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A B S T R A C T   

Most people in Ghana have no or only basic access to safely managed water. Especially in rural areas, much of the 
population relies on groundwater for drinking, which can be contaminated with fluoride and lead to dental 
fluorosis. Children under the age of two are particularly susceptible to the adverse effects of fluoride and can 
retain 80–90% of a fluoride dose, compared to 60% in adults. Despite numerous local studies, no spatially 
continuous picture exists of the fluoride contamination across Ghana, nor is there any estimate of what pro
portion of the population is potentially exposed to unsafe fluoride levels. Here, we spatially model the probability 
of fluoride concentrations exceeding 1.0 mg/L in groundwater across Ghana to identify risk areas and estimate 
the number of children and adults exposed to unsafe fluoride levels in drinking water. We use a set of geospatial 
predictor variables with random forest modeling and evaluate the model performance through spatial cross- 
validation. We found that approximately 15% of the area of Ghana, mainly in the northeast, has a high prob
ability of fluoride contamination. The total at-risk population is about 920,000 persons, or 3% of the population, 
with an estimated 240,000 children (0–9 years) in at-risk areas. In some districts, such as Karaga, Gushiegu, 
Tamale and Mion, 4 out of 10 children are potentially exposed to fluoride poisoning. Geology and high 
evapotranspiration are the main drivers of fluoride enrichment in groundwater. Consequently, climate change 
might put even greater pressure on the area’s water resources. Our hazard maps should raise awareness and 
understanding of geogenic fluoride contamination in Ghana and can advise decision making at local levels to 
avoid or mitigate fluoride-related risks.   

1. Introduction 

Only 41% of the population in Ghana has access to safely managed 
water services and another 44% has only basic access, while the 
remaining 14% has limited to no access (WHO/UNICEF Joint Moni
toring Program, 2020). In rural areas, and especially in the northern 
regions of the country, the population therefore depends directly on 
groundwater wells for drinking (Atipoka, 2009). However, the 
groundwater in Ghana is often naturally contaminated with fluoride, 
and its consumption can lead to dental fluorosis (Alfredo et al., 2014; 
Barbier et al., 2010; Smedley et al., 1995). The World Health Organi
zation (WHO) has established a guideline maximum fluoride concen
tration of 1.5 mg/L for drinking water, which is based on an estimated 
drinking water intake of 2 L/day for adults, and, emphasizes that 
countries should identify locally relevant standards based on their 
characteristics (WHO, 2017). In countries with generally high 

temperatures, such as Ghana where water consumption and thus expo
sure are higher, a lower threshold has been suggested, as is the case in 
India (Bureau of Indian Standards (BIS, 2012). Apambire et al. (1997) 
reported that the year-round high temperatures in the Upper Region of 
Northern Ghana, averaging 32 ◦C, can lead to a daily water intake as 
high as 3–4 L/day for adults; this is 1.5–2 times higher than the 
WHO-estimated daily water consumption (WHO, 2017). Therefore, 
Apambire et al. (1997) recommended an upper safe threshold of fluoride 
concentration in drinking water of 1.0 mg/L. 

The high exposure of the population in Ghana to fluoride led Craig 
et al. (2015) to recommend an age-specific threshold for fluoride intake. 
The risk of developing non-carcinogenic effects, such as permanent 
dental fluorosis, is greater at an early age during the development of 
tooth enamel. Young children can also retain 80–90% of a given fluoride 
dose compared to 60% in adults (WHO, 2004), with about 90% of the 
fluoride absorbed from liquids compared to 30–40% absorbed from 
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solids (WHO, 1996). Hence, Craig et al. (2015) recommended an upper 
threshold of fluoride in drinking water of 1.0 mg/L for older children 
and adults, and an even lower level (0.6 mg/L) in the first two years of 
life (Kumar et al., 2019; Zango et al., 2019). This is particularly relevant 
for Ghana, where children (0–9 years old) account for approximately 
25% of the total population (GSS, 2020). By contrast, in European 
countries children represent only about 12% of the population. There
fore, identifying children who are potentially exposed to unsafe fluoride 
levels in drinking water is critical in Ghana. 

