacy fungicide oxadixyl achieved nearly 99% (purple bar in 
Fig. 3b). Factor 1 was predominant for simazine and other non-legacy 
compounds, indicating that the observed concentration dynamics dur-
ing the study period were hardly affected by recent applications. The 
other five factors were all closely tied to rainfall events. However, they 
differed in the degree to which they responded to different events. Only 
Factor 6 showed a response to rainfall in late May; all factors except 
factor 5 were influenced by the events of 10 – 12 June, and the major 
response to the last event was observed for factor 5 (Fig. 3a). Likely, the 
six factors represented the contribution of different sources, activated by 
different events, where each event mobilised different PPPs that had 
recently been applied. Closer inspection revealed differences also within 
major events (i.e., 10 - 12 June), when the factors differed in magnitude 
and timing. This suggested different travel times of the compounds 
depending on the location within the field where they were applied and 
possibly due to different transport mechanisms linking the areas of PPPs 
application with the stream. 

Interestingly, after filtering the results by enforcing a factor- and 
PPP-specific fingerprint contribution to the measured concentration ≥

25%, we discovered that the factors separated classes of PPPs (Fig. 3b). 
The insecticide thiacloprid represented an exception because it 
composed factor 4 together with fungicides. 

3.2. Contaminant concentration dynamics 

Large events 
The PMF highlighted the largest mobilization of the most compounds 

during the large events 2, 3 and 4. Thus, we depicted in Fig. 4 the time- 
series of the selected PPPs and TPs during these consequent large events. 
In general, the same PPP showed different concentration patterns (peak 
timing and duration) in the different events. Also, some compounds 
showed identical dynamics within events despite having very different 
physical-chemical properties (Table 2). This indicated that such prop-
erties played a negligible role in the concentration patterns as compared 
to the possible sharing of a similar source or flowpath. The overview on 
measured patterns was generalizable to other events depicted in 
Figures S10-S13. 

In Fig. 4(a), we highlighted the unexpected similarity between the TP 
of a fungicide azoxystrobin-TP and the legacy fungicide oxadixyl, both 
present in factor 1 in the PMF. Noteworthy was the concentration in-
crease in the rising limb of the water level, while dilution occurred af-
terwards. This suggested that pre-event water reached the outlet faster 
than event water. The difference in historical use of the compounds 
emerged at the end of the second event, when oxadixyl concentrations 
halved and azoxystrobin-TP ones doubled compared to their initial 
concentrations. The compounds in Fig. 4(b) were still grouped in factor 
1. Here, we had the fungicide myclobutanil and the TP of the herbicide 
terbutylazine that showed the earliest peaks among all compounds, with 
identical dynamics in the first peak. The dynamics suggested that the 
compounds likely came from the same source. The BLW database indi-
cated that terbutylazine was mainly approved for corn, while myclo-
butanil was approved for many uses but corn; the only shared use in the 
catchment was on pome fruits (approval until December 2020), which 
were indeed proximal to the catchment outlet (orchards in blue in 
Fig. 1). 

Fig. 4(c) depicts the herbicides metolachlor and metamitron both 
predominantly grouped in factor 2. Their only shared use was for 

Fig. 3.. Results of the PMF. Top panel, from the 
bottom up, time profiles of the concentrations 
of each factor in every sample (matrix G) and 
the rainfall shown as top black line. Bottom 
panel, fingerprints of PPPs in every factor 
(matrix F). Fingerprints are indicated in the 
legend by the identifier “F” followed by their 
number. The short name for the substances in 
the x-labels starts with “F-” for fungicides, “H-” 
for herbicides, “I-“ for insecticides, “*I-“ for the 
later withdrawn insecticides, “W” for with-
drawn, “TP-F” for fungicidal transformation 
product or “TP-H” for herbicidal transformation 
product.   
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sugarbeets, which may explain the identical patterns in the second rain 
event. In the first rain event, metolachlor showed more similar dynamics 
to terbutylazine, and as a matter of fact, their only shared use was for 
corn where they can even be applied in the same commercial product. 

