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A B S T R A C T   

Study region: The mesoscale Thur catchment located in the north-eastern part of Switzerland is a 
study site in which a range of hydrological research has been conducted. 
Study focus: Groundwater recharge is challenging to quantify due to the complexity of hydro-
geological processes and limited observations. Because of its spatiotemporal availability, remotely 
sensed data present an attractive water management tool. Its application in mesoscale catchments 
(10 – 104 km2) however, remains limited. This study investigated the use of satellite products 
used in conjunction with ground-based data to determine spatiotemporal variations in water 
available for groundwater recharge. Gridded components from readily available precipitation, 
evapotranspiration, and hydrological discharge data were used to generate spatiotemporal maps 
over a 20-year period. 
New hydrological insights for the region: Closure of the water balance found that monthly data 
displayed a moderate correlation, with improved correlations of obtained seasonal and annual 
intervals, suggesting that over the long-term the Thur catchment is in a steady state. Maps were 
generated and trends for the 20-year period assessed. Examination of the gridded water balance 
components for different hydrological years emphasized the limiting effect of precipitation on 
recharge. This study highlights the value of remotely sensed data in groundwater recharge esti-
mates, but emphasises the importance of continued ground-based monitoring; the lack of which is 
a limiting factor in water management where mesoscale catchments are concerned.   

1. Introduction 

One of the most important functions of a catchment is its ability to store and release water; a characteristic that can buffer against 
severe weather events, seasonal changes, and climate variability (Berghuijs et al., 2016; Datry et al., 2017; Staudinger et al., 2017). 
Groundwater recharge indicates the existence of renewable groundwater resources and is therefore an important component of a 
catchment’s hydrological functioning (Döll and Fiedler, 2008; Jasechko et al., 2014; Mohan et al., 2018). Groundwater recharge varies 
in space and time making it difficult to measure directly (Minnig et al., 2018; Scanlon et al., 2002; von Freyberg et al., 2015). Climate 
change, evolving land utilization, abstraction, and anthropogenic impacts are a growing concern when characterizing groundwater 
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bodies and predicting their sustainability (Burri et al., 2019; Condon and Maxwell, 2019; Han et al., 2017; Oki and Kanae, 2006; 
Sridhar et al., 2014). 

In most places, groundwater recharge is an integral part of a catchment’s water balance, therefore, monitoring and understanding a 
catchment’s water input and output (or water balance), is essential to the sustainable management of water resources. However, both 
where field and model based estimates are concerned, groundwater recharge is often considered a residual product of the water 
balance assessment, accumulating the uncertainties of all other components of the budget (Reinecke et al., 2021), thus reliable es-
timates are important. In a steady-state system, where net water input equals net water output, the components of a catchment’s water 
balance can be related through an equation, which can vary in its complexity (Healy and Scanlon, 2010). The dominant components 
which make up a catchment’s water balance include precipitation (P) as primary input, and evapotranspiration (ET) as predominant 
output (Crosbie et al., 2015; Dhungel and Fiedler, 2016; Reitz et al., 2017). However, in mountainous regions, stream or river 
discharge (Q) which can be further divided into quick, event-based surface flow (or quickflow, Qq) and typically slow subsurface flow 
(or baseflow, Qb) contributions, often makes up the majority of water output (Spreafico and Weingartner, 2005; Viviroli et al., 2007a; 
Zappa et al., 2017). Discharge (Q), an approximated value of river flow and velocity, typically represents high-resolution measure-
ments at a specific point. However, quantifying subsurface contributions of Q is often problematic as knowledge of hydraulic pa-
rameters is compromised due to subsurface heterogeneity and the limited number and depths of measuring locations (Alley et al., 
2002). 

The water balance components vary in space and time, and although linked through large-scale interrelationships, have very 
different spatiotemporal characteristics (Creutzfeldt et al., 2014). However, according to Healy and Scanlon (2010), “the universal 
concept of mass conservation of water implies that water balance methods are applicable over any space and time scale” (pp.15). The 
major net loss component from a catchment’s water balance is generally ET; the sum of evaporation (from ground surface) and 
transpiration (from plant surfaces). The complex interacting components which result in ET are difficult to quantify, whether via 
field-based measurements, or via remotely sensed technology (Zhang et al., 2016). As a result, ET typically has the greatest uncertainty 
of the water balance components (Velpuri et al., 2013), and remains one of the most difficult components to measure accurately 
(Ferguson et al., 2010; Hirschi et al., 2017). 

Over longer time scales, changes in a catchment’s water storage (ΔS) are often assumed to be small relative to the volumes of the 
other water balance components (Han et al., 2020). For catchments with no additional inflow from or outflow to adjacent catchments, 
via transfer schemes or sub-surface flows, ΔS would equal zero, and the catchment’s water balance can be assumed to be in a steady 
state (Healy and Scanlon, 2010). Subsequently, both within the fields of research and water resource management, it is common to 
estimate recharge using some form of a water balance equation (Dages et al., 2009; Healy et al., 2007; Rodríguez-Huerta et al., 2020; 
Tilahun and Merkel, 2009; WFD-CIS, 2016). 

In the past, the measurement of water balance components was traditionally limited to point or plot scales (~10-2 m2 to ~101 m2) 
measurements of single components (Ruth et al., 2018). Currently, remotely sensed products, including ET derived from computa-
tional surface-energy balance models that stem from multispectral satellite-sensed characteristics (i.e. net radiation, surface tem-
perature, and vegetation properties), offer perhaps one of the most attractive global estimates of water balance measurements. As a 
result, this type of data has been used to improve model predictions and to close the water balance leading to a significant reduction in 
uncertainty (Anderson et al., 2011; Bastiaanssen et al., 1998; Irmak et al., 2012; Nishida et al., 2003; Tang et al., 2010; Wang and Xie, 
2018). Although comprehensive, the available remotely sensed ET data are not without their limitations, and performance of the 
products can be adversely affected by factors such as topography, vegetation type, input datasets, estimation methods, spatiotemporal 
scales, etc. (e.g. Li et al., 2018; Lu et al., 2019; Zhao and Liu, 2014). 

While temporal and spatial scaling, whether up- or down-scaling, presents an additional challenge in estimating a catchment’s 
water balance (Anderson et al., 2007; Cui et al., 2018; Hong et al., 2009; Kalma et al., 2008), when coupled with ground-based data, 
remotely sensed observations have been shown to provide a more complete understanding of the hydrological system (Becker, 2006; 
Gleason and Durand, 2020; Pavelsky, 2014; Vereecken et al., 2015). Both surface and subsurface movement and storage of water are 
dependent on precipitation, temperature fluctuations, vegetation type and distribution, anthropogenic land and water utilization, as 
well as topographic, lithological, and soil characteristics (Moeck et al., 2020; Sophocleous, 2002; Wada et al., 2010). As such, remotely 
sensed (RS) data provides an attractive tool in hydrological studies, particularly because of the long temporal and large spatial 
availability of many RS products (Alem et al., 2021; Becker and Nemec, 1987; Falalakis and Gemitzi, 2020; Jódar et al., 2018; 
Martín-Arias et al., 2020; Ollivier et al., 2021, 2020; Sarrazin et al., 2018). 

However, due to the pixel resolution of most RS products, the use of RS data in hydrological studies of mesoscale catchments 
(typically 10 – 104 km2) or smaller, is limited (Armanios and Fisher, 2014; Sun et al., 2018). In addition, although RS components for 
an entire water budget calculation are readily available, reproducible methods for handling the necessary data are not prominent in the 
literature (e.g. Rajib et al., 2018), hampering the ease of data application. This study investigates the application of satellite derived ET 
products, used in conjunction with ground-based discharge data, using open source software to determine spatiotemporal water 
distribution and estimate the volumes of water available for potential groundwater recharge (hereon referred to as groundwater 
recharge or R) within the mesoscale Thur River catchment in Switzerland. 

The Thur River represents a dynamic system free of any major natural or artificial reservoirs, and with its mesoscale catchment 
(~1700 km2) provides a unique opportunity to explore the potential of using readily available RS data to evaluate monthly, seasonal 
and annual R for the years 2000 – 2019. Previous research in the Thur catchment focused either on localized field-based studies 
(Chittoor Viswanathan et al., 2016; Kurth et al., 2015; Kurth and Schirmer, 2014; Paillex et al., 2017, 2005; Schirmer et al., 2013; 
Schneider et al., 2011; Vogt et al., 2011), or involved the use of lumped modelling approaches to simulate its large-scale processes 
(Abbaspour et al., 2007; Dal Molin et al., 2020; Doulatyari et al., 2017; Rössler et al., 2019; Viviroli et al., 2009). The aims of this study 
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were as follows:  

i) assess the spatiotemporal variability of gridded water balance components in the Thur catchment for the years 2000 – 2019 
using open source software and readily available RS ET data in combination with ground-based data,  

ii) identify variability in environmental processes during different hydrological years (e.g. wet vs. dry years) in the mesoscale Thur 
catchment,  

iii) determine water availability in the Thur catchment for potential groundwater recharge,  
iv) explore the results in terms of spatiotemporal distribution in the Thur catchment, and examine method uncertainties. 