The spatial distribution of the fluoride contamination in ground
water throughout Ghana is related to the geological, topographical, and 
climatic characteristics of the country (Sunkari et al., 2020). Where 
groundwater testing has not been carried out, spatial environmental and 
socioeconomic variables are instrumental predictors for identifying 
areas at risk (Amini et al., 2008; Podgorski and Berg, 2020). Recently, 
machine-learning methods, such as random forest, have been adopted 
for spatial analysis for their advantages in evaluating complex and 
non-linear spatial relationships where a large number of variables might 
be needed to explain a given spatial phenomenon (Lary et al., 2016). 
However, for machine learning methods such as random forest, chal
lenges arise when attempting to account for dependency structures 
associated with spatial data that differ from those of non-spatial datasets 
(Meyer et al., 2012; Pohjankukka et al., 2017; Valavi et al., 2019). 

One challenge is that spatial autocorrelation (SAC) between vari
ables can bias and inflate results; even though the phenomenon is a 
natural one occurring where related variables provide the same infor
mation in a given area. Another is that using traditional non-spatial 
validation methods to maintain the hypothesis of spatial independence 
is difficult throughout the validation process. These methods create a 
random set of validation points that may be very close to the training 
points, resulting in an overly optimistic view of a model’s performance 
(Ploton et al., 2020). The use of spatial cross-validation can be valuable 
for maintaining independence between the training and testing data to 
help ensure reliable performance estimations in the context of spatial 
modeling (Araujo et al., 2005), thereby avoiding inflated estimates of 
prediction accuracy associated with traditional cross-validation 
methods (e.g., k-folds) (Hammond and Verbyla, 1996; Misiuk et al., 
2019). Spatial cross-validation avoids problems related to inflated pre
diction accuracy caused by spatial autocorrelation by choosing a suffi
ciently large block size that avoids spatial autocorrelation between 
variables and sufficiently represents the classes (Roberts et al., 2017). 
Similarly, the area of applicability (AOA) (also called applicability 
domain) identifies the areas where the model has knowledge of envi
ronmental conditions, which are set by the range of the training data. 
The AOA is a valuable tool to identify areas where the model is able to 
learn from the training data and where its estimated performance is still 
reliable (Meyer and Pebesma, 2021). 

Despite numerous local studies on fluoride contamination of 
groundwater in Ghana (Affam et al., 2012; Alfredo et al., 2014; 
Anim-Gyampo et al., 2012; Anku et al., 2009; Apambire, 1996; Atipoka, 
2009; Craig et al., 2018; Firempong et al., 2013; Ganyaglo et al., 2019; 
Loh et al., 2012; Smedley et al., 2002; Yidana et al., 2012; Zango et al., 
2019), no comprehensive assessment of fluoride hazard and risk yet 
exists for the whole country, including estimates of the number of 
children and adults potentially exposed to unsafe levels. Therefore, in 
the present study, we spatially model the probability of the occurrence 
of geogenic fluoride concentrations greater than 1.0 mg/L in ground
water in Ghana. A set of geospatial predictor variables with random 
forests is used. We address the abovementioned shortcomings of using 
random forests in a spatial context by evaluating the model performance 
through state-of-the-art spatial cross-validation and by assessing model 
uncertainties. We then use the resulting hazard map of fluoride 
contamination to estimate the population and the children potentially 
exposed to fluoride levels in drinking water that may affect their health. 
This hazard map and estimation of the at-risk population will be 
invaluable for guiding location-based, risk-reduction policy and 

intervention changes to improve the future outcomes of children living 
in high-risk fluoride contamination areas. 

2. Materials and methods 

2.1. Study area 

Ghana is located in West Africa at the Gulf of Guinea, between 1◦20′

east to 3◦25′ west and 4◦50′ to 11◦18′ north (Fig. 1). Its population 
reached 31 million inhabitants in 2020. The country has a generally 
equatorial tropical climate in the south and a semi-arid climate in the 
north. The south has relatively high and stable temperatures throughout 
the year, with an average daily temperature ranging from 21–30 ◦C. The 
northeast has the most elevated temperatures in the country, reaching 
35–40 ◦C during the hottest months of the year from February to April. 
Rainfall decreases with increasing latitude, ranging from about 1900 
mm per year in the southwest to about 800 mm in the north (Asiamah 
et al., 1997). 