Fig. 4(d) depicted together the PPPs predominantly grouped in 

factors 3 and 4. These compounds showed very similar dynamics only in 
the second rain event, matching positive and negative variations in 
concentrations at the 20 minutes time scale. These patterns possibly 
indicated the mobilization from different sources in the first event, but 
from the same sources afterwards. Again, the only shared use for all 

Fig. 4.. Large events between June 10th and 
11th. The legend reports the maximum con-
centrations of each PPPs achieved during the 
event; normalised concentration values are 
represented on the y-axis. Water level as thick 
black dash line in (a) and (b) and thin line for 
readability from (c) to (f). Rainfall as black line 
on the reversed y-axis. Compounds in (a) and 
(b) were in factor 1 of the PMF, those in (c) in 
factor 2, napropamide in (d) in factor 3, pyr-
imethanil and thiacloprid in (d) in factor 4, 
those in (e) in factor 5 and those in (f) in factor 
6.   

Table 1. 
Overview of the sampling campaigns in 2019.  

Campaign Start date End date Sampling site Sample type Temporal resolution 

MS2Field 27th of May 7th of July Outlet Grab sample 20 min 
NAWA Trend 7th of January 23rd of December Outlet Time composite 3.5 days (1st of April to 5th of August)/14 days (otherwise) 
Spatial campaign 2019 5th of June; 

10th of June; 
11th of June; 
12th of June; 
1st of July 

5th of June; 
10th of June; 
11th of June; 
12th of June; 
1st of July 

Tile drain 
Downstream 
(D5) 

Event composite First 20 minutes since the triggering of the autosampler 

10th of June; 
11th of June; 
12th of June; 
18th of June; 
1st of July 

10th of June; 
11th of June; 
12th of June; 
18th of June; 
1st of July 

Tile drain 
Upstream 
(D6) 

11th of June; 
12th of June; 
1st of July 

11th of June; 
12th of June; 
1st of July 

Runoff 
Upstream 
(R)  

Table 2. 
Physical and chemical properties of the five analysed compounds retrieved from the PPDB (Lewis et al., 2016).  

Name LogP (-) DT50Soil lab (days) DT90Soil lab (days) Kfoc (l/kg-OC) DT50Photodegradation (days) DT50Sediment (days) DT50Water (days) 

Azoxystrobin 2.5 84.5 363.3 423 8.7 205 6.1 
Cyprodinil 4 53 120 2277 13.5 142 12.5 
Fluopyram 3.3 309 723 278.9 21 1077 20.5 
Napropamide 3.3 308 1000 885 1.5 316 28 
Thiacloprid 1.26 0.88 4.3 615 NA 14.8 1000  
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three PPPs was for strawberries, which were more distant from the 
catchment outlet. 

Fig. 4(e) showed identical dynamics for the fungicides azoxystrobin, 
cyprodinil and fluopyram despite the concentrations differed by two 
orders of magnitude. These PPPs shared eleven different possible uses, 
which hindered from narrowing down the attention on few possible 
sources. Still, the PPPs equally present in factors 4 and 5 (cyprodinil, 
fluopyram, napropamide and thiacloprid) shared the use for straw-
berries only. 

Finally, Fig. 4(f) displayed the similar dynamics of the fungicides 
fenhexamid and fenpyrazamin, with the former having many potential 
uses as compared to the latter; however, they only shared the use for 
strawberries. 