2. Study area and its hydrogeological setting 

The Thur River, located in the north-eastern part of Switzerland (Fig. 1), has an approximate catchment size of 1700 km2. The Thur 
River (a tributary to the Rhine) is the longest river in Switzerland free of any major natural or artificial reservoirs along the length of its 
course (~130 km), resulting in preannounced seasonality streamflow variability. Three major tributaries: the Murg, the Necker and the 
Sitter flow into the Thur River, and based on available data from active stream discharge stations, the Thur catchment can be divided 
into nine (9) sub-catchments (Fig. 1a). 

The headwaters of the Thur River arise in the southern, glacier-free, limestone-dominated, pre-alpine region of the catchment near 
Mount Säntis, where vegetation is sparse and soils are generally shallow. Here, productive groundwater occurrences are confined 
largely to small fluvio-glacial gravel and sand deposits hosted largely within valley bottoms, and fractured-rock (Gurtz et al., 1999). 
Average depth to groundwater in this southern region is 3.5 m. Moreover, karstic units, can represent complex groundwater flow path 

Fig. 1. Characteristics of the Thur catchment’s a) major drainage lines, gauging stations, and sub-catchments, b) topographic variability (m), c) 
mean precipitation values (mm), and d) mean actual evapotranspiration rates (mm) (Federal Office of Environment, FOEN; Federal Office of 
Topography; MeteoSwiss; Running, et. al., 2019). White areas in figure e) represent no data areas for MOD16 ET data. 
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(Schürch et al., 2007). The Pleistocene molass-sandstones, marls, and conglomerates located predominantly in the northern region of 
the Thur catchment are highly productive in terms of groundwater, and host one of the largest groundwater systems in Switzerland 
where average depth to groundwater is 1.4 m (Abbaspour et al., 2007; Keller, 1992). Abstraction rate estimates from the largest aquifer 
in the Thur catchment are in the order of 16 million m3/y (https://umwelt.tg.ch/wasser/wassernutzungen/zahlen-und-fakten.html/ 
2158 last accessed: 11 September, 2020), which amounts to approximately 9.4 mm of water abstracted from the groundwater 
annually. Although it is important to monitor the local effects of groundwater abstraction, which can have strong impacts on 
groundwater flow, data is often limited or completely lacking (Creutzfeldt et al., 2014). When compared to the mean annual pre-
cipitation values (see below), the abstracted groundwater from the largest aquifer amounts to < 1% of the annual water input into the 
Thur catchment. 

Land use in the Thur basin is dominated by agriculture (~ 60%), with large areas of pasture. Forests make up 30% of the land 
surface, and the remaining ~10% includes barren land, surface waters, and urban areas. Elevation in the Thur catchment varies from 
2502 to 363 m asl. (Fig. 1b), with an average slope inclination of 7.9º (Melsen et al., 2016). The hydrological regime of the Thur 
catchment, with its warm-summer humid continental or sub-montane climate (Gurtz et al., 1999; Peel et al., 2007), is characterized by 
its variable morphological and climatic elements. Streamflow in the Thur River can fluctuate by up to two orders of magnitude in the 
space of a few hours, with recorded discharge rates at the Andelfingen (An) discharge station ranging from 3 to 1130 m3/s (mean 
discharge of 47 m3/s) (Doulatyari et al., 2017; Gurtz et al., 1999). 

On average, precipitation in the Thur catchment varies from 700 mm/y in the low elevation northern region, to 2700 mm/y in the 
southern mountainous region (Fig. 1c). The lowest average evapotranspiration rates (~400 mm/y) are found in regions of high 
elevation, with higher average ET is associated with the lower reaches of the Thur valley (~500 mm/y), (Fig. 1d). The highest average 
evapotranspiration rates (over 1000 mm/y) are associated with the central region of the Thur catchment (~ 700 m asl.), here land use 
is associated with mixed pasture, agriculture, and forestry. 

3. Data and methods 

This section describes in detail the gridded and ground-based data employed in this study, as well as the methods applied to 
calculate groundwater recharge in the Thur catchment. Through employing open source software for the gridded water balance 
computations, the presented workflow is anticipated to be readily transferrable and applicable to other catchments. 

3.1. Precipitation product 

Precipitation, being the primary flux in most hydrological cycles, requires high resolution data in order to reliably estimate water 
availability and distribution within a catchment. Although an array of remotely sensed rainfall data is available (e.g. Global Precip-
itation Climatology Project (GPCP), Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), etc.), 
these all have a relatively low resolution (~10 – 250 km2) when considering a mesoscale catchment with a high topographic variability 
(Sun et al., 2018). Thus, long-term gridded precipitation data, interpolated from 73 Swiss national stations located within or close to 
the Thur catchment, was used for this study (©MeteoSwiss, 2016). 

The MeteoSwiss product consists of continuous high-quality measurements, interpolated from a network of ground based radar and 
gauge data using the Reduced Space Optimal Interpolation (RSOI) method; specifically developed for regions with a complex orog-
raphy (Begert et al., 2007; Schiemann et al., 2010). The interpolation errors for the Swiss Plateau region has a relative standard error of 
+ /- 20% (MeteoSwiss, 2013), and the resulting gridded data has a 2.3 km x 2.3 km resolution. The gridded MeteoSwiss annual 
(January – December) and monthly rainfall data (RhiresY v1.0 and RhiresM v1.0) represents accumulated precipitation, including 
both rainfall and snowfall equivalent (in mm). The MeteoSwiss data was resampled using bilinear interpolation to match the resolution 
of the MODIS data and used as input in the water budget calculation (refer to Section 3.4). 

Although a substantial portion of the Thur catchment is under agriculture, high annual precipitation rates resulting in wet envi-
ronmental conditions in the catchment, renders the irrigated amounts as relatively insignificant when compared to the relatively high 
surface water availability (Kanton Thurgau Amt für Umwelt et. al., 2008). Therefore, although seasonal water shortage (e.g. summer 
drought periods) are recorded locally (discussed in Section 4.3), it is assumed that the effect of irrigation is negligible in the sense of the 
Thur catchment’s total water balance. Additionally, relatively little variation in precipitation characteristics, such as season, fre-
quency, and duration of dry and wet days, appears across the Thur’s different sub-catchments (Dal Molin et al., 2020). 

3.2. Evapotranspiration product 

Calculations of AET are generally local measures from Eddy Covariance (EC) towers, Large Aperture Scintillometers (LAS), or 
lysimeters. These methods are often regarded as the most accurate and reliable determination of AET (Baldocchi, 2003; Brotzge and 
Crawford, 2003; Rana and Katerji, 2000; Schrader et al., 2013; Xu and Chen, 2005). However, due to the spatial heterogeneity of AET, 
upscaling of point information to a regional scale is challenging, and models have been employed to compensate for the lack of ob-
servations and fill spatial gaps (de Graaf et al., 2017; Döll and Fiedler, 2008; Orth and Seneviratne, 2015; Wada et al., 2016). 

Remotely sensed products offer feasible alternatives to obtaining AET measurements at regional scales (Bhattarai et al., 2016; 
Zhang et al., 2008). The Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite, has been acquiring 36 
spectral bands (wavelengths) of the globe every 8 days since December 1999 (https://terra.nasa.gov/about/mission). The MODIS 
sensor was designed to detect electromagnetic bands which include spectral signatures of atmospheric water vapour as well as 
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vegetation and land cover, from which continuous biophysical variable including land surface temperature, albedo, soil moisture 
(Running et al., 2019, 1994). From these variables, a regional composite ET product is estimated, at a 500 m x 500 m resolution, using 
the Mu et al. (2011) improved ET algorithm which is based the Penman-Monteith (PM) equation (Monteith, 1965). When dealing with 
ET values, it must be noted that through the process of hydraulic redistribution (HR) by plant roots, groundwater itself may be 
contributing to the determined value. According to Luo et al. (2016), where depth to water table ranges between 3 and 6 m, the 
percentage water redistributed may range between 14.5% and 23% for coniferous forests, depending on the soil type. However, were 
depth to water table is relatively shallow (between 1 m and 2 m), the effect of groundwater transpirated via HR is often not evident, as 
a roots would be in constant contact with water at this depth (Luo et al., 2016). 

Although remotely sensed ET products are currently available with higher pixel resolutions (e.g. Guzinski et al., 2020), the time 
series for these products are currently still limited (Sen-ET from ESA is available as of 2016). The MODIS ET product has 
well-documented quality assessment protocols, reproduces basin-scale AET response with acceptable uncertainty (Khan et al., 2018; 
Velpuri et al., 2013), has good temporal resolution, and is freely and easily accessible. In light of this, the improved gap-filled annual 
(January – December) and 8-day (MOD16A3GF and MOD16A2GF respectively) MODIS (hereon referred to as MOD16) ET data was 
used as the evapotranspiration component in this study. The full series was obtained from the Land Processes Distributed Active 
Archive Centre (LP DAAC) for the years 2000–2019 (https://lpdaac.usgs.gov/) [Accessed on 2019–11–19]. The MOD16 image tiles 
were pre-processed and clipped to the Thur catchment for ease of use (refer to Section 3.4). 

