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Summary (in English) 

Antimicrobial resistance (AMR) is a serious threat to public health as recognized by many 

international and governmental entities. Rivers are important routes through which anthropogenic 

AMR is transmitted to other environments. Various factors could affect the fate of riverine AMR, e.g., 

hydrogeologic processes, various sources/sinks, and weather. In this study, the interplay among 

those factors and their impact on riverine resistome were studied in high wastewater-impacted 

rivers in Switzerland.  

In the first research chapter (CH.2), two high wastewater-impacted rivers were studied under dry-

flow conditions under the following hypothesis: 1) wastewater treatment plants (WWTPs) are the 

main sources of AMR contamination in receiving waters, 2) wastewater-origin AMR could be diluted 

by additional water inputs (i.e., groundwaters and/or tributary inputs), 3) additional sources/sinks 

could affect the fate of wastewater-borne AMR over the downstream river continuum. Our 

observation found that sharp decreases of AMR levels over short ranges (2.0 – 2.5 km) in our study 

sites were due to the dilution by additional water inputs. The impact of additional sources/sinks 

became more apparent over longer downstream distances. Especially, we found rapid increases of 

two indicator genes (i.e., sul1 and intI1) at far downstream locations (5 – 6.8 km) in one of the 

samplings in the River Murg, Münchwilen (MUE). Various lines of evidence revealed that there might 

not be a significant anthropogenic contamination – the increases might originate from in-system 

growths. 

In the second research chapter (CH.3), the impact of stormwater impact on riverine AMR was 

studied in one of the study sites from CH.2 (MUE). The main goals were 1) to identify the impact of 

various stormwater-related sources (i.e., wastewater bypass, effluents, resuspension of river surface 

sediments, catchment soil runoffs) on riverine antibiotic resistance genes (ARGs) and multi-resistance 

risk factors (i.e., multi-resistance bacteria and the genomic determinants), and 2) to identify key 

contributor(s) among the sources. Our results indicated that wastewater bypass was the major 

source of ARGs and multi-resistance risk factors during stormwater events. Furthermore, the levels of 

those factors persisted for a while after stormwater events stopped (i.e., up to 22 hours), probably 

due to the hydraulic transport of upstream inputs. In general, we report that the risk of public 

exposure to ARGs and multi-resistance risk factors increases profoundly during stormwater events. 

In the last research chapter (CH.4), predictive models for AMR contamination under dry-flow 

conditions were developed taking key observations from the previous chapters and related projects 

into account: 1) WWTPs are the major sources of AMR contamination in the river, 2) wastewater-

borne AMR loadings decrease over downstream distance, 3) intrinsic levels of AMR exist in less-
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disturbed waters. The model employing 1) and 3) was finally selected. Using this model, AMR 

loadings, levels, and potential public exposure to aquatic AMR were predicted at wastewater-

receiving waters in the entire river networks. This model provides insight on prioritizing hotspots for 

AMR contamination where governmental interventions are potentially required.  

This thesis provides a comprehensive theoretical and empirical framework that helps to 

understand ‘how the interplay between various factors could affect the riverine AMR’. This thesis 

also provides important insights which could potentially help to come up with future interventions. In 

general, WWTPs were found to be key contamination sources of AMR during both dry weather and 

rainfall. Thus, I propose WWTPs could be important intervention points for halting the dissemination 

of anthropogenic AMR in the environment. The potential ways for future interventions were further 

discussed in CH.5.
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Summary (in German) 

Antibiotikaresistenzen (ABR) sind ernsthafte Bedrohungen für die öffentliche Gesundheit, welche 

von vielen internationalen und staatlichen Stellen anerkannt sind. Flüsse sind wichtige Wege, über 

die anthropogene ABR in andere Ökosysteme übertragen werden können. Der Verbleib von ABR in 

Flüssen kann von verschiedenen Faktoren beeinflusst werden, z.B. hydrogeologische Prozesse, 

verschiedene Quellen/Senken und das Wetter. In dieser Studie wurde das Zusammenspiel dieser 

Faktoren und ihr Einfluss auf flussgebundene ABR in stark abwasserbelasteten Flüssen in der Schweiz 

untersucht.  

Im ersten Forschungskapitel (CH.2) wurden zwei stark abwasserbelastete Flüsse unter 

Trockenbedingungen auf folgende Hypothesen untersucht: 1) Kläranlagen sind die Hauptquellen für 

ABR-Kontaminationen in den Vorflutern, 2) die aus dem Abwasser stammenden ABR könnten durch 

zusätzliche Wassereinträge (Grundwasser und/oder Nebenflüsse) verdünnt werden, 3) zusätzliche 

Quellen/Senken könnten den Verbleib der aus dem Abwasser stammenden ABR flussabwärts 

beeinflussen. Unsere Beobachtung zeigte, dass starke Abnahmen der ABR-Werte über kurze 

Distanzen (2,0 - 2,5 km) in den Untersuchungsgebieten auf die Verdünnung durch zusätzliche 

Wassereinträge zurückzuführen waren. Der Einfluss zusätzlicher Quellen/Senken flussabwärts wurde 

mit zunehmender Entfernung deutlicher. Insbesondere fanden wir einen raschen Anstieg von zwei 

Indikatorgenen (sul1 und intI1) an weit flussabwärts gelegenen Standorten (5 - 6,8 km) in einer der 

Probenahmen in der Murg, Münchwilen (MUE). Basierend auf verschiedenen Anhaltspunkten 

können wir annehmen, dass es sich nicht um eine signifikante anthropogene Verunreinigung 

handelte , sondern dass der Anstieg der Indikatorgene auf systeminternem Bewuchs zurückzuführen 

sein könnte. 

Im zweiten Forschungskapitel (CH.3) wurde der Einfluss von Regenwasserereignisse auf die ABR in 

MUE untersucht, ein Untersuchungsgebiete aus CH.2. Die Hauptziele waren 1) die Identifizierung des 

Einflusses verschiedener Regenwasserquellen (d.h. Abwasser-Bypass, Abwässer, Resuspension von 

Flusssedimenten, Bodenabfluss aus dem Einzugsgebiet) auf Antibiotikaresistenzgene (ARG) und 

Multiresistenz-Risikofaktoren (d.h. multiresistente Bakterien und genomische Determinanten) in 

Flüssen und 2) die Identifizierung der Hauptquellen von ARG während Regenwasserereignissen. 

Unsere Ergebnisse zeigten, dass der Abwasser-Bypass die Hauptquelle für ARG und Multi-Resistenz-

Risikofaktoren bei Regenereignissen war. Darüber hinaus konnten wir zeigen, dass wahrscheinlich 

durch die flussaufwärts eingebrachten Abflüsse die erhöhten ARG-Werte noch eine gewisse Zeit (bis 

zu 22 Stunden) nach den Niederschlägen bestehen blieben . Im Allgemeinen sahen wir, dass das 
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Risiko einer Exposition der Bevölkerung gegenüber ARGs und multiresistenten Risikofaktoren 

während Regenwasserereignissen stark ansteigt. 

Im letzten Forschungskapitel (CH.4) wurden Modelle zur Vorhersage für ABR-Kontaminationen 

unter Trockenwetterbedingungen und unter Berücksichtigung der wichtigsten Beobachtungen aus 

den vorherigen Kapiteln und verwandten Projekten entwickelt: 1) Kläranlagen sind die Hauptquellen 

der ABR-Kontamination im Fluss, 2) abwasserbedingte ABR-Belastungen nehmen über die 

flussabwärts gerichtete Entfernung ab, 3) intrinsische ABR-Mengen existieren in Gewässern, die 

kaum berührt sind. Das Modell, das 1) und 3) verwendet, wurde schließlich ausgewählt. Mit Hilfe 

dieses Modells wurden die ABR-Belastungen, die Gehalte und die potenzielle Exposition der 

Bevölkerung gegenüber aquatischen ABR an abwasserführenden Gewässern im gesamten schweizer 

Flussnetz vorhergesagt. Dieses Modell bietet einen Einblick in die Priorisierung von Hotspots für ABR-

Kontaminationen, an denen möglicherweise staatliche Eingriffe erforderlich sind.  

Diese Arbeit liefert einen umfassenden theoretischen und empirischen Hintergrund, der hilft “wie 

das Zusammenspiel verschiedener Faktoren die ABR in Flüssen beeinflussen kann" zu verstehen. 

Diese Arbeit liefert auch wichtige Erkenntnisse, die möglicherweise helfen können, zukünftige 

Interventionen zu entwickeln. Im Allgemeinen wurde festgestellt, dass Kläranlagen sowohl bei 

Trockenwetter als auch bei starken Regenereignissen die Hauptkontaminationsquelle für ABR sind. 

Daher schlage ich vor, dass Kläranlagen wichtige Interventionspunkte sein könnten, um die 

Verbreitung von anthropogenen ABR in der Umwelt zu stoppen. Die möglichen Wege für zukünftige 

Interventionen wurden in Kapitel 5 weiter diskutiert.
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1.1. Development of Antimicrobial Resistance 

Antibiotics – The Core of Infectious Disease Control in the Modern Era 

Antibiotics, as defined by naturally occurring or man-made molecules that show antagonistic 

effects against bacterial or fungal growths (Nicolaou and Rigol, 2018), have been among the most 

important treatments of human and animal medicine ever since their first discovery. The first 

antibiotic in human history was mycophenolic acid which was isolated from Penicillium glaucum, and 

reported by an Italian scientist, Bartolomeo Gosio, in 1893 (Gosio, 1893;Nicolaou and Rigol, 2018). It 

inhibits the growth of Bacillus anthracis and suppresses the activities of virus, fungi, tumor, and 

psoriasis (Kitchin et al., 1997). Despite its early discovery, it was not commercialized until 1995 when 

US Food and Drug Administration approved it as an immunosuppressant, not an antibiotic(Nicolaou 

and Rigol, 2018). Another well-known early generation antibiotic is penicillin which was isolated from 

P. chrysogenum and discovered by a Scottish scientist, Alexander Fleming, and his colleagues in 1928. 

Ever since its growing use in World War II and then commercialization in 1945, it has saved numerous 

lives (Nicolaou and Rigol, 2018).  

As time passes, more antibiotics have been developed and worldwide consumption has increased 

accordingly. While the degree of increase depends on the region, it is particularly significant in low- 

and middle-income countries (LMICs). Here the use of antibiotics important to public health 

increased by 165 % between 2000 – 2015 compared to the 91 % global increase (Sriram et al., 2021).  

Switzerland is one of the countries actively trying to reduce misuse and overuse of antibiotics. 

Owing to this effort, the domestic consumption of antibiotics for livestock decreased by 52 % from 

2010 – 2019 (Fig. 1.1B). However, the consumption still increased by 13% for human hospital uses 

(i.e., inpatient settings) during the same period, and decreased limitedly (by 4 %) for outpatient 

settings from 2016 – 2019 (Fig. 1.1A). 

 

Figure 1.1. Antibiotic consumptions in Switzerland during 2010 – 2019. (a) Antibiotics for inpatient settings (blue) and 
outpatient settings (orange), (b) Antibiotics licensed for livestock animals (grey). Data source: (FOPH and FSVO, 2020). 
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Emergence and Evolution of Antimicrobial Resistance 

As the number of commercialized antibiotics and their consumption increase, antimicrobial 

resistance (AMR) has emerged. International and governmental entities recognize it as a serious 

threat to public health (WHO, 2020). Considering the astounding abundance and diversity of 

bacteria, some bacteria could intrinsically possess genetic potentials of resistance (Bengtsson-Palme 

et al., 2018). Adaptive evolution could allow those bacteria showing phenotypic resistance to 

increase in abundance within a population. For instance, under antibiotic-mediated selection 

pressure, resistant individuals could have a higher survival and reproduction rate compared to 

sensitive individuals (Melnyk et al., 2015). However, this evolutionary process takes place slowly and 

cannot alone explain the astoundingly rapic emergence and development of the many different 

mechanisms of AMR which has taken place during relatively a short period of antibiotic usage 

history. It is now understood that the majority of AMR mechanisms observed in pathogens today  

developed by the acquisition of new mobilized genes (Boerlin and Reid-Smith, 2008).     

The development of antibiotic resistance genes (ARGs) could be fostered upon their mobilization 

in mobile genetic elements, such as integrons, transposons, and plasmids (Bengtsson-Palme et al., 

2018). Among them, integrons are regarded as key players in ARG dissemination, especially in gram-

negative bacteria (Gillings et al., 2008). The class 1 integron (intI1), which is one of the earliest 

discovered integrons, has been studied well in terms of its ecology and evolutionary history. It 

encodes a protein catalyzing recombination between the integron recombination site (attI) and the 

attC site of gene cassettes (Gillings et al., 2015). As a result, intI1 often contains many gene cassettes 

with ARGs in its downstream array (Fig. 1.2).  

 

Figure 1.2. A schematic diagram summarizing the recombination activity mediated by the integron integrase class 1 protein 
(IntI1). Modified from Gillings et al. (2015). 

intI1 could be associated with both chromosomes and plasmids. Chromosomal intI1 has been 

found in various non-pathogenic and environmental bacteria including Hydrogenophaga, 

Aquabacterium, Acidovorax, Imtechium, Azoarcus, and Thauera genera (Gillings, 2014). While it is not 



Chapter 1 – Introduction 

12 
 

mobile on its own, it can be mobilized be if other mobile elements (e.g., transposons and 

recombinases) were located within its cassette arrays or adjacent to it (Gillings et al., 2008). intI1 can 

also be associated with plasmids; in this case, it could be transmitted to other cells more easily via 

conjugation. For instance, donor cells could transfer the plasmids containing intI1 and other ARGs in 

its gene cassette to recipient susceptible cells. In the case where the plasmids contain ARGs, the 

susceptible cells could become resistant to antibiotics. According to the mobile intI1 evolutionary 

theory argued by Gillings et al. (2008), a Tn402-like transposon captured the chromosomal intI1 

found in environmental betaproteobacteria via site-specific recombination and then transposed it to 

a wide variety of plasmids. While this transposition occurred, various genes conferring resistance to 

various molecules, including antibiotics, were inserted into the cassette array. A quaternary 

ammonium compound resistance gene, qacE, and a sulfonamides resistance gene, sul1, are both 

among the earliest genes that were captured (Gillings et al., 2008). The mobilization of intI1 is 

thought to have only occurred recently with the rise in anthropogenic activities (Gillings et al., 2008). 

Accordingly, intI1 is often found in pathogens, human-related samples, including human and animal 

commensals, and in human-impacted environments, such as wastewater and its receiving waters 

(Gillings, 2014).  

There are other mechanisms through which ARGs could be transmitted to susceptible cells, 

namely transformation and transduction. Transformation is the uptake of exogenous DNA into the 

cell (Soucy et al., 2015). ARGs could also be transmitted to other cells via transduction. This is 

mediated by bacteriophages and bacterial viruses which could incorporate ARG-containing fragments 

of host DNA into their capsid before injecting those fragments into new hosts (Bello-López et al., 

2019;Soucy et al., 2015). After that, those fragments could be recombined into the genomes of the 

new hosts giving them antibiotic resistance (Bello-López et al., 2019). All the mechanisms mentioned 

above are summarized in Fig. 1.3.  

 

Figure 1.3. Conceptualized diagram summarizing mobilization of intI1 and horizontal gene transfer processes. 
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1.2. Dissemination of Antimicrobial Resistance 

The One Health and Global Health Concepts – From Humans to Environments 

While AMR genetic elements can be mobile by themselves via the abovementioned mechanisms, 

the host cells (i.e., antibiotic resistant bacteria (ARB)) are also mobile. For instance, ARB that reside in 

host organisms (i.e., animals or humans) could potentially be transmitted to any organisms or objects 

with which their host interacts. Considering that human or animal commensal bacteria could be 

finally discharged to the environment (e.g., via feces), transmission pathways of ARB are 

interconnected to various parts of the ecosystem. In this sense, the One Health Concept highlights 

the importance of AMR surveillance in multiple sectors encompassing humans, animals, and 

ecosystems (Hernando-Amado et al., 2019). Additionally, given that there are no strict environmental 

borders, animals or environmental components could transmit ARB to other regions. For instance, 

animals carrying resistance determinants (i.e., ARGs and ARB) could migrate to another country, or 

environmental resistance determinants could be transported to connected downstream regions via 

rivers (Hernando-Amado et al., 2019). The modern development of transportation promotes 

intercontinental travel and trade, meaning humans could also transmit resistance determinants on a 

global scale. Regarding this, the Global Health Concept indicates that multi-national efforts are 

important in combating the threat of AMR (Hernando-Amado et al., 2019). The One Health and 

Global Health Concepts are graphically summarized in Fig. 1.4. 

 

Figure 1.4. The concepts of One-Health and Global-Health. Modified from Hernando-Amado et al. (2019).  
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In the light of this issue, international entities such as the World Health Organization (WHO) and 

European Union (EU) have implemented efforts to bring about multi-sectoral and multi-national 

awareness and action. In 2001, WHO published the Global Strategy for Containment of Antimicrobial 

Resistance which detailed actions for surveillance and prevention of AMR in addition to disease 

control (WHO, 2001). In 2012, WHO announced to its member states that multi-disciplinary 

approaches encompassing human and veterinary medicine as well as farming were now required 

(WHO, 2012). Later in 2015, WHO announced more concrete plans which highlighted the need for 

multiple sectors and countries to harmonize tools and standards for combating AMR (WHO, 2020).  

In addition, the EU endorsed a resolution on halting AMR (A Strategy Against the Microbial 

Threat) in 1999 (Gerards, 2011). This has led to the launching of the European Antimicrobial 

Resistance Surveillance Network (EARS-Net), European Surveillance of Antimicrobial Consumption 

Network (ESAC-Net), and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). 

These entities have developed harmonized standards for testing AMR among member countries and 

have monitored AMR regularly in multiple sectors (Bundesrat, 2015). In Switzerland specifically, the 

National Research Program 49 (NRP49) launched in 2001 has ensured that the AMR situation has 

been monitored in humans, animals, and the environment (Bundesrat, 2015). However, the NRP72 

will run from 2017 until 2023 and aims to monitor the development and spread of AMR, develop new 

drugs and new diagnostics, and optimize the use of antibiotics (SNSF, 2019).  

All these efforts highlight that scientific investigations and practices required in various sectors 

(incl. environmental aspects) in light of One Health. Furthermore, AMR is not only a 

countrywide/region-wide problem. It is also a ‘global’ problem from the perspective of Global Health. 

As a result, every country – no matter how much it is seemingly impacted – needs to tackle the issue 

of the development and dissemination of AMR.  

Wastewater Treatment Plants as Major Sources of Anthropogenic Antimicrobial Resistance 

Wastewater treatment plants (WWTPs) are important routes through which anthropogenic ARGs 

and ARB disseminate in the environment. Accordingly, WWTPs are regarded as hotspots of ARGs and 

ARB (Rizzo et al., 2013). Incoming domestic sewages contain a high abundance of resistance 

determinants. For example, it has higher abundances than undisturbed freshwaters by more than 

about 2 orders of magnitude (Czekalski et al., 2012;Rodriguez-Mozaz et al., 2015). Because WWTPs 

were not originally designed to remove ARGs or ARB, these determinants are not completely 

removed during treatment (Rizzo et al., 2013). Many studies report that relative abundances of some 

resistance determinants increase after wastewater treatment processes (Lee et al., 2017;Mao et al., 

2015;Rafraf et al., 2016). A study using metatranscriptomics showed that transcriptomic activities of 
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ARGs were comparatively active in the secondary effluent compared to other treatment steps (Ju et 

al., 2019). As a result, resistance determinants are present in high abundances even after being 

treated in WWTPs. The levels in treated effluent are higher than in undisturbed freshwaters by up to 

approx. 1 order of magnitude (Czekalski et al., 2012;Czekalski et al., 2016b;Rodriguez-Mozaz et al., 

2015).  

WWTPs can also discharge even higher abundances and loadings of resistance determinants 

during stormwater events. During heavy rains, combined sewage (i.e., stormwater runoff plus 

sewage) overflows because WWTPs reach their capacity limits and cannot treat the increased flow 

(Weyrauch et al., 2010). The portion of untreated combined sewage that exceeds the treatment 

capacity is discharged directly to the receiving water, which is called ‘wastewater bypass’ (Toronto, 

2021). Considering that untreated sewage contains higher abundances of contaminants as stated 

above, a profound pollution in the bypass-receiving water is expected during stormwater events. 

Previous studies revealed that the bypass resulted in a heavy pollution of chemical contaminants 

(Launay et al., 2016;Weyrauch et al., 2010) and potentially ARGs in receiving waters (Chaudhary et 

al., 2018;Eramo et al., 2017). On the other hand, other contamination sources such as suspended 

sediments, surface runoff of catchment soils, and urban runoff could also come into play (Baral et al., 

2018;Tsihrintzis and Hamid, 1997). This necessitates a systematic study of various potential AMR 

sources to figure out the main factor(s) which drive(s) AMR pollution in a receiving river, which has 

not been comprehensively studied yet.  

The abovementioned points make it clear that WWTPs could be major sources of ARGs and ARB 

under dry weather and stormwater events.  

Rivers as Important Routes for the Transmission of Antimicrobial Resistance  

Treated wastewater and untreated bypass are largely discharged to rivers. In Switzerland, a total 

of 631 WWTPs serving 83 % of the population are connected to rivers. Considering that 

anthropogenic ARGs and ARB could be transported to far downstream locations along the river 

continuum, the potential roles of rivers in disseminating AMR are significant.  

Any pollutants, once in the river, are transported laterally according to hydraulic processes, 

namely advection, molecular diffusion, and dispersion. Among them, molecular diffusion is typically 

less important in bulk river water movement because it is slower than the other processes (Nevers 

and Boehm, 2010). Dispersion, on the other hand, is the mixing of materials due to non-uniform flow 

and is considered more important than diffusion. Because of dispersion process, molecules are 

transported differently depending on their concentration gradients which can be mathematically 

described as follows: 
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𝐽 = −𝐷 ∙  
𝑑𝐶

𝑑𝑥
 

Where, 𝐽 is the dispersive flux, 𝐷 indicates the coefficient of dispersion, and 𝑑𝐶/ 𝑑𝑥 denotes the 

concentration gradient (along the direction 𝑥) of a pollutant. 

Dispersion could occur in both longitudinal (i.e., in the flow direction) and cross-sectional 

directions, mixing contaminants in all directions. Under the steady-state assumption (i.e., continuous 

discharges of effluents from WWTPs), longitudinal dispersion does not have to be considered (Fischer 

et al., 1979). However, cross-sectional mixing could be important in both steady-state and non-

steady state conditions. This indicates that a certain downstream distance is required for discharged 

contaminants to become fully mixed (cross-sectionally). It should thus be considered when sampling 

surface waters so that representativeness could be guaranteed at each cross-section.  

Alternatively, advection is a volumetric transport of materials according to flow velocity. It can be 

parameterized as: 

𝐴 = 𝑣 ∙ 𝐶 

Where, 𝐴 is the advective flux, 𝑣 indicates the river flow velocity, and 𝐶 denotes the 

concentration of a pollutant. 

For biologically or chemically reactive contaminants, additional source and sink (or decay) 

mechanisms are considered. For example, predation, (lower) ambient temperature, sunlight, etc. are 

considered as sinks and resuspended sediments, intrinsic growths, etc. are regarded as sources for 

biological contaminants (Nevers and Boehm, 2010).  

There have been some studies that investigated the fate of wastewater-borne resistance 

determinants in rivers. The levels of resistance determinants along the waterway were monitored for 

instance, in rivers in Beijing, China (Xu et al., 2016), Brussels, Belgium (Proia et al., 2018), and in the 

Netherlands (Sabri et al., 2018). Those studies reported that the levels of resistance determinants 

increased after receiving WWTP effluents, but differed on whether they decreased or increased 

along the downstream waterway. This might be because the various factors mentioned above 

collectively drive the downstream fate of wastewater-borne resistance determinants. To draw a 

more comprehensive interpretation, a systematic study involving multiple disciplines is required.   
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1.3. Methodologies to Analyze Environmental Antibiotic Resistance Genes and Bacteria 

Culture Independent Method: Quantitative PCR 

One of the ways to detect ARGs is to use quantitative polymerase chain reaction (qPCR). The 

principle of qPCR is based on the quantitative relationship between the number of PCR cycle when 

the amplified products start to be detected above the background signal (Cp) and the concentration 

of the target gene in the sample (Dharmaraj, 2021). As it is, the higher the concentration in the 

sample, the lower the Cp value. To obtain an accurate detection of the amount of amplified product, 

fluorescence dyes, such as SYBR Green or TaqMan, are used. SYBR Green dye nonspecifically binds to 

double-stranded DNA (dsDNA). As the amplified dsDNA increases, the fluorescence emitted by SYBR 

Green also increases (Dharmaraj, 2021). TaqMan works differently. This is a hydrolysis probe which 

consists of target specific short sequences with a fluorophore and quencher attached at each end 

(Dharmaraj, 2021). This probe is specifically annealed to the target sequence of DNA template, and 

emits fluorescence when Taq polymerase meets its 5’-end while extending primers (Dharmaraj, 

2021). Thus fluorescence increases as the number of amplified products increases. Therefore, it is 

possible to quantify abundances of target genes in a sample by constructing a standard curve of the 

serially diluted target sequences having known concentrations. qPCR is known as one of the most 

accurate techniques for quantifying target genes. It was thus relied on to precisely quantify genes of 

interest in this study. 

Culture Independent Method: Metagenomics 

Metagenomics is a study of ‘unknown’ organisms in the sample using genetic materials directly 

recovered from them (Ju and Zhang, 2015). Unlike amplicon sequencings in which sequence variants 

from ‘amplified target genes’ are analyzed, metagenomics is based on the shotgun sequencing of 

genetic materials directly originated from environmental samples (Ju and Zhang, 2015). In this way, 

more ‘unbiased’ information can be recovered from the samples, enabling us to take a solid 

‘snapshot’ of environmental microorganisms.  

Two ways of identifying ARG profiles (i.e., resistome) using metagenomics were employed in this 

study: de-novo assembly-based annotation and short read-based annotation approaches. The former 

requires the assembly of raw reads using a de Bruijn graph. Several well-established assembly 

pipelines are available such as Megahit (Li et al., 2015), IDBA-UD (Peng et al., 2012), and metaSPAdes 

(Nurk et al., 2017). Longer assembled sequences (contigs) are produced after assembly, and gene-like 

sequences (open reading frame (ORF)) are predicted afterwards (Ju and Zhang, 2015). Finally, ARGs 

are annotated to each ORF against several published ARG databases, such as SARG (Yin et al., 2018) 

and CARD (Alcock et al., 2020). de-novo assembly approach potentially has the following benefits: 1) 
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Co-location of ARGs could be identified using contig-based analysis, and 2) It is easier to assign 

taxonomy information to the assembled contigs because chances are higher for those longer 

fragments to contain taxonomically conserved-sequences (e.g., housekeeping genes). However, 

assembly efficiency could be low for some samples, meaning the identified gene profiles could not 

properly represent the original profiles (Myrold et al., 2014). On the other hand, short-read based 

annotation does not require assembly process and annotates ARGs directly to short reads. This 

allows a more representative picture of gene profiles to be obtained. As cons, the association among 

ARGs cannot be identified and the possibility of taxonomy assignments can be lower because short 

reads contain less information. Several well-established pipelines are available, including ARGs-OAP 

(Yin et al., 2018) and DeepARG-SS (Arango-Argoty et al., 2018). The overview of two approaches is 

summarized below in Fig. 1.5. 

 

Figure 1.5. The overview of metagenomics using short-read bases annotation and de-novo assembly based annotation 
approaches.  

Culture Dependent Method: Heterotrophic Plate Counts  

Heterotrophic plate counts were also performed in this study to analyze ARB. Even though this 

method has disadvantages over culture independent methods (e.g., only about 0.01% of waterborne 

bacteria are culturable and it can take a long time to cultivate), it is still useful for phenotypically 

active groups since it allows potentially risky groups to be quantitatively identified (Bartram et al., 

2003). This method is also relatively simple to perform and economical (Bartram et al., 2003) and 

thus a candidate for use in future routine monitoring efforts. 

Clarithromycin and tetracycline multi-resistant bacteria as well as sulfamethoxazole, 

trimethoprim, and tetracycline multi-resistant bacteria were previously reported to be good 

indicators of wastewaters (Czekalski et al., 2012). Therefore, they were analyzed in this study.  
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Specifically, water samples were filtered through 0.2 µm pore size filters. Those filters were then 

cultivated on R2A medium where antibiotics were added. After 72 hours at 25 °C, the colony forming 

units were enumerated.  
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1.4. Research Objectives and Hypothesis 

In this thesis, the fate of anthropogenic AMR inputs was comprehensively studied in Swiss rivers. 

Among various anthropogenic sources, WWTPs are regarded as hotspots of AMR. While WWTP-

related inputs might be the main sources of AMR, other factors (i.e., dilution by additional water 

inflows, sources, sinks, and weather) could also play roles in governing the fate of AMR along the 

river continuum. Therefore, key influential factor(s) of riverine resistome were identified and 

discussed in the following three research chapters: 

Objective 1. (CH. 2) The Downstream Fate of Wastewater-borne Resistance Determinants  

In this chapter, riverine resistance determinants (ARGs and ARB) were monitored in two of the 

most wastewater-impacted rivers in Switzerland under dry-flow conditions. 

The main goal in this chapter is:  

i) To unravel key driver(s) for governing the downstream fate of wastewater-borne ARGs and ARB. 

Under the dry-flow condition, it was hypothesized that dilution by additional water inflows might 

play a significant role in governing the short-distance fate of wastewater-borne resistance 

determinants. On the other hand, additional source/sink mechanisms might play more important 

roles in governing the fate of resistance determinants in longer downstream distance, meaning 

additional resistance determinants could diffuse into the system from a large catchment area.  

Objective 2. (CH. 3) Impact of Stormwater Events on the Riverine Resistome 

To assess the effect of weather (i.e., stormwater events), the riverine resistome was monitored 

during stormwater events in a high wastewater-impacted river in Switzerland.  

Two specific purposes of this chapter are:  

i) To identify the impact of stormwater-related disturbances (i.e., wastewater bypass, effluent, 

resuspension of river surface sediments, catchment soil runoff) on the riverine resistome. 

ii) To figure out the key source(s) of ARGs in the wastewater-receiving river among stormwater-

related disturbances.  

It was hypothesized that abundances and/or diversity of ARGs might be different by source. Thus, 

it was expected that the main driver(s) could be distinguished by comparing different compartments 

(i.e., stormwater-disturbed waters and different sources) in terms of various parameters, such as 

micro- and molecular-biological and ecological signatures.  

Objective 3. (CH. 4) Model-based Prediction of AMR Contamination in Swiss Rivers 
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In this chapter, the key observations from the previous chapters were parameterized (if possible), 

and expanded to the entire Swiss river networks using Graph Theory (network analysis). Two well-

known anthropogenic AMR indicators, i.e., sul1 and intI1 were used as indicators. 

The main purpose is: 

i) To predict hotspots of AMR contamination and potentials of public exposure to aquatic AMR in 

Swiss river networks. 

The main underlying hypothesis is ‘WWTPs are the main sources of AMR in rivers’. Additional 

hypothesis mainly on (but not limited to) the downstream fate of WWTP-borne AMR were developed 

upon finalization of the previous two chapters (CH.2 and CH.3) and will thus be further discussed in 

CH.4.  