The geology of the country is dominated by Voltaic, Birimian, and 
granitic geological formations in the north, while the south is dominated 
by Birimian and Middle Precambrian rock formations. An extended 
description of the geology is provided in Fig. S1. The state of the soil is 
strongly influenced by the climate of the country. In the north, Leptosols 
and Plinthosols are observed, which are semi-arid and poor soils. While 
in the south, the most characteristic soils are lateritic, such as Ochrosols 
and Oxysols, which are soils normally found in tropical rainforests 
(Jones et al., 2013). The topography of the country is gentle, with a low 
plain on the coast and an extensive plateau in the south-central part of 
the country and highlands mainly in the west. Less than 1% of the ter
ritory has slopes greater than 5%, and the altitude varies from sea level 
to 885 m on Mount Afadjato. 

2.2. Fluoride data and predictor variables 

The fluoride concentration dataset consisted of 611 of our own 
groundwater quality data measurements as well as 2623 collected from 
other sources (Abusa et al., 2018; Addo et al., 2011; Affam et al., 2012; 
Agyemang, 2020; Anornu et al., 2017; Arko et al., 2019; Avi et al., 2019; 
Boakye Opoku, 2013; Chegbeleh et al., 2020; CIDA, 2011; Egbi et al., 
2019; Gastineau, 2015; Kulinkina et al., 2017; Mensah-Essilfie, 2013; 
Nkansah et al., 2019; Smedley, 1996; Smedley et al., 2002; Zango et al., 
2019). More information is provided in supplementary Table S1. Of 
these data, 13% of the wells exceed the guideline value of 1.5 mg/L 
recommended by the WHO, and 22% exceed 1.0 mg/L, the guideline for 
tropical countries like Ghana with a higher than average water con
sumption and, therefore, greater exposure (Apambire et al., 1997; Craig 
et al., 2015). Sixty-five geospatial predictor variables of climate, geol
ogy, soil, topography, and ecology were collected based on their known 
or potential relationships with high fluoride levels in groundwater. 
Fig. 2 presents a selection of these explanatory variables, while sup
plementary Fig. S2 shows the 19 predictor variables ultimately selected. 
The spatial resolution of most of the explanatory variables was the same 
at 250 m, and a common spatial analysis unit was created by assigning 
the point data of fluoride concentrations to a grid of 250 m2. When more 
than one point in a pixel was available, the geometric mean was 
calculated. The data were then categorized as zero for concentrations 
≤1.0 mg/L, (i.e., class zero) and one for concentrations >1.0 mg/L, (i.e., 
class one). 

2.3. Random forest modeling 

Random forest is an ensemble method based on classification and 
regression trees that use recursive binary splitting to split a dataset into 
two sets for the selection of the optimal variables (Breiman, 2001). A 
reliable prediction is ensured by growing a large number of dissimilar 
trees based on a random resampling of the original data and a random 
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subset of the variables. The final prediction is the result of the average of 
all the trees. The present random forest model was created using the R 
statistical programming language (R Core Team, 2020). 

Any bias produced by splitting data into particular training and 
testing data sets was avoided by performing 1000 iterations with 
different subsets of training and testing data. Since a large disparity in 
class frequencies can negatively influence the performance of a model, 
the data set was balanced for each iteration by randomly down-sampling 
the majority class in the training set to match the least frequent class (i. 
e., class one or sample points with a fluoride concentration over the 
threshold of 1.0 mg/L). Each model was produced by growing 1001 
trees. The 19 predictors variables used in modeling were selected based 
on their contribution to the overall model performance as measured by 
accuracy. Therefore, variables that had a mean decrease in accuracy 
>0 on average over all random forest model iterations were retained. 
That is, only variables that systematically improved the predicted ac
curacy were kept. 

Fig. 1. Fluoride concentrations in groundwater from the data sources listed in supplementary Table S1 (n = 3234), plotted on a topographic map of Ghana. Red 
points represent fluoride concentrations >1.0 mg/L (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.). 

Fig. 2. Examples of predictor variables of the country of Ghana that were used 
in modeling, available at spatial resolutions of 250 m and 1 km; potential 
evapotranspiration (Trabucco and Zomer, 2019), haplic gleysols and pH (Hengl 
et al., 2015). The complete set of explanatory variables is shown in Fig. S2. 
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2.4. Spatial cross-validation of the model 

The performance of the model was verified on the test data by spatial 
cross-validation with the R package blockCV (Valavi et al., 2019). This 
step avoids the bias that occurs when the data used to train the model are 
not spatially independent from the data used to validate the model 
(Ambroise and McLachlan, 2002; Pohjankukka et al., 2017). The spatial 
independence of the training and validation data was achieved by 
spatially separating the training and validation data sets using 28 blocks 
of approximately 81 × 81 km in size. The block size was defined to 
ensure that both classes had sufficient representation (Roberts et al., 
2017). Using a semivariogram of the predictor variables, the block size 
was also used to assess and avoid spatial autocorrelation of those vari
ables. An example of the fold assignment and the semivariogram of the 
predictor variables is shown in Fig. S3. 