3.3. Discharge product 

While the MeteoSwiss precipitation and MOD16 ET products are in gridded spatiotemporally varying quantities, discharge (Q) is 
measured at a point as a flux through a stream channel (Tang et al., 2010). Ten (10) federally operated gauging stations are located in 
the Thur catchment (Fig. 1a; Table 1). All stations are located along free-flowing systems and have continuous data for the period 
2000–2019 (with the exception of the Halden (Ha) station, where October - December 2019 was absent – refer to Section 1.2 in 
Supplementary Information for details). Available stream discharge time series were obtained from the Swiss Federal Office for the 
Environment (FOEN) and quality checked prior to use. 

The Andelfingen (An) site represents the discharge for the entire Thur catchment, with 9 sub-catchments located upstream of it. The 
next biggest sub-catchment is represented by the Halden (Ha) site, which drains approximately half of the Thur catchment. For the 
2000 – 2019 period, the high elevation sub-catchment Appenzell (Ap) displayed the highest average Q value (1375.5 mm), while the 
low elevation Frauenfeld (Fr) station displayed the lowest average discharge value (556.89 mm) (Table 1). For the years 2000 – 2019, 
hourly discharge (m3/s) was converted to monthly, seasonal, and annual (January – December) volumes of water (mm), by aggre-
gating the mean hourly discharge and dividing it by the discharge station’s upstream area. Seasonal data was based on winter 
(December, January, and February), spring (March, April, and May), summer (June, July, and August), and autumn (September, 
October, and November) aggregates. 

3.4. Methodology 

3.4.1. Correction of MODIS data 
The Mosnang (Mos) sub-catchment (Fig. 1a), also known as the Rietholzbach research catchment, is a well-instrumented catchment 

with a long history of both atmospheric and hydraulic data collection. Readily available long-term AET data from studies conducted in 
the Mos sub-catchment for the years 1976–2015 (Hirschi et al., 2017; Seneviratne et al., 2012) were used in this study to evaluate the 
accuracy of MOD16 ET data used in calculating the Thur catchment’s water budget. A large weighing lysimeter setup (Fig. 1a) in the 
Mos sub-catchment is the only independent long-term AET data available for the Thur catchment. 

The weighting lysimeter, with a depth of 2.5 m and a diameter of 2 m, is located in a grassland setting next to the valley bottom of 
the Rietholzbach in the upper part of the Mos catchment (Hirschi et al., 2017). The lysimeter is mainly filled with gley-brown Cambisol 
soil type from the same location including a gravel filter layer at the bottom (Gurtz et al., 2003; Moeck et al., 2018). At the bottom of 

Table 1 
Gauging stations located in the Thur catchment with site names and abbreviated IDs used in this study, along with number of catchments located 
upstream from station, area of upstream catchments, elevation of stations, and average stream discharge (Q) for the years 2000 – 2019.  

Site ID Codea Upstream catchments Downstream stations Area (km2) Elevation (m) at catchment outlet Average Q (mm/year) 

Andelfingen An  2044  9  0  1701.7  363  847 
Appenzell Ap  2112  1  3  74.4  772  1376 
Frauenfeld Fr  2386  2  1  213.3  394  557 
Halden Ha  2181  6  1  1085.0  461  1063 
Herisau He  2305  1  2  16.7  680  1059 
Jonschwil Jon  2303  3  2  492.9  534  1260 
Mogelsberg Mog  2374  1  3  88.1  610  1133 
Mosnang Mos  2414  1  3  3.2  670  994 
St. Gallen Stg  2468  2  2  261.1  582  1190 
Wängi Wae  2126  1  2  78.9  470  693  

a Code of the gauging station, as defined by the Federal Office for the Environment, FOEN 
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the lysimeter, water outflow is measured with a tipping bucket. As groundwater is shallow at the site and the average rooting depth is 
around 0.3 m (Germann, 1981), lysimeter seepage can be assumed to be a reliable indicator of actual vertical groundwater recharge 
(Ghasemizade et al., 2015; Seneviratne et al., 2012; von Freyberg et al., 2015) Despite scale discrepancy and uncertainties due to the 
setup of the lysimeter, Seneviratne et al. (2012) show that the Rietholzbach lysimeter seepage and catchment runoff display very 
similar monthly dynamics, which suggests that the lysimeter is representative for the water balance of entire Mos catchment. The 
largest discrepancies between lysimeter seepage and catchment runoff values were found during March; most likely linked to the 
higher spatial variability of hydrological processes taking place in that month (e.g. snowmelt and the onset of the growing season) 
(Seneviratne et al., 2012). 

At the surface, the lysimeter is covered with a grass species composition which imitates the surrounding conditions, including the 
same cutting scheme (Hirschi et al., 2017). The manner in which the lysimeter is setup (i.e. the weighing of the lysimeter), also allows 
for the estimation of AET: a well-established technique (Gebler et al., 2015; Ghasemizade et al., 2015; Goss and Ehlers, 2009; Rana and 
Katerji, 2000; Schrader et al., 2013; Seneviratne et al., 2012, among many others). Hirschi et al. (2017) demonstrated that for the Mos 
sub-catchment, the lysimeter and eddy covariance (EC) measurements are in good agreement, in particular where the annual timescale 
is concerned. Moreover, a good agreement was seen when comparing the lysimeter AET values with the Mos catchment’s long-term 
water balance values (Hirschi et al., 2017). These findings emphasize the representativeness of the site-level lysimeter for the entire 
Mos catchment, despite its comparatively small source area. Here, we follow Vereecken et al. (2015), who argued that improved 
description of soil hydrological fluxes at the local-scale are fundamental to reduce large uncertainties, which are still present in 
large-scale models (or remote sensed data) used to predict these fluxes. As such, and in spite of this area representing only a fraction of 
the entire Thur catchment, MOD16 ET values for the entire Thur Catchment were bias corrected using the Mos sub-catchment 
lysimeter values. Taking into account that Seneviratne et al. (2012) found that the Rietholzbach catchment is representative of a 
number of hydroclimatic regions in the Swiss eastern plateau, in particular for the Thur-river basin, it seems to be reasonable to make 
the bias correction based on the lysimeter values. A more detailed discussion about this assumption and the possible implications for 
the water balance calculation can be found in Section 5.1. 

When comparing the original MOD16 ET values for the Mos sub-catchment to lysimeter values, an overestimate in the MOD16 ET 
data was evident (Fig. 2a). Where the lysimeter AET values ranged between 1.20 and 134.20 mm/month for the period from 2000 and 
2015, the MOD16 ET values ranged from 15.52 to 132.79 mm/month for the same period. In order to account for this, the MOD16 ET 
values were adjusted (hereon referred to as AETcorr) by a correction factor of 0.71. This factor was estimated by inversely fitting the 
original MOD16 ET data to the measured lysimeter values, while seeking to reduce the daily mismatch. Overall, fitted results are in 
good agreement with the observed lysimeter data (Fig. 2b). Furthermore, a comparison between the AETcorr values and modelled AET 
values (after Zappa et al., 2017), show a very strong, positive (after Evans, 1996) correlation (Pearson correlation = 0.97: refer to the 
Supplementary Fig. S1). Although the Pearson’s correlation coefficient (R) can be overly sensitive to outliers, in light of the large data 

Fig. 2. Comparison of original MOD16 ET values, lysimeter values and corrected MOD16 ET (AETcorr) values a) as a boxplot, b) scatterplot 
comparing original MOD16 with corrected MOD16 data (AETcorr), and c) a temporal plot showing seasonal trends for the years 2000 – 2015. 
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set, the method was deemed suitable as a basic comparison between the original MOD16 and the AETcorr values (Dessu et al., 2018; 
Legates and McCabe, 1999). In addition, when looking at the expected MOD16 ET values as described by Mu et al. (2011) at a latitude 
of approximately 47.5⁰ (the latitude of the Thur catchment), these values are in line with the lysimeter values, and subsequently the 
AETcorr. 

Additionally, P values (from the MeteoSwiss data) were compared to precipitation data from the meteorological station Büel 
located at the outlet of the Mos sub-catchment and in close proximity of the above described lysimeter located in the Mos sub- 
catchment (data available from https://iac.ethz.ch/group/land-climate-dynamics/research/rietholzbach/data.html). Findings show 
a very strong positive correlation (after Evans, 1996) between the gridded P values from the MeteoSwiss data with those from the Büel 
station (Pearson correlation = 0.93) (refer to Fig. S2 in the Supplementary Information). 