Contributions to Related Works 

Even though the following works will not be discussed in detail in this thesis, I also contributed to 

these works in the context of my PhD project: 

i) Ju F, Lee J, et al., Phenotypic metagenomics unravels cross-microbiota clinically relevant ESBL 

and Carbapenemase producers and wastewater-promoted selection in rivers, In Preparation. 

ii) Erb S, 2019, Frequency of multidrug resistance in ESBL isolates from water samples, Zurich 

University of Applied Science (ZHAW), A Semester Project. 

iii) Erb S, 2020,  Antibiotic resistance in high and low nucleic acid content bacteria, Zurich 

University of Applied Science (ZHAW), A Bachelor’s Thesis. 
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Abstract 

River networks are one of the main routes by which the public could be exposed to environmental 

sources of antibiotic resistance, that may be introduced e.g. via treated wastewater. In this study, we 

applied a comprehensive integrated analysis encompassing mass-flow concepts, chemistry, bacterial 

plate counts, resistance gene quantification and shotgun metagenomics to track the fate of the 

resistome (collective antibiotic resistance genes (ARGs) in a microbial community) of treated 

wastewater in two Swiss rivers at the kilometer scale. The levels of certain ARGs and the class 1 

integron integrase gene (intI1) commonly associated with anthropogenic sources of ARGs decreased 

quickly over short distances (2-2.5 km) downstream of wastewater discharge points. Mass-flow 

analysis based on conservative tracers suggested this decrease was attributable mainly to dilution 

but ARG loadings frequently also decreased (e.g., 55.0-98.5 % for ermB and tetW) over the longest 

studied distances (6.8 and 13.7 km downstream). Metagenomic analysis confirmed that ARG of 

wastewater-origin did not persist in rivers after 5 ~ 6.8 km downstream distance. sul1 and intI1 levels 

and loadings were more variable and even increased sharply at 5 ~ 6.8 km downstream distance on 

one occasion. While input from agriculture and in-situ positive selection pressure for organisms 

carrying ARGs cannot be excluded, in-system growth of biomass is a more probable explanation. The 

potential for direct human exposure to the resistome of wastewater-origin thus appeared to typically 

abate rapidly in the studied rivers. However, the riverine aquatic resistome was also dynamic, as 

evidenced by the increase of certain gene markers downstream, without obvious sources of 

anthropogenic contamination. This study provides new insight into drivers of riverine resistomes and 

pinpoints key monitoring targets indicative of where human sources and exposures are likely to be 

most acute. 
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2.1. Introduction 

Antibiotic resistance is increasingly recognized by international and governmental entities as a 

growing global public health threat. According to a 2014 report by the Wellcome Trust and the British 

government, more than 50,000 cases of antibiotic resistant infections occur annually in Europe and 

the United States and many hundreds of thousands of people die due to infections with resistant 

bacteria in other regions of the globe (O’Neill, 2014). In the EU and European Economic Area, the 

annual attributable deaths by infection with antibiotic resistant pathogens have increased 

significantly between 2007 and 2015, for instance, from 11,000 to 27,000 (Cassini et al., 2019). 

Aquatic environments play a potentially important role as routes of dissemination of resistance; 

environmental niches at the landscape scale are connected to uses including drinking water supply, 

irrigation, and recreation. Research in this area has greatly intensified over the last decade 

(Bürgmann et al., 2018;Rizzo et al., 2013;Zhang et al., 2009) and an increasing number of studies 

have investigated anthropogenic impacts on receiving rivers. Among the earliest investigations were 

the studies on the Poudre River in Colorado, United States, which proposed quantitative polymerase 

chain reaction (qPCR)-based quantification of various antibiotic resistance genes (ARGs), along with 

phylogenetic analysis (e.g., tetW), as a framework for tracking anthropogenic inputs. Anthropogenic 

input of ARGs to the receiving river was well-apparent using this approach (Storteboom et al., 2010). 

More recently, the advent of shotgun metagenomic sequencing has greatly advanced the resolution 

in the ability to characterize large-scale impacts of anthropogenic ARG inputs, as was observed in the 

Han river catchment in Korea (Lee et al., 2020). The authors noted a strong association of fecal 

contamination as evidence of anthropogenic activities shaping the composition of the downstream 

antibiotic resistome (collective ARGs in a microbial community). In Switzerland, a study on rivers and 

lakes identified the occurrence of extended spectrum β lactamase- and carbapenemase-producing 

Enterobacteriaceae, which presumably originated from anthropogenic activities (Zurfluh et al., 2013). 

Another recent study revealed that stream microbiota are significantly altered by the input of treated 

wastewater in natural streams (Mansfeldt et al., 2020). 

ARGs and resistant bacteria (ARB) can persist or proliferate in environmental systems by various 

mechanisms. Horizontal gene transfer may occur, potentially resulting in new combinations of ARGs 

or the transfer of resistance to environmentally-adapted bacteria that could in turn change the role 

of the environment as reservoirs of resistance for clinically-relevant bacteria. Furthermore, the 

possibility of resistance selection under sub-inhibitory concentrations of antibiotics has been 

reported (Andersson and Hughes, 2012). Recently, first attempts have been made to estimate 

predicted no effect concentrations (PNECs) for resistance selection in environmental settings 
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(Bengtsson-Palme and Larsson, 2016). However, current PNECs are an estimate extrapolated from 

data on isolated bacteria, and could vary substantially under in-situ environmental conditions and 

with environmental bacteria. 

The above examples make clear that treated wastewater discharges have a significant impact on 

the abundance and types of ARB and ARGs in receiving rivers. Thus, it is crucial that we gain a better 

understanding of the downstream fate of the anthropogenic antibiotic resistome in receiving rivers. 

In this sense, few previous studies have attempted to investigate the downstream behavior of 

various indicators of resistance (e.g., ARBs, ARGs, mobile genetic elements commonly associated 

with ARGs), and no clear picture of such behavior has as yet emerged. For instance, a study 

performed in two wastewater treatment plants (WWTPs) and their receiving river in China reported 

that the levels of wastewater-origin ARGs (tetC, sul1) and the class 1 integron integrase gene (intI1), 

decreased significantly 1.2 ~ 2.5 km downstream of the wastewater discharge point (Li et al., 2016). 

On the other hand, a study performed in a Dutch stream showed that the downstream levels of sul1, 

sul2, ermB, tetW, and intI1 persisted, or even increased for certain genes over a 20 km downstream 

distance (Sabri et al., 2018). Mass-flow analyses of ARB and ARG are missing. These contradictory 

results regarding the downstream behavior of resistance determinants could be in principle 

attributable to various factors – different geo-hydrological conditions, potential inputs from non-

point (e.g. agricultural) sources, and the possible existence of biological drivers (i.e., horizontal 

and/or vertical gene transfer). An improved understanding of the fate of the wastewater-origin 

antibiotic resistomes and underlying causes would therefore require an integrated approach across 

multiple disciplines. 

The purpose of this study was to track wastewater-origin antibiotic resistomes and identify the 

key mechanisms governing their fate in two of the most substantially wastewater-impacted rivers in 

Switzerland. It was hypothesized, that short-distance (up to 1~2 km from wastewater discharge 

point) behavior of wastewater-origin resistance determinant concentrations would be governed 

mostly by hydrological effects such as mixing and dilution. Thus, we used conservative chemical 

tracers to determine dilution effects and further investigated the contribution of dilution on 

downstream dynamics of resistance determinants. On the other hand, it was expected that over 

longer distances (more than 1~2 km; up to 13.7 km to the next downstream WWTP) fate of ARGs and 

ARB would depend also on additional source/sink mechanisms, such as from biological processes 

(e.g., death or growth of wastewater-origin ARB, in-situ resistance (co)selection by antibiotics or 

metals, and horizontal and/or vertical gene transfer), and/or non-point sources (e.g., agricultural 

runoff) which are expected to diffuse into the system continuously from a large catchment area. 

Therefore, the potential effects of biological drivers over long downstream distances were 
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investigated after accounting for hydrological effects. To provide a comprehensive assessment of 

indicators of antibiotic resistance in the environment, we combined various approaches: cultivation 

of heterotrophic bacteria on media containing antibiotics, quantification of key indicators of 

anthropogenic sources of antibiotic resistance by qPCR, and broad profiling of the resistome in 

selected samples using shotgun metagenomic sequencing. Our study contributes to a systematic, 

interdisciplinary understanding of the mechanisms driving the fate of the wastewater antibiotic 

resistome in anthropogenically-impacted rivers. 

2.2. Materials and Methods 

2.2.1. Site description and field work 

A list of WWTP effluent-receiving Swiss rivers without known upstream point-source inputs (e.g., 

other WWTPs) was obtained from a database provided by Eawag, the Swiss Federal Institute of 

Aquatic Science and Technology (retrieved 2018) (Eawag, 2014). Two sites were selected according 

to the following criteria: 1) Greatest proportion of effluent discharge to river discharge, 2) Least 

number of side streams (for minimum dilution effect from side streams), and 3) Longest distance 

until the receiving river reaches another downstream WWTP. The selected sites were the river Suze 

in Villeret (VIL) in canton Bern, and the river Murg in Münchwilen (MUE) in canton Thurgau (maps 

with all sampling points, see supplementary Fig. S2.1 and S2.2). At the sampled sections, both are 

shallow (generally <30 cm depth under low flow conditions, maximum depth 1 m) rivers of Strahler 

order number 3 and 6, and a mean annual runoff of 2.03 and 1.61 m3/s, respectively. The river beds 

are mostly gravel. To avoid elevated flow conditions we sampled only under dry weather conditions 

at the time of sampling and during at least the previous 36 hours. 

At VIL, we studied a 23.7 km stretch of the Suze that we sampled from 10 km upstream (US5) of 

the effluent (EF) discharge point of WWTP Villeret and at 8 downstream sites located from 0.5 km 

(D1) to 13.7 km flow distance downstream (D8) before the Suze reaches the discharge point of 

another WWTP. Four sampling campaigns were performed in 2018 on July 09 (VI L1), July 19 (VIL2), 

July 30 (VIL3), and November 05 (VIL4). Different combinations of locations were sampled in each 

sampling campaign as described in detail in the SI (pp. 45-46). Daily discharge measures from two 

gauging stations, one near US, and the other near D8 were obtained and are given in Dataset S1. 

At MUE, we studied a 7.0 km stretch of the Murg that we sampled from 0.2 km upstream (US) of 

WWTP Münchwilen and at 8 downstream sites located from 0.5 (D1) to 6.8 km flow distance 

downstream (D8 before the Murg reaches the discharge point of another WWTP. Three sampling 

campaigns were performed in 2018 on July 26 (MUE1), August 03 (MUE2), and August 06 (MUE3). 

Discharge data was obtained from a gauging station near D4 (Dataset S1). 
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Samplings were performed according to other projects performed in Swiss rivers and WWTPs (Ju 

et al., 2019;Mansfeldt et al., 2020). At each river sampling location grab samples (5L in sterilized 

water containers) were obtained by combining water from just below the surface at three points 

along a river transect: in the middle and roughly equidistant from the banks to each side of the 

middle point. EF samples were obtained from the final effluent of the WWTPs prior to discharge. 

Temperature (°C), conductivity (μS/cm), pH, and dissolved oxygen (DO, mg/L), were measured on site 

in an aliquot of the sample using a portable multi-parameter probe (Multi 3630 IDS, WTW, Germany) 

at the time of sampling. To make sure EF was fully mixed with receiving water at D1, the conductivity 

values across the cross-section were measured, and no significant deviation was observed (< 0.5%). 

All samples were cooled at 4°C in the dark while transported to our laboratory on the same day. 

Samples were processed on the same and next day within 36 hours. For organic micropollutant 

analysis, water samples were obtained separately, and stored in pre-combusted glass bottles on site, 

cooled at 4°C during transportation, and frozen at -20°C in the dark upon arrival at the laboratory 

until analyzed. Sediment samples were obtained from 5 select locations (US, D1, D2, D5, and D8) for 

select campaigns (VIL1~3 and MUE1~3), and frozen at -20°C upon arrival at our laboratory. 

To better constrain flow velocities in the rivers, salt tracer experiment using NaCl and flow-

velocity measurement were performed in separate sampling campaigns in August 2019 (August 23, 

2019 for VIL, and August 27, 2019 for MUE) under comparable flow conditions. The results were 

summarized in Dataset S4 (e.g., flow-velocity and hydraulic residence time). 

Further details on sites, field sampling procedures and hydrological experiments are given in the 

Method section of the SI (pp. 46-47). The exact sampling locations (GPS-coordinates) are given in 

Table S2.1. 

2.2.2. Heterotrophic plate count of antibiotic resistant bacteria (ARB) 

Levels (colony forming units (CFUs) per mL) of ARB cultivable on R2A agar plates were determined 

in the presence of two combinations of antibiotics: 1) clarithromycin (4.0 mg/L) and tetracycline 

(16.0 mg/L) (CLR/TET), and 2) sulfamethoxazole (76.0 mg/L), trimethoprim (4.0 mg/L), and 

tetracycline (16.0 mg/L) (SMX/TMP/TET) referring to the resistance breakpoints for 

Enterobacteriaceae suggested by Clinical and Laboratory Standards Institute (Cockerill et al., 2013) 

and also one of our previous publications (Czekalski et al., 2012). The detailed protocol is available in 

the SI (pp. 47). 

2.2.3. DNA extraction and quantitative PCR 

Two aliquots of each water sample were filtered through two 0.2 µm pore size membrane filters, 

using 0.5 L for EF and 1.0 L for river water samples. Replicate filters were then processed separately. 
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DNA was extracted from the filters using DNeasy PowerWater Kit (Qiagen, Germany) following the 

manufacturer's instructions. For sediment samples, DNA was extracted from about 20 g of wet 

sediment using the DNeasy PowerMax Soil Kit (Qiagen, Germany). Extraction blanks confirmed 

absence of DNA contamination (see SI, p.8). The concentration and qualities of extracted DNA were 

measured using a NanoDrop One spectrophotometer (Thermo Fisher Scientific, USA) (Dataset S2). 

Presence and abundance of key indicator genes for anthropogenic ARG inputs (sul1, tetW, ermB, 

blaCTX and integron integrase class 1 gene intI1) (Berendonk et al., 2015;Gillings et al., 2015;Ju et al., 

2019), were determined by qPCR as described previously (Czekalski et al., 2012;Czekalski et al., 

2014). The detailed qPCR protocols are reported in the SI. Absence of contamination from filtration 

and extraction procedures was confirmed using an experimental control by qPCR analysis as shown 

in the SI. 

2.2.4. Metagenome and 16S rRNA gene amplicon sequencing analysis 

Shotgun metagenomics and 16S rRNA gene amplicon sequencing analysis were performed using 

Illumina platforms for samples from three selected sampling campaigns. Samples were selected for 

sequencing according to the following rationale: For VIL the samples were selected only from 

campaign VIL1 (i.e., 6 samples: US, EF, D1, D2, D5, D8) as the samples from other campaigns (VIL2-3) 

showed similar patterns of resistance determinant profiles downstream. For MUE, 6 samples from 

MUE2 and MUE3 campaigns (i.e., US, EF, D1, D3, D5, D8 from each sampling) were selected as the far 

downstream behaviors of certain ARG (e.g., sul1) and intI1 were significantly different from each 

other in those campaigns. DNA extracts from replicated filters were pooled. All library construction 

and sequencing was performed by Novogene (Hong Kong). 

A detailed description of the bioinformatics workflow is given in the SI. Briefly, metagenomic data 

were analyzed as follows: 1) After quality controls of metagenome reads, de-novo assembly was 

performed using MEGAHIT v1.1.3 (Li et al., 2015), 2). Open reading frames (ORFs) were predicted 

from the assembled contigs using Prodigal v2.6.3 (Hyatt et al., 2010), and annotated to ARGs using 

the Structured Antibiotic Resistance Genes (SARG) v2.0 database (Yin et al., 2018), 3). After read 

mapping to contigs and ORFs using Bowtie2 (Langmead and Salzberg, 2012) and Samtools (Li et al., 

2009), the coverage information for contigs and ORFs was calculated according to (Albertsen et al., 

2013). 4) Using the coverage information, abundance metrics were calculated as described in Table 

S2. 5) Further downstream analyses were performed, such as contig-based taxonomy assignment 

using Kaiju v1.7.2 (Menzel et al., 2016), Kraken2 (Wood et al., 2019) and BLASTN, and detailed 

annotation and visualization of ARG-containing contigs. 
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To analyze 16S rRNA gene amplicon sequencing data, we used the DADA2 pipeline (Callahan et 

al., 2016), and followed the work-flow suggested by the developers. The detailed protocol is 

described in the SI. 

2.2.5. Chemical analysis 

Metals, ions (i.e., dissolved cations and anions), nutrients, and dissolved organic carbon were 

measured as described in Ju et al. (2019) using high-resolution inductively coupled plasma mass 

spectrometry, ion chromatography, flow-injection analysis, and total organic carbon analyzer, 

respectively, as described in the SI. Dissolved micropollutants (i.e., pharmaceuticals, antibiotics) were 

measured as described in Ju et al. (2019) using liquid chromatography triple quad mass spectrometry 

with electrospray ionization in the SI. Total dried solid (TS) were measured in sediment samples 

according to standard methods (APHA-AWWA-WPCF., 1981). 

2.2.6. Estimating the dilution effect on downstream levels of resistance determinants  

Under continuous discharge and after complete horizontal and vertical mixing, the discharged 

load of a conservative tracer (e.g., sodium) entering the river through EF is expected to be conserved 

along the river continuum. Under this assumption, any change in the concentration of the 

conservative tracer would be due to dilution effects by additional water inflows (i.e., groundwater 

and/or tributary inputs) and additional inputs of the tracer with these inflows. We used sodium and 

two micropollutants as conservative tracers (i.e., 4/5-methylbenzotriazole, carbamazepine) because 

these substances had high concentrations in EF compared to the US river and are known to not 

substantially degrade or adsorb in the river system. The rationale for selecting the conservative 

tracers is described in more detail in the SI.  

Starting with these mass conservation assumptions, under steady state conditions, the dilution 

parameter (DP, the ratio between external water inflow and streamflow at the downstream section 

between any two points A and B along a river stretch) can be estimated from a ratio of tracer 

concentrations according to Eq.1: 

𝑫𝑷𝑨→𝑩 = (𝑪𝑩 − 𝑪𝑨)/( �̅� −  𝑪𝑨)  (Eq.1), 

where A indicates an upstream location; B denotes a downstream location; C indicates the 

concentration of a tracer;  C̅ denotes the average concentration of the tracer in the external inflow 

between A and B. 
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The derivation of Eq.1 is schematized in Fig. 2.1, and also described in detail in the SI. 

 

Figure 2.1.  Derivation of dilution parameter (DP) from an upstream point A to the downstream point B using 
the concentration of a pollute as a marker under the mass-flow assumption. 

Concentrations 𝐶𝐴 or 𝐶𝐵 were measured directly for all compounds, C̅ was estimated according to 

the following equation (Eq.2) for sodium (the values shown in Dataset S9.3) and assumed to be 0 for 

4/5-methylbenzotriazole and carbamazepine. In short, the difference in sodium loadings (mass per 

time) between the point of EF discharged and the downstream point where gauging stations were 

located (D8 for VIL; D4 for MUE) was divided by the quantity of additional water inflows:   

𝑵𝒂̅̅ ̅̅
𝒊𝒏 ≈

𝑵𝒂𝑫𝟖 𝒐𝒓 𝑫𝟒 × 𝑸𝑫𝟖 𝒐𝒓 𝑫𝟒 − (𝑵𝒂𝑼𝑺 × 𝑸𝑼𝑺 + 𝑵𝒂𝑬𝑭 × 𝑸𝑬𝑭)

𝑸𝑫𝟖 𝒐𝒓 𝑫𝟒 − (𝑸𝑼𝑺 + 𝑸𝑬𝑭)
      (𝐄𝐪. 𝟐) 

Where,  𝑁𝑎𝐷8 𝑜𝑟 𝐷4 denotes the sodium concentration measured at D8 or D4; 𝑄𝑈𝑆,𝐸𝐹,𝐷8 𝑜𝑟 𝐷4 

indicates the river flow quantity or wastewater effluent discharge (volume per time) at US, EF, D8 or 

D4. 

The value DP should be the same for all conservative tracers. To test our hypothesis that “the 

short distance dynamics of resistance determinants is largely governed by dilution effects”, we 

calculated DP over short distance (i.e., DPD1D2 for VIL, and DPD1D3 for MUE), and compared DP 

values over the same distance for resistance determinants (sul1, intI1, ermB, tetW, and CLR/TET 

resistant bacteria) with values for the conservative tracers. Higher DP values for resistance 

determinants would indicate a lower than expected concentration in the downstream and thus 

removal. 
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The expected downstream concentrations of resistance determinants considering dilution as a 

main driver can be calculated using the DPAB of conservative tracers according to the following 

relationship: 

𝑪𝒓𝒆𝒔𝒊𝒔𝒕−𝑩 =  𝑪𝒓𝒆𝒔𝒊𝒔𝒕−𝑨 − 𝑪𝒓𝒆𝒔𝒊𝒔𝒕−𝑨 × 𝑫𝑷𝑨→𝑩 (𝒇𝒐𝒓 𝑿) (Eq.3), 

where 𝐶𝑟𝑒𝑠𝑖𝑠𝑡−𝐴 indicates the concentration of a resistance determinant at an upstream location 

A; 𝐶𝑟𝑒𝑠𝑖𝑠𝑡−𝐵 denotes the concentration of a resistance determinant at a downstream location B; 

𝐷𝑃𝐴→𝐵(𝑓𝑜𝑟 𝑋) indicates the DP of a conservative tracer (X) between A and B 

Eq.3 assumes that resistance determinants behave conservatively over the studied distances and 

that there are no significant inputs of resistance determinants from the diluting water inflows (i.e., 𝐶̅ 

for resistance determinants  0 in Eq.1). Therefore, deviations from measured to predicted values 

can indicate violation of these assumptions. We calculated the predicted concentration by dilution 

effects for each resistance determinant under these assumptions for all downstream sections of the 

rivers. 

2.2.7. Estimating the river discharge over downstream distance  

The river discharge (Q) at was estimated for several downstream locations where there were not 

gauging stations. The estimated Q values were used when calculating loadings of chemical and 

resistance indicators over downstream distance. The 𝑄𝐸𝐹 values were obtained from each WWTP, 

and 𝑄𝑈𝑆 values were either obtained from gauging station (for VIL), or calculated as shown in Eq.8 in 

the SI (for MUE). 

𝑸𝑫𝟏 = 𝑸𝑼𝑺 + 𝑸𝑬𝑭,  

If n > 2, 𝑸𝑫(𝒏) = 𝑸𝑫(𝒏−𝟏) + 𝑸𝑫(𝒏−𝟏) ×
𝑫𝑷𝑫(𝒏−𝟏)→𝒏

𝟏−𝑫𝑷𝑫(𝒏−𝟏)→𝒏
 (Eq.4) 

Where, 𝑄𝐷(𝑛) indicates the river discharge (Q) at the downstream location D(n) (2 ≤ n ≤ 8); 

𝐷𝑃𝐷(𝑛−1)→𝑛 denotes the dilution parameter between D(n-1) and D(n).  

2.3. Results and Discussion 

2.3.1. Upstream water quality and WWTP effluent 

In agreement with the criteria for site selection, the levels of intI1 and target ARGs upstream of 

the WWTP were generally low, except for the MUE2 campaign where we observed elevated 

upstream levels of ermB, and intl1 (Fig. 2.2; Fig. S2.4 and S2.5 in the SI). Chemical water quality 

likewise did not suggest significant pollution inputs from either tributaries or upstream locations for 

either VIL or MUE as most micropollutants were below the limit of quantification (Dataset S10~11). 
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Certain micropollutants (e.g., 4/5-methylbenzotriazole, benzotriazole, and diclofenac) were 

sporadically detected in very low quantities. For cultivable multi-resistant bacteria (Fig. 2.3), 

especially CLR/TET resistance, relatively high upstream values were observed in VIL2 and MUE2 US 

samples. These findings indicate that while there is no indication of significant upstream pollution, 

some pollution, probably from periodical urban or agricultural activities, may affect the river. There 

was a settlement upstream of the WWTP and livestock farming activities (i.e., pastures and meadows 

for livestock) in the catchments, including the upstream sections, in both sites (BAFU, 2013). While 

we assume surface runoff from the agricultural sites to be minimal as our samplings were performed 

under dry-weather conditions, it cannot be ruled out that some inputs from agricultural activity 

occasionally affected the river. Further investigations into the nature of these transient microbial 

contaminations were not carried out in this project, but future work could employ microbial source 

tracking or microbial fingerprinting approaches to determine their sources. 

The effluent from both WWTPs contained considerable levels of pollutants. For instance, effluent 

concentrations were higher than the upstream levels by approximately 1 order of magnitude for 

sodium, 1~2 order of magnitude for ARGs and intI1, and more than 2 orders of magnitude for 

micropollutants (Datasets S8~11). These results are in line with previous results from a large-scale 

investigation of micropollutants in Swiss streams (Stamm et al., 2016). 

 

Figure 2.2. Levels (gene copies/mL) of sul1 and intI1 in the upstream near effluent discharge point, and 
downstream river water quantified by qPCR. Average sul1 and intI1 concentrations in the (a) river Suze near 
Villeret (VIL) and (b) river Murg near Münchwilen (MUE). The dotted lines are the estimated levels considering 
only dilution as a major driver according to the Eq. 3 using sodium, carbamazepine (CBZ), and 4/5-
methylbenzotriazole (4/5MeBT) as conservative tracers. The point of EF discharged was indicated by a light red 
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vertical line. Symbols indicate the average and tips of error bars are the lower and upper values of biological 
duplicates. The limit of detection for both sul1 and intI1 is 12.5 copies/mL for all the samples shown here. 

 

Figure 2.3. Heterotrophic plate counts (CFU/mL) for clarithromycin and tetracycline multi-resistant (CLR/TET) 
and sulfamethoxazole, trimethoprim, and TET multi-resistant bacte- ria (SMX/TMP/TET) from the upstream and 
downstream river water in (a) Villeret (VIL), and (b) in Münchwilen (MUE). The predicted values were 
calculated using a selected conservative tracer (i.e., sodium) according to Eq. 3 , and are shown as dotted lines 
in red, blue, or black. The limit of detection (LOD) was 0.5 CFU/mL for CLR/TET multi- resistant bacteria and 5.0 
CFU/mL for SMX/TMP/TET multi-resistant bacteria. The LOD for SMX/TMP/TET is shown as a yellow dotted 
horizontal line. The error bars indicate standard errors among technical triplicates. 

2.3.2. Short range fate of antibiotic resistance determinants in the downstream river 

Focusing on the immediate impact of the WWTP effluents (US versus D1 to D3 sites), there were 

significant impacts of WWTP effluents on the receiving rivers in both VIL and MUE. The estimated 

proportions of EF in the downstream receiving waters (D1) estimated by conductivity were 10.5 ~ 

35.9 % for VIL1~4, and 33.0 ~ 38.0 % for MUE1~3 (Dataset S9.2). Accordingly, significant increases of 

sul1, ermB, tetW and intI1 as quantified by qPCR were observed at D1 compared to US (p<0.01 

paired t-test; Fig. 2.2 & Fig. S2.5). However, the measured levels of these antibiotic resistance 

indicator genes rapidly decreased nearly to upstream levels over 2.5 and 2 km downstream distance 

(D2 or D3 locations) in VIL and MUE, respectively. 

The same dynamic was also observed for multi-resistant bacteria (Fig. 2.3), especially CLR/TET 

resistance. SMX/TMP/TET resistance was often below the limit of detection (5.0 CFU/mL), but clearly 

exceeded it in the D1 samples and was thus also higher there than further downstream (from D2 on). 
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Several processes may contribute to the observed decrease of resistance determinants, including 

dilution by additional water inflows via groundwater and/or tributary inputs, biological deterioration 

(e.g. cell death or dormancy due to exposure to sunlight, lower ambient temperature, predation, 

etc.), and cell sedimentation. 

2.3.3. Dilution effects strongly affect short distance dynamics of effluent resistance determinants 

To determine the importance of dilution effects, we compared 𝐷𝑃 calculated over a short 

distance (D1 to D2 for VIL; D1 to D3 for MUE) downstream of the WWTP discharge point (𝐷𝑃𝐷1→2 for 

VIL; 𝐷𝑃𝐷1→3 for MUE) from conservative chemical tracer concentrations (e.g., sodium, 4/5-

methylbenzotriazole, carbamazepine) as well as ARG and intI1 levels (Fig. 2.4). The average 

𝐷𝑃𝐷1→2 𝑜𝑟 3 of the target antibiotic resistance indicator genes levels were always higher than for 

conservative tracers, indicating possible removal mechanisms at play. However, according to the 

paired t-test under the null-hypothesis of “No significant differences of dilution parameters between 

different pairs of bio- and conservative indicators”, only the differences between sul1 and tetW 

versus sodium were significant at p<0.05 (p-adjusted using Benjamini-Hochberg method) (Fig. 2.4), 

confirming non-conservative behavior and additional removal mechanisms. As 𝐷𝑃𝐷1→2 𝑜𝑟 3 for 

sodium took up a large portion of the values for sul1 and tetW (i. e. 𝐷𝑃(𝑁𝑎+)𝐷1→2 𝑜𝑟 3 =

 0.72 ~ 0.92 × 𝐷𝑃(𝑠𝑢𝑙1)𝐷1→2 𝑜𝑟 3 and 0.59 ~ 0.96 × 𝐷𝑃(𝑡𝑒𝑡𝑊)𝐷1→2 𝑜𝑟 3), the dilution effects 

quantified by sodium nonetheless explain the majority of the concentration decrease for these 

parameters. This result implies that the observed rapid decrease in the downstream levels of 

wastewater-origin resistance determinants immediately downstream of the WWTPs was mainly 

governed by dilution in the studied systems. Dilution effects thus need to be carefully considered in 

studies of the environmental fate of resistance determinants, and loadings instead of concentrations 

need to be determined to accurately assess environmental fate.  

2.3.4. Additional source/sink effects become apparent over longer downstream distances 

We hypothesized that additional source/sink mechanisms affect the downstream behaviors of 

antibiotic resistance indicator genes over longer distances. To analyze this in more detail the daily 

loading (copies/day) for the target ARGs and intI1 at the point of discharge (as the sum of upstream 

and EF loadings), and for short (D2 for VIL; D3 for MUE) and far downstream distances (D8) were 

calculated by multiplying resistance levels (copies/m3) with the discharge (m3/day) at each location 

and then compared. The discharge was either obtained directly from nearby gauging stations, or 
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Figure 2.4. (a) Dilution parameter (DP) values over short downstream distance (i.e., D1 to D2 for VIL, D1 to D3 
for MUE) among different biological and conservative indicators; (b) ARGs and intI1 loadings at upstream near 
EF (US), treated wastewater effluents (EF), short downstream (D2 or 3); and long downstream distance (D8) in 
Villeret (VIL), and (c) in Münchwilen (MUE). The treatment pairs with significant difference in between were 
asterisked (∗) in (a). The error bars represent upper and lower values of biological duplicates for each gene in (b 
~c). 

estimated under consideration of the EF discharge (m3/day) using sodium as an indicator, and 

according to the equation derived under the mass-conservation assumption (Eq. 4). 
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The downstream behaviors of the target antibiotic resistance indicator genes varied by indicator 

and also by sampling campaign. For instance, the load decrease from wastewater discharge (US + EF) 

to the furthest downstream point (~ D8) was pronounced and consistent for ermB and tetW in all the 

samplings (Fig. 2.4b & c). The average load reduction was 81±17 % for ermB, and 70±15 % for tetW 

over 13.7 km distance in VIL1~4; 95±5 % for ermB, and 96±2 % for tetW over the 6.8 km distance in 

MUE1~3 (Dataset S13). In contrast, the downstream behavior of the sul1 loadings was inconsistent 

between sampling campaigns. A pronounced decrease over distance (64-94 % at D8) was seen in VIL1 

~ 4, but little reduction over distance in MUE1 ~ 2 (7 and 29% at D8), and a strong increase in MUE3. 

The downstream fate of intI1 was also variable, for instance, as intI1 loads did not decrease and in 

some instances even increased . 

To further analyze if there is a break point where sul1 and intI1 start to deviate from conservative 

behavior, we calculated the predicted levels of resistance determinants over the whole study 

distance considering dilution as a major driver using Eq. 3 (Dataset S8). The predictions based on 

three different conservative tracers are visualized for sul1 and intI1 in Fig. 2.2. In VIL, measured levels 

are always below predictions, except for intI1 in VIL2. For MUE, in contrast, we see measured values 

exceeding predicted values in several instances, for intI1 even for most downstream locations. In 

MUE3 where the pronounced increase of sul1 loading was observed between D5 and D8, the level of 

sul1 started to exceed predicted values between 5 ~ 6.8 km distance. The concentration of intI1 

increased also very rapidly between 5 ~ 6.8 km downstream distance in MUE3, which indicates either 

a pronounced proliferation or a non-point source of sul1 and intI1 in this stretch of the river. We will 

discuss potential mechanisms (e.g., biological drivers, on-site selection, additional anthropogenic 

source input, and surface sediment inputs) in section 2.3.10. 