The sensitivity, specificity, balanced accuracy, precision, Brier score, 
receiver operating characteristic (ROC) curve, and area under the curve 
(AUC) were calculated for cut-off probabilities between 0 and 1. Sensi
tivity provides the proportion of high measured fluoride concentrations 
that are correctly identified by the model. Conversely, specificity pro
vides the proportion of low measured fluoride concentrations that are 
correctly identified by the model. Balanced accuracy describes the 
overall performance of the model through an average of sensitivity and 
specificity, while precision reports on the proportion of cases that were 
labelled with fluoride contamination that are indeed contaminated with 
fluoride. The Brier score verifies the accuracy of the prediction by 
showing how far the predictions are from the truth; Brier score values 
closer to zero indicate a better calibration of the model. The ROC depicts 
the relationship between the false positive rate (1-specificity) and 
sensitivity. The AUC measures the area under the ROC curve, with 
values closer to one indicating a better predictive capability of the 
model. 

A better understanding and interpretation of the random forest 
model results were achieved using the importance of variables and 
partial dependence plots (PDP). The influence of the predictor variables 
on the prediction outcome of the model was determined by calculating 
the importance of the variables, although this still does not relate the 
predictor variable to the prediction outcome. For this reason, partial 
dependence plots (PDPs) were also calculated (Greenwell, 2017), which 
show the effect that changes in an explanatory variable have on the 
prediction. 

2.5. Hazard map 

The hazard probability map of fluoride in groundwater exceeding 
1.0 mg/L in Ghana was calculated using the average of 1000 model 
predictions. Each run was created through the random forest model built 
with the final predictor variables in the compiled dataset of low and high 
fluoride concentrations. The averaged map is less sensitive to any 
arbitrary selection produced by the specific splitting of the training and 
test data sets. We then classified the fluoride hazard in groundwater as 
high or low using the average probability cut-off, which was taken at the 
point at which the specificity and sensitivity of a model are equal. In a 
balanced sample between low and high values, this usually corresponds 
to the highest overall accuracy over all cut-off points. We then created 
two additional maps that classify the fluoride hazard in groundwater as 
high or low using the minimum and maximum probability cut-off points 
from the 1000 iterations. The standard deviation for each pixel for the 
three hazard maps was then calculated. This represents the confidence 
in the prediction of the value of each pixel over the entire study area as 
well as the spatial stability of the models. The spatially uncertain areas 
were calculated using the AOA with the R package CAST (Meyer and 
Pebesma, 2021). The AOA is the area where the model can be applied 
with an expected average performance that is comparable to that esti
mated with the training data. In areas outside the AOA, the model 
predictions are more uncertain, as these areas contain predictor values 

not found within the limits of the training data. The AOA is derived from 
the dissimilarity index (DI), which provides a threshold to define the 
AOA. The DI uses a unitless measure to determine how much each point 
outside the training data differs from the training data. For this, it 
evaluates the distances in a multidimensional predictor variable space 
by weighting the predictor variables by their importance derived from 
the random forest model. The AOA is determined by the 0.95 quantile 
threshold of the DI values of the training data. Using this threshold, a 
new data point is outside the AOA when the DI exceeds the 0.95 
quantile. Subsequently, the pixels with a high standard deviation and 
uncertainty were removed from the final hazard map of high fluoride 
contamination. The indication of the regions of less certainty provides 
valuable information for the final interpretation of the results. 

2.6. Estimation of the at-risk population 

Our use of the global population age structure for the year 2020 
(WorldPop, 2018) allowed us to identify the total population and chil
dren aged 0–9 years living in areas with groundwater fluoride concen
trations exceeding 1.0 mg/L. Because not all the population relies on 
groundwater, we used national-level groundwater usage rates for urban 
and rural areas (WHO/UNICEF Joint Monitoring Program (JMP), 2019). 
Finally, to identify urban and rural areas in the country, we used the 
GHS-SMOD 06 of the Joint Research Centre (JRC) of the European 
Commission, which indicates the degree of urbanization in 2020 based 
on Landsat image data and global population grids (Pesaresi et al., 
2019). We then estimated the potentially affected population by 
multiplying the pixel’s groundwater-consuming population by its 
probability of having a high risk of fluoride contamination, as previously 
described (Podgorski and Berg, 2020). The population at risk was then 
broken down by district and region across the country. 