3.4.2. Baseflow from total discharge values 
Baseflow separation is a method whereby total stream discharge (Q) is separated into precipitation event-based surface discharge 

components often referred to as quickflow (Qq), and baseflow components (Qb) (Eq. 1). Baseflow (Qb) is usually associated with 
subsurface processes, cannot be attributed to a single precipitation event, and has been taken as a quantitative variable of groundwater 
discharge to rivers by many authors (Blume et al., 2007; Duncan, 2019; Fendeková and Fendek, 2012; Hall, 1968; Healy and Scanlon, 
2010; Hellwig and Stahl, 2018; Nathan and McMahon, 1990; Reitz et al., 2017; Sutcliffe et al., 1981). Baseflow represents a part of the 
groundwater which returns to the surface water; a process through which many rivers and lakes are fed, and aquatic ecosystems are 
maintained during dry periods (Aeschbach-Hertig and Gleeson, 2012; Gurdak, 2017). Infiltration to recharge subsurface storage 

Fig. 3. Flow chart showing work process in R studio with input data from MOD16 ET (AET), MeteoSwiss (P), FOEN (Q), and DEM (source: Federal 
Office of Topography) used in determining potential gridded recharge (R) in the Thur catchment for the years 2000 – 2019. 
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increases baseflow, but due to AET baseflow can also be reduced as temperature gradients and trees absorb water from the ground. 
Using a digital filter method available in the EcohydRology R package (R Core Team, 2018), with three passes and filter parameter set 
to 0.925 as proposed by Nathan and McMahon (1990), base- and quickflow was estimated from the available Q data in order to es-
timate baseflow from total streamflow in the Thur catchment: 

Q = Qq +Qb (1) 

A baseflow index was generated for each sub-catchment (refer to Supplementary Table S1 and Fig. S3). In addition, a baseflow 
separation method comparison was conducted (after Zomlot et al., 2015) using the free online automated Web-Based Hydrograph 
Analysis Tool (WHAT) (Lim et al., 2010, 2005), to compare three separation methods: 1) the Eckhardt recursive digital filter (Eckhardt, 
2005; Lim et al., 2005) with filter parameter set to 0.98 and 0.925, 2) the local minimum method, and 3) the one parameter method. On 
average, the ammount of baseflow contribution derived from the different methods varied by up to 22% (refer to Supplementary 
Fig. S4). Using a recursive digital filter method with the filter parameter set to 0.925 was the most conservative approach, resulting in 
an average monthly baseflow contribution of 43%. In order not to over-estimate recharge values in this study, Qq was deterimined 
using the method most conservative with respect to Qb. 

3.4.3. Spatially gridded discharge 
In order to evaluate the discharge volumes (in mm) in the Thur Catchment on a spatial basis as part of the water balance, point 

measurements of stream volumes, weighted based on a topographically-based top-down flow accumulation (FA) algorithm generated 
using SAGA GIS, were used (Conrad et al., 2015). Refer to Supplementary Fig. S5 for a comparison of FA weight ranking methods. The 
FA raster was based on a flow routing algorithm (after Seibert and McGlynn, 2007; Tarboron, 1997) generated from a 25 m raster DEM 
(Source: Federal Office of Topography) which was pre-processed using Wang and Liu’s, 2006 fill sink process (Wang and Liu, 2006). 
The FA raster was resampled using bilinear interpolation to match the 500 m x 500 m raster resolution of the MOD16 ET data, and then 
normalized and inverted (FAnorm) (after de Lavenne et al. (2019) to create a weighting factor between 0 and 1 with the greater part of 
the Qq volume weighted to the upstream reaches of the Thur River: 

FAnorm = 1 − (FA − FAmin)/(FAmax − FAmin), (2)  

before being multiplied by the temporally aggregated quickflow (Qq) values of each sub-catchment, in order to represent spatially 
distributed quickflow (Qq-dis) for the Thur catchment: 

Qq− dis = Qq ∗ FAnorm (3) 

A comparison of the FA values with the inverted FA values is presented in Fig. S5; which indicates that the inverted FA (FAnorm) 
more closely represent the measured baseflow values (Qb). The resulting product, although based on an algorithm which laterally 
connects adjoining downstream pixels, was used purely to represent discharge volumes spatially as input into the water budget 
calculation (Eq. 6; Fig. 3). As such, each pixel value does not represent actual measured Qq at the pixel location, but rather each Qq-dis 
pixel merely represents a portion of the precipitation into that cell which ultimately produces the measured downstream Qq response. 
However, results show a very strong, positive correlation (Pearson correlation = 0.94; after Evans, 1996) with modelled results 
(Viviroli et al., 2007b, 2007c) (refer to Supplementary Fig. S6). 

3.4.4. Recharge estimates from the water balance equation 
In cases where a catchment represents a steady-state system, the terrestrial water budget is equal to all inputs into minus all outputs 

out of the system. This implies that over long time periods (e.g. annual), catchment storage change (ΔS) calculated from Eq. 4 does not 
vary, and baseflow can be defined as representative of effective groundwater recharge (Reitz et al., 2017; Schilling et al., 2021; 
Wolock, 2003): 

P–ET–Q ± ΔS = 0, (4)  

where P represents input in the form of precipitation, ET and Q represent output in the form of evapotranspiration and discharge (as a 
sum of Qq and Qb), and ΔS is the change of storage. 

Discharge (Q) was separated into its quick- and baseflow components using a Qb-conservative digital filter method (refer to Section 
3.4.4), where Qb would represent the minimum effective groundwater recharge: 

Qb = P − AETcorr − Qq (5) 

Bearing in mind the inherent uncertainty in all of these variables (e.g. Coxon et al., 2015; Li et al., 2018; Lu et al., 2019; MeteoSwiss, 
2013; Zhao and Liu, 2014) and assuming acceptable or constant component errors (refer to Section 3.5), the water available for 
recharge, referred to here as potential recharge (R), in the Thur catchment was described using the independent gridded water balance 
component AETcorr and Qq-dis values as follows: 

R ≈ Qb = P − AETcorr − Qq− dis, (6)  

where the gridded spatiotemporal R values represent the value of water which would result in the modelled Qb response (after Eq. 1) 
derived from measured Q values. 
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According to Creutzfeldt et al. (2014), the spatiotemporal variability and availability of water in a catchment is controlled by 
underlying processes (e.g. spatially changing boundary conditions and temporal fluxes in catchment parameters). Any change in trend 
(representing both the direction and rate of change) can be determined by the slope of a linear regression model (De Jong et al., 2011). 
Gridded values of R were assessed using a pixel-wise ordinary least-squares linear regression for the 20 years from 2000 to 2019, at the 
95% significance level; determining changes in recharge characteristics in the Thur catchment. Additionally, the difference in mean R 
values estimated over the first 10 years (2000 – 2009) was compared to the mean R values estimated over the second 10 years (2010 – 
2019) of the total study period (refer to Section 4.3.1). 

3.4.5. Workflow 
Using the open-source statistical program R (R Core Team, 2018), grid-based computations were conducted for the Thur Catchment 

at the 500 m x 500 m resolution, with each independently estimated input variable representing a water balance component (in rates 
per unit area) for the years 2000 – 2019. The work process for the data processing is illustrated as a flow diagram in Fig. 3. This method 
relates the water balance components P, AETcorr and Qq-dis in a spatiotemporal manner to estimate catchment-wide R over time. No 
lateral transfer was considered between the individual pixels, but rather mapping the vertical exchange of water entering (via pre-
cipitation) and leaving (via evapotranspiration and discharge) each pixel to estimate the potential recharge component of each cell. 

3.5. Sensitivity of gridded water balance components 

Although using independent water balance components reduces the propagation of errors (Healy and Scanlon, 2010), the accuracy 
of recharge derived from a water budget calculation depends entirely on the uncertainties of each component used as input into the 
calculation. For example, previous studies (including our study, see Section 3.4.1) have shown that in some cases MOD16 ET products 
result in an over estimation when compared to ground-based values (Miranda et al., 2017; Ruhoff et al., 2013; Velpuri et al., 2013; 
Zhao and Liu, 2014, also see Section 3.4.1). Terrain complexity, the distribution and number of measuring stations, along with time 
series availability and measurement frequency can affect the precision and representativity of measurements taken (Coxon et al., 2015; 
Schiemann et al., 2010; Turnipseed and Sauer, 2010). This is particularly true when measuring precipitation, where amounts can vary 
greatly in both seasonal and spatial distribution, especially over complex terrain (Schiemann et al., 2010; Sun et al., 2018). 