A number of mechanisms may contribute to the generally observed removal: Sedimentation 

(especially of cell aggregates or flocs) and cell death by predation, UV light, or various other 

environmental conditions unfavorable to wastewater bacteria. With the available data we are not 

able to determine the contribution of various mechanisms. Future studies could investigate the 

persistence of resistant bacteria or molecular resistance markers in micro- or mesocosm experiments 

or in a turbulent flow system mimicking natural streams to answer such questions. Modeling 

transport and sedimentation of wastewater-origin particles using the information on particle size, 

mass, and flow characteristics could provide information on the importance of sedimentation. 

2.3.5. WWTP effluent affects the downstream riverine resistome 

To obtain a broader view of the river antibiotic resistome we retrieved the ARG content of 

metagenomes obtained for selected sampling campaigns (VIL1, MUE2, and MUE3). Overall, 65 ARG 
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subtypes were identified, 49 of them occurred in both upstream and downstream river samples 

(Dataset S7). The antibiotic resistome in the receiving water closest to the discharge point (D1) was 

clearly influenced by the input from EF. For instance, a total 28 out of 36 ARG subtypes found in D1 

were also detected in EF (B, C, F, G in Fig. 2.5a) while 16 of these were not observed US (B, C in Fig. 

2.5a). The 16 EF-derived resistance genes confer resistance to the following antibiotic classes: 1 x 

aminoglycoside, 4 x beta-lactam antibiotics, 1 x chloramphenicol, 2 x macrolide, 1 x quinolone, 4 x 

tetracycline; 3 subtypes were multidrug resistance genes. Of these 16 genes, 14 were no longer 

detected in the far downstream (6.8 ~ 13.7 km downstream distance in MUE and VIL, designated as 

D_Far in Fig. 2.5a). This is in agreement with the results for qPCR enumeration of ARGs and intI1 

reported above and implies that the majority of ARGs that occurred exclusively in EF do not persist at 

detectable levels for a long distance in rivers where significant amounts of additional water inflows 

and additional removal mechanisms are expected. 

 

Figure 2.5. Metagenomic analysis of effluent and river antibiotic resistomes at Villeret (VIL) and Muenchwilen 
(MUE) sites for the selected sampling campaigns (VIL1, MUE2, and MUE3). (a) Venn diagram showing 
occurrence of antibiotic resistance gene subtypes in the treated wastewater (EF) and in river water upstream 
(US) and downstream (D1, 0.5 km distance) of the effluent discharge point and in the far downstream (D_Far, 
6.8 –13.7 km distance). The presence of ARGs were counted from all three (VIL1, MUE2, MUE3) consolidated-
campaigns for each treatment using the presence-absence table shown in Dataset S6. (b) Shannon α-diversity 
of ASVs (blue) and metagenome- assembled ARG subtypes (red). Procrustes analysis between ASVs (round dot 
symbols) and resistome (blue arrow tips) where EF was included (c) and EF & D1 were excluded (d). The length 
of blue arrows indicates the size of Procrustes errors. The error bars represent upper and lower values of 
biological duplicates for each gene.  
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2.3.6. Diversity of the river resistome and microbiome along the river continuum 

We analyzed the alpha-, and beta-diversity of river resistomes and microbiomes as another way 

to observe potential effects of the WWTP discharge and to see if the dynamics in the resistome are 

strongly correlated with the microbial community, as noted e.g. for changes observed during 

wastewater treatment (Ju et al., 2019). As expected, Shannon alpha-diversity of ARGs was higher in 

EF compared to US samples by 20.2 ~ 225.4 % (Fig. 2.5b). Accordingly, the impact of the EF resistome 

was observed, especially for VIL1 and MUE3, as an increase in ARG diversity in river water at the D1 

sites. The ARG alpha-diversity decreased downstream in all sampling campaigns. However, for the 

microbial community as represented by amplicon sequence variants (ASVs), alpha-diversity was not 

consistently higher in EF versus US, and consequently also did not change significantly from US to D1 

and did not consistently decrease downstream (Fig. 2.5b). This indicates that the downstream 

dynamics of the overall microbial community and the antibiotic resistome were decoupled. 

Similar conclusions were obtained from beta-diversity analysis. Procrustes analysis between 

microbial communities and antibiotic resistome (Fig. 2.5c) revealed a strong structural correlation 

between microbial communities and antibiotic resistome only when the most strongly effluent-

affected sites (D1) were considered (p = 0.002; Fig. 2.5c). When the D1 samples were excluded, the 

correlation was barely significant (p = 0.04; Fig. 2.5d), indicating that the structural correlation 

between microbial communities and resistome largely resulted from the impacts of WWTPs on D1. 

The weak structural correlation in less impacted waters suggests a lack of strong drivers, such as 

selective pressures or the influx of external ARB. 

2.3.7. Resistome analysis confirms effluent effect and abatement 

To quantitatively investigate the dynamics of the resistome along the river continuum in more 

detail, the seven most prevalent ARG subtypes that appeared in more than 9 out of 18 samples were 

chosen for detailed analysis. We calculated the proportion of each gene in this set based on relative 

abundance (GPM, gene per million) (Fig. 2.6a). The proportions (%) of each of six genes (aph(3′')-I, 

aph(6)-I, mexT, tetQ, aadA, and sul1) to the whole seven genes were lower in US than in EF and D1 

(Fig. 2.6a). The bacA gene, in contrast, comprised a larger proportion in US (i.e., up to 83 % in 

VIL1:US), D5 and D8 (i.e., up to 93 % in VIL1:D8) than in EF and D1. It was therefore excluded from 

the plots of relative and cumulative abundance of the assembled ARG in the metagenome in Fig. 

2.6b, and their individual and cumulative environmental level (Gene per liter) in Fig. 2.6c. Both 

relative and absolute abundances showed a similar pattern – the abundances of the selected ARG 

were higher in EF and D1 compared to US (Fig. 2.6b). The abundances of those six genes decreased 

along the downstream locations except for sul1 in the far downstream location (D8) in the MUE3 
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campaign (Fig. 2.6b). This analysis confirmed a quantitative effect of the effluent on the abundance 

of prevalent resistance genes in the river resistome, and suggests additional candidates for tracking 

anthropogenic sources of resistance in future studies (aph(3′')-I, aph(6)-I, mexT, tetQ, aadA, and sul1) 

that may be useful for tracking resistance determinants from wastewater. Several of these genes 

have been used as resistance indicators for environmental samples mainly in combination with 

culture-dependent approaches(Rizzo et al., 2013;Zhang et al., 2009), but much less frequently with 

culture-independent approaches (Rizzo et al., 2013;Sharma et al., 2016). 

 

Figure 2.6. Dynamics of prevalent and widespread metagenome-assembled ARGs along the river continuum. 
(a) The proportion of each gene among the 7 most frequently occurring and widespread ARGs (aph(3’’)-I, 
aph(6)-I, mexT, tetQ, aadA, sul1, and bacA). (b) and (c) Stacked bar charts of the abundance of the 6 ARGs that 
were effluent-associated (omitting bacA); (b) relative abundance (GPM, gene per million) and (c) absolute 
abundance (GPL, gene per liter). Sample EF is shaded in red and the other river water samples are shaded in 
blue. 
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2.3.8. Contig analysis indicates ARG co-location 

We hypothesized that the similar dynamics of some ARGs could derive from their co-location in 

the same host or presence on the same genetic elements, so we analyzed their loci within the 

contigs. aph(3′')-I and aph(6)-I were indeed found to be located on the same contig in many samples 

from VIL1 (EF, D1, D2, and D5) (Fig. 2.7a), which may explain the strongly similar dynamics between 

aph(3′')-I and aph(6)-I GPM in VIL1 with R2 = 0.98 (p < 0.001) (Fig. 2.6b). Another case of co-location 

between ARGs was observed between sul1 and aadA. The contigs containing those two genes were 

found in D1 in VIL1, and EF in MUE3 (Fig. S2.13c; Fig. 2.7b). Unlike aph(3′')-I and aph(6)-I in VIL1 

however, the dynamics of sul1 was not similar to that of aadA especially in D5 and D8 in MUE3 

where high abundance of sul1 was observed while no aadA was assembled (Fig. 2.6b). In agreement 

with this observation, the sul1-containing contigs retrieved from D5 and D8 in MUE3 did not contain 

aadA, and this was the only type that was identified in those samples (Fig. 2.7b). This indicates a 

significant shift of the bacterial populations that yielded sul1-containing contigs between D1 and D3 

in MUE3, with wastewater-derived contigs containing sul1 – aadA pairs not persisting. 

 

Figure 2.7. Gene arrangement on contigs containing aph and sul1 genes. (a) Contigs containing aph(3’’) and 
aph(6), retrieved from all samplings (VIL1, MUE2 & 3). (b) Contigs containing sul1 retrieved from MUE3. All 
annotated genes showed > 90.0 % percent identity (PIdent) at the protein level to reference proteins, using 
DIAMOND protein search against NCBI nr protein database. The contig IDs are italicized (e.g. k121_XXXXXX ). 
Ptot_ aph indicates the proportion of average coverage for the aph-containing contig to the sum of average 
coverages for all the aph-containing contigs identified in the sample. Ptot_ sul1 denotes the proportion of average 
coverage for the sul1-containing contig to the sum of average coverages for all the sul1-containing contigs 
identified in the sample. Only contigs with lengths > 1,000 bp are shown. 
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2.3.9. bacA, an ARG with high natural prevalence in environmental bacteria 

Unlike the other prevalent genes, the proportion of bacA (also known as UppP, undecaprenyl-

diphosphate or -pyrophosphate phosphatase) was greatest in US samples, and was also abundant in 

many downstream locations (except D5 and D8 in MUE3 where sul1 occupied the largest proportion) 

(Fig. 2.6a). In order to further assess whether bacA was intrinsic in our river water samples, we 

identified potential hosts by assigning taxonomy to the metagenome-assembled contigs using a 

combination of methods. The contigs for which all three methods agreed at the genus level are 

shown in Table 2.1. The four genera identified as potential hosts of bacA contigs derived from less-

disturbed freshwater samples (US, D2, D5, D8) were Pseudomonas, Acidovorax, Limnohabitans, and 

Aeromonas. Among them, Pseudomonas, Acidovorax, and Limnohabitans are typical inhabitants of 

freshwater and soil environments (Peix et al., 2009;Willems, 2014). However, considering that the 

proportions of bacA in the contigs to the total bacA in the sample in terms of reads per kilobase 

(RPK) were low for river water samples (except for D8 in MUE3), we assume that homologues of 

bacA could be present in many other environmental bacteria. Thus, our data suggests that bacA is 

probably unsuited for tracking anthropogenic sources of antibiotic resistance. 

2.3.10. Exploring the potential reasons for rapid increase of sul1 in far downstream locations in 

MUE3 

Both qPCR-based, and metegenomic analysis confirmed that sul1 and intI1 increased in the 

downstream of MUE, and especially strongly in one of the sampling campaigns (i.e., MUE3) between 

5.0 – 6.8 km downstream distance (Fig. 2.2b & 6). 

To figure out if there was a biological driver for this unexpected increase of sul1 and intI1, we first 

characterized the sul1-containing contigs. The sul1 gene is known to be highly mobilized and is often 

associated with intI1 (Gillings et al., 2008;Gillings et al., 2015). Indeed, all contigs containing sul1 

associated with intI1 retrieved from the river (D3 ~ 8) were homologs of a single dominant type that 

appeared to be also plasmid-associated as it contained the plasmid-associated gene parA (Davis et 

al., 1992). We could unsurprisingly not obtain a meaningful taxonomic assignment for these 

sequences. It could thus not be demonstrated whether the downstream increase in MUE3 was due 

to an increase in an EF-derived or an environmental organism or from a local contamination source. 

Further information could be obtained in future studies by isolation or construction of metagenome-

assembled genomes. We therefore turned to chemical indicators to further study the potential for 

local or non-point sources of contamination as an explanation. 
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Table 2.1. Metagenome-assembled bacA-containing contigs to which taxonomy was successfully assigned at genus level. Taxonomy assignment was performed using Kaiju, Kraken2, and the 

basic local alignment tool for nucleotides (Blastn), and only contigs with consensus from all three approaches at the genus level are shown. For Blastn, the quality criteria were PIdent > 90.0 %, and 
Qcov > 90 %. Ptot_bacA indicates the proportion of bacA in the contig to the total bacA in the sample in terms of reads per kilobase. PIdent indicates the percentage of identical match. QCov indicates 
the query coverage. 

Campaign Ptot_bacA 

(%) 

Contig Information 

Kaiju Kraken2 

Blastn 

Contig ID 
Length 

(bp) 
Coverage Classification 

PIdent 
(%) 

QCov 
(%) 

VIL1:US 2.4 k121_11403 455 4.0 Pseudomonas sp. Bc-h Pseudomonas azotoformans 
Pseudomonas azotoformans strain 
P45A 

92.1 100 

VIL1:US 2.2 k121_184413 333 3.6 Pseudomonas cichorii Pseudomonas cichorii JBC1 Pseudomonas cichorii JBC1 97.6 100 

VIL1:US 1.7 k121_761665 320 2.8 Pseudomonas cichorii Pseudomonas spp. Pseudomonas cichorii JBC1 90.2 99.1 

VIL1:US 1.7 k121_867352 378 2.8 Pseudomonas spp. Pseudomonas fluorescens SBW25 Pseudomonas sp. NS1(2017) 94.4 99.5 

VIL1:US 3.4 k121_892755 1039 5.3 Acidovorax temperans Acidovorax sp. 1608163 Acidovorax sp. 1608163 98.3 100 

VIL1:US 1.5 k121_1008895 517 2.3 Aeromonas spp. Aeromonas sp. CA23 Aeromonas sp. CA23 97.7 100 

VIL1:EF 7.5 k121_372232 409 1.8 Aeromonas spp. Aeromonas media WS Aeromonas media strain MC64 99.5 100 

VIL1:EF 20.0 k121_402216 594 4.7 Aeromonas spp. Aeromonas media WS Aeromonas media WS 99.7 100 

VIL1:D1 4.9 k121_187307 4400 8.8 Aeromonas media Aeromonas media WS Aeromonas media WS 98.8 100 

VIL1:D1 7.4 k121_695922 693 6.1 Aeromonas media Aeromonas media WS Aeromonas media WS 99.7 96.0 

VIL1:D2 9.4 k121_274506 354 2.5 Acidovorax spp. Acidovorax sp. 1608163 Acidovorax sp. 1608163 95.7 99.2 

VIL1:D5 11.0 k121_307936 680 4.0 Acidovorax spp. Acidovorax sp. 1608163 Acidovorax sp. 1608163 97.1 100 

VIL1:D8 10.6 k121_916544 401 2.8 Acidovorax spp. Acidovorax sp. 1608163 Acidovorax sp. 1608163 97.8 100 

MUE2:D8 55.7 k121_6061 84229 12.0 Aeromonas veronii Aeromonas veronii B565 Aeromonas veronii strain 17ISAe 93.3 95.8 

MUE3:EF 69.6 k121_139490 591 3.3 Aeromonas media Aeromonas media WS Aeromonas media WS 99.5 100 

MUE3:D1 11.3 k121_69935 869 3.6 Aeromonas media Aeromonas media WS Aeromonas media strain MC64 96.7 100 

MUE3:D8 80.9 k121_528493 314 3.0 Limnohabitans sp. 63ED37-2 Limnohabitans sp. 63ED37-2 Limnohabitans sp. 63ED37-2 94.3 94.3 
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To evaluate non-point-source inputs of pollutants, we chose to evaluate a few micropollutants 

that may serve as indicators of contamination. Sulfamethazine (also known as sulfadimidine) is used 

in pig husbandry (Stoob et al., 2007), and mecoprop is a weed control agent used primarily in urban 

settings in Switzerland (Wittmer et al., 2010). It was assumed that the levels of these pollutants in 

downstream locations would increase or be persistently high if a pronounced agricultural or urban 

surface runoff existed, which could accompany resistance genes and bacteria potentially existing in 

agricultural or urban areas. In VIL, sulfamethazine was below detection (LOD ~ 0.8 ng/L) in all 

samples except one US sample, while in MUE there appeared to be a source in WWTP effluent 

especially during the MUE3 campaign, but the compound was not observed to increase in 

downstream locations. The concentrations and downstream dynamics of mecoprop varied between 

campaigns (Fig. S2.8). For VIL1~3 and MUE1 and MUE3 mecoprop concentrations were low (< 60 

ng/L), while there seemed to be a strong, effluent-associated input for MUE2 and concentrations 

remained high further downstream (> 200 ng/L). A slight increase in the downstream range > 5km 

observed in MUE2 and between 1.0 – 2.0 km in MUE3 may be due to fluctuating input of mecoprop 

from the WWTP effluent. Concentrations did not further increase in the far downstream locations 

(D8) where the sudden increase of sul1 and intI1 was observed (Fig. S2.8). Based on these, but also 

the other analyzed micropopllutants, we found no evidence for significant downstream 

contamination sources. However, these chemical indicators are not conclusive, as the analyzed 

compounds were not a comprehensive selection to trace non-point sources in the downstream river 

section (e.g., from manure or pesticide applications, although these are not very likely under dry-

weather conditions). So while we found no evidence for such contamination we can also not 

conclusively rule them out as an explanation for the marked sul1 and intI1 increase observed for 

MUE3. 

Finally, the potential for in-situ resistance selection in the water was assessed using the 

concentration of antibiotics and metals in downstream locations in MUE3. Sulfamethoxazole and its 

derivative (N4-acetylsulfamethoxazole) were the antibiotics with the highest concentration among all 

the antibiotics analyzed, but downstream concentration (sulfamethoxazole in the range of 33 to 95 

ng/L in MUE3) remained far below the published PNEC for resistance selection (e.g., 16,000 ng/L) 

(Bengtsson-Palme and Larsson, 2016). The concentration of trimethoprim, which is usually 

prescribed together with sulfamethoxazole, was also much lower than its PNEC for resistance 

selection (e.g. 500 ng/L) (Bengtsson-Palme and Larsson, 2016). Even though the vast majority of 

metals analyzed in this study remained below the limit of quantification or below their estimated 

minimum co-selective concentrations for dissolved metals in water (MCCwaterDC), the concentrations 

of two metals (i.e., copper and nickel) were higher than their MCCwaterDC (1.5 µg/L for Cu, and 0.29 

µg/L for Ni) (Seiler and Berendonk, 2012). However, MCCwaterDC is a predictive value and actual 
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selective levels could be higher, also their levels in far downstream locations (D8) in MUE3 were not 

specifically higher than at other locations within the same sampling campaign, nor at the same 

locations than in other samplings where the increase of sul1 or intI1 was less pronounced (Dataset 

S12). Furthermore, we did not observe co-localization between sul1 and any other genes potentially 

conferring Cu, Ni or any other metal resistance based on contig-based co-localization search in MUE 

(Fig. 2.7b). Overall no convincing evidence for in-situ resistance co-selection by Cu and Ni as an 

explanation for the downstream increase of sul1 and intI1 was found. We further note that the 

estimated river retention time per km was relatively short (i.e., 51.4 and 49.5 mins/km for VIL and 

MUE, respectively, Dataset S4), which makes the likelihood of in-situ resistance selection in the water 

even less plausible. 

As a final possible explanation we considered the possibility of cell migration from other river 

compartments to the water. According to qPCR enumeration of ARGs and intI1 in surface sediments, 

we did not observe the increase of sul1 and intI1 levels in D5 and D8 in MUE3 in terms of either 

absolute and relative abundance (Fig. S2.6). Furthermore, the relative abundance of sul1 and intI1 in 

sediment was generally similar to, or lower than the values for water in MUE1~3 (Fig. S2.7). If 

sediment resuspension was a major source for aquatic sul1 and intI1 elevation in MUE3 D8, relative 

abundances of sul1 and intI1 in water samples would be expected to remain unchanged or to drop. 

While we could not completely exclude the possibility of contribution of sediment resuspension, we 

assume that there could be other sources (e.g., stream biofilms) where sul1 and intI1 were 

selectively enriched in terms of both absolute and relative abundance. Considering the downstream 

levels of both resistance determinants and nutrients remained relatively high in MUE due to high EF 

inputs and low downstream dilution effects, especially in the third campaign (Fig. S2.5 & Dataset S9), 

in-system growth is also a plausible hypothesis. 

The reason for and the nature of the striking increase of sul1 and intI1 (but not of tetW, ermB, 

blaCTX), during the MUE3 campaign thus remains open and would require further study to resolve. 

What the observation shows unambiguously, is that unexpected and perhaps not directly 

anthropogenic contamination-driven increases of ARGs are possible. As in particular sul1 and intI1 

are commonly applied for tracking anthropogenic sources of ARG in the environment (Berendonk et 

al., 2015;Gillings et al., 2015), we caution that monitoring strategies should employ a multi-target 

strategy to be robust. 

Conclusions 

 Downstream levels of antibiotic resistance determinants decreased rapidly over 2.0 – 2.5 km 

distance due to dilution effects and decay over longer distance due to other removal mechanisms. 
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This would suggest that public exposure to wastewater-origin antibiotic resistance might be most 

acute only over short distances (few kilometers) from points of discharge, especially if a 

pronounced input of additional water inflows exists. 

 We also observed at least one instance where sul1 and intI1 dynamically increased in the river, 

without being able to establish any link to a local anthropogenic contamination. Other river 

compartments where in-system growth of biomass could take place (i.e., stream biofilms) could 

be included as a monitoring target in future studies. 

 Metagenomics-based resistome analysis yielded consistent conclusions with qPCR analysis of 

select targets (e.g., sul1) and also identified promising targets for future monitoring of 

anthropogenic sources of antibiotic resistance (e.g., aph(3′')-I, aph(6)-I, mexT, tetQ, and aadA). In 

general metagenomics, qPCR and cultivation-based assays yielded consistent trends. Public health 

advice could be based on quantifying indicator genes or technically simpler cultivation-based 

indicators. 

 A weak structural correlation between resistome and microbiome, and low levels of (co)selective 

agents revealed a lack of driving forces in less-disturbed river waters (downstream over 3 km 

distance, plus upstream locations). 

 We showed that contig-based taxonomic assignment and analysis of the genetic neighborhood of 

assembled ARG can reveal important, if limited, additional information about shifts in ARG host 

identities, mobilization, and co-localisation of ARG that would otherwise remain hidden. 

Data Availability 

The raw sequencing data both for metagenome and 16S rRNA amplicon sequencing are available 

at the European Nucleotide Archive under the project ID – PRJEB39697 for primary, and ERP123247 

for secondary accession. All the other research datasets (including additional minor datasets that 

were not shown in this manuscript, and R codes) are available at the Eawag Open Research Data 

repository (https://opendata.eawag.ch/https://doi.org/10.25678/0003N6). 
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Supplementary Information 

Site description and field sampling 

To avoid impact of high flow conditions all sampling was performed under dry conditions and at 

least 24 hours after the last precipitation in the catchment. The actual time between last 

precipitation and sampling was 37 hours for MUE2; 38 hours for VIL2; 41 hours for VIL3 and > 48 

hours for the rest of sampling campaigns. The residence time of all the Swiss rivers is less than one 

day (24 hours) until they either reach a reservoir (lake) or leave the country (Ort et al., 2009), so 

direct precipitation effects were avoided by this strategy. 

In the first sampling in Villeret (VIL1), water grab samples (5L in sterilized water containers) were 

obtained from 0.5 km upstream of the discharge point (US), wastewater treatment plant final 

effluent (EF), and downstream locations located at 0.5 km (D1), 2.5 km (D2), 4.5 km (D3), 6.5 km 

(D4), 8.3 km (D5), 10.5 km (D6), 12.4 km (D7), 13.7 km (D8) flow distance from the point of discharge. 

A small (watershed area < 3.0 km2) tributary enters the Suze between sites D4 and D5 (see location 

S1 in Fig. S2.1). We obtained samples also from the location S1. The water depth was < 30 cm at D1, 

and no more than 1.0 m at the farthest downstream point (D8). 

For campaign VIL2, all the sampling points from VIL1 and additional upstream locations and their 

small tributaries were sampled, for instance, the upstream locations at 1.3 km (US2), 7.5 km (US4) 

distance from EF discharge point, and a small upstream tributary located between US and US2 (see 

location S0 in Fig. S2.1).  

For campaign VIL3, water sampling was performed at all the sampling points from VIL2 and one 

additional upstream point (US3, 2.8km) (Fig. S2.1). In VIL4, one additional upstream point located at 

10 km from EF discharge point (US5), and additional small tributary near US4 (see location S3, Fig. 

S2.1) were sampled together with US, US1 ~ 4, EF, D1 ~ 4, and D8.  

At MUE, we studied a 7.0 km stretch of the Murg downstream of WWTP Münchwilen without 

other WWTP inputs and one location upstream of the discharge point. One major tributary located 

between D5 and D6 (see location S5 in Fig. S2.2; watershed area > 3.0km2; discharge approximately 

3.8% of the receiving Murg in terms of mean runoff (m3/d) estimated by FOEN, 

https://map.geo.admin.ch/), and four minor tributaries (watershed areas < 3.0) enter the Murg in 

the studied section.  

In all sampling campaigns (MUE 1~3), water grab samples were obtained from 0.5 km upstream of 

the discharge point (US), wastewater treatment plant final effluent (EF), and downstream locations 

located at 0.5 km (D1), 1.0 km (D2), 2.0 km (D3), 3.0 km (D4), 4.0 km (D5), 5.0 km (D6), 6.0 km (D7), 

https://map.geo.admin.ch/
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6.8 km (D8) flow distance from the point of discharge. Water sample was obtained also from one of 

the side streams located between D5 and D6 (see location S5 in Fig. 2.2). The water depth was < 30 

cm at D1, and no more than 1.0 m at the farthest downstream points (D8). 

 Contrary to VIL where EF was directly discharged to the main water body, the EF in MUE is 

discharged first to a small rivulet (S1), and the combined discharge (EF + S1) then enters the Murg 

after ca. 65 meters (Fig. S2.3). The proportion of EF in the side channel was estimated from the 

conductivities of S1, EF, and EF + S1 according to Ort and Siegrist (2009) to be in excess of 80%, 

therefore the contribution of S1 was not further considered. In addition, one sample was taken from 

a major downstream tributary (S5), of which mean runoff (m3/s) comprises approximately 4%, 

estimated by a runoff-model run by BAFU (BAFU, 2000). GPS coordinates for all sampling locations 

are given in Table S1. 

On site physicochemical measurements 

In order to make sure that EF and river water were completely mixed at and after D1, the horizontal 

conductivity profiles of the river cross-section were measured at D1 in both systems using a portable 

multi-parameter probe (Multi 3630 IDS, WTW, Germany). No significant differences in conductivity 

were noted across the cross-section in any campaign (standard deviation  < 0.5% of the average in 

conductivity profiles across cross-section). Four on-site parameters – Temperature (°C), conductivity 

(μS/cm), pH, and dissolved oxygen (DO, mg/L), were measured for each water sample as soon as it 

was taken using the multi-parameter probe (Dataset S9). The conductivity values were corrected to 

the temperature-compensated values (at 25 °C) using the default algorithms embedded in the 

instrument.  

Sediment sampling 

Surface (< 5cm of subsurface) sediment samples were obtained from 5 selected locations (US, D1, 

D2, D5, and D8) for campaigns VIL1 ~ 3 and from 5 locations (US, D1, D2, D5, and D8) for campaigns 

MUE1 ~ 3. For each sampling location, sediments were collected from at least 5 random locations 

regardless of their types and properties, and pooled in order to obtain a representative sample. To 

reduce eukaryotic DNA contamination We tried to avoid taking sediments from spots where there 

were a lot of algal growths, which we typically observed in MUE D5 and D8.  

On-site hydrological measurements 

To improve hydrological understanding of the discharge sites hydrological measurements were 

performed in August 2019 (August 23, 2019 for VIL, and August 27, 2019 for MUE) under dry 

conditions, comparable to conditions during sampling. River flow velocity (m/sec) was determined 



Chapter 2 – Downstream Fate of Wastewater-borne AMR 

48 
 

using a flowmeter (Handgerät HFA up-Flowtherm, Höntzsch, Germany) at 150 and 500 m 

downstream locations in VIL, and at 150, 226, and 500 m downstream locations in MUE. At each 

location, three measurements were made over 3 different cross-sections (Dataset S4). Additionally, a 

tracer spike test was performed to confirm the measured flow rates according to the protocol 

modified from (Velísková et al., 2014). A pre-prepared NaCl (3 % w/v for VIL, and 4 % w/v for MUE) 

solution was poured into the river at the EF discharge point (20 L in VIL, and 25 L in MUE) and the 

time was noted. Conductivity was measured in a time series at 150 m downstream distance in VIL, 

and 226 m downstream distance in MUE (Fig. S2.10). Flow rate measurements and spike test results 

were generally in agreement, for instance, the expected arrival time was 437 ~ 489 sec in VIL, and 

530 ~ 1,443 sec in MUE using the flow rates in Dataset S4 (0.31 ~ 0.34 m/s at 150 m distance in VIL; 

0.16 ~ 0.43 m/s at 150 ~ 226 m distance in MUE). 

Heterotrophic plate count of antibiotic resistant bacteria (ARB) 

Other than the combinations of antibiotic described in the main text, agar further contained 

pimaricin (50.0 mg/L) to suppress fungal growth. Water samples were concentrated onto the 0.2 µm 

pore size membrane filters (Cellulose Nitrate Membrane Filter, Sartorious Germany). The sample 

filtration volume was pre-optimized in such a way that we obtained between 5 ~ 300 colonies per 

plate. Dilution was performed if needed, using 0.85% NaCl solution. The limit of detection varied by 

plate type, 0.5 CFU/mL for CLR/TET plates, and 5.0 CFU/mL for SMX/TMP/TET plates, because 

significant fungal growth was observed on SMX/TMP/TET plates when we filtered more than 10 mL 

volume. The total number of colonies on the plates were counted after 72 hours of incubation at 

25 °C. Each sample was plated in triplicate and a sterile control plate receiving a sterile filter through 

which 10 mL of 0.85% NaCl was filtered was performed for each plate type for each sampling 

campaign.   

Quantitative PCR analysis 

Bacterial 16S rRNA genes, resistance genes sul1 and tetW, and intergron-integrase gene intI1 

were analyzed by qPCR (Roche LightCycler 480 II, Roche, Switzerland) using LightCycler 480 Probes 

Master kit. Two other resistance genes (ermB, and blaCTX) were quantified using LightCycler 480 SYBR 

Green I Master (Roche, Switzerland). Bacterial 16S rRNA genes (V3 – 4) were quantified as a proxy for 

the abundance of the bacterial community. Primer sequences and references are provided in Table 

S2. DNA extracts were diluted 1/10 to minimize PCR inhibition. Absence of PCR inhibition was further 

confirmed by comparing results for 1/10 with 1/100 diluted samples for selected samples (EF 

samples from VIL1 ~ 3, and MUE1~3) for a selected marker gene (sul1) (data not shown). The 

detailed PCR programs were described previously (Ju et al., 2019). At the end of program, a melt 
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curve analysis (65 – 95 °C) was performed for ermB and blaCTX in order to confirm target specificity. 

The qPCR efficiencies for standard curves calculated using the equation, E = 10(-1/slope) using the 

algorithm embedded in the LightCycler® 480 Software 1.5. (Roche, Switzerland). The qPCR standard 

curves were prepared ranging from 50 to 50,000,000 copies, and measured repeatedly in 

quintuplicate in every batch runs. Determination of limits of detection and quantitation for qPCR 

assays was modified from (Czekalski et al., 2012; Czekalski et al., 2014), the most diluted standard 

(i.e., 50 copies) was always set as LOD except for blaCTX where the S.D. of Cq among quintuplicates at 

50 copies was too large (i.e., S.D. = 1.6) and the second-most diluted standard (i.e., 500 copies) was 

chosen as LOD. In case the S.D. of Cq values at LOD was > 0.5, the value range between LOD and the 

next most diluted standard of which S.D. was ≤ 0.5 was regarded as less reliable, and highlighted in 

red in Dataset S8. The selected key information for qPCR validation recommended by MIQE guideline 

is given in Table S5 (Bustin et al., 2009). The DNA extracts from both filter replicates of each sample 

were analyzed in triplicate. Any measurements of which S.D. of Cq among technical triplicates was > 

0.5, or the mean was below LOD were indicated as “Detected, but not-quantifiable”. Furthermore, if  

≥ 2 out of 3 technical triplicates were negative, or the average Cq values were > the values for 

negative controls, the target was considered as “Not-detected (N.D.)”. Negative controls (i.e., 

molecular-grade distilled water) were checked in triplicates in every batch runs, and were always 

below LOD (Table S5). The differences between biological duplicate values were visually displayed in 

Figures as error bars. An experiment control was prepared by filtrating 500 mL sterilized nanopure 

distilled water through a membrane filter followed by DNA extraction. The DNA concentration was 

below the detection limit (< 0.2 ng/µL) of Qubit (Qubit™ dsDNA High Sensitivity Assay Kit, Thermo 

Fisher Scientific, USA) in our settings, and no contamination neither during filtration nor extraction 

was confirmed by measuring qPCR using selected markers, i.e., N.D. for ermB; D.N.Q. for sul1 (36.0), 

intI1 (Cq of 39.5), tetW (Cq of 37.7), and 16S rRNA gene (Cq of 33.2) (Table S5).  

