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A B S T R A C T   

Various ecosystem functions provided by floodplains depend on a natural river activity and floodplain 
morphology. Therefore, anthropogenic alterations of rivers modify their flooding regimes and may affect the 
provisioning of numerous ecosystem functions. Restoration projects, which aim at reestablishing natural pro
cesses of floodplains, require a better understanding of the ecosystem’s ability to simultaneously provide mul
tiple functions (multifunctionality) and how this relates to the environmental template. 

Here we investigate the relationship between environmental drivers and ecosystem multifunctionality. We 
focus on 24 ecosystem functions, representing five ecosystem services provided by floodplains of the Mulde 
River: plant productivity, biodiversity provisioning, retention of sediments, nutrients and pollutants. These 
functions were measured on 74 plots located on three well preserved floodplain sites of the Mulde River. We 
described synergies and trade-offs between single functions using correlations and calculated quantitative 
measures of ecosystem multifunctionality, quantified as the number of functions provided above either 50% of 
maximal functioning, or 75% of maximal functioning. We then explored relations of multifunctionality with two 
environmental factors, which also affect the probability of flooding i.e., the hydrological distance and the dis
tance to the water table. 

Although numerous functions related to sedimentation processes were positively correlated to each other, they 
traded off with functions related to biodiversity provisioning. This advocates the application of a holistic measure 
of ecosystem functioning. Multifunctionality indices decreased with an increase of both distance to the water 
table and hydrological distance, with effects of the distance to the water table being most strongly negative. 
These findings imply that ecosystem multifunctionality is highest at sites which are flooded regularly. We 
conclude that restoration attempts which shorten hydrological distance and distance to the water table, like 
removal of artificial embankments or reconstruction of side channels, may have a positive effect not only on 
single functions, but also on overall ecosystem multifunctionality. We also advocate the application of a mul
tifunctionality measure to facilitate management and restoration of floodplains.   
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1. . Introduction 

Riparian floodplains harbor a high biodiversity (Shiel et al., 1998; 
Ward et al., 1999) and provide an exceptionally broad range of 
ecosystem functions and services (Tockner and Stanford, 2002). For 
instance, they play a vital role in water purification (de Sosa et al., 
2018), sediment and nutrient retention (Brunet et al., 1994; Venterink 
et al., 2006), as well as in habitat provisioning (Tockner and Stanford, 
2002; Tomscha et al., 2017; Hanna et al., 2018). Despite their undeni
able importance, floodplains are among the world’s most threatened 
ecosystems (Tockner and Stanford, 2002). 

The ability of floodplains to provide multiple ecosystem functions 
(González et al., 2017) is underpinned by a mosaic of environmental 
conditions, such as floods and groundwater fluxes, which are themselves 
shaped by floodplain topography i.e. elevation, distance to the river or 
terrain roughness (Doble et al., 2006; Thonon et al., 2007) and by the 
presence of secondary channels and hollows (Jung et al., 2004; Acreman 
and Holden, 2013). Anthropogenic structures like dikes, artificial em
bankments or run-off-river hydropower plants affect both the river 
channel and floodplain topography, reduce the frequency and intensity 
of floods and prolong low water periods (Nilsson and Berggren, 2000; 
Petts and Gurnell, 2005; Gumiero et al., 2012; Kuriqi et al., 2020; Kuriqi 
et al., 2021). Consequently, alterations of hydro-geomorphological 
conditions simultaneously threaten numerous functions provided by 
floodplains (Poff and Zimmerman, 2010; Leigh et al., 2012). For 
instance, reduced frequency and amplitude of flood events can decrease 
primary production (Robertson et al., 2001), affect nutrient cycling 
(Baldwin and Mitchell, 2000; Schönbrunner et al., 2012) and facilitate 
invasions of exotic species (Bren, 1992; Catford et al., 2011; Catford 
et al., 2014). Despite this, it remains unclear whether and to what extend 
topographical drivers which facilitate water relations on floodplains can 
affect the simultaneous provisioning of multiple ecosystem functions by 
floodplains i.e. ecosystem multifunctionality (Kremen and Ostfeld, 2005; 
de Sosa et al., 2018). 

Approaches quantifying and mapping the provisioning of multiple 
functions by floodplain systems can provide valuable information for 
riparian restoration and conservation projects which aim at reestab
lishing natural ecosystem processes (Gilvear et al., 2013; Funk et al., 
2019; Funk et al., 2021). They can be used to prioritize areas for con
servation (Gilvear et al., 2013; Funk et al., 2019; Gilby et al., 2020), 
establish a reference point for restoration (Harris, 1999), or to assess 
efficiency of restoration measures (Bunn and Arthington, 2002; Schin
dler et al., 2014). Furthermore, the need for a joint restoration of various 
ecosystem functions and services is increasingly recognized by policy 
makers and addressed in legal guidelines, such as the environmental and 
water policy in Europe (European Union, 2000; European Union, 2007; 
European Commission, 2011). 