3. Results 

3.1. Predictor variables 

We modeled the probability of groundwater fluoride exceeding 1.0 
mg/L in Ghana by initially considering 65 geospatial variables. From 
these, 19 variables were kept, which are plotted in Fig. 3a according to 
their decreasing relative importance. The final set of variables is pre
sented in descending order according to their importance in Fig. 3a. This 
diverse set of variables includes climatic, geological, soil, and topo
graphic variables. The effects of geologic features and potential evapo
transpiration (PET) on the probability model of high fluoride are shown 
in Fig. 3b. Note, however, that the model performance (see Section 3.2) 
is derived from the combination of explanatory variables representing 
the complexity and diversity of the system, and not just from any 
particular variable. The partial dependence plots provided in supple
mental material Fig. S4 provide further insights into the relationships 
between the predictor variables and fluoride contamination. 

3.2. Hazard map 

The hazard probability map of groundwater fluoride contamination 
generated from the final random forest model is presented in Fig. 4. 
Several regions of high probability are evident across the country. The 
northeast is the most affected region, with probabilities varying between 
50 and 90%. This region extends from Eastern Gonja to the northern
most district of Bongo, excluding a low-probability belt between the 
districts of Mamprugu Moagduri and Bunkpurugu Yonyo. In the north
west, the Sawla Tuna Kalba and Bole districts have a probability of 
around 50–70% of groundwater fluoride contamination. And an isolated 
area in the south near Accra has a probability of around 50–60%. As 
indicated by the histogram in Fig. 4, 1.2% and 16.5% of the country 
have a probability >80% and >50%, respectively, of having fluoride in 
groundwater exceeding 1.0 mg/L. 

D. Araya et al.                                                                                                                                                                                                                                  



Water Research 212 (2022) 118083

5

3.3. Performance of the model 

No significant variation beyond ~2% across the metrics was detected 
among the 1000 different models runs. The corresponding 1000 ROC 
curves shown in Fig. 4 have a standard deviation of 0.012, demon
strating consistent accuracies ranging between AUC values of 0.72 and 
0.81 (mean 0.76). Sensitivity, specificity, precision, and balanced ac
curacy all have values around 70% at the optimal cutoff. For precision, 
for example, this means that the prediction was correct 7 out of 10 times 
where the model indicated a fluoride concentration exceeding the 
threshold. These metrics show that the model produced stable pre
dictions across the 1000 iterations. The Brier score, which reports the 
quadratic error of probability and has a range of -∞ to 1, where values 
close to 0 represent a more accurate model, is around 0.2. Overall, these 
results indicate a good calibration of the model. 

3.4. Estimation of the at-risk population 

About 15.6% or ~37,300 km2 of the total land area of Ghana may 
contain fluoride contamination above the threshold. These areas are 
mainly in the northeastern part of the country where 24% of Ghana’s 
districts are located. To calculate the number of people potentially 
affected by high fluoride in drinking water, the population living in 
these hazard areas was adjusted by the proportion of untreated 
groundwater use. The total population that has a risk of ingesting high 
fluoride concentrations in drinking water is around 920,000 (Fig. 5a), or 
3% of the population. Fig. 5c shows that Karaga, Gushiegu, Yendi, and 
Savelugu Nanton have the highest populations of potentially exposed 
individuals, comprising about 42% of those potentially exposed at the 
district level. 