Metagenome and 16S rRNA amplicon sequencing analysis 

The Illumina Novaseq6000 with a paired-end (2  150) strategy was used for shotgun sequencing. 

The basic filtering of metagenome raw data was performed by Novogene as follows: 1) Removing the 

reads that contained adapters, 2) Removing reads that contained undetermined base calls N > 10 %,  

and 3) Removing the low quality reads (quality score ≤ 5). The quality of reads was doubled-checked 

by the authors using FastQC v0.11.4 (Andrews, 2010). Reads with mean quality scores below 20 were 

removed by Prinseq-lite v0.20.4 (Schmieder and Edwards, 2011). The filtered reads were de-novo 

assembled using MEGAHIT v1.1.3 (Li et al., 2015) to produce a de Bruijn graph with multiple k-mer 

sizes (21, 47, 71, 95, and 121). Assembly statistics are given in Table S3. Open reading frames (ORFs) 

were predicted from the assembled contigs using Prodigal v2.6.3 with the default parameters (Hyatt 
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et al., 2010). As a global protein search algorithm, BLASTP v2.2.30 was utilized to annotate the 

predicted ORFs against two curated protein databases for ARGs, the Structured Antibiotic Resistance 

Genes (SARG) v2.0 (Yin et al., 2018) and Comprehensive Antibiotic Resistance Database (CARD) v3.1.0 

(Alcock et al., 2020) with the e-value of 1  10-5. ORFs matching ARGs with > 85.0 % identity and > 

100 bp alignment lengths were retained for downstream analysis. We compared the results obtained 

with both databases in terms of the alpha diversity. Even though we observed agreement in many 

samples, the ARGs identified with each database could be either higher or lower than the other for 

some samples, implying each database might have both pros and cons (Fig. S2.12). We finally favored 

SARG v2.0 over CARD v3.1.0 for analyzing our datasets, because some gene homologues that we 

were interested in and that originated from the NCBI-nr database (i.g., bacA, mexT homologues) 

were identified only with SARG v2.0. Therefore, all the downstream data analysis reported in the 

manuscript was performed using the SARG v2.0 results.  

Read mapping to contigs and ORFs was performed to calculate coverages. For read mapping, 

Bowtie2 was used (Langmead and Salzberg, 2012), and the depth information was generated using 

Samtools (Li et al., 2009). The coverages for contigs and ORFs were calculated from the depth 

information according to Albertsen et al. (2013). The coverage information was used as a basis for 

calculating abundance metrics of metagenome data. We primarily report relative abundance as GPM 

(genes per million) and absolute abundance as GPL (genes per liter), as previously established (Ju et 

al., 2019;Katz et al., 2010;Li and Dewey, 2011) (Dataset S5 & S6). The description of all metrics are 

given in Table S4. The Python scripts used in our workflow and a training data set are available from 

the first author’s personal GitHub page (https://github.com/myjackson).  

For analyzing the details of ARG-containing contigs, all the ORFs located within the same contig in 

which ARGs were found were annotated against the NCBI nr Protein Database (retrieved at March 4, 

2020) (Coordinators, 2017) using DIAMOND v0.9.3 (Buchfink et al., 2015). Gene arrangement on the 

contigs was visualized using the genome viewer SnapGene® v5.1.3.1 (from GSL Biotech; available at 

https://www.snapgene.com/).  

To assign taxonomy to selected contigs, two taxonomy classifiers for metagenomics were used – 

Kaiju v1.7.2 (Menzel et al., 2016), and Kraken2 (Wood et al., 2019). Kaiju was operated with the e-

value of 0.05 using the NCBI nr Protein Database (Coordinators, 2017), and Kraken2 was operated 

using the default confidence score (0.0) and the Standard Kraken 2 Database (O'Leary et al., 2016). 

Even though both pipelines were shown to be accurate for assigning taxonomy to metagenome 

reads, the reliability for analyzing assembled contigs has not been established. Therefore, all contigs 

which had a consensus between Kaiju and Kraken2 results were additionally subjected to BLASTN 

searches against the nucleotide collection (nt) database (Coordinators, 2017) using the entire 

https://github.com/myjackson
https://www.snapgene.com/
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sequences of contigs. Results from all three approaches were checked for consistency of the 

taxonomic assignements. 

Amplicon sequencing of the V3 – 4 region (466 bp) of 16S rRNA gene was carried out by Novogene 

(https://en.novogene.com/). Briefly, 16S rRNA genes were amplified using Primers 341F – 

CCTAYGGGRBGCASCAG and 806R – GGACTACNNGGGTATCTAAT, and sequenced using the Illimina 

HiSeq2500 with a paired-end (2  250) strategy. The PCR amplification was performed together with 

a  distilled water negative control, and the absence of contamination during amplification was 

confirmed by gel electrophoresis. For analyzing sequencing data, barcodes and primer sequences 

were removed from the raw sequences by Novogene, and the de-multiplexed sequences were used 

as input for downstream analysis. The DADA2 pipeline implemented in R was used for modelling and 

correcting the amplicon data (Callahan et al., 2016). We followed the work-flow suggested by the 

developers (https://benjjneb.github.io/dada2/tutorial). Firstly, the sequences were filtered with the 

following quality parameters: Quality score 2 (truncQ=2), the maximum expected error rate 2 

(maxEE=2), and default values for the others. Then, the error rates were inferred by DADA2 

algorithm, and the sample sequences were inferred using the previously calculated error rates to 

produce Amplicon Sequence Variants (ASVs). The paired reads were merged, and bimeras (two-

parents mis-merged chimeras) removed. Taxonomy was assigned to ASVs using the DADA2-

formatted Silva v132 database (Quast et al., 2013), the bacterial sequences were sub-selected, and 

used for further statistical analysis. The Shannon alpha-diversity index was calculated from ASVs 

abundance data using the R package Vegan (Oksanen et al., 2013). The ASV data was normalized at 

50,000 sequences across samples (originally varied from 46,940 to 67,822) prior to the beta-diversity 

analysis. Non-metric multidimensional scaling (stress < 0.15) followed by Procrustes analysis was also 

performed using the normalized ASV sequences and relative abundance (GPM) of ARGs. The 

statistical significance (P-value) for Procrustes analysis was calculated using permutation test 

(number of permutation = 999).  

Micropollutants analysis 

All the water samples from VIL1 ~ 2 and MUE1 ~ 3, and selected samples from VIL3 (US, EF, D1, 2, 

5, 8) were stored at 4 °C in the dark as soon as those were obtained on-site, and transported to the 

laboratory on the same day. Upon arrival at the laboratory, the 150 mL samples were stored at -20 °C 

in the dark until analyzed. The following 26 micropollutants were measured afterwards: 13 

antibacterials and their derivatives (amoxicillin C and F, azithromycin, ciprofloxacin, clarithromycin, 

metronidazole, N4-acetylsulfamethoxazole, sulfamethoxazole, norfloxacin, sulfamethazine, 

sulfapyridine, triclosan, trimethoprim), 10 other pharmaceuticals (amisulpride, candesartan, 

carbamazepine, citalopram, diclofenac, hydrochlorothiazide, irbesartan, metoprolol, tramadol, 

https://en.novogene.com/
https://benjjneb.github.io/dada2/tutorial
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venlafaxine), and 3 industrial and biocidal chemicals (benzotriazole, mecoprop, 4/5-

methylbenzotriazole). 

After thawing the samples at room temperature for 6 h, samples were vigorously shaken. After 10 

min settling, 1 mL supernatant was transferred into a 1.5 mL sample vial and spiked with labeled 

internal standards (IS, addition of 40 µL IS mixture for a final conc. of 400 ng/L). Large volume direct 

injection of a 100 μL sample was performed on an Agilent 1290 UHPLC equipped with an Acquity HSS 

T3 column (1.8 µm, 3.0x100 mm, Waters) for chromatographic separation. The HPLC was operated at 

a flow rate of 500 μL min-1, an oven temperature of 30°C, with a gradient of 100% eluent A (nanopure 

water plus 0.1% formic acid) to 95% eluent B (methanol plus 0.1% formic acid) in 18.5 min, hold for 

3.5 min, rise to 100% eluent A in 0.5 min, and hold for 4.5 min (including 2 min post run time). A 

triple quadrupole MS/MS (Agilent TQ6495B) was used for detection (electrospray ionization in 

switching mode, 3.5 kV in positive and 3.0 kV in negative mode, dynamic MRM with 650 ms cycle 

time and mass resolution of 0.7 Da, cell accelerator voltage 5 V; further MS/MS seetings in Table S6).  

The calibration range was between 0.5 - 7500 ng/L. A separate calibration was done for ciprofloxacin 

and norfloxacin, where solutions were acidified with 0.1% formic acid. The calibration standards 

were prepared in a matrix water similar to tap water, containing 75 mg/L Ca2+, 11 mg/L Mg2+, 9.2 

mg/L Na+, 1.7 mg/L K+, and 4 mg/L urea (resulting in a DOC of 0.8 mg/L), with a conductivity of 

around 600 µS/cm. 

Quantification was done using labeled internal standards (IS). For calculation of the limit of 

quantification (LOQ), the lowest calibration standard with S/N > 10:1 was divided by the matrix 

factor. The matrix factor was calculated from the area of the IS in the sample divided by the average 

of the areas of the IS in the calibration row. The highest LOQ value calculated for all 65 samples was 

determined for each matrix ("worst case" LOQ). For recovery calculation, 17 samples were spiked 

with analytes (100 ng/L for downstream / upstream samples and 250 ng/L for WWTP effluent 

samples) and the relative recovery calculated (concentration of spiked samples minus concentration 

of sample, divided by the concentration of the spiked standard). For amoxicillin C and amoxicillin F, 

where no own labeled IS was available, concentrations were corrected by the recovery. LOQ and 

recoveries are list in the Dataset S10 & S11. For quality control, two transitions and retention time 

deviation were recorded. A tolerance of 80-120% was allowed for the qualifier recovery calculated as 

the average of ratios between the quantifier and qualifier transition over all calibration standards 

compared with the quantifier/qualifier ratio in each sample. The tolerance of the retention time 

deviation, i.e. the difference between the retention time of the analyte and the corresponding IS in 

the same sample, was 0.15 min. 
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Ions, nutrients, and heavy metals analysis 

Cations (Na+, NH4
+, K+, Ca2+, Mg2+), anions (Cl-, NO2

-, NO3
-, PO4

3-, SO4
2-), dissolved nutrients (P-PO4

3-, 

total dissolved phosphorus, N-NH4
+), and dissolved organic carbon (DOC) were measured for all the 

collected water samples. Dissolved metals (Na, Mg, K, Ca, Cr, Mn, Co, Ni, Cu, As, Ag, Cd, Pb) were 

analyzed for selected samples (i.e., VIL3, MUE1 ~ 3). The analysis was performed according to the 

protocol described in Ju et al. (2019). In short, an aliquot of each water sample was filtered on-site 

using 0.45 µm cellulose acetate filters for measuring cations, anions, and nutrients. For measuring 

metals and DOC, an aliquot of each water sample was filtered using GF-filters (pre-burnt at 450 °C for 

15 mins), and acidified (pH < 2.0) using 65% HNO3 on-site and cooled at 4 °C in the dark during 

transportation. All the pretreated samples were stored at 4 °C in the dark upon arrival at the 

laboratory until analyzed. Cations and anions were measured using ion chromatography (IC), and 

metals were measured using high-resolution inductively coupled plasma mass spectrometry (ICP-

MS). The results for Na, Mg, K, Ca were cross-compared between IC and ICP-MS, and no significant 

differences between them were observed (Dataset S12). DOC was measured using a total organic 

carbon analyzer (TOC-L, Shimadzu, Japan), and nutrients were measured by flow-injection analysis 

(ISO 13395, SAN++, Skalar, The Netherlands). The detailed protocols were described in the previous 

study (Ju et al., 2019). A distilled water negative control was also measured to confirm absence of  

contamination (< LOQ for all parameters).  

Estimating the dilution effect on downstream levels of resistance determinants 

As stated in the main text, we derived the Eq.1 according to the following procedure. Assuming 

there are multiple routes of water inflows (i.e., groundwater and/or tributary inputs) in between the 

upstream location A and downstream location B. Under the mass-conservation assumption, the 

following relationship should meet: 

𝑪𝑨𝑸𝑨 + ∑ 𝑪𝒌𝑸𝒌
𝒏
𝒌=𝟏 = 𝑪𝑩(𝑸𝑨 + ∑ 𝑸𝒌

𝒏
𝒌=𝟏 )  

∴ 𝑪𝑩 =
CAQA + ∑ 𝑪𝒌𝑸𝒌

𝒏
𝒌=𝟏

𝑸𝑨+∑ 𝑸𝒌
𝒏
𝒌=𝟏

 (Eq.5) 

Where, CA: Concentration (mass or copies/volume) of a pollute at the upstream location A, CB: 

Concentration of a pollute at the downstream location B, Cn = Concentration of a pollute at one of 

the additional routes for water inflows, QA: River discharge (volume/day) at the upstream location A, 

QB: River discharge at the downstream location B, Qn = River discharge at one of the additional routes 

for water inflows 
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On the other hand, the average rate of concentration change of a pollute between the locations A 

and B “(CB-CA) / CA” could be expressed as the following equation by substituting : 

𝑪𝑩 − 𝑪𝑨

𝑪𝑨
=

𝑬𝒒. 𝟓 −  𝑪𝑨

𝑪𝑨
 

=
𝑪𝑨𝑸𝑨 + 𝑪𝟏𝑸𝟏 + 𝑪𝟐𝑸𝟐 + ⋯ 𝑪𝒏𝑸𝒏 − 𝑪𝑨𝑸𝑨 − 𝑪𝑨 ∑ 𝑸𝒌

𝒏
𝒌=𝟏

𝑪𝑨(𝑸𝑨+∑ 𝑸𝒌
𝒏
𝒌=𝟏 )

  (Eq.6) 

On the other hand, we assume most of additional water inflows are groundwater inputs because 

huge tributaries were not expected in our study distance in both sites by mean runoff (m3/d) models 

run by BAFU, the Swiss Federal Office for the Environment (BAFU, 2000), nor by our observation 

while performing samplings. We assume the quality of groundwater inflows might not be 

significantly different over study distance. This assumption leads to:  

𝟏

𝒏
∑ (𝑪𝒌 − �̅�)𝟐𝒏

𝒌=𝟏 ≈ 𝟎, ∴ 𝑪𝟏𝑸
𝟏

+ 𝑪𝟐𝑸
𝟐

 ⋯ +  𝑪𝒏𝑸
𝒏

≈ �̅�𝑸𝑬,  

Where, 𝑄𝐸 indicates the total quantity of additional water inflows (= ∑ 𝑄𝑘
𝑛
𝑘=1 ) 

Therefore, the Eq.6 could be reduced to: 

𝑪𝑩−𝑪𝑨

𝑪𝑨
=

�̅� − 𝑪𝑨

𝑪𝑨
(

𝑸𝑬

𝑸𝑨+𝑸𝑬
)    (Eq.7) 

Where, 𝐶̅ indicates the representative concentration value for additional water inflows 

The Eq.7 has following two major implications:  

1) The rate of change for the downstream concentration of a pollute depends on its 

concentration in additional water inflows (𝐶̅). 

2) If 
𝐶𝐵−𝐶𝐴

𝐶𝐴
 is normalized by 

𝐶̅ − 𝐶𝐴

𝐶𝐴
 (i.e., 

𝐶𝐵−𝐶𝐴

𝐶𝐴
 ×

𝐶𝐴

𝐶̅ − 𝐶𝐴
=

𝐶𝐵−𝐶𝐴

𝐶̅ − 𝐶𝐴
), the remained term on the right 

[
𝑄𝐸

𝑄𝐴+𝑄𝐸
, hereafter termed as 𝐷𝑃𝐴→𝐵] indicates the proportion of additional inflow quantity to the 

whole river discharge at the downstream location B.  

After rearranging we obtain equation Eq.1 in the main text. We used 𝐷𝑃 for conservative tracers 

as a parameter for assessing dilution effects as this term for those parameters might not be over- or 

under-represented for those tracers. The derivation procedure above was graphically abstracted in 

Fig. 2.1. 

Our first choice for conservative tracer was sodium. In order to confirm the mass-conservation 

assumption, sodium input loadings (EF + US) were compared to downstream loadings. The loadings 

were calculated by multiplying the concentration (mass/volume) of sodium by measured or 
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estimated river discharge (Q, volume/day). For instance, there were two gauging stations in VIL, one 

near US, and the other near D8, and we obtained Q from there (AWA, 2019, Jan. 11;FOEN, 2020, 

Sept. 02), also EF discharge (QEF) from the WWTP-VIL (Dataset S1). Then, those Q values were 

multiplied with corresponding concentrations to finally produce the sodium loadings in US, EF, and 

D8, VIL. In MUE, there was only one gauging station near D4 (FOEN, 2020, Sept. 02). The Q at US (QUS) 

was estimated by the following equation using the dilution factor suggested by Ort and Siegrist 

(2009): 

𝑸𝑼𝑺 = 𝑸𝑬𝑭 × (𝑫𝑭 − 𝟏) (Eq.8) 

Where, DF = 
𝑁𝑎𝐸𝐹−𝑁𝑎𝑈𝑆

𝑁𝑎𝐷1−𝑁𝑎𝑈𝑆
; 𝑁𝑎𝐸𝐹,𝑈𝑆,𝑜𝑟 𝐷1 = Concentration of sodium at EF, US, or D1 

The calculated sodium loadings are given in Fig. S2.9c. As shown in Fig. S2.9c, the sodium loadings 

increased somewhat with downstream distance, which indicates the sodium mass discharged from 

EF is conserved and some additional sodium inputs accumulate over the river continuum. Thus, we 

calculated 𝐷𝑃 over short distance (D1 to D2 for VIL; D1 to D3 for MUE) for sodium, and compared 

with the values for micropollutants. The somewhat increased sodium loadings might indicate there 

were significant inputs of sodium from additional water inflows as evidenced also by the measured 

sodium concentrations in upstream locations and tributaries. Sodium salts are widely distributed 

over the terrestrial environments, and highly soluble. Thus, sodium easily leaches to the groundwater 

and surface water.  

In order to calculated 𝐷𝑃, the representative concentration of water inflows (𝐶̅ in Eq.1) should be 

estimated so that 𝐷𝑃 could not be underestimated. For this purpose, the sodium levels for water 

inflows (𝑁𝑎̅̅ ̅̅
𝑖𝑛) were inferred as shown in Eq.2 in the main text. The calculated 𝐷𝑃 value for sodium 

was compared with the values for micropollutants except for benzotriazole which was consistently 

present in significant concentrations in upstream locations and tributaries, especially in VIL (Dataset 

S9). There were two additional micropollutants which were detected in upstream locations and 

tributaries, i.e. 4/5-methylbenzotriazole and diclofenac (Dataset S10 & 11). However, the upstream 

levels were not significant compared to their levels in downstream locations (< 5%) in most 

samplings, except for VIL3 and MUE2 for 4/5-methylbenzotriazole, and MUE2 for diclofenac. Thus, 

we considered those levels at US generally as insignificant, and set their 𝐶̅  0. According to the 

cluster analysis based on Bray-Curtis dissimilarity distance, 4/5-methylbenzotriazole and 

carbamazepine showed the most similar values compared to sodium (Fig. S2.9a), which indicates that 

these might be two most conservative tracers among the micropollutants. Indeed, their loadings did 

not change between D1 compared to distant downstream locations (D8 for VIL; D4 for MUE) (Fig. 

S2.9d). In contrast, diclofenac and hydrochlorthiazide showed the most dissimilar concentration 
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profiles compared to sodium, and the highest values of 𝐷𝑃 over short distance in general (Fig. S2.9a 

& S2.9b). Their loadings at D8 (VIL) or D4 (MUE) were decreased in most samplings, which indicates 

significant additional sinks (i.g., degradation via water chemistry, solar radiation, microbes, and/or 

sorption to organics/inorganics in the river system), as also known from literature. This loss of mass 

leads to an over-estimation of 𝐷𝑃. 

The estimated Q according to Eq.4 was cross-compared with the values that we obtained from 

gauging stations, and it was confirmed that the estimated Q values were in agreement with actual 

measured data from gauging stations (Fig. S2.9e). Among Q values estimated using different 

conservative tracers, sodium yielded the best prediction of measured Q, so we relied on this tracer in 

our calculation in Fig. S2.9e. This estimated Q was used when we calculate the ARG and intI1 loadings 

over short distances (D2 for VIL; D3 for MUE) and far downstream distance (D8 for both sites) (Fig. 

2.3b, c). The calculation of ARG and intI1 loadings is analogous to the way we calculated the loadings 

for conservative tracers (i.g., loadings = concentration of an indicator × river discharge).  
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Figure S2.1. Sampling locations in the River Suze, Villeret (VIL) in Switzerland. BAFU (2019) Swiss 
water topographical catchment areas: Main river section, Bundesamt für Umwelt (BAFU), CH-3003 
Bern. 
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Figure S2.2. Sampling locations in the River Murg, Münchwilen (MUE) in Switzerland. For side streams, only 1 representative location (S5) was selected for 
sampling in MUE. BAFU (2019) Swiss water topographical catchment areas: Main river section, Bundesamt für Umwelt (BAFU), CH-3003 Bern.
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Figure S2.3. Sampling locations around the treated wastewater discharge point in the river Murg in Münchwilen, Switzerland. (a) Map obtained from the Swiss 

Federal Office for the Environment (https://map.geo.admin.ch/). (b) A schematic diagram explaining the sampling locations for US, EF, and D1. The proportion 

of EF to S1 was 8:2 – the EF + S1 portion was approximated with EF. BAFU (2019) Swiss water topographical catchment areas: Main river section, Bundesamt 

für Umwelt (BAFU), CH-3003 Bern. 

https://map.geo.admin.ch/
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Figure S2.4. The comparison of levels of ARGs and intI1 between sidestreams (S1 ~ 3 in VIL, and S5 in MUE), upstream near EF (US), and 500m downstream 

locations (D1). The treatments (Sidestreams, US, D1) that share the same alphabet are not significantly different each other according to the Kruskal–Wallis 

test, and the following post-hoc test (Dunn’s test, p-adjustment by the Benjamini-Hochberg method) at 5% significance level.   
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Figure S2.5. Levels (gene copies/mL) and relative abundance (copies/16S rRNA gene copies) of ARGs (sul1, ermB, tetW) and intI1 in the upstream, and 

downstream river water quantified by qPCR. The levels (Abs.) and relative abundance (Rel.) of ARGs and intI1 in Villeret (VIL) up to 13.7 km (a), and in 

Münchwilen (MUE) up to 6.8 km (b). The tips of error bars for levels (Abs.) indicate lower and upper values of biological duplicates. 



Chapter 2 – Downstream Fate of Wastewater-borne AMR 

62 
 

 

Figure S2.6. Levels (copies/g TS) – (a), and relative abundance (copies/16S rRNA gene copies) – (b) of 

sul1, and intI1 in river sediment of the Suze near Villeret, and the Murg near Muenchwilen. The g TS 

indicates the mass (g) of total dried solids (TS). D.N.Q. indicates ‘Detected but not quantifiable’ data 

points. 
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Figure S2.7. Comparison of relative abundance (gene copies / 16S rRNA gene copies) of sul1 and intI1 

between river waters and sediments for the samplings in Münchwilen (MUE1 ~ 3). 
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Figure S2.8. Concentrations of sodium, and selected micropollutants in the upstream, and 

downstream river water in Villeret (a), and Münchwilen (b). LOQ indicates the limit of quantification. 

The following abbreviations were used: 4/5MeBT –  4/5-methylbenzotriazole, CBZ – carbamazepine, 

SMX – sulfamethoxazole, N4-AS – N4-acetylsulfamethoxazole, SPR – sulfapyridine, SMT – 

sulfamethazine, TMP – trimethoprim. 
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Figure S2.9. Comparison among different micropollutant indicators using DPD12 or 

3 in terms of cluster analysis based on Bray-Curtis distance – (a), and bar plot – (b). 

The short distance (D2 or 3) and long distance (D8) loadings of sodium – (c), and 

two other conservative tracers (i.e., carbamazepine, 4/5-methylbenzotriazole) and 

other micropollutants not behaving as conservative tracers (i.e.,  diclofenac, and 

hydrochlorothiazide) – (d). The measured or estimated river discharges at D8 (VIL) 

and D4 (MUE) were suggested in (e). The conservative tracers with the most similar 

DPD12 or 3 were highlighted in red box (a), and asterisked in red (b). For diclofenac 

and hydrochlorothiazide in (d), loadings at D8 were calculated using the 

concentration values for the limit of quantification (highlighted with red arrows; 

the actual loadings could be even lower). 
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Figure S2.10. Conductivity profiles recorded at 150 m downstream distance in VIL (a), and 226 m 

downstream distance in MUE (b). X-axis of each diagram indicates the time elapsed after a high 

concentration of NaCl was spiked into the effluent discharge point. The measured-peak arrival time 

was 355 sec in VIL, and 1,103 sec in MUE, of which flow rates correspond to 0.42 m/s for VIL, and 

0.20 m/s for MUE. 
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Figure S2.11. Correlation between GPL (gene per liter) estimated by metagenomics and absolute 

abundance (copies per liter) measaured by qPCR using sul1. The analysis was performed both in 

original unit (a), and in log10-transformed unit (b). Significant correlation between two metrics was 

observed in both units. 
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Figure S2.12.  The comparison between the Structured Antibiotic Resistance Genes (SARG) v2.0 and Comprehensive Antibiotic Resistance Database (CARD) 

v3.1.0 in terms of the Shannon alpha diversity of identified ARG profiles. The ARG profiles were prepared in the unit of genes per million. 
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Figure S2.13. tetQ, mexT, aadA, bacA and sul1 gene-containing contigs identified in this study (pp. 68 

– 69). Contigs are from all analyzed sampling campaigns (VIL1, MUE2 & 3) unless noted otherwise. 

Contigs containing (a) tetQ, (b) mexT, (c) aadA, (d) bacA (Only 6 ORFs around bacA were shown for 

the contig k121_6061), (e) sul1 (from VIL1 and MUE2). The proteins sequences corresponding to the 

genes showed > 90.0 % percent identity (PIdent) to reference genes using DIAMOND protein search 

against NCBI nr protein database. The name of contigs was italicized (e.g. k121_XXX). Only contigs 

longer than 1,000 bp are shown. 
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Table S2.1. GPS coordinates (Swiss-coordinate system) for sampling locations. 

Site Location GPS coordinates 

VIL US5 560524, 218622 

VIL US4 562557, 220280 

VIL US3 566310, 221933 

VIL US2 567657, 222317 
VIL US 568164, 223236 

VIL EF 568550, 223401 

VIL D1 569013, 223541 

VIL D2 570334, 224318 

VIL D3 572119, 225396 

VIL D4 573934, 226170 

VIL D5 575490, 226692 

VIL D6 577448, 226773 

VIL D7 579092, 227312 

VIL D8 580168, 227051 

VIL S0 568131, 223208 

VIL S1 574759, 226468 

VIL S2 566310, 221933 

VIL S3 562126, 219973 

MUE US 717378, 261105 

MUE EF 717262, 261193 

MUE D1 716747, 261384 

MUE D2 716209, 261365 

MUE D3 715236, 261440 

MUE D4 714301, 261527 

MUE D5 713664, 262274 

MUE D6 713256, 263098 

MUE D7 712681, 263693 

MUE D8 712284, 264353 

MUE S5 713398, 262795 
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Table S2.2. qPCR primers and probes used in this study.  

  

Primer Genes Assay type Sequences (5' to 3') Annealing temp. (°C)* References 

ermB-F 
ermB SYBR Green 

GATACCGTTTACGAAATTGG 
63 (Chen et al., 2007) 

ermB-R GAATCGAGACTTGAGTGTGC 

blaCTX-F 
blaCTX SYBR Green 

CTATGGCACCACCAACGATA 
60 (Marti et al., 2013) 

blaCTX-R ACGGCTTTCTGCCTTAGGTT 

tetW-F   CGGCAGCGCAAAGAGAAC  

60 (Walsh et al., 2011) tetW-R tetW TaqMan CGGGTCAGTATCCGCAAGTT 

tetW-Probe   FAM-CTGGACGCTCTTACG-TAMRA  

qSUL653f   CCGTTGGCCTTCCTGTAAAG 

60 (Heuer and Smalla, 2007) qSUL719 sul1 TaqMan TTGCCGATCGCGTGAAGT 

tpSUL1-Probe   FAM-CAGCGAGCCTTGCGGCGG-TAMRA 

intI1-F   GCCTTGATGTTACCCGAGAG 

60 (Barraud et al., 2010) intI1-R intI1 TaqMan GATCGGTCGAATGCGTGT 

intI1-Probe   FAM-ATTCCTGGCCGTGGTTCTGGGTTTT-BHQ1 

BAC349-F   AGGCAGCAGTDRGGAAT 

53 (Takai and Horikoshi, 2000) BAC806-R 16S rRNA TaqMan GGACTACYVGGGTATCTAAT 

BAC516F-Probe   FAM-TGCCAGCAGCCGCGGTAATACRDAG-TAMRA 

* These values were modified from the original references, and previously optimized in our laboratory settings. 
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Table S2.3.  Statistics for de-novo assembly of metagenomes in this study.  

Seq_ID Sample N50 (bp) Average (bp) Min_size (bp) Max_size (bp) Total_reads 

M17 VIL1:US 592 593 200 466,585 75,210,034 

M18 VIL1:EF 922 778 200 850,734 75,907,548 

M19 VIL1:D1 779 721 200 495,260 78,803,830 

M20 VIL1:D2 798 730 200 391,042 83,042,550 

M23 VIL1:D5 673 654 200 350,937 87,969,544 

M26 VIL1:D8 654 640 200 318,279 95,726,670 

M54 MUE2:US 783 699 200 503,974 90,222,038 

M55 MUE2:EF 821 746 200 326,854 84,037,346 

M56 MUE2:D1 888 761 200 895,036 99,669,088 

M58 MUE2:D3 854 741 200 895,047 89,883,398 

M60 MUE2:D5 891 754 200 893,940 83,842,740 

M63 MUE2:D8 891 748 200 894,872 78,390,602 

M66 MUE3:US 788 694 200 893,351 79,266,602 

M67 MUE3:EF 890 766 200 319,588 72,612,446 

M68 MUE3:D1 981 802 200 903,965 76,994,406 

M70 MUE3:D3 912 773 200 895,081 80,602,956 

M72 MUE3:D5 905 761 200 895,035 96,339,350 

M76 MUE3:D8 895 751 200 893,549 87,042,100 
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Table S2.4.  Description of quantitative metagenomic metrics used in this study. The Python scripts used for their calculation and accompanying tutorials can be 

found on the main author’s personal GitHub page (https://github.com/myjackson).  

Metric Definition Calculation method Reference 

RPK Reads per kilobase 
Count the number of reads assigned to a gene (ORF), and 
normalize by the length of the gene.  