Even so, attempts to simultaneously increase provisioning of multi
ple functions may prove challenging, especially if the target functions 
differ in their responses to environmental drivers (Bunn and Arthington, 
2002; Bennett et al., 2009), or trade off with each other (Cord et al., 
2017; Chen et al., 2021). While synergies between functions imply a 
mutual improvement of multiple functions in response to management, 
and are generally desired, trade-offs (negative correlations) pose a 
challenge for landscape management (Howe et al., 2014; Cord et al., 
2017). For instance, riverine conservation often trades-off with pro
duction of food or hydropower (Kuriqi et al., 2020; Liang et al., 2021). 
The presence of trade-offs requires choices between alternative 
ecosystem functions, which cannot be increased simultaneously (Tur
kelboom et al., 2015; Deng et al., 2016). Although management and 
restoration of riparian areas requires a holistic perspective of ecosystem 
functioning, our understanding of relations between ecosystem func
tions and of mechanisms underpinning their provisioning is still limited 
(Bennett et al., 2009; Landuyt et al., 2016; Dade et al., 2018). Similarly, 
relations between drivers and functions are rarely reported by studies 
assessing relationships between ecosystem services (Dade et al., 2018). 

The most straightforward way of exploring floodplain multifunctionality 
is a spatial assessment of the provided functions (Holland et al., 2011; 
Tomscha et al., 2017; Salata and Grillenzoni 2021). It allows to capture 
patterns on a scale usable by humans and highlights areas suitable for 
conservation. This is often done by investigating the spatial drivers of 
each function separately (Felipe-Lucia and Comín, 2015; Funk et al., 
2019; Demeter et al., 2021). However, analysing each function sepa
rately makes it difficult to identify overall levels of ecosystem services 
(Bradford et al., 2014), especially if some ecosystem functions trade-off 
(Byrnes et al., 2014). Consequently it may hinder interpretation and 
communication of mechanisms driving ecosystem multifunctionality 
(Manning et al., 2018) and lead to implementation ofineffective and 
environmentally or financially costly policy and management (Kremen 
and Ostfeld, 2005; Spake et al., 2017). Measures of ecosystem multi
functionality overcome these limitations, as they make it explicit how 
different functions contribute to an overall measure of ecosystem mul
tifunctionality. Such methods can also help to find potential conflicts 
caused by e.g., restoration efforts, and help to balance opposing objec
tives (Kuriqi et al., 2020). 

In this study we apply The Ecosystem Multifunctionality Threshold 
Index (EMTI) to estimate multifunctionality of riparian floodplains, a 
system of high potential multifunctionality and high demands of resto
ration and management. The applied index provides a quantitative 
estimation of the ecosystem multifunctionality, allows to explore re
lations between environmental drivers and different levels of multi
functionality (Byrnes et al., 2014) and can be extrapolated on a 
landscape scale (Van der Plas et al., 2018). This aggregative measure 
provides a simple way to summarize overall ecosystem functioning and 
visualize trade-offs (Allan et al., 2015; Manning et al., 2018). Here we 
adapted this tool to describe the complex relationship between flood
plain topography and its multifunctionality. Our objective was to 
investigate how floodplain multifunctionality responds to two main 
topographical drivers of natural water level variation i.e. the distance to 
the water table (vertical) and hydrological distance to the river (hori
zontal). To our knowledge, despite the growing need to address flood
plain multifunctionality and its drivers, this approach was previously 
not used in such a context. A mechanistic understanding will help to 
describe the effect of restoration of the natural floodplain topography, 
by removal of artificial embankment or reconnecting side-channels 
(Addy and Wilkinson, 2021) on floodplain multifunctionality. As a 
study system, we use the floodplains of the Mulde River and a set of 
ecosystem functions that is considered important from a restoration 
perspective (Schulz-Zunkel et al., 2017). We focus on 24 ecosystem 
functions, which we assigned to five categories: retention of sediments, 
retention of nutrients, retention of pollutants, biodiversity provisioning 
and plant productivity. We used these functions to calculate two 
ecosystem multifunctionality measures that differ in the thresholds at 
which ecosystem functions need to be provided to contribute to 
ecosystem multifunctionality. We hypothesized that ecosystem multi
functionality will decrease with an increase of both distance to the water 
table and hydrological distance, as this reduces the likelihood of flood 
events that are crucial for floodplain functioning. 

2. . Materials and methods 

2.1. Study area 

Our study was conducted on floodplains of the Mulde River - a 
tributary of the Elbe River in Germany (Fig. 1). Its catchment, covering 
approximately 7600 km2, includes to a large part a mining district of the 
Ore Mountains/Erzgebirge in the southern part of East Germany. 
Extraction and processing of various metals and minerals occurred along 
the river since the 13th century (Müller et al., 2000; Klemm et al., 2005; 
Overesch et al., 2007). Although the industrial plants have been closed, 
their wastelands and sewage discharge facilities remain until today and 
increase the loads of inorganic pollutants in the Mulde River (Kowalik 
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et al., 2003; Klemm et al., 2005) and consequently the catchment of the 
Elbe River (Overesch et al., 2007; Schulz-Zunkel and Krueger, 2009). 