Although the input components stem from independent sources, they are by nature highly inter-dependant. However, in assuming 

Fig. 4. a) Monthly quick- (Qq) and baseflow (Qb) from total streamflow values (Q) in the Thur catchment (An) and its sub-catchments (listed in 
increasing order of elevation from left to right) grouped into seasonal intervals, and b) Seasonal Qq and Qb values for the entire Thur catchment 
grouped into yearly intervals for the period 2000 – 2019, with drought years 2003, 2015 and 2018 indicated in red. 
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Fig. 5. a) Monthly, b) seasonal, and c) annual comparison of mean water balance component values for the entire Thur catchment for the years 
2000 – 2019, with 1:1 correlation lines and Pearson correlation (R) indicated. 
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that they are unbiased and normally distributed, the variance (σ2) of the individual components can be calculated, and the degree of 
error stemming from each component estimated: 

σ2
ε = σ2

P + σ2
AETcorr + σ2

Qq− dis (7) 

Here, confidence intervals (CI) were calculated and explored for recharge estimate using 100,000 random component values 
generated within a realistic range within which each component was varied by a fixed amount based on estimated data errors. The 
range of precipitation value error was based on a + /- 20% relative standard error suggested by MeteoSwiss (2013), while the error 
range for AET was set at + /- 25% (based on the findings of Miranda et al., 2017; Ruhoff et al., 2013; Velpuri et al., 2013; and Zhao and 
Liu, 2014) as well as our own assessment (refer to Section 3.4.1). The specified error for measured Q values is + /- 3.2% (after Spreafico 
and Weingartner, 2005), with higher errors indicated during peak flows. In order to account for the high streamflow variability of the 
Thur River and its tributaries, the relative standard of error for Qq-dis was increased to 5% for this study. However, the error stemming 
from the gridded distribution of Qq-dis (after Section 3.4.3) was not considered in this study, and thus Qq-dis related errors should be 
considered as being conservative and only related to measurement errors. 

4. Results 

This section evaluates the individual water balance components, some of which were derived from ground-based data, and presents 
results from the Thur catchment’s gridded water balance. Spatiotemporal recharge over a 20 year period was investigated, and the 
monthly, seasonal, and annual variability in the water balance components in the Thur catchment were examined. 

4.1. Baseflow from total streamflow 

The results of the digital filter baseflow separation were plotted as monthly data at seasonal intervals (Fig. 4a). When considering 
the ratio of Qb to total streamflow (Q), the significance of Qb becomes evident for all of the sub-catchments in the Thur catchment, with 
average contributions of Qb ranging from 31% to 57% (refer to Supplementary Table 1 for baseflow ratios). Along steeper slopes, flow 
velocities are higher and recharge capacity is generally limited, favouring surface runoff and instream discharge, resulting in elevated 
Qq values. Whereas gentler slopes experience both slower flow velocities as well as greater storage capacities, resulting in a higher 
contribution of Qb to total streamflow (Anderson et al., 1978; Lavenne et al., 2019; Moeck et al., 2020; Van Loon and Laaha, 2015). The 
high elevation sub-catchments of Ap, He, Mos, Mog, and Stg displayed a greater proportion of Qq relative to Qb, while the 
sub-catchments Wae and Fr, located in the lowland region of the Thur catchment, displayed a relatively high proportion of Qb in 
relation to Qq. Although the entire Thur catchment experienced a predominance of Qq during the winter, summer, and autumn months 
(with the highest Qq values occurring during the summer), on average Qb continued to make up 45% of the total discharge value and 
displayed a predominance of 53% of the total streamflow during the spring months. When lumping seasonal Qq and Qb values on a 
yearly basis, elevated contributions of Qb during the dry summers of 2003, 2015, and 2018 are highlighted; making up as much as 55%, 
65%, and 60% respectively of total flow recorded at the end of the dry (summer) months in the Thur River (Fig. 4b). Please refer to 
Supplementary Fig. S3 for monthly Qq and Qb values from all of the sub-catchments. Twenty years of hourly quickflow values were fed 
into the gridded workflow (refer to Section 3.4.5), in order to evaluate the spatiotemporal R values (after Eq. 6) in the Thur catchment 
and its sub-catchments. A very strong correlation between the modelled discharge values (after Viviroli et al., 2007c, 2007b), and Qq-dis 
and Qb values as used in this study, was found (refer to Supplementary Fig. S6). 

4.2. Water balance 

With water balance components used in this study derived from independent sources, the extent of water balance closure in the 
Thur catchment (after Eq. 6) was determined using mean monthly, seasonal and annual values of input component (P) correlated with 
the sum of output components AETcorr and the observed Q values (separated into Qq, and Qb after Eq. 1). Monthly values indicated a 
very strong correlation, with Pearson correlation (R) equal to 0.81 (Fig. 5a). The correlations improved further were seasonal (Fig. 5b) 
and annual (Fig. 5c) data was used, with Pearson correlation (R) equal to 0.89 and 0.94 respectively. This suggests that over longer 
time periods (e.g. seasonal to annual), the assumption that the Thur catchment is in a steady-state, and ΔS negligible, becomes more 
valid. Please refer to Table S2 of the Supplementary Information for a comparison of goodness-of-fit measures. 

The lack of complete closure might be attributed either to time-lags in groundwater to surface water, or to measurement errors and 
uncertainties in the water balance components. For instance, precipitation can have a relative standard error of + /- 20% as suggested 
by MeteoSwiss (2013). Moreover, in the high elevation reaches of the catchment uncorrected solid precipitation amounts (e.g. snow) 
can have a strong impact (Dal Molin et al., 2020; Schmucki et al., 2014; Zappa et al., 2003), and potentially limit the complete closure 
of the water balance. For example, although some grouping was evident in the monthly data (Fig. 5a), with spring and summer values 
plotting predominantly above and autumn and winter values predominantly below the input vs. output correlation line, an improved 
grouping was evident in the seasonal values (Fig. 5b). The impact of snow storage and melt is further advocated with most spring and 
summer data plotting predominantly above the correlation line (Franz et al., 2010; Meeks et al., 2017). However, a more systematic 
investigation is required to understand this process in detail and thus this outcome should not be over-interpreted in the context of this 
study. 

N.M. Burri et al.                                                                                                                                                                                                       



Journal of Hydrology: Regional Studies 38 (2021) 100972

12

4.3. Spatiotemporal recharge in the Thur catchment 

4.3.1. Variation in gridded water balance components 
The spatial distribution of mean monthly P values over the 20 year period from 2000 to 2019 were highest in the high elevation 

regions to the south of the Thur catchment, and lowest in the northern reaches of the catchment (Fig. 6a left). Monthly P values (Fig. 6a 
bottom right) ranged between 1 and 282 mm/month over the 20 year period, with a monthly mean of 115 mm. Annual values (Fig. 6a 
top right) show high (>1500 mm/year) P values for 2001 and 2002 (nationally recorded wet years), and low (<1250 mm/year) P 
values in 2003 which experienced record-breaking heatwaves throughout Europe (Casty et al., 2005; Schär et al., 2004), 2015 and 
2018 which are also nationally recorded drought years (BAFU et. al., 2020). Additional dry years in the Swiss north-eastern pre-Alps 
were experienced during 2005 and 2011 (MeteoSwiss, 2011, 2005). From 2003–2009, and again in 2011, mean annual P values 
remained at or below the 20 year average of 1371 mm. 

Low (< 40 mm) monthly AETcorr values were associated with exposed high elevation regions to the south of the Thur catchment, as 

Fig. 6. Mean spatial distribution of a) P, b) AETcorr, and c) Qq-dis in mm/month, with monthly and annual time series of P, AETcorr, and Qq-dis 
indicated (in mm) for the years 2000–2019 for the Thur catchment. Grey areas equal no data areas (urban areas or water bodies, which are not 
included in MOD16 ET data sets). 
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well as with the lowland regions to the north where land use is more intense, while the highest AET values were associated with the 
mid-latitude reaches of the Thur catchment (Fig. 6b left). Annual AETcorr values showed relatively little variation, with a maximum 
value of 544 mm/year for the year 2011, a minimum of 486 mm/year for 2001, and an overall mean of 514 mm/year for the 20 year 
period (Fig. 6b top right). Monthly AETcorr values oscillated between ~15 and ~90 mm/month, with a mean monthly value of 60 mm 
(Fig. 6b bottom right). The distributed mean monthly Qq-dis values were greatest in association with the valley bottoms where water 
accumulates, with minimum Qq-dis associated with the narrow alpine valleys to the south of the catchment (Fig. 6c left). Over the 20 
year period monthly Qq-dis values ranged between 1.53 and 135 mm, with a mean value of 40 mm/month (Fig. 6c bottom right). Mean 
annual Qq-dis values were highest in 2002 (693 mm), which is in line with a nationally recorded wet year (BAFU et. al., 2020), while the 
years 2012 and 2013 also presented relatively high (>530 mm) Qq-dis values (Fig. 6c top right). Low Qq-dis values were associated with 
the drought years of 2003, 2015, and 2018 (302, 417 and 363 mm respectively), with the 2005, 2009, 2014, and 2017 Qq-dis values also 
falling below the 20 year average of 480 mm. The water budget components, P, AETcorr, and Qq-dis, appear to be influenced by the 
catchment’s topographic variations (refer to Fig. 1b). 