(Katz et al., 2010) 

PMSF Per million scaling factor Sum all the RPKs in a sample, and divide by one million. (Li and Dewey, 2011) 

GPM Genes per million Divide the RPK of each gene by PMSF (Ju et al., 2019) 

RPK-16S* Reads per kilobase for 16S rRNA genes Sum all the RPKs of 16S rRNA genes in a sample Modified from (Ju et al., 2019) 

GP16S** Genes per 16S rRNA gene Divide the RPK of each gene by RPK-16S (Ju et al., 2019) 

GPL Genes per liter 
Multiply the GP16S of each gene with the 16S rRNA gene copies 
per liter quantified by qPCR and normalized to sample volume 

(Ju et al., 2019) 

* The RPKs of 16S rRNA genes were calculated as follows: 1) Taxonomy was assigned to each ORF using the SILVA v138 database (Quast et al., 2013), and the 
ORFs to which taxonomy was successfully assigned were considered as 16S rRNA gene fragments. 2) The number of reads for each identified 16S rRNA gene 
fragments were counted, and it was divided by the reference length. Only the 16S rRNA gene fragments with > 85.0 % identity and > 200 bp alignment 
length were considered.  
** The accuracy of GPL was confirmed by comparing those values with qPCR absolute abundance using sul1 as shown in the Fig. S2.11.  

 

  

https://github.com/myjackson
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Table S2.5. Information on quantitative PCR validation. Cq indicates quantification cycle, LOD denotes the limit of detection, S.D. indicates standard deviation, NTC means non-

template control. TaqMan probe was termed as "Hydrolysis probe" according to Bustin et al. (2009). An extraction control was prepared by filtrating sterilized nanopure 

distilled water followed by DNA extraction to control potential contamination during water filtration and DNA extraction processes. 

qPCR primer Sample 
Specificity verification 
method 

Slope 
qPCR- 
efficiency 

Y-intercept 
Linear dynamic range 

(copies - copies) 
LOD-copies 

(Cq) 
S.D. at LOD 
(min - max) 

Cq of the NTC 
Cq of the 
experiment control 

sul1 

Wat-Rep1 Hydrolysis probe  -3.42 ~ -3.46 1.944 ~ 1.962 40.1 ~ 40.7 50 - 50,000,000 50 (33.8 - 34.3) 0.37 - 0.41 N.D. 36.0 

Wat-Rep2 Hydrolysis probe  -3.28 ~ -3.42 1.962 ~ 2.018 39.2 ~ 40.1 50 - 50,000,000 50 (33.8 - 34.6) 0.37 - 0.81 N.D. Not Analyzed 

Sediment Hydrolysis probe -3.38 1.976 39.52 50 - 50,000,000 50 (34.0) 0.46 N.D. Not Analyzed 

intI1 

Wat-Rep1 Hydrolysis probe  -3.47 ~ -3.49  1.935 ~ 1.942 41.5 ~ 41.6 50 - 50,000,000 50 (34.9 - 35.4) 0.52 - 0.68 N.D. 39.5 

Wat-Rep2 Hydrolysis probe  -3.46 ~ -3.49  1.935 ~ 1.945 41.6 ~ 41.9 50 - 50,000,000 50 (35.4 - 36.1) 0.50 - 0.68 N.D. Not Analyzed 

Sediment Hydrolysis probe -3.39 1.974 40.66 50 - 50,000,000 50 (35.0) 0.44 N.D. Not Analyzed 

tetW 
Wat-Rep1 Hydrolysis probe -3.73 1.854 42.8 50 - 50,000,000 50 (35.4) 0.34 N.D. 37.7 

Wat-Rep2 Hydrolysis probe  -3.75 ~ -3.79 1.836 ~ 1.849 42.9 - 43.3 50 - 50,000,000 50 (35.3 - 35.7) 0.45 - 0.48 40 Not Analyzed 

ermB 
Wat-Rep1 Melt curve analysis  -3.66 ~ -3.70 1.863 ~ 1.875 39.8 ~ 40.0 50 - 50,000,000 50 (33.4 - 34.1) 0.36 - 0.88 45 N.D. 

Wat-Rep2 Melt curve analysis  -3.47 ~ -3.66 1.877 ~ 1.942 38.2 ~ 38.6 50 - 50,000,000 50 (32.6 - 32.8) 0.17 - 0.31 N.D. Not Analyzed 

blaCTX 
Wat-Rep1 Melt curve analysis -3.60 1.895 41.2 500 - 50,000,000 500 (31.5) 0.08 N.D. Not Analyzed 

Wat-Rep2 Melt curve analysis -3.58 1.902 40.9 50 - 50,000,000 50 (34.8) 0.22 40 Not Analyzed 

16S rRNA gene 

Wat-Rep1 Hydrolysis probe -3.48 1.939 41.4 50 - 50,000,000 50 (32.3) 0.24 33.5 33.2 

Wat-Rep2 Hydrolysis probe -3.47 1.941 41.4 50 - 50,000,000 50 (32.6) 0.27 33.8 Not Analyzed  

Sediment Hydrolysis probe -3.52 1.922 41.2 50 - 50,000,000 50 (32.3) 0.18 35.7 Not Analyzed 
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Table S2.6. MS/MS settings for measuring micropollutants. F1= Quantifier, F2= Qualifier. 

 

 

Compound 
Precursor 

mass 
[m/z] 

Product mass 
F1/F2 
[m/z] 

 

Polarity 

Collision 
Energy 
F1/F2 

[V] 

Retention 
time 
[min] 

Dwell 
time 
[ms] 

4/5-Methylbenzotriazole 134.1 79.1/106.1 Positive 20/18 11.6 25.7 
4/5-Methylbenzotriazole-d6 140.1 85.1/112.1 Positive 22/18 11.6 25.7 
Amisulpride 370.2 242.0/112.1 Positive 30/34 8.2 18.1 
Amisulpride-d5 375.2 242.0/117.1 Positive 34/34 8.1 18.4 
Amoxicillin C 366.1 159.9/114.0 Positive 14/54 9.7 14.5 
Amoxicillin F 189.1 170.8/119.8 Positive 18/38 8.7 16.0 
Azithromycin 749.5 594.1/158.1 Positive 32/38 12.2 31.9 
Azithromycin-D3 752.5 594.4/158.0 Positive 30/38 12.2 31.9 
Benzotriazole 120.1 65.2/92.2 Positive 20/16 9.5 13.2 
Benzotriazole-d4 124.2 69.1/96.1 Positive 26/18 9.4 13.0 
Candesartan 441.2 263.1/235.2 Positive 12/24 15.6 31.5 
Candesartan-d5 446.2 268.1/240.1 Positive 16/24 15.6 31.5 
Carbamazepine 237.1 194.0/193.1 Positive 22/38 14.3 64.8 
Carbamazepine-d8 245.2 202.1/201.2 Positive 30/34 14.2 75.2 
Ciprofloxacin 332.1 314.2/231.0 Positive 22/42 9.4 12.9 
Ciprofloxacin-d8 340.2 322.2/235.1 Positive 22/42 9.4 12.9 
Citalopram 325.2 108.8/262.0 Positive 38/18 12.7 52.0 
Citalopram-d6 331.2 108.9/262.1 Positive 30/18 12.7 52.0 
Clarithromycin 748.5 158.1/590.4 Positive 26/18 15.7 30.0 
Clarithromycin-d3 751.5 161.3/593.4 Positive 30/14 15.7 30.0 
Diclofenac 296.0 215.0/214.1 Positive 30/20 17.6 80.8 
Diclofenac-d4 300.1 219.1/218.0 Positive 34/20 17.6 70.5 
Hydrochlorothiazide 295.9 269.0/204.9 Negative 18/22 6.6 19.9 
Hydrochloro-thiazide-13C,d2 299.0 269.8/206.0 Negative 18/26 6.6 19.9 
Irbesartan 429.2 207.1/180.1 Positive 26/46 15.8 30.6 
Irbesartan-d4 433.3 211.1/184.1 Positive 30/50 15.8 30.6 
Mecoprop 213.0/215.0 141.0/143.1 Negative 12/8 16.6 42.4 
Mecoprop-d6 219.1/221.1 147.3/149.2 Negative 12/8 16.5 34.6 
Metoprolol 268.2 116.1/72.2 Positive 20/24 10.2 19.1 
Metoprolol-d7 275.2 123.0/79.1 Positive 18/22 10.2 19.1 
Metronidazole 172.1 128.0/82.1 Positive 10/20 6.5 22.0 
Metronidazole-d4 176.1 128.0/82.1 Positive 14/30 6.5 24.3 
N4-Acetylsulfamethoxazol 296.1 134.0/65.0 Positive 22/60 11.2 23.1 
N4-Acetylsulfamethoxazole-d5 301.1 139.1/69.3 Positive 26/50 11.2 23.0 
Norfloxacin 320.1 302.0/231.0 Positive 22/50 9.2 13.2 
Norfloxacin-d5 325.2 307.0/231.0 Positive 22/50 9.2 13.2 
Sulfamethazine 279.1 92.0/186.0 Positive 36/16 8.8 14.7 
Sulfamethazine-d4 283.1 96.1/186.0 Positive 36/16 8.8 14.7 
Sulfamethoxazole 254.1 108.0/92.0 Positive 30/20 9.7 13.9 
Sulfamethoxazole-d4 258.1 112.1/96.1 Positive 26/34 9.6 14.0 
Sulfapyridine 250.1 108.0/92.0 Positive 30/20 7.5 21.0 
Sulfapyridine-d4 254.1 112.1/96.1 Positive 30/34 7.5 21.0 
Tramadol 264.2 58.2/42.2 Positive 16/80 10.1 16.1 
Tramadol-d6 270.2 64.2/45.2 Positive 24/80 10.1 16.1 
Triclosan 286.9 35.2/142.1 Negative 20/32 18.8 178.6 
Triclosan-d3 290.0 35.2 Negative 8 18.8 131.3 
Trimethoprim 291.2 229.8/261.0 Positive 22/30 8.1 18.4 
Trimethoprim-d9 300.2 234.1/264.0 Positive 26/30 8.0 19.3 
Venlafaxine 278.2 260.2/115.0 Positive 4/62 12.0 29.0 
Venlafaxine-d6 284.3 266.3/121.0 Positive 10/30 12.0 29.0 
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Abstract 

Untreated combined sewage (i.e., bypass) is often discharged by wastewater treatment plants to 

receiving rivers during stormwater events, where it may contribute to increased levels of antibiotic 

resistance genes (ARGs) and multi-resistance risk factors (i.e., multi-resistant bacteria and multi-

resistance genomic determinants (MGDs)) in the receiving water. Other contamination sources, such 

as soil runoff and resuspended river sediment could also play a role during stormwater events. Here 

we report on stormwater event-based sampling campaigns to determine temporal dynamics of ARGs 

and multi-resistance risk factors in bypass, treated effluent, and the receiving river, as well as 

complimentary data on catchment soils and surface sediments. Both indicator ARGs (qPCR) and 

resistome (ARG profiles revealed by metagenomics) indicated bypass as the main contributor to the 

increased levels of ARGs in the river during stormwater events. Furthermore, we showed for the first 

time that the risk of exposure to bypass-borne multi-resistance risk factors increase under 

stormwater events and that many of these MGDs were plasmid associated and thus potentially 

mobile. In addition, elevated resistance risk factors persisted for some time (up to 22 hours) in the 

receiving water after stormwater events, likely due to inputs from distributed overflows in the 

catchment. This indicates temporal dynamics should be considered when interpreting the risks of 

exposure to resistance from event-based contamination. We propose that reducing bypass from 

wastewater treatment plants may be an important intervention option for reducing dissemination of 

antibiotic resistance.  

 

Keywords 

Antimicrobial Resistance; Stormwater Events; Wastewater Bypass; Metagenomics; River  
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3.1. Introduction 

Antibiotic resistance has been considered one of the biggest challenges to public health, and its 

global increase has been recognized as an impending public health crisis by intergovernmental 

entities. Antibiotic resistance is transmitted not only via direct human-to-human interaction, but also 

via multi-sectoral routes, such as interdependent routes among humans, food animals, and 

environments (McEwen and Collignon, 2018).  

Wastewater treatment plants (WWTPs) are a known route through which sewage-borne 

resistance genes are discharged into the environment (Bürgmann et al., 2018;Rizzo et al., 2013). Even 

though many studies showed that the level (genes per volume) of antibiotic resistance genes (ARGs) 

decreases during wastewater treatment processes (Ju et al., 2019;Marano et al., 2020;Rodriguez-

Mozaz et al., 2015), profound levels of ARGs remain in treated effluents, which leads to profound 

impacts of WWTPs on receiving rivers (Lee et al., 2021;Rodriguez-Mozaz et al., 2015).  

The abovementioned studies have generally been conducted under conditions of normal WWTP 

operation. However, many sewer systems or WWTPs will regularly experience high flow events 

caused e.g. by high intensity precipitation. If such flows exceed the capacity of the WWTP or sewer 

system, it may lead to wastewater bypass – i.e. the release of untreated combined sewage into 

receiving waters (Weyrauch et al., 2010). During stormwater events, the level of ARGs in wastewater-

receiving waters can increase due to the input of wastewater bypass, but high volume flows from 

precipitation may reduce or compensate. Resistance levels may also increase during stormwater 

events due to inputs from other non-point sources. Soil runoff from river catchment, and sediment 

resuspension are considered as potential non-point sources under stormwater events (Tsihrintzis and 

Hamid, 1997). Storm drains and urban runoff (Baral et al., 2018) may represent temporary point 

sources at various points in a catchment. However, bypass is expected to contain the highest 

abundance of resistance determinants (i.e., ARGs and resistant bacteria) and multi-resistance risk 

factors (i.e., multi-resistant bacteria and multi-resistance genomic determinants (MGDs)) because 

untreated sewage contains resistance determinants (Ju et al., 2019;Rodriguez-Mozaz et al., 2015), 

and multi-resistant bacteria at considerably higher levels than treated effluent (Czekalski et al., 

2012). The potential combined effects of different contributors on receiving waters during 

stormwater events were investigated in the Stroubles Creek, Virginia, USA by monitoring surface 

water qualities (Garner et al., 2017). Two other studies monitored combined-sewage overflows and 

the receiving surface waters noted elevated levels of ARGs in the receiving waters during stormwater 

events in the Hudson River, Raritan Bay, and Passaic River, USA (Eramo et al., 2017), and North Shore 

Channel, USA (Chaudhary et al., 2018). A study performed in the Antelope Creek in Lincoln, 
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Nebraska, USA (Baral et al., 2018) that does not receive wastewater, the authors found that inflows 

from storm drains had the strongest impact on the riverine resistome (i.e., total ARGs identified using 

shot-gun sequencing) compared to impacts from sewage leakage, street sweepings, soils, and 

sediments. While wastewater-receiving river waters have been studied quite intensively so far, there 

have thus been comparatively few studies systemically examining the combined effects among 

potential contamination sources. For instance, the contribution of ‘bypass’ has not been 

systematically compared with other potential sources (i.e., treated effluent, surface soil runoff, and 

sediment resuspension), thus whether those other sources also contribute significantly to the 

increase of riverine ARGs or not remains unanswered. Furthermore, the potential existence of 

bypass-borne ‘multi-resistance’ risk factors in the river has not been known. 

In this study we therefore investigated the effect of stormwater events leading to bypass 

discharge on a highly wastewater-impacted river, the River Murg near the WWTP Münchwilen, 

Switzerland. The main goals of this study were 1) to assess the impact of stormwater-related 

disturbance and resilience of the resistome of the Murg river by monitoring temporal dynamics of 

the resistome during stormwater events that lead to combined-sewage bypass, 2) to identify the key 

source(s) which contribute the most to the increase of riverine resistance levels, and 3) to assess the 

impact of stormwater events in terms of multi-resistance risk factors. We used various molecular 

biological, microbiological, and ecological parameters to identify the key factor among different 

pollution sources. Those parameters include absolute and relative abundance of well-known 

anthropogenic antibiotic resistance markers (i.e., sul1, and intI1) by quantitative PCR (qPCR) and 

alpha- and beta-diversity analysis of the resistome based on environmental shotgun metagenomics. 

This approach was motivated by the hypothesis that different sources would be distinguishable by 

the different (relative) abundance and/or the composition and diversity of resistance indicators. To 

analyze multi-resistance risk factors, we used metagenome-assembled contigs and heterotrophic 

cultivation – presumptive multi-resistant bacteria and MGDs, which are defined as contigs where ≥ 2 

ARGs conferring resistance to different antibiotic classes are co-located in this study. The underlying 

hypothesis was that untreated combined-sewage (i.e., bypass) is more likely to contain high levels of 

multi-resistance risk factors, and thus their abundance might increase in receiving waters during 

stormwater events. 

3.2. Materials and Methods 

3.2.1. Site description and samplings 

Samples were obtained from the river Murg near Münchwilen, Thurgau, in Switzerland which is 

one of the most wastewater-impacted rivers in Switzerland,. This site was well studied under dry-
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flow condition in 2018 (Lee et al., 2021), and has the following characteristics: 1) High proportion of 

effluent discharge to receiving water discharge (33.0 – 38.0 % under base-flow condition), 2) No 

known point-source inputs exist other than one WWTP, 3) The WWTP receives combined sewage 

(community sewage + storm drain) during stormwater events, and the bypass (i.e., untreated 

combined sewage) is discharged after primary sedimentation to the receiving river when the 

treatment and rainwater storage capacity of the WWTP is exceeded during heavy rainfall, 4) Other 

than one discharge point for bypass near the WWTP (Fig. 3.1 – left side), there are additional 

upstream points where combined-sewage may be discharged: The nearest one in 800 m, and the 

farthest one in 11.0 km upstream of the WWTP (H. Zbinden, personal communication to authors, 

June 29, 2021), 5) the river catchment is widely utilized as agricultural area (i.e., pasture and meadow 

for livestock farms) (BAFU, 2013). Coordinates and key information on the sampling sites as well as 

information on the WWTP Münchwilen are summarized in Dataset S1. 

 

Figure 3.1. Left side: Schematic diagram of wastewater and bypass flow and treatment at the wastewater 
treatment plant of Münchwilen (CH) and discharge locations in the receiving waters. Right side: satellite image 
map showing location of the WWTP and sampling locations in the River Murg, and for adjacent soils near the 
city of Münchwilen. WAT: water sampling in the river upstream (US, 200 m) and downstream (DS 500 m) of the 
wastewater discharge point and of effluent (EF) and bypass (BP). SED: sites for sediment sampling. SOIL: sites 
for soil sampling. 

On June 25 (DRY1) and August 27 (DRY2) in 2019, water samples were obtained under base-flow 

condition (no precipitation in the previous 24 hours) over 24 hours in hourly 1 L batches using 

autosamplers (ISCO, USA) installed at three sampling points: river Murg 200 m upstream (US) and 

500 m downstream (DS) of the wastewater discharge point, and from effluent (EF) (prior to 

discharge). Water samples were cooled with ice and cooling packs inside the autosamplers. Surface 



Chapter 3 – Impact of Stormwater Events 

82 
 

soils and sediments (< 5 cm) from the river catchment were obtained in a separate campaign under 

base-flow condition on May 28, 2019 (DRY0) as shown in Fig. 3.1 – right side: Two soil samples each 

were obtained from forests (F1, 2), meadows (M1, 2), and pastures (P1, 2). River sediments were 

sampled once at the DS and US locations, and at two sites (M1, 2) further upstream (0.45 and 1.0 

km). Both surface soil and sediment samples were obtained by subsampling and pooling 5 

subsamples from each location into sterile containers on site.  

Event-based sampling campaigns were carried out over the summer of 2019. Weather forecasts 

(provided by MeteoSwiss) for the Münchwilen region were monitored from July to September 2020. 

When heavy rainfall was predicted for the catchment area of the Murg, autosamplers were deployed 

in the same way as described for base-flow sampling for US, DS, and EF sites. An additional 

autosampler was installed at the wastewater bypass line (BP) of the WWTP prior to discharge (Fig. 

3.1 – left side). Two event-based sampling campaigns were eventually performed on August 12-13 

(13:00 – 12:00) and September 23 (01:00 – 24:00), 2019 when there was a total of 10.5 mm and 20.0 

mm of precipitation during 48 hours (24 hours on the sampling date plus the previous 24 hours, refer 

to Fig. S3.1) (MeteoSwiss, 2019, December 20). During these events, BP could only be sampled when 

there was sufficient bypass flow while the autosampler was operating.  

All samples were cooled at 4 °C in the dark while being transported to the laboratory within 32 

hours (from the starting time of auto-samplings). 

3.2.2. Sample pooling strategy  

For DRY1 and DRY2 sampling campaigns, upon arrival at the laboratory, hourly water samples 

were pooled over 6 consecutive hours to produce 4 samples for further analysis (i.e., morning (MOR, 

06:00-11:00), afternoon (AFT, 12:00-17:00), evening (EVE, 18:00-23:00), and night (NIG, 24:00-

05:00)) for every sample type (US, DS, EF). Exceptions were made for MOR and NIG samples in DRY1-

EF where we could not obtain samples during 01:00 – 07:00 due to too low water levels in the 

outflow (Table S3.1).  

For RAIN1 and RAIN2 sampling campaigns, equal volumes of hourly water samples (i.e., each 1.0 

L) were pooled from time intervals before, during, between, and/or after stormwater events for 2 – 7 

consecutive hours as shown in Table S3.1. Those pooled samples were stored at 4 °C in the dark, and 

further analysis (i.e., cultivation and biomass filtration) was performed the next day (after < 16 

hours). 

The information on BP flow condition and sample pooling was encoded into the sample labeling 

scheme, which denotes samples as BP or no BP (nBP) depending on BP flow at the time of sampling. 

The sampling times of pooled samples is also given. For example, “BP-2(+8-9h)” denotes the second 
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sample taken during active bypass flow, and is a composite sample taken from 8 to 9 am. All sample 

designations are listed in Table S3.1. 

3.2.2. Heterotrophic plate counts  

Colony counts of presumptive clarithromycin and tetracycline resistant bacteria (CLR/TET) was 

shown to be an useful indicator for anthropogenic resistance inputs in our previous studies (Czekalski 

et al., 2012;Lee et al., 2021). The CLR/TET colonies were cultivated for water samples using biomass 

concentrated on 0.2 µm pore size cellulose nitrate filters followed by incubation on R2A agar plates 

in the presence of clarithromycin (4.0 mg/L) and tetracycline (16.0 mg/L) as outlined in our previous 

publications (Czekalski et al., 2012;Lee et al., 2021). Samples were diluted before filtration using 

0.85% NaCl according to the previously optimized ranges (i.e., 10 mL loading volumes of 10-3 ~ 10-1 

diluted samples) (Lee et al., 2021). Contamination controls using a blank solution (i.e., sterile 0.85% 

NaCl) were performed for each sampling campaign, and no growth of colonies was confirmed. 

Technical triplicates were incubated for each sample, and standard errors of triplicates are shown as 

error bars. 

3.2.3. Biomass filtration, DNA extraction, and quantitative PCR 

To obtain concentrated suspended biomass for DNA extraction, water samples were filtered 

through a sterilized 0.2 µm pore size cellulose-nitrate filter (Sartorius, Germany) using autoclaved 

Nalgene™ filter units (Thermo Fisher Scientific, USA). The maximum filtration volume was up to 1.0 L 

for river waters, 0.5 L for EF, and 0.1 L for bypass, but the exact volume varied by sample because 

filters were clogged at different volumes (Dataset S2). After biomass filtration, the filters were stored 

at -20 °C until processing for DNA extraction. Soil and sediment samples were frozen immediately 

after arrival at the laboratory and stored at -20 °C until processed further for DNA extraction. 

DNA extraction was performed using DNeasy PowerWater Kit (Qiagen, Germany) for water 

samples, and DNeasy PowerMax Soil Kit (Qiagen, Germany) for soils and sediments according to the 

manufacturer’s instruction. After extraction, DNA quality indicators (i.e., 260/280 and 260/230 

absorbance ratios) were checked using NanoDrop One spectrophotometer (Thermo Fisher Scientific, 

USA), and concentrations were analyzed using both NanoDrop and Qubit™ dsDNA BR Assay Kit 

(Thermo Fisher Scientific, USA) (Dataset S2). The extracted DNA samples were stored at -20 °C until 

analyzed. 

qPCR targeting two resistance indicators (i.e., sul1 and intI1) and the 16S rRNA gene were 

performed as outlined in our previous studies (Czekalski et al., 2014;Ju et al., 2019;Lee et al., 2021). 

The two resistance indicator genes (i.e., sul1 and intI1) used in our study are two of the most widely 

used genetic markers for tracking anthropogenic sources of resistance (Berendonk et al., 
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2015;Gillings et al., 2015). Primers are given in Table S3.2, and key information for qPCR validation is 

given in Table S3.3. Standards were run in quintuplicates, samples in triplicate. Measurements with 

Cp values above negative controls but below the limit of detection (LOD; average Cp of lowest valid 

standard), or which had a standard deviation of Cp values of triplicates > 0.5 were not quantified, and 

labeled as ‘Detected but not quantifiable (D.N.Q.)’. Samples without valid Cp or with average Cp 

values ≥ smallest Cp value from the non-template controls were indicated as ‘Not-detected (N.D.)’. 

Standard errors of triplicate measurements are displayed as error bars in the figures. 

To calculate absolute abundances from qPCR results, we calculated the total number of gene 

copies per biomass filter and normalized by filtration volumes for water samples (i.e., copies per 

volume). For soils and sediments, the total copies measured in wet mass were normalized to dry 

mass (i.e., copies per g dried soils or sediments). The dry mass of soils and sediments was determined 

according to Standard Methods (APHA-AWWA-WPCF., 1981).  

3.2.4. Shotgun metagenomic sequencing and downstream data analysis 

The following DNA samples were selected for shotgun metagenomics sequencing: 1) 6 samples 

from two DRY samplings (i.e., the same DNA mass (ng) of different time points (MOR-AFT-EVE-NIG) 

were pooled together for each location; 3 locations (US, EF, DS) from each campaign are included) 

and 2) 4 time points (BP-1(+1h), nBP(+2h), nBP(+6-11h), and nBP(+24h)) for US and DS, 2 time points 

(BP-1(+1h), nBP(+24h)) for EF, and 1 time point for bypass (BP-1(+1h)) from RAIN1, 3) 4 time points 

(nBP(+1-3h), BP-3(+10-11h), nBP(+12-14h), and nBP(+18-24h)) for US, DS, EF, and 3 time points (BP-

1(+4h), BP-2(+8-9h), BP-3(+10-11h)) from RAIN2. Information on the selected samples and general 

information on the obtained metagenomics libraries is given in Dataset S3. In addition to our own 

samples, raw metagenome reads of soils from two other studies (i.e., grazed and ungrazed grassland 

soils from Sinkiang/Inner Mongolia in China; compost amended, and non-amended greenhouse soils 

from microcosm experiments in Virginia, USA) were downloaded from the Sequence Read Archive 

(SRA) (Chen et al., 2019;Zheng et al., 2021), and subjected to bioinformatics analysis (Dataset S3). By 

comparing with this data, we expected to draw more general conclusion, e.g., by ruling out whether 

or not the chance that the soil resistome from other regions with similar or different land-usages 

could be similar to the resistome of stormwater-disturbed waters.  

The selected DNA samples from our study were sequenced using the Illumina Novaseq6000 with a 

paired-end (2  150) strategy by Novogene Europe (Cambridge, UK). The reads containing adapters 

and low quality reads (N > 10 % and quality score ≤ 5) were removed by Novogene, and the read 

qualities were double checked by the authors using FastQC v0.11.4 (Andrews, 2010).  
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For resistome analysis, we used a read-based annotation approach because assembly efficiencies 

(i.e., percentage aligned sequences calculated using eq.1) were relatively low for soil and sediment 

samples. As a result, resistance gene profiles could not be properly represented using the de-novo 

assembly based annotation approach used in our previous publication (Lee et al., 2021) (Fig. S3.2).  

Assembly Efficiency (%) =  
∑ (𝐶𝑜𝑛𝑡𝑖𝑔 𝐿𝑒𝑛𝑔𝑡ℎ𝑠𝑖 × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖)𝑛

𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑡𝑎𝑔𝑒𝑛𝑜𝑚𝑒 𝑟𝑒𝑎𝑑 𝑏𝑎𝑠𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒
× 100    (eq. 1) 

Where, n denotes the total number of assembled contigs in a sample and average coverage 

indicates the average sequencing depths per contig calculated according to Albertsen et al. (2013). 

Read-based ARG annotation was performed using DeepARG short-reads pipeline v1.0.2 with 

default parameters. This pipeline was developed to process short-reads and to find and annotate 

resistance genes using a deep learning algorithm after incorporating several ARG databases publicly 

available (Arango-Argoty et al., 2018). In short, this pipeline finds and quantifies ARG-like and 16S 

rRNA gene-like reads, and normalizes the reads assigned to ARGs to 16S rRNA gene-like reads 

(Arango-Argoty et al., 2018). Both our samples and downloaded metagenomes (from SRA) were 

analyzed using this approach. 

In water samples only (where assembly efficiencies were relatively high, > 51.0 %), a de-novo 

assembly based approach was used for the limited purpose of analyzing MGDs. We followed the 

work-flow described in our previous publications (Ju et al., 2019;Lee et al., 2021). A short summary of 

the bioinformatics work-flow is also suggested in the supporting information (SI). Identification of 

ARGs was based on two published databases - CARD v3.1.0 protein homolog model (Alcock et al., 

2020) for ARGs, and INTEGRALL v1.2 (Moura et al., 2009) for intI1. 

3.2.5. Analysis of multi-resistance genomic determinants  

 In order to list-up MGDs, all contigs containing ≥ 2 ARGs that confer resistance to different classes 

of antibiotics were sub-selected (Dataset S6). For defining resistance classes, we strictly followed the 

classification of antibiotics shown in CARD v3.1.0. The occurrence of MGDs was quantitatively 

assessed in terms of the relative abundance defined as follows in this study (eq.2): 

Relative Abundance of total MGDs =  ∑ 𝐶𝑜𝑣𝑀𝐺𝐷−𝑖

𝑚

𝑖=1

/ ∑ 𝐶𝑜𝑣𝐶𝑜𝑛𝑡𝑖𝑔−𝑗

𝑛

𝑗=1

   (eq. 2)  

Where, 𝐶𝑜𝑣𝑀𝐺𝐷 indicates the average coverage of a MGD; 𝐶𝑜𝑣𝐶𝑜𝑛𝑡𝑖𝑔 denotes the average 

coverage of a contig; m, n indicate the total number of MGDs and contigs, respectively, in a sample. 

The ARGs physically co-located within MGDs were further visualized in a directed network using R 

(igraph). The network analysis was performed using an adjacency matrix produced from two vertices 
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(two co-located ARGs) and an edge (co-occurrence frequency). The edge information was produced 

according to the following equation (eq.3): 

A = [The MGDs containing ARG-A in all samples], B = [The MGDs containing ARG-B in all samples] 

𝐸𝐴𝑅𝐺−𝐴→𝐴𝑅𝐺−𝐵 = 𝑛(𝐴 ∩ 𝐵)/ 𝑛(𝐴)    (eq. 3) 

A detailed example of the derivation process for edges is given in the SI.  

We tried to assign taxonomy to MGDs using Kraken2 (Wood et al., 2019), Kaiju v1.7.2 (Menzel et 

al., 2016) and BLAST against NCBI-nt database (Sayers et al., 2019) as outlined in our previous 

publication (Lee et al., 2021). In short, we considered the assigned taxonomy as a valid information 

only if all three approaches yielded a consensus classification at genus level. 

3.2.6. Statistical analysis and visualization 

All statistics and graphs were produced using R. The Shannon-index was used as a parameter for 

alpha-diversity, and calculated using Vegan (Oksanen et al., 2013). The dissimilarity of resistome 

among metagenome samples (i.e., beta-diversity analysis) were analyzed using non-metric multi-

dimensional scaling (NMDS) in Vegan. Pairwise t-test (p-adjustment method: Benjamini-Hochberg) 

was performed to test for significant differences among potential contamination sources (i.e., 

wastewaters, surface sediments, soils) in terms of alpha-diversity index.  

3.3. Results 

3.3.1. Absolute abundance of resistance indicators (sul1, intI1, and CLR/TET) in waters 

Two sampling campaigns performed under dry weather (baseflow) conditions were used to 

establish reference values for resistance indicator levels in US, DS, and EF under normal operation, as 

shown by horizontal lines in Fig. 3.2. The results from these campaigns also showed the expected 

elevated absolute and relative abundance of resistance indicators in EF and the expected general 

increase of the abundance in DS compared to US as a result of EF discharge. We observed little intra-

day variability (Fig. S3.3). 