Large parts of the river course with their floodplain areas were 
designated as nature reserve “Lower Mulde/Untere Mulde” (1961) or as 
landscape conservation area (1957) and integrated into the extended 
UNSECO (United Nations Educational, Scientific and Cultural Organi
sation) Biosphere Reserve “Middle Elbe/Mittlere Elbe” after 1990 
(Jurgeit et al., 1997; Funkel et al., 2003). Additionally, the lower Mulde 
River is protected as the SAC/FFH (Special Area of Conservation/Fauna- 

Flora-Habitat) area “Lower Mulde floodplain/Untere Muldeaue” 
(DE4239302) and contains a large number of habitat types protected 
according to Annex 1 of the Fauna-Flora-Habitat Directive/Fauna-Flora- 
Habitat Richtlinie (FFH-D/FFH-RL; European Commission, 1992). 
Despite the relatively natural character of the Mulde River floodplains, 
their hydromorphological dynamics are altered along large sections 
mostly by bank stabilization constructions (Puhlmann and Rast, 1997). 
These areas are currently undergoing restoration in the framework of 
the project Wilde Mulde—Revitalization of a wild river landscape in 
Central Germany (Schulz-Zunkel et al., 2017). This project aims at 
restoring numerous processes and functions of the ecosystem. This jus
tifies the need of applying an aggregative multifunctionality metric 
which summarizes the levels of multiple ecosystem functions. Because of 
the historical background of the Mulde River, some of the ecosystem 
services, like sediment or pollutant retention are of special interest. 
Although water-related ecosystem services are an important part of river 
functioning (e.g., Liang et al., 2021), in other river systems other func
tions and services may be emphasized (e.g., Perosa et al., 2021). 
Therefore, although the EMTI can be applied in various settings, direct 
comparison of multifunctionality measures across studies should be 
undertaken with caution (Garland et al., 2021). 

We selected three study sites, located in the active floodplains of the 
lower Mulde River (Fig. 1; Table S1). On these sites we established 74 
plots, where in 2017 we carried out inventories of all vascular plants and 
sampled vegetation biomass and sediments (see Note S2 for sampling 
and data preparation details). Sampling took place after a spring flood, 
which occurred in the same year. Water level variations and discharge 
similar to the ones observed in 2017 were regularly recorded in the 
lower Mulde River (Fig. S1). The collected data was then used to specify 
ecosystem functions provided by the floodplains in the lower reach of 
the Mulde River. 

2.2. Ecosystem functions 

Considering the historical and environmental background of the 
Mulde River floodplains described above, we used 24 ecosystem func
tions, which are related to five ecosystem services: retention of sedi
ments, retention of nutrients, retention of pollutants, biodiversity 
provisioning and plant productivity (Table 1, Note S2). These services 
are considered as indicators of restoration success by the restoration 
project Wilde Mulde—Revitalization of a wild river landscape in Central 
Germany: Wilde Mulde (Schulz-Zunkel et al., 2017). 

Sedimentation mechanisms, as well as properties and quality of 
sediments such as grain size or chemical composition, differ for sedi
ment deposition on the soil surface and on the vegetation (Kretz et al., 
2020; Kretz et al., 2021a, Kretz et al., 2021b, Kretz et al., 2021c). 
Consequently, we distinguished between sedimentation on these two 
surfaces when defining all functions related to sedimentation (Table 1). 
For instance, sediment retention was represented by two functions: 
amount of sediments deposited on sediment traps underneath the 
vegetation (a standardized floodplain surface) and on the vegetation 
itself (Table 1). 

Nutrient retention on floodplains is driven primarily by sedimenta
tion mechanisms (Venterink et al., 2003; Venterink et al., 2006). How
ever, it is also affected by the accumulation of nutrients in the tissue of 
the riparian vegetation (Kiedrzyńska et al., 2008). Therefore, we char
acterized nutrient retention using the amounts of nitrogen and phos
phorus present in sediments captured on sediment traps and on 
vegetation, as well as their content in plant biomass (Table 1; Note S2). 

Inorganic pollution caused by the metal extraction industry is espe
cially relevant in the context of the Mulde River. Accordingly, to 
represent pollutant retention, we focused on historically important 
metals, in particular mercury (Hg), lead (Pb) and arsenic (As; Schulz- 
Zunkel and Krueger, 2009) as well as metals, whose hydrous oxides 
control retention of other trace metals in soil, for example iron (Fe) and 
aluminum (Al; Rate et al., 2000; Trivedi and Axe, 2000). Amounts of 

Fig. 1. Location of the three study sites: UG2a, UG2b, UG3 on the banks of the 
Mulde River, situated in Central Germany. Names of the plots are consistent 
with the project Wilde Mulde—Revitalization of a wild river landscape in 
Central Germany (https://bexis.ufz.de:4434/, Note S1). 
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accumulated metals were measured both in sediments deposited on 
sediment traps and on vegetation (Table; Note S2). Metals can be stored 
in floodplains for hundreds of years (Meade, 1982; ;(James, 1989) 
Miller, 1997) reducing or even ceasing their release into the river basin 
(Martin 2000). However, geomorphic activity e.g. high frequency of 
high and low flows may favor remobilization of stored metals (Martin, 
2000). In this study, we consider storing pollutants on the floodplain as 
an ecosystem function, as it decreases the high level of inorganic pol
lutants in the catchment of the river Elbe (Förstner et al., 1990; Schulz- 
Zunkel and Krueger, 2009). 