4. Discussion 

4.1. Predictive variables 

Geogenic fluoride contamination is a complex process, and our study 
of its predictors confirms that high fluoride concentrations in ground
water depend on an interplay of a number of variables (Amini et al., 
2008; Frencken, 1992). Though all play a role, some variables do 
contribute more in predicting contamination, and we found the geology, 
climate, and soils of the area to be the main drivers of high fluoride 
levels (Fig. 3). This is consistent with high fluoride levels that are widely 
reported in the Bongo area, which are associated with the Eburnearn 
Supergroup and its K-feldspar-rich granitoids of mainly granite and 
monzonite (Apambire et al., 1997; Smedley et al., 1995). The highest 
levels of fluoride have also been reported in the rocks of the Voltaian 
Supergroup, Oti-Pendjari Group, which are composed of sandstone, 
mudstone, siltstone, and carbonate. In agreement with our findings on 
the role of climate, high fluoride levels have also been reported in more 
arid conditions, such as those observed in northern Ghana (see the 
partial dependence plot of PET in Fig. 3b). Here, higher temperatures 
and evaporation rates lead to high fluoride concentrations (CIDA, 2011; 
Edmunds and Smedley, 2013), which is especially apparent during the 
dry season when fluoride concentrations increase (Alfredo et al., 2014; 
Malago, 2017). This is a problem in areas like northern Ghana, where 
wells closed for safety reasons due to their high fluoride concentration 
have been reopened in periods of water stress to alleviate water short
ages (Craig et al., 2015; Ganyaglo et al., 2019). In the face of future 
expected higher temperatures and increased water stress related to 
climate change in northern Ghana (EPA, 2020), we expect even more 
pressure and new challenges related to water safety for the population in 
that area. 

4.2. Spatial cross-validation and model performance 

The uncertainties of our model were determined using spatial cross- 
validation. This led to stable and reliable metrics and maps across all 
iterations. However, spatial cross-validation can also downplay the re
sults by not accounting for the predictive capability of the model for 
combinations of predictor data that are similar but spatially distant from 
the training data. The possibility also exists that by separating the blocks 
for training, the diversity of training data is inadvertently reduced (see 
Fig. S3). We attempted to moderate this effect through the careful 
implementation of blocks and multiple iterations. This agrees with the 
literature consensus, which also suggests that a block-based spatial 
validation approach to building a predictive model is most appropriate 
(Roberts et al., 2017). Moreover, this approach bolsters the credibility of 
the resulting maps. 

Overall, we reduced the biases produced by an unbalanced training 
sample by creating a balanced sample for the model by randomly down- 
sampling all classes in the training set to match the minority class (i.e., 
class one). Leaving this unbalanced, however, means that the majority 

Fig. 3. Measures of the importance and partial dependence plots (PDP) of 
random forest variables. (a) Distribution of the relative importance of the 19 
final predictor variables from 1000 iterations. Partial dependence plots (b) of 
the predictor variables of geological groups, and potential evapotranspiration 
(PET) (see supplementary Fig. S4 for more PDPs). The partial dependence 
represents the probability of exceeding a groundwater fluoride concentration of 
1.0 mg/L. (Gskf = Eburnean Plutonic Suite – K-feldspar-rich granitoid, mainly 
granite and monzonite; Vba = Voltaian Supergroup, Oti-Pendjari Group – 
Sandstone, mudstone, siltstone, and carbonate; VolSK = Voltaian Supergroup, 
Kwahu-Morago – Sandstone). The box boundaries indicate the 25th percentile 
and the 75th percentile, while the middle line represents the 50th percentile or 
median, the whiskers represent 1.5 times the interquartile range and the orange 
points are outliers (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.). 
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class would dominate the classification. This is especially relevant for 
the fluoride concentration because the over-represented class corre
sponds to cases where fluoride ≤1.0 mg/L is reported (i.e., class zero). 
Not correcting this bias would mean that sensitivity, a metric that in
forms about the correct prediction of positive cases, would be under- 
represented compared to specificity, which correspondingly affects the 
balanced accuracy (Evans and Cushman, 2009; Khalilia et al., 2011). 
Furthermore, by iterating the model 1000 times by randomly selecting 
the data from our balanced sample, we avoided any bias introduced by 
data splitting. Because of this calibration, metrics reporting the model’s 
predictive performance with the new data indicate that the models 
generalize well. This highlights that the pixels assigned to areas with 
fluoride presence above 1.0 mg/L are well determined. This is also 
evident in the ability of the model to identify cases within the dataset 
around 70% of the time (sensitivity) and in the overall ability of the 
models to correctly identify both classes, which is also around 70% (at a 
cutoff of 0.49). Compared to other studies using surface predictor vari
ables (e.g. Amini et al., 2008; Bindal and Singh, 2019; Cao et al., 2022), 
the metrics of this model are somewhat lower, but this is because we use 
spatial cross-validation, which provides a useful estimate of the model’s 
predictive performance without an optimistic bias due to the SAC. For 

example, Pohjankukka et al., 2017 has shown that the metrics produced 
by non-spatial cross validation can be up to 40% more optimistic than 
those of spatial cross-validation. Similar results were reported by (Dolan 
et al., 2021; Ploton et al., 2020; Roberts et al., 2017). 