Analysis of the resistance indicators in water samples from stormwater event-based sampling 

revealed that bypass (BP) contained high levels of resistance. For instance, the levels of sul1, intI1, 

and CLR/TET in BP were higher than in effluent (EF) by up to 2.1 order of magnitude (Fig. 3.2). 

Accordingly, the levels of those indicators in up- and downstream water of the receiving river (US and 

DS) also increased when bypass flow was active. It is important to note that we learned from the 

operators after the campaign that the US sampling point also receives combined-sewage overflows 

from discharge points further upstream. The levels of sul1, intI1, and CLR/TET in US and DS were 
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highest during bypass flow events (i.e., BP-1 in RAIN1, and BP-3 in RAIN2). The peak levels in bypass-

affected DS samples exceeded the DS levels at dry conditions by up to 2.4 orders of magnitude, and 

even exceeded the levels in treated effluent (EF). This indicates that aquatic riverine resistance at 

receiving points was profoundly influenced by bypass from WWTP and upstream points of discharge 

(at 0.8 and 2.6 km upstream locations) during bypass events. In contrast, levels in EF were not 

affected or increased only slightly during or after the bypass event (Fig. 3.2). While the levels of 

CLR/TET in EF at RAIN2 was higher than for baseflow conditions (DRY) by 0.4 – 0.9 order of 

magnitude, this was also the case for the pre-event EF (nBP(+1-3h)) and DS levels from this 

campaign, thus probably reflecting a change in the effluent not related to the bypass event (Fig. 3.2). 

 

Figure 3.2. Absolute abundance (gene copies or colony forming unit per volume) of resistance indicators in 
water samples during bypass events: resistance genes (sul1, intI1), and multi-resistant bacterial counts 
(CLR/TET, presumptive clarithromycin and tetracycline resistant bacteria).  (a) Results from the RAIN1 sampling 
campaign, and (b) RAIN2 sampling campaign. The averaged abundance during the DRY sampling campaigns 
(DRY1 + 2) for EF (effluents), DS (downstream), and US (upstream) samples are indicated by colored lines (dark 
grey for EF; light grey for DS; blue for US). BP indicates bypass samples, which are only obtained while bypass 
flow is active during or after precipitation events. NA indicates not available for BP and not analyzed for EF. 
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 We observed that elevated levels of resistance indicators at US and DS temporarily persisted for 

some time after BP flow had stopped (Fig. 3.2). The levels returned to the pre-disturbance status (the 

levels at DRY) only after 17 – 22 hours in RAIN1. The temporal persistence of resistance was even 

more profound in the campaign RAIN2 when there were heavier rains. The levels of sul1, intI1, and 

CLR/TET at US and DS were still higher by up to1.4 order of magnitude compared to the pre-

disturbance status (the levels at DRY) after 13 hours from the last bypass event (BP-3(+10-11h)).  

For most samples, the DS levels of resistance indicators were above the US level (except for intI1 

and sul1 levels during RAIN2, nBP(+15-17h) sample) showing a persistent effect of the WWTP (EF and 

BP). Notably however, the US levels increased as well especially during RAIN2. While the existence of 

further combined-sewage discharge points upstream may explain this observation, we could not a 

priori rule out the possibility of other contributions (i.e., sediment resuspension and surface soil 

runoffs). In order to quantitatively assess the potential contributions of different sources, we 

analyzed relative abundances of resistance indicator genes in the water samples and potential 

sources (bypass, effluent, sediment and soil) by normalizing to 16S rRNA gene levels.  

3.3.2. Relative abundance of sul1 and intI1 in waters, soils, and sediments 

Relative abundance of sul1 and intI1 at US and DS increased dramatically during bypass events 

(BP-1 in RAIN1, and BP-1 to -3 in RAIN2) (Fig. 3.3). Similar to the pattern that we observed in absolute 

abundance analysis, the increased relative abundance also temporarily persisted in receiving waters, 

and gradually decreased over time (Fig. 3.3). The abundance of sul1 and intI1 was below the LOD 

(i.e., D.N.Q. or N.D.) for most soil samples. Where it could be determined, the relative abundance of 

these indicators in soil was far below the values for water samples (Fig. 3.3). The sediment samples 

showed higher values compared to soils, especially for the sediment obtained from DS. However, all 

relative abundances determined for sediment were lower than in river water with exception of sul1 

in US in some pre- and post-bypass samples (i.e., nBP(+3-5h) to nBP(+24h) in RAIN1, and nBP(+1-3h) 

in RAIN2) (Fig. 3.3) (M01-43 in Dataset S3). To broaden the dataset for soil, 19 published soil 

metagenomes were downloaded from NCBI-SRA. We analyzed the ARG content using a read-based 

approach (see Dataset S3 for key information on raw reads). Alpha- and beta-diversity analysis of 

resistomes was performed using relative abundance data of ARG identified at resistance subtype-

level (Dataset S4).  



Chapter 3 – Impact of Stormwater Events 

89 
 

 

Figure 3.3. Relative abundance (gene copies per 16S rRNA gene copy) of resistance indicators (sul1, intI1) in 
water samples during stormwater events (RAIN1 and 2), and in sediments and soils obtained under dry 
weather condition (DRY0). The relative abundance of indicators for downstream sediments (Levels-SED:DS) was 
displayed in a gold line in water samples (RAIN1 and 2). D.N.Q. indicated ‘Detected but not quantifiable’, and 
N.D. denotes ‘Not detected’. Soils were from  pasture (P), forests (F) or meadow (M). NA indicates not available 
for BP and not analyzed for EF. 

ANOVA and the post-hoc pairwise t-test of Shannon diversity index values of the retrieved 

resistomes from the three potential contamination sources in the River Murg catchment (i.e., 

wastewater, sediments, and soils-CH) revealed that the Shannon-index of wastewater resistomes 

was significantly higher than of soil or sediment (Fig. 3.4a). The Shannon-index values of soil 

resistomes from other studies (i.e., soils-CN and soils-USA) were similar to or lower than for soils-CH. 

The two highest Shannon index values in US and DS were observed during and right after bypass 

discharges (i.e., BP-3 and nBP(+12-14h) in RAIN2 for US; BP-3 in RAIN2 and BP-1 in RAIN1 for DS), 

which were higher than sediments and soils.  



Chapter 3 – Impact of Stormwater Events 

90 
 

 

Figure 3.4. Alpha- and beta-diversity analysis of sample resistomes. (a) Boxplot of Shannon-index values as an 
indicator of resistome alpha-diversity for each compartment. Boxplots show the median (central line), 25th and 
75th percentile (box) and minimum and maximum value (whiskers), actual values are overlayed (markers, see 
legend in (b)).  Statistically significant differences (t-test) among potential contamination sources (i.e., 
wastewaters, sediments, and surface soils) are indicated by red brackets. (b) Non-metric multi-dimensional 
scaling (NMDS) analysis of resistome structure (resistance gene relative abundance data) in different 
compartments. BP, EF, US, DS indicates bypass, effluents, upstream, and downstream waters, respectively. 
Soils-CH are from this study. Soils-CN (Sinkiang/Inner Mongolia, China), Soils-USA (compost unamended; 
Virginia, USA), and Soils-C (compost amended; Virginia, USA) are from other studies (Zheng et al., 2021; Chen et 
al., 2019). 

Beta-diversity analysis of ARG subtypes using NMDS based on Bray-Curtis distance (stress = 7.49) 

showed that dissimilarities between resistomes of water and other compartments were profound 

(Fig. 3.4b). Water samples clustered together mostly in the 2nd and 3rd quadrants on the ordination 

plot, and soils were mostly located in the 1st and 4th quadrants of the plot. The dissimilarities 

between sediments and water resistomes (especially for US samples) were low compared to those 
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between the soils and water, but still clearly distinct from highly stormwater-influenced river water 

samples (e.g., BP-3 in RAIN2 for US; BP-1 in RAIN1 and BP-3 in RAIN2 for DS). The resistomes of high 

stormwater-influenced water samples were however most similar to the bypass samples. 

3.3.3. Riverine resistome during stormwater events 

Resistance classes with high explanatory power for the resistome beta-diversity (and thus 

differing between resistomes in different habitats or with different influence of bypass) were 

selected as follows: 1) resistome profiles were aggregated by class of antibiotic resistance in Dataset 

S5 and analyzed using NMDS (stress = 5.67) (Fig. S3.4), 2) the correlation between resistance classes 

and the ordination, and 3) the resistance classes showing high statistical significance (p-value < 

0.0001) of the correlation were selected. A total of 16 resistance types were selected with these 

criteria, conferring resistance to macrolide-lincosamide-streptogramin (MLS), aminoglycoside, 

bacitracin, beta-lactam, diaminopyrimidine, fluoroquinolone, fosmidomycin, glycopeptide, multidrug, 

nitroimidazole, peptide, pleuromutilin, rifamycin, sulfonamide, tetracenomycin-C, and tetracycline.  

The relative abundances of those 16 resistance classes of resistance in water, soil, and sediment 

samples are shown in Fig. 3.5. Bypass and effluent samples contained in high abundance MLS, 

aminoglycoside, beta-lactam, diaminopyrimidine, fluoroquinolone, sulfonamide, and tetracycline 

resistance genes. Those 7 resistance classes showed high relative abundance also in high 

stormwater-influenced US and DS samples (i.e., BP-1 in RAIN1, and BP-1 to -3 in RAIN2). In soils and 

sediments, the following 7 types of ARGs were prevalent: fosmidomycin, glycopeptide, multidrug, 

nitroimidazole, pleuromutilin, rifamycin, and tetracenomycin-C resistance genes. In spite of being 

selected as resistance classes with high explanatory value, bacitracin resistance genes were highly 

prevalent in waters in general but also occurred in soil and sediment, and the “multidrug” resistance 

class was abundant in all sample types but especially abundant in the soil and sediment. Both are 

therefore shown separately in Fig. 3.5 and were not considered further. 

The relative abundance of ARGs in the classes not selected by our criteria are shown in Fig. S3.5.  

3.3.4. Analysis of multi-resistance genomic determinants 

The results shown above provide strong evidence that resistance levels increased profoundly in 

receiving river waters during stormwater events, and that the majority of the increase in resistance 

determinants in river waters originates from bypass according to the results presented in the 

sections 3.3.1 ~ 3.3.3.  
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Figure 3.5. Resistome profiles by class of antibiotic resistance in river waters (upstream and downstream 
waters), wastewaters (bypass and effluents), soils and sediments. Total 16 types of resistance classes were 
selected using biplot analysis – the 14 classes of antibiotic resistance which significantly correlated with the 
ordination (Fig. S3.4) (p<0.0001) are shown in (a); the others (i.e., bacitracin and multidrug resistance genes) 
were displayed separately in (b) because those had much higher values of relative abundance than the 
previous 14 classes. The order of stacked bars is same as the order of resistance classes in the legend. Unit: 
Relative abundance per Mille (i.e., ARG reads per 1000 16S rRNA gene reads). 

Based on these findings, we hypothesized that the risk of exposure to various ‘multi-resistance’ 

risk factors would also increase. While this was already partly supported by our CLR/TET analysis in 

Fig. 3.2, we aimed to obtain a more comprehensive picture by screening de-novo assembled contigs 

for evidence of multi-resistance. Contigs containing ≥ 2 ARGs were classified as MGDs, and their 

relative abundances in each sample were calculated according to eq.2. The temporal dynamics of 

MGDs in terms of relative abundance (Fig. 3.6) followed a similar pattern to that of other resistance 

indicators (Fig. 3.2 & 3.3). Highest abundances were found in all BP samples. High abundances of 

MGDs were also observed in the river during BP1 (RAIN1) and BP-1 ~ 3 (RAIN2). Elevated relative 

abundance of MGDs persisted temporarily, but decreased over time (Fig. 3.6). Notably the relative 

abundance of MGDs in EF was low compared to BP and to BP-affected river water. 
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Figure 3.6. Relative abundance of total multi-resistance genomic determinants (calculated according to eq.2) in 
water samples. US, EF, DS, and BP indicate upstream, effluent, downstream, and bypass water samples. NA 
indicates not available for BP and not analyzed for EF, and the asterisk (*) denotes analyzed but not-detected. 

To provide a better understanding of the nature of the resistances contained in the MGDs, we 

visualized the co-localization of ARGs on MGDs with a network analysis. The directed network shows 

the frequency with which each gene co-occurs on MGDs with each other gene (Fig. 3.7a). According 

to references, many of those genes are expected to be associated with plasmids. For instance, 

various aac(6′)-Ib, aadA, catB, cmlA, dfrA, sul1, and intI1 homologues were found to be located in 

bacterial plasmids isolated from wild animals (Dolejska and Papagiannitsis, 2018), activated sludges 

and treated wastewaters (Tennstedt et al., 2003), sediments, and various water environments (i.e., 

river waters, drinking and wastewaters) (Ma et al., 2017). Among genes associated with animal-, 

human- and environmental-origin plasmids, the following subtypes also occurred in MGDs of our 

study: aac(6′)-Ib, aadA, aadA5, catB2, catB3, cmlA5, dfrA14, OXA-2, OXA-10, OXA-129, sul1, and intI1. 

Assuming that the ARGs that are directly linked to the subtypes listed above are also associated with 

plasmids, a large portion of the ARGs (35 out of 72 subtypes; Fig. 3.7b) identified on MGDs are likely 

plasmid-located. Those potentially plasmid-associated ARGs confer resistance to aminoglycoside, 

beta-lactam, diaminopyrimidine, fluoroquinolone, phenicol, and sulfonamide antibiotic classes. The 

ARGs that are previously reported to be associated with gene cassettes of intI1 (Tennstedt et al., 

2003) are indicated by larger nodes in Fig. 3.7b.
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Figure 3.7. Directed networks visualizing physical association among resistance genes located in multi-resistant genomic determinants (MGDs) from water samples. (a) The 
entire networks visualizing total ARGs associated with MGDs, (b) Sub-networks visualizing the ARGs potentially associated with plasmids. The classification of antibiotic 
resistance is according to CARD v3.1.0. The edges (co-occurrence frequencies calculated according to eq.3) with > 0.5 (50 %) were colored in a thick red, and those with ≤ 0.5 
were colored in a light red. The direction of the arrow indicates co-occurrence of the gene of origin with the target gene. The beta-lactam_1 ~ 6 indicate the classes conferring 
resistance to carbapenem, cephalosporin, penam, monobactam, cephamycin, and penem antibiotics, respectively. The large nodes in (b) are potentially associated with gene 
cassettes of intI1.
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Table 3.1. The multi-resistance genomic determinants (MGDs) with successfully assigned genus level taxonomies. Only MGDs with consensus assignment from all three 
assignment methods used (Kaiju, Kraken2, BLASTn) were shown. Pident indicates the percentage of identification (%), and Qhsp denotes the query coverage for high-scoring 
segment pair (%). 

Contig Information Assigned Taxonomy BLASTn Results (Pident > 85.0 & Qhsp > 60.0) 

Containing- 
ARGs Contig-ID Sample 

Average 
Coverage 

Relative 
Abundance 
(to total 
contigs) 

Length 
(bases) 

Kaiju Kraken2 Matched Fragments Sequence ID Pident Qhsp 

k121_300880 M03 5.2 4.4E-05    1,864  
Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa strain 
FDAARGOS_571 
chromosome 

gb|CP033833.1| 90.3 93.0 
aadA6 

OXA-119 

k121_1708054 M13 8.9 6.5E-05    2,246  
Escherichia 
coli 

Escherichia 
coli 

Escherichia coli strain 
SCU-107 chromosome 

gb|CP053384.1| 99.6 99.0 
evgA 
emrK 
emrY 

k121_852659 M13 7.4 5.3E-05  10,689  
Citrobacter 
spp. 

Citrobacter 
sp. CFNIH10 

Citrobacter sp. Y3 
chromosome 

gb|CP050009.1| 99.5 100.0 
kpnH 
emrA 
emrR 

k121_1425685 M14 4.5 3.8E-05    1,067  
Escherichia 
coli 

Escherichia 
coli 

Escherichia coli F070 
DNA 

dbj|AP023237.1| 99.9 100.0 
acrS 
acrE 

k121_588822 M19 17.5 1.6E-04  52,811  
Tolumonas 
auensis DSM 
9187 

Tolumonas 
auensis DSM 
9187 

Tolumonas auensis 
DSM 9187 

gb|CP001616.1| 98.8 84.0 
CRP 

rsmA 
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The MGDs retrieved from water samples were then subjected to contig-based taxonomy 

assignment in order to infer potential bacterial hosts (Dataset S7). After annotating taxonomy using 

two read-based taxonomy assignment tools (i.e., Kaiju and Kraken2), a total of 12 out of 126 MGDs 

showed a consensus at genus level. Those 12 MGDs were additionally subjected to BLAST analysis 

against NCBI-nt DB. Finally, a total of 5 MGDs showed a consensus among all three approaches (Table 

3.1), and we considered the assigned taxonomy as potential hosts to those MGDs. Four of the five 

assigned hosts were potential pathogens, including Pseudomonas aeruginosa, Escherichia coli, and 

Citrobacter sp. On the other hand, Tolumonas auensis was described as an isolate from freshwater 

sediment capable of toluene production (Fischer-Romero et al., 1996). 

3.4. Discussion 

3.4.1. Wastewater bypass as a major contamination source for resistance during stormwater events 

Various lines of evidence (i.e., relative abundance of resistance indicators and alpha- and beta-

diversity analysis of various compartments of river systems) revealed that wastewater bypass was a 

major source of resistance during stormwater events in river Murg. This indicates WWTPs and sewer 

systems are important intervention points for tackling dissemination of ARGs in the aquatic 

environment during stormwater events. Without proper interventions, the risk of public exposure to 

those genes will remain high. 

The risk of exposure to MLS, aminoglycoside, beta-lactam, diaminopyrimidine, fluoroquinolone, 

sulfonamide, and tetracycline resistance genes through contact with river water is considerably 

elevated during such events (Fig. 3.5). Furthermore, bypass events occur frequently in the Murg 

catchment near Münchwilen. For instance, they occurred on a total of 118 calendar dates in 2019, 

the year of our study. The bypass events occurred especially frequently during August ~ September, 

occurring on 54 out of 61 days. The elevated exposure risk also persists for several hours after the 

stormwater event (discussed in detail below). Considering that beta-lactam antibiotics are among the 

most commonly prescribed antibiotics in Switzerland for both in- and out-patients (FOPH and FSVO, 

2020), the discharge and potential for public exposure to bacteria with those resistance groups could 

be potentially problematic. While the actual risks of exposure and likelihood of spreading resistance 

determinants to the population through this route remain unknown, our findings may provide some 

justification to recommend caution against exposure to river water during and after strong 

precipitation events in rivers receiving high levels of bypass. Obtaining a quantitative overview of the 

frequency and magnitude of bypass discharge would be an important asset in this sense.  

Considering that both relative and absolute abundances of resistance indicators were relatively 

stable over time for EF and considerably lower than those for bypass (i.e. incoming combined 
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sewage) reducing combined sewer overflows or bypass by increasing the treatment or retention 

capacities of WWTP and retention basins could be a way to reduce the amount of resistance factors 

released to receiving waters. Scaling-up existing treatment facilities could be an option, or at least, 

this aspect could be considered in the early stage of WWTP installation or renovation, i.e., making 

capacities of new WWTPs be high enough to handle large quantities of incoming combined sewage. 

3.4.2. A temporal persistence of bypass-born resistance at receiving waters after stormwater events 

Our observation that bypass-borne resistance at US and DS sites persisted for an unexpectedly 

long time (i.e., for 22 hours until it fell to pre-disturbance levels in RAIN1) indicates that the temporal 

dynamics of resistance deserves further investigation and should be considered when interpreting 

the fate of event-based resistance inputs in the river and associated risks. The downstream transport 

of event-based pollutant inputs has been widely studied (Jamieson et al., 2005;Nevers and Boehm, 

2010;Parsaie and Haghiabi, 2017), and hydraulic processes (i.e., advection, and dispersion) are 

regarded as main drivers. Our previous study showed that EF is fully mixed cross-sectionally after 500 

m downstream distance at the Münchwilen study site (Lee et al., 2021). Thus, the prolonged increase 

of bypass-borne resistance genes at both DS and US sampling sites appears to be likely due to 

advective transport and longitudinal dispersion of upstream inputs from combined sewer overflows. 

Several such potential discharge points exist in the catchment, however data on their contribution 

during the observed events is not available.  

Given our current data and study design, it is not possible to quantitatively explain the temporal 

dynamics of resistance genes from bypass and combined-sewer overflows in the receiving waters. 

Therefore, further studies will be required to better understand the factors that influence the total 

loadings, peak levels and duration of event-based inputs of resistance factors from bypass and sewer 

overflows. Catchment-wide measurements of bypass properties (e.g., discharge, and representative 

values of resistance levels in BP, etc) and inputs during stormwater events combined with hydraulic 

modelling could provide a clearer picture. 

3.4.3. The risk of exposure not only to resistance, but also to ‘multi-resistance’ increases at bypass-

receiving waters 

 To the best of our knowledge, we showed for the first time that WWTP bypass of untreated 

sewage leads to high relative abundance of potentially problematic multi-resistance factors in 

bypass-receiving rivers, thus increasing the risk of exposure to multi-resistant bacteria during and 

shortly after stormwater events.  

Untreated sewage contains a resistome much more closely related to the resistome of the human 

gut compared to effluent (Ju et al., 2019). Thus, the risk of these inputs could be even higher. Many 
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MGDs containing the ARGs shown in Fig. 3.7b are potentially associated with plasmids, and could be 

transmitted to previously susceptible cells via horizontal gene transfer (HGT) in the presence of 

antibiotic-mediated selection. The plasmids containing those MGDs could also persist or evolve in 

environmental microbial communities, for instance, in the form of attached growths near 

wastewater-receiving points where continuous anthropogenic disturbance (i.e., EF), and also event-

based disturbance (i.e., stormwater events) exist.  

Recent studies provide evidence that ARGs could persist even in the absence of antibiotic-driven 

selection. Plasmids are a key to mediate these processes. For instance, under laboratory condition, it 

has been shown that ARG-encoding non-mobile plasmids persist in E.coli over long timescales under 

non-selective conditions (Wein et al., 2019). Another study showed that conjugal plasmids encoding 

ARGs were transmitted to donor cells via HGT at high rates in E.coli even without antibiotic-mediated 

selection (Lopatkin et al., 2017). The ubiquity of HGT in highly dense population (e.g., biofilms), 

positive selection coupled with other compensations, and/or population dynamics could be 

contributing factors (Lopatkin et al., 2017). These findings indicate that there is a risk of 

environmental persistence of disseminated MGDs even in locations where antibiotic levels are not 

high, such as downstream river locations, and reservoirs (i.e., lakes). 

Contig-based taxonomy assignment results in Table 3.1 suggest that three MGDs (k121_1708054, 

k121_852659, and k121_1425685) retrieved from bypass (M13) and bypass-receiving DS water 

(M14) are hosted by potential opportunistic pathogens (i.e., E.coli, and Citrobacter sp.). The risk of 

potential exposure to multi-resistant E.coli, and Citrobacter sp. in bypass-receiving water under 

stormwater events therefore has to be considered. Even though these organisms are often found in 

the human gut and do not normally lead to serious infections in healthy individuals, the risk of 

infection still exists once exposed to a high dose of pathogenic strains (i.e., > infectious dose), such as 

diarrhea in the case of E.coli (Hunter, 2003), and urinary tract infection for Citrobacter sp. (Abbott, 

2011). Even though their relative abundances in our analysis do not appear high (i.e., 0.0038 – 

0.0065 % of contigs in each sample), care should be taken to minimize human exposure to these 

pathogens. Using our current approach, it was not possible to assign taxonomy to many other MGDs, 

so a comprehensive overview of MGD-host relationships is not provided. One of the ways to increase 

success rates for contig-based taxonomy assignment in the future could be to obtain longer contigs 

so that those sequences could have a higher likelihood to include taxonomic markers (e.g., 

housekeeping genes). While it would still be difficult to assign taxonomy to highly mobile fragments 

(i.e., plasmid sequences) that are usually shared by many taxa, it might be possible to assign 

taxonomy at least to chromosomal associated sequences in this way. Practically speaking, applying 

long-read sequencing, or combining short- and long-read sequencings could help to obtain longer 
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sequenced or de-novo assembled fragments, thus increase the success rate of taxonomic 

assignment. 

Conclusions 

 WWTPs are potentially important intervention points for preventing or minimizing discharges of 

bypass-borne ARGs. Future interventions could be made e.g., by increasing the proportion of 

treated wastewater discharges to incoming combined-sewages during stormwater events.   

 Temporal persistence of bypass-borne ARGs in the receiving water should be considered when 

interpreting the fate of aquatic ARGs during and after stormwater events. Transport of upstream 

combined-sewage inputs could be the reason – future study involving hydraulic aspects is 

required. 

 The risk of exposure to multi-resistance risk factors increased profoundly in the bypass-receiving 

river due to bypass inputs during stormwater events.  

 Large portion of bypass-borne MGDs were expected to be associated with plasmids – proper 

interventions for tackling discharges of bypass-borne MGDs are required to prevent potential 

persistence and evolution of those factors in the environment.   

Data availability 

The raw sequencing data are deposited in NCBI-Sequence Read Archive under BioProject: 

PRJNA733009 (Reviewer link: 

https://dataview.ncbi.nlm.nih.gov/object/PRJNA733009?reviewer=ee6tqcr189e0ft1ujlbc389e4t), 

and will be publicly available upon acceptance of this manuscript to the journal. All the other 

datasets (that were not shown in this publication) and R codes will be available at Eawag Research 

Data Institutional Collection (https://opendata.eawag.ch/) upon acceptance of this manuscript to the 

journal.  
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Supplementary Information 

Bioinformatics work-flow 

For contig-based analysis using metagenomic assembly, we used the work-flow suggested in our 

previous studies. In brief, 1) de-novo assembly was performed for the filtered reads using MEGAHIT 

v1.2.9 (Li et al., 2015), 2) open reading frames (ORFs) were predicted using Prodigal v2.6.3 with 

default parameters (Hyatt et al., 2010), 3) annotation was performed using BLAST v2.9.0 (Altschul et 

al., 1990) (cutoffs: E-value ≤ 1E-07; percentage of identical matches (Pident) ≥ 85.0 %; query coverage 

per high-scoring segment pair (QHSP) ≥ 60.0 %)) against CARD v3.1.0 protein homolog model (Alcock 

et al., 2020) for ARGs, and INTEGRALL v1.2 (Moura et al., 2009) for intI1, 4) read mapping against 

assembled contigs and ORFs was performed using Bowtie2 v2.3.2 (Langmead and Salzberg, 2012), 

and 5) depths were calculated using Samtools v1.9 (Li et al., 2009), and average coverages for contigs 

and ORFs were calculated according to Albertsen et al. (2013).  

Network analysis of co-located genes within the same contig 

Given that two genes are co-located in the same assembled contig, a directed network could be 

produced from two vertices (two co-located genes) and the edge information which could link the 

relationship between them. In this study, we defined the edge as “Co-occurrence frequency”, 

specifically, the proportion of the number of contigs that contain both genes (A and B) to the number 

of contigs containing the gene A (EcontigA  contigB  in the eq.1).  

First of all, the contigs containing ≥ 2 genes of concern (i.e., ≥ 2 co-located ARGs in our case) 

should be listed-up beforehand, and this will be the starting point. From the information on two 

vertices (i.e., the list of co-located ARGs and the corresponding contig IDs), an adjacency matrix could 

be produced. Then, a topology matrix could be produced according to the following operation 

(Cormen et al., 2001;Ort et al., 2009).  

𝑇 =  (𝐼 − 𝐴𝑑𝑗)−1 (eq.3) 

Where, 𝑇 indicates topology matrix; 𝐼 denotes identity matrix; 𝐴𝑑𝑗 indicates adjacency matrix 

The structure of topology matrix (𝑇) is suggested below:   

𝑇(𝑛+𝑚) (𝑛+𝑚) =

(𝑛 + 𝑚) × (𝑛 + 𝑚) 𝑨𝑹𝑮𝟏 ⋯ 𝑪𝒐𝒏𝒕𝒊𝒈𝟏 ⋯ 𝑪𝒐𝒏𝒕𝒊𝒈𝒎

𝑨𝑹𝑮𝟏 𝑎1 1 ⋯ 𝑎1 (𝑛+1) ⋯ 𝑎1 (𝑛+𝑚)

⋮ ⋮ ⋯ ⋮ ⋯ ⋮
𝑨𝑹𝑮𝒏 𝑎𝑛 1 ⋯ 𝑎𝑛 (𝑛+1) ⋱ 𝑎𝑛 (𝑛+𝑚)

⋮ ⋮ ⋯ ⋮ ⋯ ⋮
𝑪𝒐𝒏𝒕𝒊𝒈𝒎 𝑎(𝑛+𝑚) 1 ⋯ 𝑎(𝑛+𝑚)(𝑛+1) ⋯ 𝑎(𝑛+𝑚)(𝑛+𝑚) 
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Where, 𝑛 indicates the number of vertices for ARGs; 𝑚 indicates the number of vertices for 

contigs; 𝑎𝑖 𝑗 indicates the element of ith row and jth column, and has the binary value of 0 or 1 (0 for 

absence, and 1 for presence) 

The sub-matrix (shaded in red above, defined hereby as 𝑇∗
𝑛 𝑚) could be selected, and this sub-

matrix has following properties: 

1) The value of element “1” indicates “Presence” , and “0” indicates “Absence” of the ARG 

(labeled in its corresponding row). 

2) The column sum indicates the total number of ARGs that the corresponding contig (labeled in 

its corresponding column) contains. For instance, ∑ 𝑎𝑖 1
𝑛
𝑖=1  (shaded in green in 𝑇∗

𝑛 𝑚 below) 

indicates the total number of ARGs that the Contig1 contains. 

3) The row sum indicates the total number of contigs with which the corresponding ARG 

(labeled in its corresponding row) is associated. For example, ∑ 𝑎1 𝑖
𝑚
𝑖=1  (shaded in yellow in 

𝑇∗
𝑛 𝑚 below) indicates the total number of contigs that the ARG1 is associated with. 

𝑇∗
𝑛 𝑚 =

𝑛 × 𝑚 𝑪𝒐𝒏𝒕𝒊𝒈𝟏 ⋯ 𝑪𝒐𝒏𝒕𝒊𝒈𝒎

𝑨𝑹𝑮𝟏 𝑎1 1 ⋯ 𝑎1 𝑚

𝑨𝑹𝑮𝟐 𝑎2 1 ⋯ 𝑎2 𝑚

⋮ ⋮ ⋱ ⋮
𝑨𝑹𝑮𝒏 𝑎𝑛 1 ⋯ 𝑎𝑛 𝑚

 

Where, n indicates the number of vertices for ARGs; 𝑚 indicates the number of vertices for 

contigs; 𝑎𝑖 𝑗 indicates the element of ith row and jth column, and has the binary value of 0 or 1 (0 for 

absence, and 1 for presence) 

Therefore, the total number of contigs containing ARG1 (𝑛(𝑠𝑒𝑡1)) could be defined as:   

𝑛(𝑠𝑒𝑡1) =  ∑ 𝑎1 𝑗

𝑚

𝑗=1

 

Furthermore, the total number of contigs containing ARG1 and ARG2 [𝑛(𝑠𝑒𝑡1 ∩ 𝑠𝑒𝑡2)] could be 

defined as: 

𝑠𝑒𝑡1 ∩ 𝑠𝑒𝑡2 =  {𝑎2 𝐽}, 𝐽 ∈  {𝑥 | 𝑎1 𝑥 = 1} 

∴ 𝑛(𝑠𝑒𝑡1 ∩ 𝑠𝑒𝑡2) =  sum of all the elements in {𝑎2 𝐽} 

Finally, EARG1  ARG2 could be calculated by 𝑛(𝑠𝑒𝑡1 ∩ 𝑠𝑒𝑡2)/𝑛(𝑠𝑒𝑡1) according to the eq.2. The 

whole algorithm was written in R, and all codes and datasets are available in the first author’s GitHub 

page (https://github.com/myjackson). 

https://github.com/myjackson
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Figure S3.1. Precipitation data during stormwater samplings on August 12-13 (RAIN1), and September 23, 2019 
(RAIN2) in Münchwilen, Switzerland. Data obtained from MeteoSwiss – IDAWEB 
(https://gate.meteoswiss.ch/idaweb/). 

https://gate.meteoswiss.ch/idaweb/
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Figure S3.2. Assembly efficiencies (i.e., percentage aligned sequences, calculated using eq.1) by each sample type. N (sample size) = 32 for waters (incl. bypass, treated 
effluents, and river waters), 4 for sediments, and 7 for soils.
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Figure S3.3. Absolute (Abs.) and relative abundance (Rel.) of two resistance indicators (sul1 and intI1) in two 
dry-weather samplings (DRY1 on the left – a, and DRY2 on the right – b) in the River Murg in Münchwilen, 
Switzerland. 
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Figure S3.4. Ordination and bioplot analysis using non-metric multi-dimensional scaling (NMDS) for resistome. The analysis was performed in terms of resistance classes. A 
total of 16 major classes of resistance that were significantly correlated with the ordination (p-value < 0.0001) were displayed as vectors (in red).
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Figure S3.5. Resistome profiles by class of antibiotic resistance in river waters (upstream and downstream 
waters), wastewaters (bypass and effluents), soils and sediments. A total of 10 classes were shown: 
antibacterial-free-fatty-acids, bicyclomycin, fosfomycin, mupirocin, nucleoside, oxazolidinone, polymyxin, 
unclassified, phenicol, triclosan resistance genes. Unit: Relative abundance per Mille (i.e., ARG reads per 1000 
16S rRNA gene reads).
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Table S3.1. Sample pooling strategy for stormwater samplings. Samples were taken hourly, and those with the same label (e.g., (+4 hrs) for 3 samples from 15:00 to 17:00 in 
RAIN1) were pooled together. The time points when bypass events were happened were labeled as ‘BP (i.e., BP-1, BP-2, BP-3)’. 