Riparian areas provide habitats for numerous species (Shiel et al., 
1998; Ward et al., 1999) many of which are highly specialized and do 
not occur in other areas (Sabo et al., 2005). This ecosystem service is 
especially important from the perspective of nature conservation 
(Jurgeit et al., 1997; Funkel et al., 2003). In our study is represented by 
five functions: plant species richness, abundance of plant species en
dangered in Germany (Ludwig et al., 1996) and in Saxony-Anhalt (Frank 
et al., 1992), abundance of plant species characteristic for riparian 
corridors sensu Siedentopf (2005), as well as abundance of recently 
introduced alien plant species (neophytes; Table 1; Note S2). The latter 
function is considered a negative indicator of ecosystem functioning and 
consequently we included it in the analysis with a reversed value. 

Plant productivity was based on a single ecosystem function i.e. plant 
biomass (Table 1; Note S2). 

All the variables were collected in 2017 on 74 plots located on the 3 
study sites in the active floodplain of the Mulde River, or in some cases 
imputed with the MICE algorithm (Van Buuren and Oudshoorn, 1999). 
The detailed description of methods used to sample and estimate all of 
the variables used in this study can be found in the appendix (Note S2; 
Fig. S2). 

2.3. Multifunctionality indices 

We estimated multifunctionality based on the above described 
functions for each of the study plots using the Ecosystem Multi
functionality Threshold Index (EMTI). The EMTI is defined as the 
number of functions, which exceed an a priori chosen threshold value. 
For each ecosystem function, the threshold is defined as a percentage 
fraction of the ‘maximum’ observed function across all plots (Byrnes 
et al., 2014). To avoid effects of outliers (Zavaleta et al., 2010), this 
‘maximum’ was estimated as 95% of the maximal observed function 
value. We then calculated multifunctionality indices based on thresholds 
of 50% and 75%, which reflects counts of the number of functions 
exceeding the respective thresholds. For example, if the highest 
observed plant biomass value across all plots was 1000 g m− 2 then plant 
biomass contributed 1 unit to the 50% multifunctionality index, if the 
biomass exceeded 50% x 0.95 × 1000 g m− 2 = 475 g m− 2. Similarly, it 
contributes 1 unit to the 75% multifunctionality index in plots, if plant 
biomass exceeds 75% x 0.95 × 1000 g m− 2 = 712,5 g m− 2. 

Both indices were calculated using all 24 functions, grouped in five 
ecosystem services, as described above. The number of functions 
differed within the ecosystem services, leading to a potential over
representation of categories with more functions (Table 1). To correct 
for this, we calculated weighted threshold indices, where we applied a 
weighting of the functions within each of the categories. This way, each 
functions’ contribution to ecosystem multifunctionality (if the threshold 
level was exceeded) was W, where W = 1/N and N is the number of 
functions representing a given ecosystem service. As a result, each 
ecosystem service was equally important. 

2.4. Topographical variables 

We used two topographical variables, the distance to the water table 
(W_distance) and the hydrological distance to the river (H_distance), as 
predictor values in our analysis. The distance to the water table was 
measured as the vertical difference between the elevation of a given plot 

Table 1 
Functions used to calculate multifunctionality indices, along with the ecosystem 
service they contribute to and a weight used to equalize the importance of each 
ecosystem service. All abbreviations are explained in the Note S1. Details on the 
ecosystem functions are available in the Note S2.  