Small events 
Fig. 5(a) showed the time-series of PPPs with similar patterns but 

with different physical-chemical properties (i.e., those in Table 2) dur-
ing the series of small events that occurred between June 19th and June 
22nd. We observed highly dynamic and complex patterns, with con-
centration peaks lagging water level peaks. The data highlighted that 
some compounds followed identical dynamics also during small events 
(e.g., cyprodinil and thiacloprid). Again, we noticed long delays be-
tween rainfalls and concentration peaks (e.g., the second peak of 
cyprodinil occurred seven hours later than the previous small event). 
The last small event had a maximum intensity of 0.3 mm/10 minutes. 
Still, azoxystrobin showed a first peak of almost 800 ng/l. Similar to the 
antecedent small event, we measured a second peak of azoxystrobin 
after a 8 hours delay, together with the other three PPPs. Surprisingly, 
napropamide achieved its highest concentration of almost 5200 ng/l 
starting from a precedent condition of about 50 ng/l. Fig. 5(b) shows 
that oxadixyl, used as groundwater “tracer”, underwent dilution in the 
lagged peaks in the last two small events. The lagged peaks may come 
from distant sources/slow flowpaths not contaminated with oxadixyl. 

3.3. Concentrations in tile drains and surface runoff 

During the MS2Field campaign, concentrations in two tile drains “D5” 

downstream and “D6” upstream and one upstream surface runoff sam-
pling point “R” ranged from 10 ng/l (the minimum LOQ) to 1000 ng/l at 
D5, to 5400 ng/l at D6 and to 2100 ng/l at R (Fig. 6). Six compounds 
measured at high concentrations in either of these three sites were also 
measured at high concentrations in the stream (i.e., cyprodinil, fluo-
pyram, myclobutanil, napropamide, oxadixyl and thiacloprid). Con-
centrations were higher outside the MS2Field campaign, when 
fluopyram reached 14,400 ng/l at D5 in September and cyprodinil 
reached 7300 ng/l at R in August (Figure S14). 

The data from these sites did not reveal clear differences in con-
centration levels between tile drains outflow and surface runoff. This 
similarity precluded to draw conclusions about the relevance of specific 
flowpaths for the overall concentration dynamics in the stream simply 
based on concentration levels. Moreover, in the event-samples at D6, 
oxadixyl was measured at 850 ng/l on June 10th and 520 ng/l on June 
11th, whereas its concentrations at the catchment outlet ranged between 
20–212 ng/l on June 10th and 6 (LOQ)-110 ng/l on June 11th. If we 
assumed that the concentrations at D6 represented the maximum peaks, 
then we could expect at least a 4-fold dilution in compounds’ concen-
trations measured at this location in the event-based sample to the 
catchment outlet. The short monitoring (20 minutes long) and the lack 
of detailed PPPs spraying records hindered disentangling the processes 
causing high PPPs concentrations in the drainage network (spills, runoff, 
drift intercepted by maintenance holes or preferential flow into tile 
drains). 

3.4. Acute exposure assessment 

Concerning concentrations were measured during large and small 
events. In the latter, few PPPs exceeded their AQS (i.e., azoxystrobin on 
June 21st) or achieved their maximum concentration and approached 
their AQS (i.e., napropamide on June 22nd). These values could only be 
quantified because of the continuous high temporal resolution. The 3.5- 
days time-composite sampling scheme underestimated these maximum 
values by at least one order of magnitude (Table 3 summarised the PPPs 
that exceeded their AQS, Figure S15 depicted the variability in under-
estimation factors for all compounds calculated as the ratio between the 
maximum concentration of MS2Field measurements and the time- 
averaged concentration of NAWA-Trend over the same 3.5-days inter-
val, Figure S16 showed the comparison between time averaged con-
centrations over 3.5 days calculated from MS2Field and measured in 
NAWA-Trend, with corresponding uncertainties in Figure S17). The 

Fig. 5.. Time-series of the PPPs shown in Table 2, plus oxadixyl as groundwater 
“tracer” for the small events between June 19th and 22nd. The legend reports 
the maximum concentrations of each PPPs achieved during the event; nor-
malised concentration values are represented on the y-axis. Concentrations 
below LOQ not depicted. Water level as black dash line and rainfall as black line 
on the reversed y-axis. Vertical bars in gold show periods with data gaps due to 
maintenance of MS2Field. 