Campaign Sample 

Sampling time (24 hours) 

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 

DRY1 

US NIG MOR AFT EVE NIG 

DS NIG MOR AFT EVE NIG 

EF NA NA NA NA NA NA NA        MOR AFT EVE NIG 

DRY2 

US NIG MOR AFT EVE NIG 

DS NIG MOR AFT EVE NIG 

EF NIG MOR AFT EVE NIG 

RAIN1 

US nBP(+12~17h) nBP(+18~23h) 
nBP 

(+24h) 

BP-1 

(+1h) 

nBP 

(+2h) 
nBP(+3~5h) nBP(+6~11h)   

DS nBP(+12~17h) nBP(+18~23h) 
nBP 

 (+24h) 

BP-1 

(+1h) 

nBP 

(+2h) 
nBP(+3~5h) nBP(+6~11h)   

EF NA NA NA NA NA NA NA NA NA NA NA 
nBP  

(+24h) 

BP-1 

(+1h) 
NA NA NA NA NA NA NA NA NA NA NA 

BP NA NA NA NA NA NA NA NA NA NA NA NA 
BP-1 

(+1h) 
NA NA NA NA NA NA NA NA NA NA NA 

RAIN2 

US nBP(+1~3h) 
BP-1 

(+4h) 
nBP(+5~7h) 

BP-2 

(+8~9h) 

BP-3 

(+10~11h) 
nBP(+12~14h) nBP(+15~17h) nBP(+18~24h) 

DS nBP(+1~3h) 
BP-1 

(+4h) 
nBP(+5~7h) 

BP-2 

(+8~9h) 

BP-3 

(+10~11h) 
nBP(+12~14h) nBP(+15~17h) nBP(+18~24h) 

EF nBP(+1~3h) 
BP-1 

(+4h) 
nBP(+5~7h) 

BP-2 

(+8~9h) 

BP-3 

(+10~11h) 
nBP(+12~14h) nBP(+15~17h) nBP(+18~24h) 

BP NA NA NA 
BP-1 

(+4h) 
NA NA NA 

BP-2 

(+8~9h) 

BP-3 

(+10~11h) 
NA NA NA NA NA NA NA NA NA NA NA NA NA 

Sampling starts Sampling ends   
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Table S3.2. Quantitative PCR (qPCR) primers and probes used in this study.   

Primer Genes Assay type Sequences (5' to 3') Annealing temp. (°C) References 

qSUL653f   CCGTTGGCCTTCCTGTAAAG 

60 (Heuer and Smalla, 2007) qSUL719 sul1 TaqMan TTGCCGATCGCGTGAAGT 

tpSUL1-Probe   FAM-CAGCGAGCCTTGCGGCGG-BHQ1 

intI1-F   GCCTTGATGTTACCCGAGAG 

60 (Barraud et al., 2010) intI1-R intI1 TaqMan GATCGGTCGAATGCGTGT 

intI1-Probe   FAM-ATTCCTGGCCGTGGTTCTGGGTTTT-BHQ1 

BAC349-F   AGGCAGCAGTDRGGAAT 

53* (Takai and Horikoshi, 2000) BAC806-R 16S rRNA TaqMan GGACTACYVGGGTATCTAAT 

BAC516F-Probe   FAM-TGCCAGCAGCCGCGGTAATACRDAG-BHQ1 

* These values were modified from the original references, and previously optimized in our laboratory settings.  
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Table S3.3. Selected information for quantitative PCR (qPCR) validation according to the MIQE guideline (Bustin et al., 2009). LOD indicates the limit of detection; NTC denotes 
non-template control (i.e., molecular grade H2O replacing DNA templates). Technical quintuplicates were applied to the qPCR standard curves. 

qPCR primer Slope 
Specificity 

verification method 

qPCR-

efficiency 
Y-intercept 

Linear dynamic range 

(copies - copies) 

LOD-copies 

(Avr. Cp) 

S.D. (of Cp) at 

LOD 
Cp of the NTC 

sul1 -3.667 
Hydrolysis probe 

(TaqMan) 
1.874 41.14 5.0E+07 - 5.0E+01 50 (34.0) 0.42 N.D. 

intI1 -3.473 
Hydrolysis probe 

(TaqMan) 
1.941 41.43 5.0E+07 - 5.0E+01 50 (35.8) 0.45 N.D. 

16S rRNA gene -3.517 
Hydrolysis probe 

(TaqMan) 
1.925 41.35 5.0E+07 - 5.0E+01 50 (32.3) 0.30 32.6 
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Abstract 

Rivers are considered as one of the major routes by which antimicrobial resistance (AMR) is 

transmitted in natural environments. Due to the many uses of river water for recreation, irrigation 

and as a source of drinking water it may be a potential exposure pathway for riparian populations. 

This motivates development of a tool for predicting aquatic AMR contamination in rivers. In this 

study, we developed a predictive model for public exposure to aquatic AMR in Swiss river networks 

using two AMR indicators (i.e., sul1 and intI1) under Graph Theory. The following hypothesis were 

tested: 1) Wastewater treatment plants (WWTPs) are the main source of anthropogenic AMR, 2) 

AMR loadings decrease over downstream distance, 3) Background levels of AMR indicators present in 

non-impacted river water need to be considered. A model employing hypothesis 1) and 3) but 

rejecting hypothesis 2) provided the best fit with measured validation data. The final model 

calculates sul1 and intI1 loadings (i.e., copies per time) and levels (i.e., copies per volume) at WWTP 

effluents receiving waters in the entire Swiss river network. We demonstrate potential uses of such a 

model to predict e.g. a public exposure index for riverine aquatic AMR for each Swiss canton. Our 

model provides a theoretical framework with which hotspots for riverine aquatic AMR could be 

prioritized, and thus could be a potentially used as a tool for decision making in future interventions 

for tackling environmental dissemination of AMR. 

 

Keywords 

Antimicrobial Resistance; Exposure; River; Modeling; Wastewater; Antibiotic Resistance Genes  
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4.1. Introduction 

Antimicrobial resistance (AMR) has emerged as one of the main issues in public health. From a 

One Health and Global Health perspective, various factors and sectors are intertwined with the 

development and dissemination of AMR (Hernando-Amado et al., 2019). For instance, not only the 

evolution and spread of AMR in human clinical settings is relevant, but also development and spread 

of AMR from other anthropogenic (e.g., farms, wastewater treatment plants (WWTPs), 

pharmaceutical industries, etc.), and natural environments (Hernando-Amado et al., 2019).  

Among various natural environments, rivers receive particularly large anthropogenic inputs of 

AMR from various sources that can subsequently be transmitted to other regions and environments 

to which the rivers are connected. For instance, evidences of urban, and agricultural inputs along the 

Poudre and South Platte Rivers in Colorado, USA were identified using quantitative PCR (qPCR) using 

2 sulfonamide and 11 tetracycline antibiotic resistance genes (ARGs), and phylotype and 

phylogenetic analysis of tetW as indicators (Storteboom et al., 2010). More recently, anthropogenic 

resistomes (i.e., entire profiles of ARGs identified by metagenomics) were identified along the Han 

River which passes through Seoul, Korea (Lee et al., 2020). These examples show that populations 

living in downstream regions could be exposed to riverine ARGs introduced to the upstream river. 

This necessitates comprehensive surveillance tool for riverine ARGs, to support planning and 

prioritizing possible interventions for tackling dissemination of anthropogenic inputs. 

One such tool would be models that can predict resistance contamination levels in river systems 

at the landscape scale. One example of this was developed for the Thames River, UK (Amos et al., 

2015). The authors developed a model predicting the prevalence of environmental integron 

integrase class 1 genes (intI1) (i.e., ratio of intI1 genes to 16S rRNA genes) in sediments at a 

catchment level (Amos et al., 2015). Their final model was based on a multiple linear regression 

model taking into account landcover properties in the catchment and seasonal effects, as well as the 

separately modeled impact of upstream WWTP on each site. This study indicates that landscape 

scale predictions are possible, and that WWTP are a major driver of AMR levels. These assumptions 

were also supported by Czekalski et al. (2015). In that study, a similar approach was used – multiple 

regression modelling between catchment integrated land-use data and sul1 levels in surface waters 

from 21 Swiss lakes. The authors found that WWTPs are likely to be drivers of sul1 levels. However, 

both studies used a data fitted model, and the transferability to other rivers systems or conditions 

beyond the fitted data remains unclear. Generally the model-based assessment of anthropogenic 

antibiotic resistance contamination in aquatic systems remains in its infancy, and connecting 

contamination level to exposure risk in riverine ‘aquatic’ environments has not been attempted.  
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As a starting point for our work, we referred to published models predicting micropollutant 

loadings (i.e., mass per unit time) and levels (i.e., mass per volume) in the Swiss river network, 

considering WWTPs (with their connected populations and healthcare services) as major sources 

(Kuroda et al., 2016;Ort et al., 2009). These models could not be directly applied to predict ARG 

levels for various reasons. Unlike e.g. pharmaceutical micropollutants that can often be sourced to 

few input sources like hospitals or pharmaceutical industry, or antibiotics that can be scaled to 

population but that are all channeled through WWTP, the drivers of ARG inputs from WWTP were 

initially unclear. Further, ARGs are biological indicators, thus their fates in the river could be more 

dynamic than micropollutants, e.g., resistant bacteria could proliferate in the river system via 

horizontal and/or vertical gene transfer (Vikesland et al., 2017) or could degrade due to cell death, 

predation or other mechanisms. Also intrinsic, or natural existence of ARGs was known in natural 

environments (Cox and Wright, 2013), as it were, anthropogenic inputs are not the only source.  

Therefore, in this study, we developed a predictive model for riverine AMR contamination using 

two of the most widely used anthropogenic AMR indicators – sul1 and intI1 (Berendonk et al., 

2015;Gillings et al., 2015). We hypothesized that WWTP effluents are the major sources of sul1 and 

intI1. Cumulative loadings of those indicators in the entire river networks were calculated using 

Graph Theory similarly to the previously established micropollutant models (Kuroda et al., 2016;Ort 

et al., 2009). The theoretical framework provides a simple mathematical representation of the river 

network and is thus the model is easily transferable to other river networks. We built the model to 

allow testing the following hypothesis:  

1) WWTP inputs are the main sources of wastewater-borne AMR indicators (i.e., sul1 and intI1) 

and suffice to model their loadings and levels on the landscape scale. 

2) Removal processes of wastewater-borne AMR indicators (i.e., sul1 and intI1) exist along the 

downstream transport distance. To parameterize the removal processes, we referred to our previous 

publication where downstream fates of AMR indicators were studied in the River Suze catchment 

near Villeret, Switzerland (Lee et al., 2021).  

3) The background levels of sul1 and intI1 intrinsically occurring in surface waters is non-negligible 

and needs to be taken into account (Czekalski et al., 2016b;Lee et al., 2021).  

The final goal of this study was to estimate loadings and levels of AMR indicators at wastewater-

receiving waters in the entire river networks in Switzerland with a non-fitted model. We then 

explored the potential of such a model to predict potential exposure of the population, as a tool to 

prioritize hotspots of exposure risk. 

4.2. Materials and Methods 
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4.2.1. The Core Algorithm – River Network Analysis Using Graph Theory 

Total 745 WWTPs which serve 97 % of Swiss population were included in this Model. Those 

WWTPs discharge treated effluents to inland surface waters (i.e., rivers or lakes). A large portion of 

WWTPs (i.e., total 631 WWTPs serving 83 % of total population) are connected to rivers. Directed 

networks were produced for those river-connected WWTPs. Based on the assumption that the long 

residence times in Lakes would result in a “reset” of the resistance indicator load, sub-networks were 

disconnected from each other when they are connected via a lake. The network was calculated using 

the following matrix operations as previously done for micropollutant models (Kuroda et al., 

2016;Ort et al., 2009). For instance, all the edges between two connected nodes could be 

summarized in a topology matrix. A graphical abstract for this calculation was shown in Fig. S4.1. 

𝑇𝑖𝑗 = (𝐼 − 𝑎𝑑𝑗)−1  (eq.1) 

Where, 𝑇 indicates the topology matrix, 𝐼 denotes the identity matrix, and 𝑎𝑑𝑗 indicates the 

adjacency matrix. 

Assuming edges as loadings and nodes as WWTPs, the accumulated loadings from all connected 

WWTPs upstream at each WWTP can be calculated by summing up the loading values in each column 

of topology matrix.  

4.2.2. Model Assumption 1 – ARG Loadings from WWTPs 

Cumulative loadings from upstream WWTPs were calculated using the topology matrix (shown in 

eq.1) at each wastewater-receiving node. Loadings (ARG copies per time) are calculated by effluent 

discharge (volume per time) multiplied by ARG level in the effluent (ARG copies per volume). 

Therefore, variation of ARG loadings among WWTPs could originate either from ARG level (𝐶�̅�𝐹) or 

from WWTP discharge (QEF). We compared the variance potential between those two factors in 

terms of coefficient of variation (CV, i.e., standard deviation divided by mean) using the data 

obtained from total 42 samplings at 30 WWTPs for sul1, and 30 samplings at 21 WWTPs for intI1 

referring to our previous projects (Fig. S4.2) (Czekalski et al., 2016b;Ju et al., 2019;Ju et al., In 

Preparation;Lee et al., 2021). As a result, the CV was much higher for QEF than ARG levels (Fig. S4.2) – 

variation of ARG loadings among WWTPs thus largely derives from QEF. Statistical analysis of the ARG 

levels in WWTP effluent did not provide a suitable model to predict ARG levels by, e.g. the type of 

treatment process. In the present study we therefore neglected variance in ARG levels in effluents 

and chose the median of the 42 available effluent values for sul1 (30 values for intI1) as a single 

representative value. To calculate ARG loadings from WWTPs, the representative values (i.e., 9.9E+03 

copies/mL for 𝐶�̅�𝐹_𝑠𝑢𝑙1; 1.5E+04 copies/mL for 𝐶�̅�𝐹_𝑖𝑛𝑡𝐼1) were multiplied by the corresponding QEF. 

The QEF values for WWTPs were calculated in the same way that was previously published (Ort et al., 
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2009), based on the assumption of 400 L day-1 per capita multiplied by population equivalent for 

each site. 

4.2.3. Model Assumption 2 – Downstream Fate of Wastewater-borne ARGs  

We studied two scenarios: ‘No Decay’, i.e. conservative transport of the resistance indicators and 

‘Decay’, where a decay function describes the decrease of the resistance indicator with downstream 

distance. The No Decay scenario assumes no decreases of sul1 loadings with downstream distance 

(Model-1). Cumulative loadings at WWTPi (𝐶𝐿𝑖) could be calculated as follows: 

𝐶𝐿𝑖 = 𝐿𝑖 + ∑ 𝐿𝑘
𝑗
𝑘=1   (Model-1: No Decay) 

Where, 𝐶𝐿𝑖 indicates the cumulative loading at WWTPi; 𝐿𝑖 denotes the ARG loading discharged 

from WWTPi; j indicates the total number of upstream WWTPs connected to WWTPi 

We previously observed in the River Suze catchment near Villeret, Switzerland, that wastewater-

borne sul1 loadings decreased with downstream distance from the point of discharge under base-

flow conditions (Lee et al., 2021). Hypothesizing that this observation can be generalized, we derived 

a decay function for sul1 from the River Suze catchment data (Fig. S4.3). This function was applied to 

upstream WWTP loadings, which leads to the following equation for calculating cumulative loadings 

below each WWTP node: 

𝐶𝐿𝑖 = 𝐿𝑖 + ∑ 𝑓(𝐷𝑘) ∙ 𝐿𝑘
𝑗
𝑘=1   (Model-2: Decay) 

Where, 𝑓(𝐷𝑘) = 𝑒1.5𝑒−04 × 𝐷𝑘  indicates the value of the decay function for the cumulative 

distance (𝐷𝑘) between WWTPi and WWTPk  

For intI1, we observed the loading did not profoundly decrease or increase over downstream 

distance (Fig. S4.3), so we only analyzed the No Decay case in Model-1. 

4.2.4. Model Assumption 3 – Natural Background Levels of sul1 and intI1 

Another observation from our previous projects was that sul1 and intI1 genes exist even in the 

headwater sections of rivers where no point-sources are known (Fig. S4.4) (Czekalski et al., 2016b;Ju 

et al., In Preparation;Lee et al., 2021). Therefore, we assumed that certain natural background levels 

(i.e., median values in Fig. S4.4; 3.6E+02 copies/mL for sul1, and 1.5E+03 for intI1) of sul1 and intI1 

are always present in incoming waters upstream of each wastewater-receiving point. The 

background loading (𝐵𝐿, i.e., discharge of incoming water upstream × background level) of sul1 and 

intI1 was calculated for each point from the estimated natural background level and discharge, and 

added to loadings according to Model-1 and Model-2 as follows: 
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𝐶𝐿𝑖 = 𝐵𝐿𝑖 + 𝐿𝑖 + ∑ 𝐿𝑘
𝑗
𝑘=1  (Model-3: No Decay + Background Loading) 

𝐶𝐿𝑖 = 𝐵𝐿𝑖 + 𝐿𝑖 + ∑ 𝑓(𝐷𝑘) ∙ 𝐿𝑘
𝑗
𝑘=1  (Model-4: Decay + Background Loading) 

Where, (𝐵𝐿𝑖 = 𝐶�̅�𝑆 ∙ 𝑄𝑈𝑆_𝑖) and (𝑄𝑈𝑆_𝑖 = 𝑄95%_𝑖 − 𝑄𝐸𝐹_𝑖); 𝐶�̅�𝑆 indicates the background 

concentration of sul1 or intI1; 𝑄𝑈𝑆_𝑖 indicates incoming upstream discharge at WWTPi; 𝑄95%_𝑖 

denotes the flow exceeded 95 % (i.e., 347 out of 365 days) of the year at the effluent-receiving point 

of WWTPi predicted according to Ort et al. (2009); j indicates the total number of upstream WWTPs 

connected to WWTPi. 

4.2.5. Validation Samplings and Molecular Biological Analysis 

Samples were taken from September 22 to November 01, 2020 at 46 locations in 17 river 

catchments located in 11 different cantons in Switzerland (Table S4.1). Samplings were mostly 

performed under dry-weather (i.e., no precipitation in the previous 24 hours), or in a few cases after 

minor precipitation (i.e., < 5.0 mm per day in the previous 24 hours) (Source MeteoSwiss). We thus 

assume that the impact of stormwater-related pollution inputs (e.g., surface runoff, sediment 

resuspension, wastewater bypass under stormwater events, etc) (Lee et al., in Preparation) were 

negligible. Under these conditions treated effluents from WWTPs were hypothesized to be the 

dominant source of ARG pollution. Samples were taken up- and down-stream at ≥ 260 m distance 

from effluent-discharge points (Table S4.1). Assuming that cross-sectional mixing was completed 

after 150 m (Ort et al., 2009), this ensures complete mixing of discharged wastewater and river water 

at the point of sampling. At each location, 2 L of surface water sample was obtained, stored at 4 °C in 

sterile water containers, and transported to the laboratory within 4 hours. After storage at 4 °C 

overnight, water samples were processed as outlined in our previous publication (Lee et al., 2021). In 

short, samples were filtered through 0.2 µm pore-size filters using sterile filtration units, and the 

concentrated biomass on the filters was subjected to DNA filtration using DNeasy Power-Water Kit 

(Qiagen, Germany) following manufacturer’s instruction. DNA qualities and concentrations were 

measured using a NanoDrop One spectrophotometer (Thermo Fisher Scientific, USA) (Data not 

shown). Two ARG markers (i.e., sul1 and intI1) were quantified using qPCR as outlined in our previous 

study (Lee et al., 2021), using the primers given in (Lee et al., 2021) Validation information for qPCR 

according to MIQE guidelines (Bustin et al., 2009) is given in Table S4.2. Samples were measured in 

triplicate, and quantification standards were measured in quintuplicate. The absence of qPCR 

inhibition was confirmed by comparing the sul1 levels (copies/mL) analyzed from 10 (d10) and 100 

(d100) times diluted samples – no significant differences were observed, and the values obtained 

from 10 times diluted samples were used for further analysis . The standard deviation of Cp values 

among technical triplicates of samples were ≤ 0.5, and all reported values were above the limit of 
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detection (LOD) and successfully quantified according to the definition described in Czekalski et al. 

(2015). An extraction control was prepared as follows: 500 mL of nanopure distilled water was 

filtered, and DNA was extracted, as described above. The Cp values of sul1 and intI1 from extraction 

controls were always below the corresponding LOD (Table S4.2). The total copies quantified in the 

extracted DNA sample were divided by the filtered sample volume to calculate ARG levels with the 

unit ‘copies per volume’. 

4.2.6. Model Validation and Selection 

Linear regression analysis (𝑦 = 𝑎𝑥 + 𝑏) between measured and predicted loadings was 

performed for each model. The best model with highest R2 and lowest P-value was selected, and 

used in the further downstream analysis.  

To obtain measured loadings, the measured levels of sul1 and intI1 were multiplied by either 

predicted river discharges for the locations where the estimated base-flow discharges (i.e., Q95%) are 

available (i.e., ‘E’ category in Table S4.1 – the last column) according to Ort et al. (2009), or measured 

river discharges (QMeasured) provided by federal or cantonal gauging stations nearby (i.e., ‘M’ category 

in Table S4.1 – the last column). The predicted river discharges (i.e., Q95%) were derived under the 

‘base-flow’ assumption, so this could be somewhat different from the actual values at our sampling 

dates. To compensate for this variation, we derived the ‘flow-correction factor’ (as follows), and 

multiplied this to measured loadings where Q95% was used (e.g., 𝑀𝐿𝑖 = 𝐶𝑖 ∙ 𝑄95% ∙ 𝐹𝑖 , where, 𝑀𝐿𝑖 

indicates the measured loading at i, 𝐶𝑖 denotes the levels of AMR indicators at i, 𝐹𝑖 indicates the flow-

correction factor at i). For instance, 1) The baseflow statistics (the flow exceeded, on average, on 347 

out of 365 days for cantonal stations; annual minimum flow rate averaged over 7 days for federal 

stations) was obtained from the nearest upstream or downstream gauging station, 2) the measured 

river discharge (by the gauging station) at the sampling date was divided by the base-flow statistics, 

and this ratio was defined as ‘flow-correction factor (𝐹𝑖)’.  

Model-1 to -4 were applied to the matrices representing the river network in the graph-

theoretical algorithm, which provides predicted loadings for each node (WWTP) in the network. As 

the measurements for our validation campaign were taken at various distances from the WWTP, and 

loadings are not conserved in the models considering decay, we need to calculate the actual loadings 

at the sampling points. Therefore, ‘distance between wastewater discharge points and validation 

sampling points’ and the ‘flow-correction factor’ were considered e.g. for downstream validation 

points (i.e., ‘DS’ category in Table S4.1 – ‘Categories’ column), as follows: 

𝐶𝐿𝑖 = 𝑓(𝐷𝑖) ∙ 𝐿𝑖 + ∑ 𝑓(𝐷𝑘 + 𝐷𝑖) ∙ 𝐿𝑘
𝑗
𝑘=1   (Model-2.2: Decay) 
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𝐶𝐿𝑖 = 𝐵𝐿𝑖 +  𝐿𝑖 + ∑ 𝐿𝑘
𝑗
𝑘=1  (Model-3.2: No Decay + Background Loading) 

𝐶𝐿𝑖 = 𝐵𝐿𝑖 +  𝑓(𝐷𝑖) ∙ 𝐿𝑖 + ∑ 𝑓(𝐷𝑘 + 𝐷𝑖) ∙ 𝐿𝑘
𝑗
𝑘=1  (Model-4.2: Decay + Background Loading) 

Where, 𝐷𝑖 indicates the downstream distance between WWTPi and actual sampling location; 

𝐵𝐿𝑖 =  𝐶�̅�𝑆 ∙ 𝑄𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑖 or 𝐶�̅�𝑆 ∙ 𝑄𝑈𝑆_𝑖 ∙ 𝐹𝑖. *No modification was applied for Model-1 where neither 

background loadings nor downstream decay function were assumed. 

For upstream validation points (i.e., ‘US’ category in Table S4.1 – ‘Categories’ column), the 

loadings from the nearest downstream WWTPs were not considered (i.e., 𝐿𝑖 = 0).  

After selecting the best model by the abovementioned procedures, ‘predicted levels’ were also 

calculated, e.g., dividing the predicted loading by the river discharge. This predicted levels were also 

validated using linear regression analysis.  

4.2.7. Uncertainty Propagation 

We assumed that uncertainty in our model derives mostly from prediction errors originating from 

variability of sul1 and intI1 levels in treated wastewaters (𝐶�̅�𝐹_𝑠𝑢𝑙1 𝑜𝑟 𝑖𝑛𝑡𝐼1) (Fig. S4.4), and in natural 

background levels of those ARGs (𝐶�̅�𝑆_𝑠𝑢𝑙1 𝑜𝑟 𝑖𝑛𝑡𝐼1) (Fig. S4.4) because we do not currently have a 

model to describe their variation among sites. Therefore, prediction errors from these sources were 

propagated using a Monte-Carlo randomization simulation. Two variables (i.e., 𝐶�̅�𝐹_𝑠𝑢𝑙1 𝑜𝑟 𝑖𝑛𝑡𝐼1, and 

𝐶�̅�𝑆_𝑠𝑢𝑙1 𝑜𝑟 𝑖𝑛𝑡𝐼1) were randomized under uniform distribution assumption within the first (25 %) and 

third (75 %) interquartile ranges (IQR) which were empirically referring to Fig. S4.4. The simulation 

was repeated for 999 times, and the first and third IQR for each prediction value were visualized as 

error bars in the final model. 

4.2.8. Prediction of Public Exposure to Aquatic ARGs 

Potential for public exposure to those indicators by canton was estimated as follows: 

Indicator of Exposure Potential (by canton) = ∑ (𝑠𝑢𝑙1𝑊𝑊𝑇𝑃𝑖
 𝑜𝑟 𝑖𝑛𝑡𝐼1𝑊𝑊𝑇𝑃𝑖

× 𝑅𝐸𝑆𝐼𝐷𝑊𝑊𝑇𝑃𝑖
)𝑛

𝑖=1  (eq.2) 

Where, 𝑠𝑢𝑙1𝑊𝑊𝑇𝑃𝑖
 𝑜𝑟 𝑖𝑛𝑡𝐼1𝑊𝑊𝑇𝑃𝑖

 indicates the predicted sul1 or intI1 level at receiving point of 

the WWTPi; 𝑅𝐸𝑆𝐼𝐷𝑊𝑊𝑇𝑃𝑖
 denotes the resident population connected to the WWTPi; n is total 

number of WWTPs in a canton 

4.2.9. Statistics and Visualization 

All statistics and calculations (i.e., regression analysis, river network analysis, and Monte-Carlo 

simulation) were performed in R. Built-in functions were used for regression analysis (i.e., nls() for 

non-linear analysis, and lm() for linear analysis). The river network analysis was performed with a 
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newly developed script relying on the R package ‘igraph’ for core graph algorithms. A Monte-Carlo 

randomization simulation was also performed in R. All the scripts and datasets will be available in the 

Eawag institutional open data repository (ERIC, https://opendata.eawag.ch/) upon publication of this 

chapter in an academic journal. Selected model algorithms will also be uploaded to the first author’s 

GitHub page (https://github.com/myjackson). All the figures were produced using built-in R functions 

(e.g., plot(), boxplot(), etc), except for the maps visualizing hotspots for AR indicators which were 

produced using ArcGIS. 

4.3. Results and Discussion 

4.3.1. Choosing the best model for describing aquatic AMR  

The best model among different assumptions (Model-1 to 4) was selected based on the results (R2 

and P-values) of linear regression analysis between expected (i.e., modeled) and measured loadings.  

Whichever assumptions we tested, all the models were highly significantly correlated with the 

measured loadings (P≤ 1.4E-05) (Table 4.1 and Fig. 4.1). Since WWTP input is the only source 

considered in this model, this indicates that WWTPs are an important sources of ARGs in Swiss river 

networks. Even the models without additional assumptions (i.e., without downstream decay and 

background level assumptions) were statistically significant for both sul1 and intI1 (Model-1 in Table 

4.1). However, under Model-1, measured values were higher than values predicted by the model in 

most cases for both sul1 and intI1 (Fig. 4.1). This suggests that additional sources of those indicators 

should be taken into account to improve model predictions. Accordingly, the R2 for the model 

decreased when downstream decay was considered (Model-2 in Table 4.1, and Fig. 4.1). This may 

indicate that the decay function we observed in the River Suze catchment near Villeret cannot be 

generalized to the Swiss river network. More work will be required to determine if incorporating a 

decay function would improve a model that considers additional sources more accurately, if the 

decay function we derived generally overestimates the decrease, or if downstream fates of aquatic 

ARGs might differed by site, i.e. are a function of unknown environmental or biological factors. 

Model-3, which takes into account background ARG levels under no-decay assumption achieved the 

best overall prediction for both indicators (Fig. 4.1). For this reason we selected Model-3 for further 

detailed analysis. Model-3 showed reasonably good correlation with measured loadings (R2=0.72, P = 

1.8E-13 for sul1, and R2=0.76, P=5.0E-15 for intI1) (Fig. 4.1). The linear regression was close to the 1:1 

line for sul1, indicating that the model captured the overall trends of this indicator in the Swiss river 

network. For intI1 the linear regression was always above the 1:1 line indicating that the model 

underestimated the true loadings, although the offset was not large compared to the range of 

measured loading. 

https://opendata.eawag.ch/
https://github.com/myjackson
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Table 4.1. Summary table for model validation and selection. Validation was performed using linear regression 
(Y = aX + b) between expected (i.e., modelled) and measured values. The finally selected models were 
asterisked (*). 