No. Ecosystem 
function 

Unit Definition Ecosystem 
service 

Weight 

1 Amount of 
sediments on 
vegetation 

g/m2 Sediments 
deposited on 
vegetation 

Sediment 
retention 

15 

2 Amount of 
sediments on 
traps 

g/m2 Sediments 
deposited on 
traps 

Sediment 
retention 

15 

3 Nitrogen in 
sediments on 
vegetation 

g/m2 Nitrogen in 
sediments on 
vegetation 

Nutrient 
retention 

5 

4 Nitrogen in 
sediments on 
traps 

g/m2 Nitrogen in 
sediments on 
traps 

Nutrient 
retention 

5 

5 Phosphorus in 
sediments on 
vegetation 

g/m2 Phosphate in 
sediments on 
vegetation 

Nutrient 
retention 

5 

6 Phosphorus in 
sediments on 
traps 

g/m2 Phosphate in 
sediments on 
traps 

Nutrient 
retention 

5 

7 Nitrogen in 
biomass 

mg/g Nitrogen in mg 
per kg biomass 

Nutrient 
retention 

5 

8 Phosphorus in 
biomass 

mg/g Phosphate in mg 
per kg biomass 

Nutrient 
retention 

5 

9 Hg in sediments 
on vegetation 

mg/ 
kg 

Mercury in 
sediments on 
vegetation 

Pollutant 
retention 

3 

10 Al in sediments 
on vegetation 

mg/ 
kg 

Aluminum in 
sediments on 
vegetation 

Pollutant 
retention 

3 

11 Fe in sediments 
on vegetation 

mg/ 
kg 

Iron in sediments 
on vegetation 

Pollutant 
retention 

3 

12 Pb in sediments 
on vegetation 

mg/ 
kg 

Led in sediments 
on vegetation 

Pollutant 
retention 

3 

13 As in sediments 
on vegetation 

mg/ 
kg 

Arsenic in 
sediments on 
vegetation 

Pollutant 
retention 

3 

14 Hg in sediments 
on traps 

mg/ 
kg 

Mercury in 
sediments on 
traps 

Pollutant 
retention 

3 

15 Al in sediments 
on traps 

mg/ 
kg 

Aluminum in 
sediments on 
traps 

Pollutant 
retention 

3 

16 Fe in sediments 
on traps 

mg/ 
kg 

Iron in sediments 
on traps 

Pollutant 
retention 

3 

17 Pb in sediments 
on traps 

mg/ 
kg 

Lead in sediments 
on traps 

Pollutant 
retention 

3 

18 As in sediments 
on traps 

mg/ 
kg 

Arsenic in 
sediments on 
traps 

Pollutant 
retention 

3 

19 Plant biomass g Dry weight of 
biomass collected 
on plots 

Productivity 30 

20 Species richness – Number of plant 
species on plots 

Biodiversity 6 

21 Abundance of 
neophytes 

% 
cover 

Species origin 
based on Biolflor 
(Kühn et al., 
2004) 

Biodiversity 6 

22 Abundance of 
species 
endangered in 
Germany 

% 
cover 

Based on Red List 
Germany ( 
Ludwig et al. 
1996) 

Biodiversity 6 

23 Abundance of 
species 
endangered in 
Saxony-Anhalt 

% 
cover 

Based on Red List 
Sachsen-Anhalt ( 
Franket al. 1992) 

Biodiversity 6 

24 Abundance of 
species related to 
rivers 

% 
cover 

based on species 
connection to the 
river (Siedentopf 
2005) 

Biodiversity 6  
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and the annual mean elevation of the groundwater (Note S2). Hydro
logical distance was the horizontal length of the surface flow path, be
tween each plot and the river (Fig. S3). Hydrological distance was 
defined as the length of the surface flow path the water needs to reach 
the stream, and was derived from a stream network, calculated using the 
flow accumulation approach on the digital elevation model (DEM) of the 
floodplain area (Schwanghart and Scherler, 2014). To inspect the role of 
these variables for the hydrological regime, we used them as predictors 
of the presence of the flood in 2017, the annual standard deviation of the 
groundwater level and the duration of the flood in 2017 (Table 2). 

2.5. Statistical analysis 

In the first step of the analysis, we investigated relations between 
single functions to identify potential synergies and trade-offs among 
them. As the functions used in our study were measured on different 
scales, were often not normally distributed and relations between them 
were not always linear, we used Spearman’s rank coefficient (ρ). This 
method is commonly used for testing association between two contin
uous variables, when the assumption that the underlying distribution is 
bivariate normal is violated. In absence of ties in the data, Spearman‘s 
rank coefficient turns values are closer to the desired coverage rates than 
Kendall rank correlation coefficient (Puth et al., 2015). 

To test the effects of topographical drivers on ecosystem multi
functionality, for each of the EMTIs we fitted a generalized linear mixed 
effect model (GLMM) with distance to the water table, hydrological 
distance and their interaction as fixed terms and site identity as a 
random term. We selected GLMM instead of other approaches, like 
generalized estimating equations (GEE) and generalized additive mixed 
effect models (GAMM) because of its flexibility and because of a 
straightforward interpretation of the model predictions (Pekár and 
Brabec, 2018), which may facilitate its application. All variables and 
interactions used in the models had a strong support (ΔAIC2 ≤ 2; 
Anderson and Burnham, 2004), therefore we did not remove them from 
the model. To avoid problems with model convergence, we Z-trans
formed each of the fixed terms. The model diagnostics indicated that a 
Poisson error distribution, with a log-link between response and 
explanatory variables was best suited to our count data. We used the 
fitted models to predict and map values of multifunctionality on the 
three study sites. 

To find out how the effects of topographical variables that we related 
to ecosystem multifunctionality might be mediated by effects of flood 
properties, we explored relations between distance to the water table 
and hydrological distance with inundation occurrence and duration of 
the study sites during a spring flood in 2017, as well as with annual 
groundwater fluctuation, represented by standard deviation of the 
groundwater levels, measured in 2017. The duration of the flood was 
measured only on 24 plots, where the flood occurred in 2017. Due to 
data deficiency, the groundwater standard deviation was calculated 

only on sites UG2a and UG2b. To test the effects of topographical drivers 
on the duration of flood and groundwater fluctuations, we used linear 
mixed effect models, while presence of a flood was analyzed with a 
generalized linear mixed effect model with a binomial error distribution 
and a logit link. In case of flooding duration, we additionally applied a 
parametric power transformation (Sakia, 1992) to satisfy the assump
tion of a homogeneity of residual variances. 

All analyses were conducted in R (R Core Team, 2019). The hydro
logical distance was calculated with MATLAB 2016 (Mathworks, 2016). 