Fig. 6.. Concentration values of the measured PPPs and TPs in the drainage 
system and surface runoff site during the MS2Field campaign in 4 different 
events for D6 and R and in 5 different events for D5. Chloridazon-met-des 
corresponds to Chloridazon-methyl-desphenyl and Pirimicarb-TP to 
Desmethylformamidopirimicarb. 
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highest underestimation factors corresponded to PPPs showing high 
short-term peaks above LOQ values. Depending on the starting time of 
the composite sampling, the underestimation factors could potentially 
achieve a value of almost 180 for the 3.5-days scheme (Dax et al., 2020) 
(Figure S18). 

MS2Field revealed a total of 11 exceedances of AQS included in Swiss 
legislation (WPO, 1998) by 5 PPPs (those in Table 3), while 
NAWA-Trend captured 3 AQS exceedances by 2 PPPs (azoxystrobin and 
thiacloprid) during the MS2Field campaign. The high temporal resolu-
tion allowed for the detection of compounds that were missed by 
NAWA-Trend because of their short peaks, which led to average con-
centrations below their LOQ (Table 3). Noteworthy were the herbicides 
mecoprop and diuron, which achieved concentrations as high as ≈610 
ng/l and ≈490 ng/l, respectively, the latter exceeding its AQS. Despite 
urban areas covered less than 1% of the catchment size, we could not 
rule out the possibility that such peaks resulted from uses in urban areas 
as herbicides and biocides (Bucheli et al., 1998; Paijens et al., 2020). 
Short-term peaks occurred during both large and small events. 
NAWA-Trend measured an exceedance by carbendazim between May 
2nd and May 6th. Carbendazim was not reapproved as PPP, it was 
approved as biocide in building materials and it is the major TP of the 
fungicide thiophanate-methyl approved for orchards among other uses; 
thiophanate-methyl was applied in the catchment on May 1st and May 
2nd, supporting the hypothesis that carbendazim resulted from quick 
transformation of its parent compound. While it was not the goal of this 
study, we found that a water quality assessment based on chronic 
exposure only (where 14-days composite samples are compared against 
chronic quality standards) revealed 2 chronic exceedances during the 
same 14 days when 5 acute exceedances occurred, thus underestimating 
the ecotoxicological risk (Table S9). The concentration underestimation 
factor exceeded 500 for 14-days composite samples (maximum con-
centration of MS2Field measurements over the 14-days average con-
centration of NAWA-Trend in the same interval) (Figure S19). 
Relevantly for the PPPs regulatory framework, MS2Field captured 9 
exceedances of the regulatory acceptable concentration (RAC) corre-
sponding to 4 PPPs (Table 3), while the standard monitoring recorded 1 
RAC exceedance for thiacloprid. 

Neither AQS nor RAC exceedances were observed during the dry 
period (focus of the companion manuscript). 

4. Discussions 

4.1. Positive matrix factorisation 

We used the PMF to mine our large dataset. Although PMF success-
fully identified explainable factors, we could not attribute the factors to 
the contamination sources without uncertainties. In fact, many human- 
driven decisions influence the processes happening in agricultural 
catchments including the choice of which, when and where a PPP is 

applied, which also imply different management of the same land use in 
the catchment. Regulations also drive what cannot be applied to prevent 
the spark of resistance to PPPs or to safeguard natural resources. The 
dynamics in the agricultural landscape, such as crop rotation, imply the 
use of different PPPs on the same parcel from one year to the other. All 
these aspects hamper the formation of contamination source areas with 
unique fingerprints, which would allow for the robust use of PMF to 
identify them. 