Fig. 7. a) Mean annual R values (mm) for the Thur catchment over 20 years (2000 – 2019), b) standard deviation of annual recharge values (mm), 
c) pixel-wise (500 m x 500 m) linear regression of R over the 20 year period with significant annual change shown at the 95th percentile level, and 
d) difference in R values (mm) between the first (2000–2009) and second (2010–2019) half of the twenty year period. 
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4.3.2. Spatiotemporal groundwater recharge over a 20 year period 
Gridded recharge maps were generated by closing the water balance after Eq.6. The mean R values for the Thur catchment between 

the years 2000 – 2019 ranged from smaller values (<500 mm) in the central and northern regions, to large values (>1000 mm) in the 
southern regions (Fig. 7a); this is strongly controlled by a difference in precipitation gradient between north and south. The standard 
deviation of the estimated R for the 20 year period, indicated a slightly higher degree of deviation in absolute values associated with 
the mountainous southern regions (Fig. 7b). The gridded R values are a conservative spatial estimate of water available for recharge in 
the Thur catchment area, while the net spatial change of R values assessed using a pixel-wise linear regression is a measure of how 
much R (in mm) has changed per pixel over the 20 year period. Long-term change in R was calculated using annual values (Fig. 7c). At 
the 95th percentile level, areas within the Thur catchment experiencing significant change in R values over the 20 year period 
comprised 4.4% (or 74.98 km2) of the total area, and all significant change observed was negative. These R changes were restricted to 
the lower reaches of the Thur catchment, parts of the Fr/Wae sub-catchments and the lower reaches of the Jon sub-catchment (refer to 
Fig. 1a for sub-catchment locations). Potential masking of the actual areas experiencing change in R values may result from the use of 
annual data as in Fig. 7c. Moreover, comparing the difference in pixel values from the first ten years (2000 – 2009) with those from the 
second ten years (2010 – 2019) of estimated R, shows areas that have changed without the constraint of a calculated trend with the 
pixel-wise regression (Fig. 7d). Areas shown to have experienced negative R rates over the 10-year period (Fig. 7d), correspond well 
with areas of significant change in R using a pixel-wise linear regression (Fig. 7c). 

Over the 20 year study period, the mean temporal recharge values for the entire Thur catchment displayed an average monthly 
(short-term) mean R value of 34 mm/month (Fig. 8a), while annual (long-term) mean R pixel values ranged between 208 and 
578 mm/year, with a 20-year mean of 410 mm/year (Fig. 8b). Seasonal (medium-term) values displayed a mean R of 121 mm during 
the winter months, 85 mm during spring, 93 mm during summer, and 110 mm during the autumn months (Fig. 8c). It must be noted 
that, due to the use of a conservative baseflow separation method with respect to Qb (refer to Section 3.4.2 and Supplementary Fig. S4 
where differences of up to 22% are indicated depending on the separation method), resulting R values are conservative, and it is likely 
that the study area is capable of experiencing greater recharge rates. As discussed by Immerzeel et al. (2020) and Viviroli et al. (2007), 
mountains can be described as the world’s water towers; where precipitation and subsequent surface runoff and discharge potentials 
are high. Although monthly data suggests that over short periods the Thur catchment did on occasion experience water shortage, 
especially during the spring and early summer months, as indicated by the negative values (14.6% of the monthly data values were ≤
0), over medium (seasonal) to long-term (annual) periods, a sustained net surplus of R was evident in the Thur catchment over the 20 
years period. 

Fig. 8a and b show short- (monthly) and long-term (annual) temporal trends in R, where above-average (blue) or below-average 
(red) R values are indicated with respect to monthly and annual mean values for the 20 year period. Although short-term (monthly) R 
values were on occasion negative (Fig. 8a), in particular during the spring of 2007, 2009 and 2018, a mean value of 34 mm/month 
suggests that on average R is positive in the Thur catchment. Medium-term (seasonal) intervals show that mean seasonal R values were 
at their lowest during spring, while the highest mean seasonal R values occurred during the winter months (Fig. 8c). Although R values 
were never negative over medium- and long-term intervals, Fig. 8b indicates that periods of notably smaller annual R values (values 

Fig. 8. a) Mean monthly, b) annual, and c) seasonal potential recharge values (mm) centred around the short-medium- and long-term mean values 
for the years 2000 – 2019. Red indicates potential recharge below and blue potential recharge above the subsequent long-term mean values. 
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below the long-term annual mean of 410 mm/year) in the Thur catchment are in line with national drought years (2003, 2015, and 
2018), while the years 2001 and 2002 display R values of above long-term mean potential recharge (410 mm/year. Comparing the 
intensity of R values below the long-term average across the different national drought years, the below long-term R values of the 2003 
drought is seen as having being the least extreme (307 mm), and the 2018 drought the most extreme (208 mm), highlighting the 
importance of the initial condition(this point is further discussed in Section 5). From 2003 until 2011, mean annual R values remained 
continuously below the long-term mean. Concerning soil moisture variations, Orth and Seneviratne (2012) showed that, rather than 
evapotranspiration or runoff, soil moisture memory effects depend on both the initial soil moisture state and the subsequent accu-
mulation of precipitation. Considering the above-average precipitation values spanning the duration from 2001 to 2002 (refer to 
Fig. 6a), initial soil moisture would likely have been elevated prior to 2003; a possible explanation for the lowered R values displaying 
a relative mildness in spite of the intensity of the 2003 drought. The subsequent droughts of 2015 and 2018 followed a period of 
continued R deficit (e.g. from 2003 to 2011), during which average or below average precipitation rates were experienced, and display 
and increasing severity in terms of below-average R values. Similar findings by Van Loon and Laaha (2015) suggest that both drought 
duration and deficit is governed by average catchment wetness via precipitation and catchment storage capacity. 

4.4. Sensitivity assessment of water balance components 

Uncertainties in input components to the Thur catchment’s water balance were assessed and the variance of each component 
compared after Eq. 7. Annual values of both P and Qq-dis were approximately normally distributed, while AETcorr was bimodal and 
displayed the highest degree of variance (Fig. 9a). A stochastic perturbation was added to the variance of the individual variables P, 
AETcorr, and Qq-dis, variables combined, via the introduction of noise which was then compared to the variance of R. Tendencies show 
that P, although having a lower variance than AETcorr, displays the greatest spread in values over the period from 2000 to 2019 
(Fig. 9b). Subsequently, P represents the component to which R is most sensitive. The spread of AETcorr was smaller, followed by Qq-dis, 
suggesting greater certainty in these data sets, particularly in Qq-dis. These results highlight some of the primary uncertainties and 
sensitvities in the water budget calculation. 

5. Discussion 

This study investigated the feasibility of estimating spatiotemporal variations in R using a combination of satellite image products 
in conjunction with ground-based discharge data in a mesoscale catchment over a 20 year period. The use of RS data is of particular 
interest in regions where the availability of direct measurements are either limited or non-existent. 

5.1. Actual evapotranspiration 

Although the MOD16 ET product reproduces basin scale AET response with acceptable uncertainty, when compared to expected 
annual values from Mu et al. (2011) (mean AET ~ 410 mm/year), Zappa et al. (2017) (mean AET ~ 558 mm/year), and Seneviratne 

Fig. 9. a) Distribution and variance of annual P, AETcorr, and Qq-dis, values (mm) and b) perturbation of annual water balance component values 
(mm) compared to R values. 
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et al. (2012) (mean AET ~ 577 mm/year) original MOD16 ET values for the Thur catchment were high, with mean pixel values ranging 
between 685 and 766 mm/year. Previous studies have shown that the MOD16 ET product may result in an over estimation when 
compared to ground-based values (Miranda et al., 2017; Ruhoff et al., 2013; Velpuri et al., 2013; Zhao and Liu, 2014). A few reasons 
may lead to the MOD16 ET product overestimating AET values in the Thur catchment, including a lack of any topographic correction of 
the product (see Zhao and Liu, 2014), in addition to other factors such as spatiotemporal scale etc. (Lu et al., 2019). In light of both the 
mesoscale size of the Thur catchment, and its variable topography, a correction of the MOD16 ET values was deemed necessary. 

Where the monthly values are concerned, inversely fitting the MOD16 ET data to the measured lysimeter values resulted in a very 
strong, significant positive correlation (Pearson correlation = 0.95, p < 0.05) (see Section 3.4.1). Concerning the correction, if more 
sophisticated statistical techniques were used and/or a different strategy to weight the values individually were applied, slight var-
iations in the satellite data may have been better quantified. However, this could also have resulted in an overfitting of the data (Zhao 
et al., 2019). As the lysimeter data only represents a single point-scale measurement, this study did not seek to achieve a perfect match 
between MOD16 ET and lysimeter AET. As mentioned previously, Seneviratne et al. (2012) show that the Rietholzbach lysimeter 
seepage and catchment runoffs display very similar monthly dynamics, suggesting that the lysimeter is representative for the water 
balance of entire Mos and many eastern Swiss catchments, in particular the Thur River catchment. Moreover, Hirschi et al. (2017) 
demonstrated that for the Mos sub-catchment, the lysimeter and eddy covariance (EC) measurements are in good agreement, with the 
Mos sub-catchment’s long-term water balance values. All of the mentioned findings emphasize the representativeness of the site-level 
lysimeter for the entire Thur catchment, despite its comparatively small source area. 