3. . Results 

3.1. Relations between single functions 

The analysis of correlation patterns between ecosystem functions 
revealed strong correlations between functions representing pollutant 
retention, nutrient retention and sediment retention (Fig. 2; Table S2). 
The strongest correlations occurred between the different functions 
representing pollutants retention (0.91 ≤ ρ ≤ 0.99; Fig. 2; Table S2). In 
contrast, the weakest correlation among these functions was exhibited 
by amounts of nitrogen and phosphorus in plant biomass (0.06 ≤ ρ ≤
0.28; Fig. 2; Table S2). 

Ecosystem functions representing biodiversity provisioning were 
also correlated with each other with an exception of the abundances of 
neophytes and species endangered in Germany (− 0.05 ≤ ρ ≤ 0.82; 
Fig. 2; Table S2). Abundance of species endangered in Germany and the 
abundance of species endangered in Saxony-Anhalt, as well as the 
abundance of riparian species traded-off with indicators of all other 
functions with an exception of plant biomass (− 0.44 ≤ ρ ≤ 0.08; Fig. 2; 
Table S2). 

Plant biomass, the only function representing plant productivity, was 
the one function least associated with other functions in this study 
(-0.177 ≤ ρ ≤ 0.077; all p > 0.05; Fig. 2; Table S2). 

3.2. Relations between drivers and flooding parameters 

Distance to the water table had a negative effect on presence of the 
flood event as well as on flooding duration, although it weakly increased 
the groundwater annual standard deviation (Table 2). The hydrological 
distance also had a negative, but weaker, effect on the presence of a 
flood event (Table 2), while it had no significant effect on the duration of 
the a flood event (Table 2). In contrast to the distance to the water table, 
hydrological distance had a negative effect on groundwater annual 
standard deviation (Table 2). 

3.3. Relations between the EMTI and environmental drivers 

Distance to the water table along with hydrological distance and 
their interaction explained between 64% and 85% of the total variance 

Table 2 
Effect of distance to the water table (W_distance) and hydrological distance (H_distance) on the presence of the flood, annual standard deviation of the groundwater 
level, and duration of the flood as observed in 2017. The groundwater standard deviation was calculated only on plots UG2a and UG2b. Duration of the flood was 
calculated only on plots where the flood occurred in 2017. The table contains information about coefficient estimates (Estimate), standard errors (Std.er.), values of z 
and t statistics, as well as p values. For every model the number of observations, marginal and conditional coefficients of determination (marginal R2 and conditional 
R2), Akaike criterion (AIC) of the most parsimonious models and a difference in AIC between the full and the most parsimonious model (Δ AIC) are presented.   

Presence of flood Groundwater annual standard deviation Duration of flood 

Estimate Std.er. z p Estimate Std.er. D.f. t p Estimate Std.er. D.f. t p 

Intercept − 3.206 1.446 − 2.217  0.027  0.582  0.004  0.975  130.096  0.006  0.765  0.029  3.345  26.680  <0.0001 
H_distance − 1.712 0.825 − 2.074  0.038  − 0.020  0.003  46.038  − 6.145  <0.0001  0.012  0.009  19.732  1.251  0.225 
W_distance − 5.018 1.637 − 3.064  0.002  0.007  0.003  46.100  2.233  0.030  0.226  0.013  20.007  17.090  <0.0001 
Observations 74 50 24 
AIC 34.300 − 188.320 − 72.309 
ΔAIC 1.500 11.441 13.595 
marginal R2 0.837 0.435 0.8267 
conditional R2 0.887 0.453 0.943  
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across the four applied EMTI indices (Table 3). Increase of both of these 
distances significantly decreased all of the EMTI indices, while their 
interaction remained non-significant (Table 3; Figs. 3 and 4). Similarly, 
the negative effect of the distance to the water table on all of the EMTI 
indices was stronger than the effects of the hydrological distance 
(Table 3; Fig. S4). 

4. . Discussion 

Our results show that both vertical distance to the water table and 
horizontal hydrological distance are important drivers of multi
functionality. It is well known that floodplain topography regulates 
many aspects of flooding, like inundation duration, flow depth and 
water velocity (Florsheim and Mount, 2002). In case of the Mulde River 
floodplains, distance to the water table as well as hydrological distance 
proved to be good predictors for the occurrence of flooding and 
groundwater standard deviation, as measured in 2017. Nevertheless, 

distance to the water table was the only variable affecting flooding 
duration. This prominent effect of distance to the water table is not 
surprising, as elevation is one of the highest-ranking variables used for 
predicting flood susceptibility (Choubin et al., 2019). The role of 
elevation in shaping flooding parameters also has consequences for the 
functioning of floodplain ecosystems, such as sedimentation (Asselman 
and Middelkoop, 1995; McMillan and NOE, 2017). The hydrological 
distance represents a flow path of water from the channel to the flood
plain and can be linked to the floodplain connectivity (Heiler et al., 
1995; Bracken and Croke, 2007). An increase of this distance can result 
in a longitudinal decline of sediment deposition along the path (Mid
delkoop and Van Der Perk, 1998; Kretz et al., 2021c). Patterns of sedi
ment retention can in turn modify abiotic and biotic conditions, by 
affecting nutrient dynamics (Tockner and Stanford, 2002) and diaspore 
deposition (Leyer, 2006). Our findings highlight the importance of both 
distances as environmental drivers of hydrological conditions in the 
lower Mulde River floodplains and imply that they can be used in 

Fig. 2. Relations between single functions used to calculated multifunctionality indices represented by Spearman’srank correlationcoefficients (ρ). Strength and 
direction of correlations is represented by colors. Significance is represented by black border lines. 