4.2. Temporal dynamics in a small agricultural stream 

MS2Field enabled to achieve high temporal resolution throughout the 
entire monitoring period. This allowed for capturing for the first time 
the concentration patterns of current and legacy PPPs and TPs within 
and across rain events in a small stream. Our measurements clearly 
revealed the occurrence of concentration peaks leading or highly lag-
ging water level peaks; more importantly the patterns were inconsistent 
across events and hardly explainable considering the small size of the 
catchment. Therefore, there was not a robust proxy for capturing the 
concentration peaks with proxy-triggered autosamplers. From the 
coupling of MS2Field data with the detailed land use map, we could 
speculate that the further the influential contamination source the 
longer the arrival of concentration peaks. This expected result was 
indeed found in another study given the availability of detailed appli-
cation records relative to the monitored compounds (Lefrancq et al., 
2017). The results further demonstrated that compound properties did 
not have a clear effect on compounds mobilization to the outlet. This 
was in line with Worrall & Kolpin (2004), who concluded that molecular 
descriptors found to be significant for aquifer vulnerability to herbicides 
occurrence were semi-empirical descriptors of molecular topology, such 
as molecular size, molecular branching and functional group composi-
tion rather than typically used properties, such as adsorption and 
partition coefficients. Nonetheless, our result did not imply that prop-
erties were irrelevant to the magnitude of the measured concentrations. 
Yet, given the high similarities among concentration dynamics of few 
PPPs, we hypothesized that they originated from the same source and 
shared the same flow path, as observed in previous controlled studies 
(Gomides Freitas et al., 2008). Note that, if we measured less targets at a 
lower frequency, we would not have been able to exploit the observation 
of practically identical dynamics among compounds to infer on potential 
contamination sources of several PPPs based on their shared land uses. 
The more plausible flow paths were through surface runoff over 
impervious surfaces and drainage network for which it is less likely the 
physical and chemical properties play a role in the temporal dynamics 
given the lack of interactions with the soil matrix. While this catchment 
may sound unique given the dense drainage network, it was estimated 
that in Switzerland on average 28% of the agricultural area is directly 
connected to surface water and another 35% is indirectly connected 
through artificial structures (Schönenberger & Stamm, 2021). 

Table 3. 
Measured maximum concentrations during AQS exceedances according to MS2Field (Max. conc. MS2Field) and measured composite concentrations in the Swiss 
monitoring program (NAWA-Trend). *: Calculated composite concentration as mean concentration of MS2Field measurements over the corresponding 3.5-days interval 
used in NAWA-Trend for compounds not measured in NAWA Trend in that period (concentration values < LOQ set to LOQ and the neglected missing samples for 
quality checks purposes amounted to ≈10% within the time intervals). NA stands for PPPs not measured by MS2Field. Concentrations at 20 minutes and 3.5 days 
resolution compared against AQS (exceedances in bold) and RAC (exceedances underlined).  

Compound Time stamp Max. conc. MS2Field at 20 min 
(ng/l) 

NAWA-Trend at 3.5 days 
(ng/l) 

Underestimation factor for 3.5-days 
(-) 

AQS (ng/ 
l) 

RAC (ng/ 
l) 

Azoxystrobin July 1st ≈6300 ≈490 12.8 550 3300 
Diuron July 7th ≈490 <LOQ (15) >32.6 250 1830 
Fluopyram July 1st ≈30,900 ≈2690 11.4 25,100 13,500 
Nicosulfuron July 1st ≈280 *≈32 *8.8 230 230 
Thiacloprid July 7th ≈2280 ≈270 8.3 80 200 
Carbendazim May 2nd - May 6th NA ≈790 – 700 – 
Chlorpyrifos- 