However, additional ground-based ET data might be required to up-scale and validate the correction of the MOD16 ET using 
observed values. Although the lysimeter dynamics and rates has been shown to be in good agreement with measurement for a wide 
range of hydroclimatic region in eastern Switzerland, and in particular for the Thur River basin (Seneviratne et al., 2012), without 
additional ground-based AET data the correction of the MOD16 ET and subsequent upscaling remains uncertain. Notwithstanding this 
simple approach, AETcorr values compare very strongly with previous AET studies conducted in the Thur catchment (Seneviratne et al., 
2012; Zappa et al., 2017; Spreafico and Weingartner, 2005). Thus, a simple single correction factor for MOD16 ET data was deemed 
suitable in scaling the MOD16 ET values to within a suitable range for the Thur catchment. 

5.2. Baseflow separation 

Although a well-studied concept, baseflow remains difficult to define as demonstrated in this study (see Section 3.4.2 and Sup-
plementary Fig. S4) and elsewhere (Duncan, 2019; Healy and Scanlon, 2010; Nathan and McMahon, 1990). Significant errors may be 
introduced where baseflow is used as a primary indicator of recharge as this represents only a portion of a catchment’s total drainage 
(Sophocleous, 2002). However, this study assumes little or no groundwater loss via inter-catchment exchange, from abstraction or via 
evapotranspiration. In addition, the baseflow separation method is also often only appropriate in humid and sub-humid conditions 
(Healy and Scanlon, 2010). At larger spatiotemporal scales Qb characteristics can provide information on groundwater status and 
seasonal low flows which are integral to instream ecology (Duncan, 2019). Furthermore, Qb has been ascribed as an integrated 
characteristic of a catchment’s storage potential and response time (Van Loon and Laaha, 2015), and studies have equated both Qb and 
baseflow-index values as being equal to recharge (e.g. Lee et al., 2006; Reitz et al., 2017). With average contributions of baseflow 
ranging from 31% to 57% of total streamflow, the importance of subsurface discharge is highlighted; a process which is often neglected 
in studies solely based on surface data (Hoffmann, 2002). In particular during the dry summers of 2003, 2015, and 2018 elevated 
baseflow would have made an important contribution to the Thur River and its tributaries; highlighting the importance of groundwater 
in maintaining aquatic ecosystems during dry periods (Moeck et al., 2020). 

5.3. Closing the water balance 

Input P values over seasonal and annual time scales correlated very strongly with aggregated output values of AETcorr, Qq, and Qb, 
indicating a trend towards total closure of the Thur catchment’s water balance, and supporting the assumption that over longer 
timescales the Thur catchment represents a steady-state system (Spreafico and Weingartner, 2005; Zappa et al., 2017). Although minor 
fluctuations might occur in the Thur’s ΔS value as shown in Zappa et al. (2017), over longer time scales (> 10 years), and considering 
the humid climatic conditions prevalent in the Thur catchment, ΔS variability would generally be very small relative to the volumes of 
the other water balance components (Han et al., 2020; Reitz et al., 2017). However, the lack of complete water balance closure might 
be attributed to both small fluctuations in ΔS, especially over shorter time intervals. 

5.4. Spatiotemporal recharge 

Over the 20 year period the Thur catchment experienced a total of eleven years with below-average R values (refer to Fig. 8b), nine 
of which were consecutively lower than the annual mean. In spite of this, a linear pixel-wise regression indicated that only 4.4% of the 
Thur catchment experienced significant overall change in R (at the 95th percentile). Spatially significant change assessed over the 20 
year period indicated a predominantly negative trend in R values, primarily in association with the lower reaches of the Thur 
catchment and in regions associated with the Fr/Wae and lower Jon sub-catchments located in middle reaches of the catchment 
(Fig. 7c). This negative trend could be attributed to the lower average P values associated with the affected regions (refer to Fig. 6a), as 
well as the total 11 years of below-average R values experienced in the Thur catchment between 2003 and 2011. 

The years 2003, 2015, and 2018 were national drought years in Switzerland and the impact thereof is evident in the long-term 
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temporal P, Qq-dis, and R values. While fluctuations in the AETcorr values showed relatively little response to changes in P over the 20 
year period, the limiting effect of P on R is evident from the spatiotemporal assessment, which is in line with other findings in the Thur 
catchment (Dal Molin et al., 2020). The relationship between P and ET has been shown to be one of long-term equilibrium, dependent 
on larger-scale climate fluctuations (e.g. El Nino), rather than the monthly, seasonal, yearly time steps investigated here (Zhang et al., 
2013). Although 2003 is known as a year of record-breaking heatwave throughout Europe, compared to the 2015 and 2018 drought 
years the extremity of the below-average R values in 2003 appears to have been positively buffered by higher than average precip-
itation during 2001 and 2002. This suggests that the long-term R behaviour in the Thur catchment is in line with findings by Orth and 
Seneviratne (2012) concerning soil moisture variations. 

Concerning the increasing extremity of below-average R values from the 2003, to the 2015, and finally the 2018 drought years in 
this study, highlights the effects of hydrological wet years preceding hydrological drought years in terms of R values. As such, average 
catchment wetness and soil moisture effects and memories could be an important factor to consider as part of a water management 
strategy within the Thur catchment. Advances in remotely sensed soil moisture studies may aid in this endeavour (Dorigo et al., 2016; 
Nicolai-Shaw et al., 2015), and further investigation along this line is recommended for the Thur catchment. 

As mentioned in Section 4.3.2 over short time intervals R values were occasionally negative. This might be as a result of a time lag in 
the R and Qq-dis values, or due to the inherrent errors in the input components (refer to Section 4.4). In other studies, where the sum of 
the AETcorr and Qq-dis values were greater than corresponding P values, a common approach has been to adjust one of the components to 
ensure water balance closure. For example, Reitz et al. (2017) estimated gridded annual recharge, quickflow, and ET for the contiguous 
U.S., but in 15% of all map pixels the sum of ET and quickflow were higher than precipitation and adjustments were made to close the 
water balance. The majority of these adjustments are made to the ET values, as ET is the most difficult water balance component to 
accurately quantify (Bhattarai et al., 2016; Hulsman et al., 2020; Reitz et al., 2017; Zhao and Liu, 2014). To draw attention to the 
difficulties of estimating recharge from a relatively simple water budget calculation, no attempt was made to close the balance in this 
study (see Section 4.2). As such, estimated spatiotemporal R values determined in this study serve to gauge the minimum rate at which 
the groundwater table should be re-supplied in the Thur catchment. 

On average, when considering the total water balance of the Thur catchment and assuming negligible change in subsurface storage, 
recharge (R) accounted for 29%, quick flow (Qq-dis) for 34%, and AET (AETcorr) for 37% of total precipitation. Groundwater R estimates 
are in line with modelled values for the region after studies from Abbaspour et al. (2007). In light of the method uncertainties in 
estimating quick- and baseflow from total discharge value (a maximum difference of 22% was observed between the different methods; 
refer to Supplementary Fig. S4), the recharge estimates for the Thur catchment may in fact, be greater (and consequently quick flow 
smaller). However, this potential for greater recharge, may again be negated in regions where the groundwater table intersects rooting 
depth. A study by von Freyberg et al. (2015), reported recharge in the Mos sub-catchment as 71% of precipitation. However, these 
recharge estimates were lysimeter-based, where no or only little surface run occurred due to the lysimeter setup. The sum of R and 
Qq-dis values comprise 63% of precipitation in the Thur catchment, increased recharge estimates depending on the baseflow separation 
method used. When comparing water balance components for the different sub-catchments of the Thur catchment, the amount of R 
was seen to increase only slightly with higher the elevation sub-catchments (Fig. 10a), and greater changes were observed in the 
proportion of decreasing evapotranspiration with respect to increasing quickflow (Fig. 10b). Refer to Supplementary Fig. S7 and 
Table S2 for percentage error compared to total available water in terms of P in the Thur catchment. Although not considered in detail 
in this study, the geological setting and lithological variances, along with anthropogenic alterations, might also further control the 

Fig. 10. Average annual groundwater recharge (R), quickflow (Qq-dis), and actual evapotranspiration (AETcorr) in the Thur’s sub-catchments as a 
function of a) elevation, and b) as percentage (%) of precipitation, with An representing the entire Thur catchment. 
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baseflow contribution (Dal Molin et al., 2020; Weatherl et al., 2021). 
The aforementioned available seepage data from the lysimeter located in the Mos sub-catchment (Hirschi et al., 2017; Seneviratne 

et al., 2012) was compared to the gridded R values determined in this study (refer to Supplementary Fig. S8). It was assumed that no 
overland flow forms on the top of the lysimeter and that all the rainfall infiltrates into the lysimeter storage due to the existence of a 
10 cm steel edge surrounding the top of the lysimeter (Ghasemizade et al., 2015). Moreover, the lysimeter is located in the grassland 
setting next to the valley bottom. Thus, a substraction of Qq was seen to be necessary to make a comparision between gridded R values 
and lysimeter seepage. When the quickflow (Qq) values were subtracted from the lysimeter seepage values (Lysimeter-Qq), a strong 
correlation (after Evans, 1996) was found between the lysimeter seepage values and the gridded R values (Pearson correlation = 0.55). 
More importantly, the Lysimeter-Qq values show a stronger 1:1 relation to R values; representative of effective recharge in the Mos 
sub-catchment (Supplementary Fig. S8). Refer to Table S4 of the Supplementary Information for an evaluation of goodness-of-fit 
measurements of lysimeter values vs. gridded R values. 