Table 3 
Test statistics of the linear models used to investigate effects of distance to the water table (W_distance) and hydrological distance (H_distance) on the number of 
ecosystem functions exceeding thresholds of 50% and 75% of the maximal multifunctionality. The table shows degrees of freedom (D.f.), values of Wald X2 test (X2) and 
p values (p) for each main effect and their interaction. Significant p values (p < 0.05) are highlighted in bold. The table contains information about number of ob
servations, marginal and conditional coefficients of determination (marginal R2 and conditional R2) and Akaike criterion (AIC) of respective models.   

Multifunctionality 50% Multifunctionality 75%  

No weighting Equalized No weighting Equalized  

D.f. Х2 p D.f. X2 p D.f. X2 p D.f. X2 p 

W_distance 1 100.616 <0.0001 1 410.426 <0.0001 1 81.170 <0.0001 1 32.160 <0.0001 
H_distance 1 7.127 0.007 1 4.984 0.025 1 5.186 0.022 1 334.780 <0.0001 
W_distancexH_distance 1 0.032 0.857 1 0.013 0.911 1 2.896 0.090 1 1.499 0.221 
Observations 74.000 74.000 74.000 74.000         
Marginal R2 0.657 0.794 0.647 0.858         
Conditional R2 0.683 0.900 0.675 0.899         
AIC 394.721 1009.245 347.331 923.902          
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Fig. 3. Effects of the distance to the water table and hydrological distance on the multifunctionality indices. Panels illustrate: a) not weighted EMTI 50%, b) 
equalized EMTI 50%, c) not weighted EMTI 75%, b) equalized EMTI 75%. Lines represent fitted values with 95% confidence intervals. 

Fig. 4. Spatial extrapolation of a multifunctionality index: equalized EMTI 75% on the study sites. Number of functions exceeding the threshold of 75% is repre
sented by colors. Names of the plots are consistent with the project Wilde Mulde—Revitalization of a wild river landscape in Central Germany (https://bexis.ufz. 
de:4434/). 
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situations when detailed information on flooding characteristics are not 
available. Here we focused on these two distances, because the flood
plain morphology (and thereby these measures) was modified by the 
applied restoration measures. We have shown that these two measures 
are at least good predictors of the occurrence and duration of site 
inundation during the recent flood of 2017. The presence of floods is 
however driven by a very complex combination of physical processes. 
Therefore, accurate predictions of these events often require sophisti
cated methods (e.g. Mosavi et al., 2018; Liu et al., 2020; Nachappa and 
Meena 2020). In these cases, predictions may be improved by machine 
learning or deep learning algorithms (Liu et al., 2020; Motta et al., 2021; 
Pham et al., 2021). 

During our study, we observed a single flood event. Although data 
collected at the gauging station Priorau in years 2005–2020 (Fig. S1) 
indicate it was not a unique event, predictions for the future need to 
consider the fact that flooding events may be less frequent (Palmer et al., 
2009). For instance, the relationship between floodplain morphology, a 
measure of flooding characterics e.g. length of inundation and multi
functionality can be modelled with structural equation models (SEM). 
However, detailed and well replicated information on these variables 
may not always be available (Wolf et al., 2013). Finally, the relationship 
between ecosystem functions and their drivers are often dynamic 
(Garland et al., 2021). Therefore, measurements should ideally be 
repeated after a meaningful period of time. On the floodplains of the 
River Mulde this was not possible due to ongoing restoration measures. 
However, a new survey in the future can provide important insight into 
how current restoration measures have altered floodplain morphology, 
flood dynamics and, as a consequence, ecosystem multifunctionality. 

The ecosystem multifunctionality of the Mulde River floodplains 
decreased with an increase of both topographical variables consistently 
across both of the considered thresholds. This demonstrates the impor
tance of topography irrespective of how exactly multifunctionality is 
defined. The main strength of threshold indices, like EMTI is their ability 
to summarize multifunctionality into a single value. Its main weakness is 
the arbitral choice of functions and thresholds (Garland et al., 2021). 
Although these features allow more flexibility, they also limit possibil
ities to synthesize results and compare findings between river systems, 
unless the same ecosystem functions and multifunctionality index are 
used. Here we selected thresholds of 50% and 75%, as we were inter
ested in average and above-average levels of ecosystem functioning. 
However, if a broader scope is needed, it is possible to apply multiple 
thresholds ranging between 0 and 100% (Byrnes et al., 2014). Our re
sults allow to select the most suitable locations for restoration of 
floodplain multifunctionality on the basis of information obtained from 
elevation models (Benda et al., 2011; Schulz and Schröder, 2017). 
Furthermore, according to our findings, restoration projects aiming at 
increasing hydrological connectivity by reconnecting side channels or 
removing of artificial embankments (Tockner et al., 1999; Reckendorfer 
et al., 2006)., can improve the functioning of the floodplain system. 
These findings stay in agreement with other studies, that also found that 
connectivity increases the provisioning of floodplain functions (McMil
lan and Noe, 2017; Jakubínský et al., 2021). Nevertheless, as the 
interactive effect between the distance to the water table and hydro
logical distance was not significant, we conclude it is not possible to 
mitigate the negative effect of increased elevation by shortening hy
drological distance. 