methyl 
May 9th - May 
13th 

NA ≈10 – 7.3 30  

D. la Cecilia et al.                                                                                                                                                                                                                              



Water Research X 13 (2021) 100125

9

4.3. Concentrations in tile drains and runoff 

It is generally acknowledged that delays in the order of hours be-
tween discharge peaks and concentration peaks can occur, with quick 
discharge response times being driven by road runoff (Doppler et al., 
2012). In our study, we detected several short concentration peaks, with 
concentrations increasing up to a factor of 10, after small rainfall events 
(delays up to 8 hours). While we could not find a conclusive explanation 
for such long delays for this small catchment, the sharp peaks pointed to 
the regular occurrence of losses from hard surfaces such as roads and 
farmyards. Hydraulic shortcuts as recently described (Schönenberger & 
Stamm, 2021) may play an important role in these contexts. Indeed, 
local observations revealed substantial concentrations in tile drains. 
Noteworthy was the finding of oxadixyl in tile drain D6 only at con-
centrations higher than at the catchment outlet by one order of 
magnitude. This result, in combination with the peaking of oxadixyl in 
the rising limb of water level (Fig. 4b), indicated that tile drains could 
deliver pre-event water into surface water. A similar finding was 
observed and reviewed by Klaus et al. (2013). Regarding this aspect, we 
became aware of relatively large areas outside from the topographical 
catchment but connected to the stream through the drainage network. It 
could be of utmost importance to be aware of the presence of these in-
frastructures to understand their influence on site-specific target miti-
gation strategies. 

4.4. Acute exposure assessment 

NAWA-Trend represents an example for national monitoring of PPPs 
in surface water with continuous relatively high sampling frequency and 
the inclusiveness of small agricultural streams (<10 km2 catchment 
size). In other European countries grab samples are collected every third 
week and small streams are excluded. Although, it is the practise to 
compare the 3.5-days composite samples against the AQS derived from 
exposure tests lasting between 1 and 4 days, it has been long recognised 
that active and passive sampling integrating extended periods of time 
strongly underestimate acute concentration peaks. From an ecotoxico-
logical point of view, this may be critical because short events down to 
exposure of 30 minutes can be concerning for aquatic health (Ashauer & 
Brown, 2013). It was also shown with toxicokinetic and toxicodynamic 
modeling studies that the exposure history (steady or pulsed patterns) 
affects the survival of sensitive species especially when organisms dep-
urate slowly (Ashauer et al., 2016). At the same time, poorly resolved 
monitoring may hamper the possibility to causally link the chemical and 
the biological status of streams. Our dataset provided new quantitative 
estimates to which degree acute exposure to PPPs may be under-
estimated by laboratory tests enforced in regulatory studies (exposures 
typically between 1 and 4 days) (Figure S18). Here, we do not take into 
account the “cocktail effect” potentially leading to worse detrimental 
implications when PPPs and TPs with similar mode of actions on 
non-target organisms are present at the same time also below their AQS. 

The raw data generated by HRMS/MS would also allow for suspect 
screening based on an exact mass and non-target screening using no 
previous information (Hollender et al., 2017; Krauss et al., 2010). The 
raw data thus serve as a digital archive, which can be mined to expand 
risk assessments (Carpenter et al., 2019; Creusot et al., 2020). This is of 
practical importance because concerns about compounds may rise at 
later stages, after samples were discarded. For example, we could 
include key TPs as soon as their corresponding AQS become available to 
enhance the robustness of risk calculations (Mahler et al., 2021). Despite 
a broad spectrum of analytes currently implemented in MS2Field, we 
could not measure pyrethroids, thus leading to a probable underesti-
mation of the acute risk to non-target organisms including invertebrates 
(Rosch et al., 2019; Schulz et al., 2021). 

MS2Field made it possible to carry out an accurate but unintended 
“post-vigilance” monitoring activity of the ensemble of PPPs applied in 
the catchment. These activities have been urged by several authors to 

account for landscape-scale factors possibly neglected by the regulatory 
frameworks and resulting in poor protectiveness of regulatory exposure 
assessment under real conditions (Knabel et al., 2012; Knauer, 2016; 
Milner & Boyd, 2017; Schäfer et al., 2019; Vijver et al., 2017). While 
NAWA-Trend showed that the regulatory framework failed to protect 
the aquatic environment once for 1 PPP, instead MS2Field highlighted 9 
exceedances of RAC for 4 PPPs. Thanks to continuous progress in 
analytical chemistry technology we are now able to acquire a compre-
hensive picture of exposure patterns. Trust and open collaboration 
among stakeholders are the next steps to effectively reduce the con-
cerning exposure to PPPs in aquatic environments through an in-depth 
understanding of site-specific predictable criticalities, which indeed 
are being used to derive risk maps (Koch & Prasuhn, 2021). 