5.5. Limitations 

Although long-term changes in subsurface storage are possible, assuming that storage change is small relative to the volumes of P, 
AETcorr, and Qq-dis, 100% closure constraint was used for time span (20 years) of this study. No attempt was made in this work to 
describe interpixel transfer of groundwater flow. Rather, the contributing factor of P entering a pixel cell to become the potential 
recharge component R, as expressed by a conservative Qb value at the discharge station, was mapped. Previous studies indicated a 
groundwater residence time of 20 days or more for groundwater sources located at distances > 300 m from the Thur River (Hoehn and 
Scholtis, 2011). Moreover, flowpaths associated to karstic structures cannot be identified with our approach and might bias locally the 
obtained results. However, closer of the water balance for each sub-catchment indicate that this has likely only a smaller impact. 
Although knowledge concerning the lateral connection between pixels could improve the temporal understanding of groundwater 
recharge in the Thur catchment, considering the relatively short residence time in the major valley bottoms, temporal groundwater 
travel-time-knowledge would likely only be applicable over monthly or shorter time periods. Even though the approach used in this 
study disregards the lag-time from groundwater recharge to discharge, in view of the monthly, seasonal, and annual scales considered 
in this study, recharge values after Eq. 6 are believed to represent reliable average estimates in line with findings by the likes of 
Abbaspour et al. (2007) and von Freyberg et al. (2015). Chemical and isotope data can provide further insight into specific recharge 
areas, surface-groundwater interactions, and groundwater ages associated with the Thur catchment (Cirpka et al., 2007; Hoehn and 
Scholtis, 2011; Moeck, 2021; Moeck et al., 2017). 

While it is important to monitor the local effects of groundwater abstraction, considering the volumes abstracted relative to the 
error of P in the Thur catchment ( +/- 20%; refer to Section 3.5), the current groundwater abstraction rates of 0.65% of total input fall 
well below the estimated input error, and were therefore omitted from this study. Furthermore, any groundwater abstracted is utilized 
locally within the Thur catchment, predominantly for the production of potable water and in parts for irrigation and industry. 
Abstracted water used for irrigation would flow directly back into the aquifer (minus the losses incurred via evapotranspiration), while 
the industrial and drinking water portions would flow back to the rivers via the wastewater treatment plants; ultimately contributing to 
the Thur catchment’s baseflow and quickflow (Han et al., 2017). 

Further discrepancies in the water budget may arise from errors or uncertainties in the calculated components (refer to Section 3.5), 
and or inadequate spatial and temporal accounting of these components (Coxon et al., 2015; Healy and Scanlon, 2010; Khan et al., 
2018; Sun et al., 2018). Although the use of satellite image products in conjunction with ground-based discharge data provides evi-
dence of closure of the Thur catchment’s water balance, comparing spatial data over time as binary plots, although a common practice, 
is reductionist in that a single value (e.g. mean pixel value) is meant to represent characteristics of an entire region. This is potentially 
reductionist, especially in catchments with variable terrain. The propagation of data and method error, although not considered in this 
study, leads to further uncertainty. However, good closure of the water budge (refer to Fig. 10), along with good correlations with 
modelled findings (please refer to the Supplementary Figs. S1, S2, S6, and S8), suggests that in spite of these uncertainties, values in 
this study are representative of the Thur catchment’s water balance. 

Terrain complexity, spatial resolution, the distribution and number of measuring stations, along with time series availability and 
measurement frequency can affect the quality and representativity of measurements taken (Coxon et al., 2015; Schiemann et al., 2010; 
Turnipseed and Sauer, 2010). For example, in spite of the MeteoSwiss product being of a high standard and in spite of having a lower 
variance than AETcorr, perturbations of P displayed the greatest component sensitivity (Fig. 9b). Precipitation (P) was the only input 
into the water budget calculation, and therefore small variations or uncertainties in P strongly affect the output water balance 
components, including discharge and recharge. The uncertainty of AETcorr, although smaller, may also be affected by errors which arise 
as a result of terrain complexities as outlined above, in addition to product specifics such as lack of terrain correction, and the use of the 
PM equation (Lu et al., 2019; Zhao and Liu, 2014). Discharge values used in this study represent both high quality as well as high 
temporal resolution data. This is evident in the low variance and small spread of perturbed Qq-dis values (Fig. 9a and b). The con-
servative approach used in this study to determine Qb implies that resulting values from Eq. 6 represent minimum possible R values. In 
spite of the uncertainty in the values, the use of independent data sets (remotely sensed and ground-based), resulted in a good closure 
of the Thur catchment’s long-term water balance (refer to Supplementary Fig. S7 and Table S2). 

Overall, the results of this study are in line with findings by Schädler and Weingartner (2002), highlighting the effect of terrain 
complexity on major contributing components when calculating a water budget. Uncertainties in the MOD16 ET product where within 
range (10–30%) of the reported ET uncertainties and studies have shown that the PM-based MOD16 ET product is suitable for regions 
with spatially heterogeneous land cover, such as those found in the Thur catchment (Cleugh et al., 2007; Mu et al., 2011; Running 
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et al., 2019). However, the PM-based method only applies to active vegetation, which may result in skewed values in regions where 
snow cover is present during the winter months (Mdaghri-Alaoui and Eugster, 2001). Due to errors relating to leaf and cloud shad-
owing effects, Srivastava et al. (2017) recommend a regional-scale standardization of the MOD16 ET product, which was done by 
correcting the MOD16 ET product by a factor of 0.71. Additionally, the spatiotemporal resolution of the MOD16 ET product, although 
suitable for characterizing processes in mesoscale catchments such as the entire Thur catchment, might be too coarse for use in small 
catchments such as the Mos and He sub-catchments (both of which are smaller than 17 km2). This could further explain the uncertainty 
in the AETcorr values, as these were derived from the MOD16 ET product corrected to the lysimeter data collected in the Mos 
sub-catchment. Lastly, it must also be noted that 20 years provide a relatively small window of observation where the Thur’s long-term 
water balance is concerned. 

6. Conclusion 

This study demonstrates that the approach of remote sensing products used in conjunction with ground-based data to estimate 
spatiotemporal groundwater recharge has the potential to be useful both for local and regional water availability assessments, as well 
as long-term water resource planning. The use of remotely sensed data as presented here offers a method of determining a basin’s water 
balance at the mesoscale through the integration and analysis of observed data, reconciled within the water budget equation. 

Gridded water balance components P, AETcorr, and Qq-dis were able to adequately capture the spatiotemporal variability of potential 
groundwater recharge in the Thur catchment over a 20-year period. The pixel-wise linear regression suggests a decline in R from 2000 
to 2019, in particular within the lower reaches of the Thur catchment. However, knowledge of spatiotemporal characteristics remains 
a factor, and full comprehension of the intrinsic heterogeneities and complexities of specific basins may never be entirely possible. 
Temporal data of the water balance components emphasized the limiting effect of P on R, and stressed the importance of hydrological 
wet years preceding hydrological drought years in terms of long-term below average recharge potential. In light of this, the inclusion of 
soil moisture data is recommended in future studies to provide additional insight into spatiotemporal groundwater recharger 
behaviour in the Thur catchment or other (mesoscale) catchments. 

Although reductionist, a remotely sensed water budget calculation may go some way towards a holistic starting point for moni-
toring recharge in mesoscale catchments, especially in poorly monitored or remote catchments where the lack of ground-based ob-
servations could be augmented. For example, although the 500 m x 500 m gridded resolution used in this study was found to be a 
limiting factor when dealing with the Thur’s smaller sub-catchments, freely available MOD16 ET data was corrected locally using long- 
term ground-based lysimeter measurements from a single site within the Thur catchment. By comparing variance with other modelled 
water budged terms it was shown that, although the MOD16 ET product tended to overestimate AET the overestimation was consistent 
and larger uncertainties were associated precipitation values. The use of the MOD16 ET data was shown to be valuable in determining 
AET for the mesoscale Thur catchment, and it is believed that it is applicable to regions with relatively little or no ground-based AET 
measurements, remaining cognisant of potential over or under estimation. 

For many catchments long-term observations are either completely missing or, where monitoring networks do exists, these are 
often falling into disrepair due to a lack of finances and/or upkeep (Montanari et al., 2013; Sivapalan et al., 2003). Spatiotemporal 
groundwater recharge estimates are useful for water resource managers who want to estimate trends in the water balance and track 
these changes over time. Remotely sensed data can be a useful asset in the advancement of hydrological understanding, even where 
gauged basins are concerned. This provides significant advantages when dealing with poorly gauged basins and establishing long-term 
data records for such basins in terms of their water availability (Gleason and Durand, 2020). However, even with additional meth-
odological innovation in the field of RS, this study underscores the current need for continued, and in some places new, ground-based 
monitoring of hydrogeological components, where mesoscale or smaller catchment sizes are concerned. 
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