AMR Indicator Model Description Adj. R2 P-value Slope (a) 
Y-intercept 

(b) 

sul1 

Model-1 None 0.52 1.0E-08 1.0 0.5 

Model-2 None + Decay 0.34 1.4E-05 0.8 2.5 

Model-3* None + Background 0.71 1.8E-13 1.1 -0.2 

Model-4 None + Decay + Background 0.67 1.7E-12 1.0 0.3 

intI1 
Model-1 None 0.47 8.7E-08 1.0 1.0 

Model-3* None + Background 0.75 5.0E-15 1.1 -0.3 

 

 For Model-1, -2 and -4 a majority of values were located above the 1:1 line (Fig. 4.1). This means 

the modeled values underestimated actual loadings, thus additional sources that we did not consider 

in the model might exist. This was not the case for Model-3, including background loading and 

assuming no decay. It is possible that these assumptions compensate for sources not considered in 

our model. Indeed, contamination sources other than WWTP effluents are known, such as industrial 

wastewaters, and non-point sources such as urban and/or agricultural runoff. Many river catchments 

are utilized agriculturally in Switzerland (BfS and SFSO, 2013) and agricultural sources, e.g. ARGs in 

Figure 4.1. Model validation and selection using 

linear regression between expected (i.e., modelled) 

values and measured values. The models were 

produced according to 4 assumptions (Model-1 to -

4) for sul1, and 2 assumptions (Model-1 and -3) for 

intI1. The summary of statistics for each model are 

given in Table 1. The regression curve, 95 % 

confidence interval, and 95 % prediction interval 

were produced only for the ‘Model-3’. Unit: 

Loadings (copies/s).  
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manure or animal feces transported into rivers by surface runoff (Barrios et al., 2020), might 

influence the ARG loadings of the river to some extent. Determining the impact of additional, 

especially non-point sources will require further study. First steps could be made by testing statistical 

relationships among aquatic ARG loadings or levels and non-point source indicators such as 

percentage of agricultural utilization, and number of livestock by catchment, etc (Amos et al., 

2015;Czekalski et al., 2015). 

 While residual errors (i.e., deviation of observed values from modeled values; parameterized by 

R2) were small enough to yield p-values in the statistically significant range, the errors were not trivial 

considering that our models were validated at log10-scale. We assumed that those errors might 

originate, especially from uncertainty of two factors – the levels of sul1 and intI1 in EF and natural 

backgrounds. According to the Monte-Carlo randomization simulation, the propagated errors cannot 

account for the entire deviation of the model from measured loadings, but they are also not 

negligible, especially for sul1 (Fig. 4.2a). This could result from relatively large variance of sul1 levels 

in EF among sites compared to intI1 (Fig. S4.2). If factors that can explain the variance could be 

found, the predictability of our models could be improved. As one of the possibilities, we 

hypothesized that sul1 and intI1 levels vary by the type of treatment process. Therefore, ANOVA was 

performed by setting wastewater process types (A ~ I) as treatments (Fig. S4.5). Treatments for 

which the number of samples was < 4 were excluded, i.e., only the processes E ~ I were considered 

for both sul1 and intI1 while performing ANOVA. Differences among treatments were not significant 

at 5 % level (i.e., P-value = 0.07 for sul1, and 0.86 for intI1) for both sul1 and intI1. Given that sample 

sizes were not high enough to represent each process in our analysis (e.g., n = 4 ~ 9 for E, F, and I), 

we cannot completely rule out the possibility that ARG levels in EF could vary by process types after 

increasing sample sizes. In the future, more comprehensive comparison is required to unravel 

potential quantitative relationships between them, if the relationship is valid, this could be applied to 

our models, and improve predictability. 
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Figure 4.2. Validation of Model-3 for sul1 and intI1 as AMR indicators in terms of (a) loadings, and (b) levels. 
Error bars indicate uncertainty (i.e., prediction error) propagated from variability in measured indicator levels 
in effluent and unpolluted rivers (background resistance) using Monte-Carlo randomization simulation (n=999). 
The values with triangular symbol are median values among 999 randomized sets. The first (i.e., 25 %), and 
third (i.e., 75 %) interquartile ranges of prediction errors were visualized as an error bar. 

The model validity was also tested in terms of ‘levels’ using the finally selected model (Model-3). 

For instance, ‘predicted levels’ were calculated as described in the section 3.2.6, and regression 

analysis between predicted and measured levels was performed as mentioned above. Uncertainty 

analysis was performed, and visualized as error bars following the same way above (Fig. 4.2b). Even 

though Model-3 was still statistically valid (R2 = 0.201 and P = 0.0011 for sul1; R2 = 0.326 and P = 

2.042e-05 for intI1) in terms of levels, the predictabilities were much lower than the loading-based 

validation. This means our model do not allow to predict the level with a high resolution. To see if 

this model is non-parametrically valid, we tested Spearman rank-sum test. In terms of both sul1 and 

intI1, the model was statistically significant (P = 0.0088 for sul1; P = 0.002449 for intI1). Therefore, we 

mainly used our model non-parametrically, for instance, to prioritize ‘hotspots’ where a high AMR 

contamination is expected.  

4.3.2. Prioritizing ‘hotspots’ for monitoring AMR pollution in rivers  

In the following, we explore some aspects of how our model can be leveraged for guiding future 

AMR resistance monitoring efforts or for guiding interventions. Both the expected sul1 and intI1 
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loadings According to Model-3, and levels at wastewater-receiving points were derived, and 

displayed on the map in Fig. 4.3.  

 

Figure 4.3.  Modeled sul1 (left) and intI1 (right) levels (a, b; red) and loadings (c, d; blue) at treated wastewater-
receiving waters in Swiss river networks according to Model-3. Darker color indicates higher values (see in-
figure color scales). 

In terms of loadings, and under assumptions of no decay large downstream rivers are expected to 

have high loadings. For instance, the top 10 sites with the highest sul1 and intI1 loadings are located 

in the rivers Rhein and Aare, that have discharges (i.e., Q95%) ≥ 143 m3/s at the simulated sites. The 

contributions of the local WWTP effluent is only up to 5.5 % for sul1, and 2.1 % for intI1. The 

cumulative upstream EF-origin loadings comprised up to 44.3 % (for sul1), and 22.6 % (for intI1) of 

total loadings in those sites indicating that background loadings took up the largest proportion.  

On the other hand, small upstream rivers are predicted in our model to be occasionally high in 

terms of levels. For example, the top 10 sites with the highest sul1 and intI1 levels are predicted in 

the River Furtbach (ZH, Zurich), Wildbach (ZH), Jonen (ZH), Wissenbach (ZH), Steinach (SG, St.Gallen), 

Alpbach (SG), Klingengraben (SH, Schaffhausen), Paudèze (VD, Vaud), and Seyon (NE, Neuchâtel). All 

of these rivers discharge ≤ 0.09 m3/s. The high levels of sul1 and intI1 in those sites are due to the 

high proportions (i.e., ≥ 37.0 % for sul1; ≥ 36.1 % for intI1) of the nearest EF-origin loadings to the 

total expected loadings. This is supported by studies in rivers a with high proportion of wastewater, 

where high levels of ARG have been reported. According to Lee et al. (2021) performed at the river 

Murg and Suze where the proportion of EF was up to 38.0 % (Murg) and 35.9 % (Suze), the levels of 
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sul1 in receiving waters were much higher than in the upstream waters by 2 ~ 37 times. Furthermore, 

another study performed in a high EF-impacted German river (22 – 55 %), the levels of ARGs at the 

receiving water increased by approximately 0.5 – 1.5 order of magnitude (Brown et al., 2019).  

In general, the levels of ARGs are expected to be high in small-sized, and high wastewater-

impacted rivers. In large-sized rivers, discharged ARGs could be diluted by natural waters, and this 

could make the levels of aquatic ARGs relatively low. In light of a possible future establishment of 

environmental guidelines or limits for environmental AMR levels, our model may be useful for 

prioritizing monitoring efforts.  

4.3.3. Prediction of public exposure to river aquatic AMR  

Another aspect that can be explored with our model is the extent to which the population could 

be exposed to aquatic AMR which may be an additional consideration when prioritizing potential 

interventions. To demonstrate this in principle, we considered ‘resident population’ connected to the 

WWTP to be potentially exposed to the local river water. From this assumption we calculated a 

simple index of potential exposure incidence according to eq.2, which sums up all WWTP sites in 

each canton. This index thus provides a rough indication of the exposure potential in each canton of 

Switzerland. Results are plotted in Fig. 4.4. According to this analysis, Zurich (ZH) is expected to have 

the highest risk of exposure among the entire Swiss cantons, followed by St.Gallen (SG), Ticino (TG), 

Bern (BG), and Aargau (AG) (the order among those four cantons (i.e., SG, BG, TG, and AG) is slightly 

different by indicator; refer to Fig. 4.4). ZH is the largest canton in Switzerland in terms of population, 

so has the highest number of resident population connected to WWTPs in Switzerland. Furthermore, 

impact of EF (i.e., the proportion of EF discharge to the river discharge, 29.4 (± 4.9) % in average) for 

WWTPs in ZH is higher than in any other canton. These features result in ZH having the highest 

potential exposure indicator value. Such analyses could guide decisions on interventions or 

monitoring efforts: given limited resources, ZH could be prioritized in terms of governmental 

interventions for tackling dissemination of wastewater-borne ARGs. However, decision making will 

also have to take into account various other aspects, such as socio- and economic-dimensions, so in-

depth discussion is required by involving multi-sectoral stakeholders. 
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Figure 4.4. Modeled exposure units (copies L-1 · people) by Swiss canton for two antibiotic resistance indicators 
(i.e., sul1 and intI1). The exposure units were calculated according to eq.2. 

 One of the ways to tackle dissemination of wastewater-borne ARGs could be to apply tertiary 

treatment processes in WWTPs. Ozonation could be one of the options. Ozone was proven to be 

effective against multiresistant bacteria and the sul1 gene (Czekalski et al., 2016a). The latter was 

more recalcitrant, and did not decrease significantly under the typical condition for ozonation in the 

full-scale WWTP. The authors suggested that higher doses of ozone (i.e., > 0.55g O3 g DOC−1) are 

required for ARG removal. In Switzerland, the federal government aims to install advanced treatment 

processes in about 100 existing large WWTPs within the next 20 years since 2016 when a new action 

for water protection come into effect (Bourgin et al., 2018). Even though the main purpose of this act 
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is to remove ‘micropollutants’ from WWTPs, the aspect of wastewater-borne ‘ARGs’ could also be 

taken into account. Our models could provide a tool for prioritizing potential hotspots for 

interventions aiming to reduce AMR discharge into aquatic envrionments. Furthermore, this model 

could also be used to explore expected outcomes of future interventions based on ‘As-is, To-be’ 

analysis. After parameterizing the removal rate of ARGs by ozone referring to other studies, the 

public exposure could be assessed based on different scenarios of ozonation treatments (e.g., no-

ozonation, low-doses, and high-doses), and compared. We intend to perform such analyses in the 

near future. 
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Supplementary Information 

 

 

Figure S4.1. An exemplary diagram showing river network analysis. The edges shown here are ‘presence (1)’ and ‘absence (0)’ information. Summation of each 

column will give the total number of connected wastewater treatment plants (WWTPs) upstream at each site (i.e., effluent receiving point). The edges could be 

substituted, for instance by effluent loadings; then the summation of a column in topology matrix indicates total accumulated wastewater loadings at each site.
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Figure S4.2. Log10-transformed levels (copies/L) of sul1 and intI1 in treated effluent (EF), and EF-

discharge (QEF, L/s) from 42 sampling campaigns in 30 different wastewater treatment plants (i.e., 

42(30)) referring to our previous studies (Czekalski et al., 2016b;Ju et al., 2019;Ju et al., In 

Preparation;Lee et al., 2021). For intI1, only 30 data points in 21 different WWTPs (i.e., 30(21)) are 

available.  CV indicates the coefficient of variation.
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Figure S4.3. Downstream profiles of sul1 and intI1 loadings in the River Suze catchment near Villeret, 

Switzerland where one wastewater treatment plant discharge point exist (at distance = 0 m). The 

results were from Lee et al. (2021), and the figure was re-created in this study. The error bars 

indicate standard errors among the values from three sampling campaigns in July, 2019. 
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Figure S4.4. The sul1 and intI levels (copies/L) in treated effluents (Effluents), and upstream locations 

where no known-point sources were located (Non-impacted waters). Total number of samplings 

were suggested as a number without brackets, and the number of sites were suggested a number 

within brackets (e.g., n = 30(21) indicates 30 sampling campaigns in 21 sites. The datasets were from 

our previous studies (Czekalski et al., 2016b;Ju et al., In Preparation;Lee et al., 2021).   
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Figure S4.5. log10-transformed levels of sul1 and intI1 in treated effluents by wastewater process 

type. The data shown here are the same as those in Fig. S4.2 and S4.4. Different letters represent 

different treatment processes, i.e., A = Mechanical-biological treatment (C; removal of carbon 

compounds); B = C + Phosphorus removal (P);  E = C + P + Nitrification (NH4);  F = C + P + NH4 + Sand 

filtration (Sand); H = MB + P + NH4 + Denitrification (N); I = C + P + NH4 + Sand + N.
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Table S4.1. Site information for validation sampling campaigns. Samplings were performed from September 22 to November 01, 2020. 

Site_ID 

GPS-coordinates (Swiss-
grid) 

Categories 
Nearest 
WWTP 

IDs 

Distance 
from WWTP 

discharge 
points (m) 

Sampling 
Dates 

Cantons 
River 

Catchments 

Precipitation 
in the 

previous 24 
hours 

(mm/day) 

River Discharge 
Derivation 

Method 
(M for Measured; 
E for Estimated) 

X Y 

FL_US 733218 252908 US 340200                 300  22.09.2020 SG Glatt 1.3 E 

FL_D1 732790 253131 DS 340200                 361  22.09.2020 SG Glatt 1.3 E 

FL_D2 729315 256373 DS 340200              9,400  22.09.2020 SG Glatt 1.3 M 

UZ_US 728025 257380 US 340802                 577  22.09.2020 SG Thur 1.3 E 

UZ_D1 729087 257439 DS 340802                 500  22.09.2020 SG Thur 1.3 E 

NIB_US 732658 259428 US 342200                 488  22.09.2020 SG Thur 1.3 E 

NIB_D1 733382 260174 DS 342200                 500  22.09.2020 SG Thur 1.3 E 

BAS_US 611063 269905 US 270101                 500  22.09.2020 BS Rhein 0 E 

FUE_D1 621301 263083 DS 282500                 500  22.09.2020 BL Ergolz 0 E 

SIS_D2 622557 259569 US 282500              3,500  22.09.2020 BL Ergolz 0 M 

BUD_D1 622459 257544 DS 282300                 500  22.09.2020 BL Frenke 0 E 

TRI_D1 648161 230493 DS 110400                 500  06.10.2020 LU Suhre 0.3 E 

TRI_D2 646975 233435 DS 110400              3,500  06.10.2020 LU Suhre 0.3 M 

ATT_D1 646225 235763 DS 427200                 500  06.10.2020 AG Suhre 0.3 E 

ATT_D2 646033 240408 US 414400                 550  06.10.2020 AG Suhre 0.3 E 

SCH_D1 646358 241469 DS 414400                 800  06.10.2020 AG Suhre 0.3 E 

SCH_D2 646163 246039 DS 414400              5,660  06.10.2020 AG Suhre 0.3 M 

DAG_D1 640063 231638 DS 113400                 500  08.10.2020 LU Wigger 3 E 

DAG_D2 637602 236997 DS 113400              6,000  08.10.2020 LU Wigger 3 M 

FUL_D1 629520 235144 DS 257500            15,000  08.10.2020 SO Aare 3 M 

TAV_D1 585583 231918 DS 69600                 500  08.10.2020 BE Birs 4.4 E 

COU_D1 593129 232776 DS 69000                 300  08.10.2020 BE Birs 4.4 E 

COU_D2 595732 236936 DS 69000              6,500  08.10.2020 BE Birs 4.4 M 

DMN_D1 777341 176314 DS 385104                 500  14.10.2020 GR Landwasser 0 E 

DGS_D1 778640 178717 DS 385103                 500  14.10.2020 GR Landwasser 0 E 
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DGT_D1 779236 180604 DS 385102                 500  14.10.2020 GR Landwasser 0 E 

RUE_D1 707049 233824 DS 11801                 500  14.10.2020 ZH Jona 0 E 

RUE_D2 707017 234607 US 11801                 500  14.10.2020 ZH Jona 0 E 

BUB_D1 705553 235686 DS 11301                 500  14.10.2020 ZH Schwarz 0 E 

WAL_D2 709717 236550 DS 12001              1,450  14.10.2020 ZH Jona 0 M 
WAL_D1 710532 236707 DS 12001                 500  14.10.2020 ZH Jona 0 E 

VIT_D1 543404 165191 DS 553800                 500  19.10.2020 VD Mentue 0 E 

POL_D1 542183 165407 DS 553300                 500  19.10.2020 VD Coruz 0 E 

PEY_D1 543388 168034 DS 568200                 500  19.10.2020 VD Mentue 0 E 

DON_D1 544526 178042 DS 591300                 500  19.10.2020 VD Mentue 0 E 

DON_D2 545388 180957 DS 591300              4,500  19.10.2020 VD Mentue 0 M 
LUC_D1 555172 174316 DS 567500                 500  19.10.2020 VD Broye 0 E 

HEN_D1 557436 177724 DS 581900                 500  19.10.2020 VD Broye 0 E 

GRA_D1 558903 179761 DS 581800                 500  19.10.2020 VD Broye 0 E 

PAY_D1 561818 187554 DS 582200                 500  19.10.2020 VD Broye 0 E 

BUS_D1 559147 187501 DS 200400                 500  19.10.2020 FR Petite Glâne 0 E 

GRR_D1 562613 190856 DS 581700                 500  19.10.2020 VD Petite Glâne 0 E 

GRR_D2 566323 194201 DS 581700              5,800  19.10.2020 VD Petite Glâne 0 M 

DAG2_D1 640075 231619 DS 113400                 500  01.11.2020 LU Wigger 0 E 

BUT_D2 641008 226262 DS 108300            12,560  01.11.2020 LU Buttisholzbach 0 M 

BUT_D1 648011 218441 DS 108300                 260  01.11.2020 LU Buttisholzbach 0 E 
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Table S4.2. Key validation information for quantitative PCR standard curves. LOD indicates the limit of detection. 

qPCR primer Slope 
Specificity 
verification method 

qPCR-
efficiency 

Y-intercept 
Linear dynamic range 
(copies - copies) 

LOD-copies 
(Avr. Cq) 

S.D. (of Cp) at 
LOD 

Cp of the NTC 

sul1 -3.22 
Hydrolysis probe 

(TaqMan) 
2.044 38.7 5.0E+07 - 5.0E+01 50 (34.8) 0.22 N.D. 

intI1 -3.48 
Hydrolysis probe 

(TaqMan) 
1.938 40.8 5.0E+07 - 5.0E+01 50 (34.8) 0.29 N.D. 

16S rRNA gene -3.54 
Hydrolysis probe 

(TaqMan) 
1.917 41.8 5.0E+07 - 5.0E+01 50 (33.2) 0.38 34.8 
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CHAPTER 5. Conclusions 

5.1. Summary and Discussion of Limitations 

In this thesis, key factors governing the fate of anthropogenic inputs of AMR in the river were 

studied. Under dry-weather conditions, while the effluents from WWTPs were the most critical 

factors, other factors (i.e., dilution by additional water inputs, and other source/decay mechanisms) 

were shown to play important roles in driving the fate of riverine AMR. The weather itself was found 

to be a significant factor. Following heavy rains, the contamination by WWTPs became even more 

serious. The discharge of untreated sewage through bypass and combines sewers overflow increased 

the levels of AMR indicators at receiving waters, to values much higher than the baseline under dry-

weather conditions. Based on key observations above, a nation-wide river network model for AMR 

contamination was developed. This model confirmed one of the key observations made in the case 

studies  – namely that WWTPs are the major sources of AMR. However, results of model validation 

also indicate that there probably are ‘additional sources of AMR’ other than WWTPs. While this 

model could be further improved, it is still useful at least to ‘prioritize’ hotspots for AMR 

contamination. More detailed points were further discussed in the following paragraphs (i - v). 

i. Dilution as a main mechanism for short-range decreases of AMR levels  

A modelling based on mass-flow concepts and conservative tracers under the dry-flow revealed 

that sharp decreases of wastewater-borne AMR levels over short distance (2.0 – 2.5 km) appeared to 

be due to the dilution by additional water inputs, e.g., groundwater infiltration and/or tributary 

inputs. However, this could be different at other sites depending on the local hydrogeologic 

conditions. If there are no or low inputs of groundwaters or tributaries, the degree of decrease over 

downstream distance might be much less.  

Considering that there were not profound differences between modeled- and measured-levels 

over 2.0 – 2.5 km distance, chapter 2 states that additional source/sink mechanisms were not found 

to be significant over such a short distance. The expected hydraulic retention time over 2.0 – 2.5 km 

was on the order of hours (99 mins/2 km for MUE; 128 mins/2.5 km for VIL). This might be too short 

for those mechanisms (e.g, increased mortality of discharged bacterial cells due to environmental 

conditions, sedimentation or predation) to be effective. Unless other acute sources (e.g., additional 

point/non-point sources other than the WWTP) exist in downstream locations, wastewater-borne 

resistance determinants are probably not likely to significantly increase or decrease over such short 

ranges. However actual rates for such mechanisms have not been determined in this work. 
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ii. Additional sources/decays become more apparent over longer downstream distance 

The mass-flow (loadings) based analysis presented in chapter 2 revealed that additional 

source/sink mechanisms became more apparent over longer downstream distance (up to 13.7 km for 

VIL; up to 6.8 km for MUE).  

In many cases, the loadings of most ARGs (except for intI1) decreased with downstream distance. 

This means wastewater-borne ARGs do not persist along the downstream waterway. However, the 

loadings of intI1 at downstream locations did not significantly decrease or increase, and we assume 

this might be because intI1 exists intrinsically in undisturbed freshwaters at relatively high levels, so 

does not work well as an indicator for anthropogenic AMR contamination in some situations.  

In some cases, the loadings of ARGs also did not always decrease, as evidenced by one of our 

samplings (MUE3) where pronounced increases of sul1 and intI1 loadings were observed in far 

downstream locations. Various lines of evidences suggested that this increase might not originate 

from anthropogenic sources.  

As a speculation, I suggest in Chapter 2 ‘stream biofilms’ as a potential explanation for this. 

Biofilms are considered as hotspots for horizontal gene transfer (HGT) in aquatic environments (Abe 

et al., 2020). For instance, conjugation rarely occurs in planktonic phases because a direct interaction 

between donor and recipient cells is difficult (Abe et al., 2020). The situation becomes different after 

forming biofilms. Considering that cells are densely packed in this form, they are expected to achieve 

higher contact frequencies compared to planktonic life forms. Thus conjugation could occur more 

frequently (Abe et al., 2020). Indeed, many studies reported that biofilms promote HGT (Abe et al., 

2020;Madsen et al., 2012;Molin and Tolker-Nielsen, 2003). Furthermore, a study on wastewater 

biofilms revealed that relative abundances of sul1 and intI1 were much higher than other genes 

(ermB and qnrS), especially in biofilm-fluid interfaces (Petrovich et al., 2019). The authors proposed a 

possibility that the cells on biofilm surfaces could be detached, released into the water, thus could 

selectively enrich sul1 and intI1 in the water. I speculate the aquatic sul1 and intI1 observed in MUE3 

could have been enriched in a similar way – detached from stream biofilm surfaces where HGT could 

occur frequently. However, we have not made any analysis of biofilms in this system during our 

investigation, so this explanation remains speculative. Therefore, further studies linking biofilms to 

aquatic resistome would be required in the River Murg, Münchwilen, and the impact of biofilms on 

the aquatic resistome could be a field of study of some interest also more generally. 

iii. Wastewater bypass is temporarily a major source of antimicrobial resistance 

Among various stormwater-related disturbances (i.e., bypass, effluents, river surface sediments, 

catchment surface soils), bypass was found to be the main contributor to the elevation of aquatic 
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ARG levels in receiving river waters. The bypass-borne resistance determinants were persistently 

present for a while (up to 22 hours) in the water. This might be due to the advective transport and 

longitudinal dispersion of upstream inputs. This observation indicates that the fate of bypass inputs 

in receiving waters is temporarily dynamic, so a future study considering hydraulic aspects is 

required. Such studies face a number of challenges. First of all, the hydraulic modelling will require a 

better knowledge of bypass characteristics (e.g., levels and temporal dynamics of resistance 

determinants). The four bypass samples shown in this study might not be enough, more repetitive 

samplings of bypass are needed. Other quantitative information on active flow times, rates, and 

discharge locations for all the bypass pipelines are also required. To quantify hydraulic effects 

(advection and dispersion), the properties of river catchment are needed, such as flow rates during 

the period of monitoring, and site-specific dispersion coefficient, etc. Those properties could be 

empirically parameterized, then the advection-dispersion equation could be used to model the 

spatio-, and temporal-dynamics of resistance determinants in the Murg catchment.  

Another observation was that ARG levels were relatively stable over time in treated effluents. This 

means that we could achieve certain degree of ARG removal from combined sewages even under 

high flow conditions is as long as those are treated by conventional wastewater processes. As briefly 

suggested in CH.3, increasing the proportion of incoming combined sewages that are treated would 

help to reduce the amount of bypass-borne ARG discharges during stormwater events. Upgrading 

currently existing WWTPs is an option, at least this aspect could be considered in the early stage of 

WWTP installation – having enough treatment capacities so that a large portion of combined sewage 

could be treated during stormwater events. At the same time, informing residents of the potential 

risk of exposure to bypass-borne AMR might also be required. If not, the risk of public exposure to 

aquatic AMR could remain high during and shortly after stormwater events. 

iv. The risk of exposure to ‘multi-resistance risk factors’ increases during stormwater events 

The risk of exposure not only to resistance, but also to ‘multi-resistance’ increased during and 

shortly after stormwater events. Using a network analysis visualizing ARG co-location in CH.3, a large 

portion of MGDs were shown to be potentially associated with plasmids. Considering plasmids could 

be transferred to other recipient cells, those MGDs could be persistent, or could even proliferate in 

the environment.  

‘Where exactly could those MGDs persist or proliferate in the environment?’ is still an open 

question. As discussed earlier in the section-ii (p.133), water compartments are less likely to be the 

hotspots because contact frequencies among cells might not be high enough or planktonic stages to 

allow for significant conjugation rates (Abe et al., 2020). I assume that biofilms near wastewater 
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discharge points could be potential spots. Bypass-borne MGDs could be captured by those biofilms, 

and could further proliferate via HGT stimulated by chronic (i.e., treated wastewaters) or sporadic 

(i.e., bypass) disturbances. Considering that HGT could occur even without antibiotics-mediated 

selection pressures (Lopatkin et al., 2017), MGDs could persist even in biofilms from further 

downstream points or reservoirs (i.e., lakes or marine estuaries), once disseminated.  

v. The river network model confirms that ‘WWTPs’ are the main anthropogenic AMR sources 

The river network model for AMR contamination confirmed key observations from the previous 

chapter (CH.2) and other project (Ju et al., In Preparation) under dry-flow conditions: 1) WWTPs are 

major source of aquatic sul1 and intI1 in the river, 2) Intrinsic sul1 and intI1 exist in river waters. On 

the other hand, another hypothesis learnt from CH.2 (i.e., wastewater-borne sul1 loadings decrease 

over downstream distance in the River Suze, Villeret) could not be generalized to the entire rivers – 

additional sources of AMR might exist. While the current model is still useful to prioritize ‘hotspots’ 

for AMR contamination, further improvements could be made by figuring out other significant 

sources of AMR, and by parameterizing those factors. 

Among potential additional sources, I speculate that industrial wastewaters might play a role to a 

certain extent. While the exact figure and statistics are not available yet, profound amounts of 

industrial wastewaters are discharged to Swiss rivers (R. Gulde from Verband Schweizer Abwasser, 

personal communication to Jangwoo Lee, Apr. 30, 2021), thus certain amounts of ARG loadings from 

those might exist in the water. Furthermore, a diffusion from non-point sources could also 

potentially contribute to AMR contamination. A previous study performed in 21 Swiss lakes identified 

potential impacts of agricultural activities in some lakes (i.e., Lakes Baldegg and Greife), even though 

the main drivers of AMR contamination were still WWTPs in general (Czekalski et al., 2015). Given 

current analysis, it is not possible to figure out which source(s) except for WWTPs is likely to be 

significant driver(s) of AMR contamination in Swiss rivers. Therefore a future study is required, e.g., 

examining the relationship between AMR levels (or loadings) and land usages, etc.  

5.2. Synthesis and Outlook 

Under dry-flow condition, treated effluents are key contamination sources of AMR in rivers 

according to our dry-sampling studies in CH.2 and 4. Even though there could still be other sources, 

for instance other anthropogenic sources and/or in-system growths as evidenced by MU3 results in 

CH.1, our models assuming WWTPs as major contamination sources in CH.4 were still statistically 

valid – treated effluents contribute significantly to AMR pollution in rivers. Under stormwater events, 

bypass is a major source of AMR contamination in a high wastewater-impacted river of which 

catchment is utilized by agricultural practices (CH.3). My thesis suggests that WWTPs are key 
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contamination sources of AMR in both weather conditions. Therefore, WWTPs could be important 

potential intervention points for tackling dissemination of wastewater-borne AMR.  

As one of the ways to improve over the current situation, I proposed to increase the proportion of 

treated wastewater to incoming combined sewage during stormwater events in CH.3. In this way, we 

could obtain certain degree of removal of bypass-borne resistance determinants from wastewaters. 

The resistance determinants in treated wastewaters could be further removed, for instance by 

installing ozonation processes in WWTPs as mentioned in CH.4. As mentioned in CH.4, the Swiss 

government aims to install ozonation in the selected WWTPs. Our predictive model shown in CH.4 

could provide insights on this selection process, for instance using a scenario based analysis, which 

will be implemented by me and collaborators in the near future. 

Another possible intervention that I briefly mentioned earlier in the section-iii (p.134) is to inform 

residents about the risk of exposure to aquatic AMR, especially during and shortly after stormwater 

events when the levels of aquatic AMR increase profoundly. There could be two important points 

regarding informing the public – (1) raising public awareness in terms of AMR risks, and (2) informing 

‘where’ and ‘when’ exactly the risk increases. The former should precede the latter so that people 

could be motivated enough to avoid of the risk, when informed. To achieve this, the efforts not only 

from scientists, but also from various social players (e.g., (public)educators, civic activists, WWTP 

operators, local/federal governments, etc) are required. For the latter point (2), more scientific 

studies, especially on hydraulic aspects are required. For instance, as shown in CH.3, bypass-borne 

resistance determinants are spatially, and temporally dynamic. Hydraulic processes (i.e., advective 

transport and longitudinal dispersion), and better knowledge about relevant sources (see above the 

section iii) might be the key factors. In future studies, hydraulic modeling of resistance determinants 

during and after stormwater events could be implemented to predict ‘where’ and ‘when’ the 

determinants profoundly exist in waterways.    

While this thesis provides a theoretical framework with which the question ‘how much are we 

exposed to riverine aquatic AMR?’ could be at least partly answered e.g., under dry-flows (CH.4), the 

current study still does not tell how ‘hazardous’ those environmental ARGs or ARB are. This is 

because, to the best of our knowledge, there are still research gaps that need to be further studied, 

e.g., human health ‘dose-response’ relationship. For instance, we do not know ‘how much 

environmental ARGs could cause symptoms once entered into human systems’, or at least there has 

not been a solid framework with which the relationship could be quantitatively parameterized.  

To link environmental ARGs to human health risks, it would be important to know ‘what is 

proportion of ARG hosts that human pathogens account for?’. Since not all ARG hosts (i.e., ARB) are 
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pathogenic. Epidemiological studies should follow, for instance in contaminated river catchments 

where waterborne disease outbreaks occur. In this case, probably other low income countries where 

those outbreaks are frequently reported, rather than Switzerland may be better places to study. In 

the case of waterborne disease outbreaks, we should aim to establish datasets which link the 

patients (who suffer from waterborne diseases with AMR issues) to the levels of AMR pathogens in 

the river to which they were exposed. Then, we could statistically infer threshold levels at which 

infections occur. Various waterborne pathogens could be monitoring targets, such as Vibro cholera, 

E. coli, Salmonella spp., Legionella spp., which potentially cause cholera, hemolytic uremic syndrome, 

salmonellosis, Legionnaires' disease, etc (Leclerc et al., 2002). However, a direct exposure to water 

environments might not be the only route. There could be other exposure routes, for instance via 

contacts with contaminated wild or domestic animals (animal to human transmission), contacts with 

other patients (human to human transmission), eating irrigated vegetables (food to human 

transmission), etc. Therefore, not only the ‘environmental-aspect’ of resistance, but also other 

relevant fields, such as medical-, agricultural-, veterinary-aspects of resistance should be taken into 

account altogether, for instance, under the ‘One-Health’ concept in future exposure studies.  
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