4.5. Sources identification 

Availability of public data on agricultural management 
Strong collaborative framework for data sharing between farmers 

and research institutes can accelerate the transition to agriculture sus-
tainability (Della Chiesa et al., 2019). Lacking crucial information such 
as where, when, how and which compound was applied prevented any 
attempt to link the high-frequency measurements with contamination 
sources, the possibility to identify points of risk within parcels (e.g., 
hydraulic shortcuts) or to exclude possibly not active sources and 
flowpaths to the stream. Here, vegetables and berry fields are also grown 
under plastic tunnels (Figure S20), where runoff is prevented and any 
analysis involving the timing between PPPs application and rainfall to 
mechanistically understand mobilization to the stream would be wrong. 
Thus, to fully profit from the cutting-edge analytical workflow, con-
centration time-series need to be accompanied with spatial and temporal 
information on relevant field-specific information on agricultural ac-
tivities. We demonstrated that combining parcel-specific crop informa-
tion only with general information of possible PPP use based on 
permitted use from registration could not provide the information for 
linking observed PPPs peaks in the stream with their sources in the 
catchment. 

Target sampling campaigns 
With the goal of identifying sources, a spatial sampling campaign 

over the catchment would be an appropriate approach. Here, we showed 
that biased proxy-triggered auto samplers could miss leading and lag-
ging concentration peaks. Thus, a continuous monitoring would be 
needed. Passive samplers may provide the solution for spatially 
distributed continuous monitoring at a relatively low cost. Yet, while 
one should consider the research goal when planning for the duration of 
the sampling, one should also follow good sense in small streams where 
low water depths may not suffice for a complete immersion of the 
sampler. 

5. Conclusion  

• The unprecedented continuous high-frequency measurements of 60 
catchment-specific compounds (PPPs and TPs) in a small agricultural 
stream enabled to:  
- Capture a large diversity of unexpected concentration patterns over 

different events 
- The concentration dynamics were strongly impacted by the appli-

cation history of the compounds and revealed no obvious re-
lationships with physical-chemical properties;  

- Observe that proxy-triggered auto-sampling can lead to severe 
biases in measuring concentration peaks as well as gaining a 
comprehensive picture of exposure patterns in large and small 
events;  

- Reveal that current monitoring approaches relying on 3.5-days 
composite samples underestimated the number of exceedances of 
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the legal acute risk and regulatory acceptable concentrations for 
protecting aquatic organisms during large and small events.  

• The positive matrix factorisation analysis discerned (dis)similarities 
among high-frequency concentration time-series. Uncertainty 
remained for characterizing influential contamination sources, very 
likely because it was difficult to extract land use-specific fingerprints 
considering that the same PPPs can be used on a range of land uses 
and also because the same land use can be found at different loca-
tions of the catchment;  

• The high concentrations measured in tile drains and in runoff in the 
first 20 minutes of water flow pointed to the relevance of these 
flowpaths in degrading water quality. Yet, high concentrations of a 
legacy fungicide in one tile drain suggested that this could be the fast 
flowpath for pre-event water;  

• The drainage networks expanded the areas contributing to PPPs 
losses outside the topographical catchment. Plastic tunnels and hy-
draulic shortcuts may had influenced the measured time-series by 
affecting source areas and flowpaths;  

• The novel capabilities of MS2Field highlighted unexpected and 
overlooked patterns, which could be mechanistically understood 
only if spatial and temporal information on human interventions are 
known (PPPs application, irrigation, plastic covers, etc…). 
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