Studying ecosystem multifunctionality can be especially useful in the 
presence of trade-offs between ecosystem functions (Cord et al., 2017; 
Manning et al., 2018; Giling et al., 2019). Here, we observed negative 
correlations, mostly between ecosystem functions related to biodiversity 
provisioning and sediment, nutrient and pollutant retention. The 
applied measure of ecosystem multifunctionality allows to explore 
different scenarios and examines the consequences of various ecosystem 
conditions Because of a high number and diversity of provided func
tions, trade-offs are relatively common in floodplain ecosystems (Sanon 
et al., 2012; Butler et al., 2013; Howe et al., 2014; Tomscha and Gergel, 

2016). Their occurrence is often associated with objectives of restoration 
and flood protection (Pahl-Wostl, 2006). In our study, strong positive 
correlations occurred between ecosystem functions representing reten
tion of sediments, nutrients and pollutants (Fig. 2; Table S2), which is 
probably because all these functions increase with flood-driven sedi
mentation. Measures of multifunctionality often implement closely 
related functions (Garland et al., 2021), although it may lead to up- 
weighting of some aspects of functioning and cause a bias in the mul
tifunctionality measure (Manning et al., 2018). In our study, we partly 
overcame this problem by down-weighing the impacts of closely related 
ecosystem functions that contributed to the same ecosystem service. The 
many strong synergies we found between ecosystem functions likely 
reflect the importance of sedimentation for many of these functions, 
which is crucial for the functioning of floodplains (Bridge, 2009). 
Sedimentation is not only spatially restricted to flooded areas, but it is 
also linked with numerous ecosystem services like nutrient deposition, 
or water quality control (Venterink et al., 2006). Restoring the natural 
sedimentation processes is a frequent motivation for river revitalization 
projects (Venterink et al., 2006; Kiedrzyńska et al., 2008; Kronvang 
et al., 2009). Because of the industrial and agricultural history of the 
Mulde River (Klemm et al., 2005; Overesch et al., 2007), retention of 
sediments, nutrients and pollutants became especially important in 
context of restoration project Wilde Mulde—Revitalization of a wild 
river landscape in Central Germany (Schulz-Zunkel et al., 2017). 
Because of that, we did not include some ecosystem functions and ser
vices which may be important in other river systems e.g., cultural 
ecosystem services (Riis et al., 2020). Consequently, our results should 
not be indiscriminately implemented in other systems. To mitigate the 
effect of a potential overrepresentation of function indicators related to 
sedimentation, we applied a weighting scheme which equalized their 
importance in the analysis. This approach, however, did not affect our 
results, what highlights their consistency. Although here we used 
weighting to equalize values of functions, it is possible to apply it to 
represent the importance of particular ecosystem functions and services 
to management objectives or to address preferences of local stakeholders 
(Allan et al., 2015, van der Plas et al., 2018). Although this approach can 
facilitate decision making in complex ecosystems such as floodplains 
(Metcalf et al., 2010), it requires consultations with local stakeholders 
and decision makers. 

5. . Conclusions 

The consistent, negative relation between ecosystem multi
functionality and topographical drivers, namely distance to the water 
table and hydrological distance demonstrates their importance for pro
visioning of multiple ecosystem functions and services. As these two 
distances are also good predictors of flooding parameters, our approach 
can be helpful in situations where detailed information on water level is 
not available. Our findings imply that restoration projects aiming at 
improving floodplain connectivity, through e.g. removal of artificial 
embankments or reconstruction of side channels, may have a positive 
effect not only on single functions, but also on ecosystem multi
functionality, a holistic measure of ecosystem functioning. 

In this study we explored a potential application of the ecosystem 
multifunctionality threshold index to summarize floodplain functioning. 
Our choice of ecosystem functions and services is specific for the 
floodplains of the Mulde River. Consequently, the presented findings 
describe local conditions and should not be extrapolated to other sys
tems. Nevertheless, the EMTI can be adapted in various settings and on a 
large scale (e.g. Van der Plas et al., 2018). Our study was conducted on a 
relatively small area, which was relevant for the applied restoration 
measures. It may however be beneficial to use the EMTI to characterize 
multifunctionality of the whole river catchment (Li et al., 2020). Simi
larly, application of the EMTI to summarize functioning of aquatic and 
terrestrial zones of rivers is a promising avenue of research, as it may 
provide a profound perspective of river functioning (Holland et al., 
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2011). Finally, ecosystem functions can be weighted to construct pre
dicted scenarios, corresponding with perspectives of different stake
holders (Van der Plas et al., 2018). These scenarios can for example 
compare the outcomes or river management suggested by different 
stakeholders’ groups and thus reveal synergies and trade-offs. Addi
tionally, applying a higher number of multifunctionality thresholds can 
be used to explore various degrees of ecosystem functioning. We 
consider the ecosystem multifunctionality threshold index as a useful 
tool, which facilitates modeling and prediction of floodplain 
multifunctionality. 
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