4.3. Hazard map 

We created a hazard map of geogenic groundwater fluoride 
contamination for the whole of Ghana (Fig. 4), where high concentra
tions of fluoride mainly affect the northeastern part of the country be
tween the Northern region and the Upper East region. Fluoride 
contamination in this area is extensively documented in the literature 
(see supplementary Table S3). The Northern Region has been recognized 
for its high fluoride concentrations in relation to the rocks of the Oti- 
Pendjari Group, with reported fluoride concentrations of over 4.0 mg/ 
L (Anim-Gyampo et al., 2012; CIDA, 2011). High fluoride concentrations 
are also observed in northwestern Ghana, mainly in districts of the 
Savannah region, with concentrations over 1.5 mg/L reported by some 
studies (Arhin and Affam, 2010; Loh et al., 2020). 

In general, the model shows a very low probability (0–10%) of 
fluoride concentration above the threshold in the south of the country 

Fig. 4. Probability (hazard) map of fluoride exceeding 1.0 mg/L in groundwater of Ghana.. The hatched gray shading depicts areas outside the area of applicability 
(AOA), where the prediction is uncertain. The mean AUC is 0.76 (inset). 
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(see supplementary Table S3). Only in specific areas of the Eastern Re
gion does the model have a 50–60% probability of fluoride concentra
tions above 1.0 mg/L, and these concentrations were mainly related to 
restricted areas within the Eburnearn supergroup. However, in the south 
of the country, the model shows less certainty (see area outside the AOA, 
Fig. S5d), especially in the Western, Western North, and Ahafo regions, 
where the reporting or measurement of fluoride levels has been sparse. 
This uncertainty is likely due to combinations of predictor values that 
are not found in the training data. Despite this, these results are most 
likely correct, as this area has environmental characteristics inversely 
related to higher fluoride concentration, including a more humid trop
ical climate and high rainfall that dilutes the chemical composition of 
the groundwater (Frencken, 1992). Furthermore, the authors who have 
reported high fluoride levels in the area have linked these findings to 
anthropogenic/agrochemical pollution or seawater intrusion (Yidana, 
2010; Zango et al., 2019). Identifying areas of higher uncertainty where 
modeling is more complex is relevant for prioritizing resources in the 
design of future sampling campaigns. Here, future studies should look 
empirically into highlighted areas where more sampling is required to 
confirm results, refine the model, and create a more accurate repre
sentation of the geogenic hazard contamination. Future studies could 
also attempt modeling anthropogenic sources and salt-water intrusion. 

We estimated the number of people potentially at risk from excess 
fluoride in drinking water by creating a risk map of fluoride contami
nation (>1.0 mg/L). We generated a reliable high fluoride hazard map 
by removing 0.7% of the pixels with standard deviation and 1.3% of the 

pixels with high uncertainty (supplementary Fig. S5). The exclusion of 
these pixels had only a limited effect on the fluoride hazard map. Given 
that the standard deviation was not significant and that the difference in 
pixels between the maps was located at the class boundaries, this 
behavior is expected, as modeling at class boundaries usually shows 
more discrepancies than within the class features (Foody, 2005; Steele 
et al., 1998). By contrast, the area of uncertainty (where the model was 
not trained with these environments) is highly concentrated in the south 
of the country, where almost no fluoride hazard was modeled. 

4.4. Estimation of the at-risk population 

Ghana faces a major challenge in providing drinking water to its 
most at-risk population, as the northeastern part of the country, which 
has the highest exposure to fluoride contamination, also contains a 
greater proportion of the national population of children aged 0–9 years 
(see Supplementary Fig. S6). Districts in the Northern Region have the 
largest exposed population (Fig. 6), though the exposure varies signifi
cantly. In districts such as Gushiegu, Karaga, and Mion, approximately 4 
out of 10 children are potentially exposed to levels of fluoride that can 
affect their health. The Savelugu Nanton district has the largest exposed 
child population of about 19,000 children, followed by the Karaga dis
trict with about 17,000 children. In total, an estimated 920,000 people 
are potentially exposed in Ghana (Fig. 5). The northeastern part of the 
country has the highest proportion of the rural population and, there
fore, the highest dependency on groundwater (WHO/UNICEF Joint 

Fig. 5. Population of Ghana at risk of high fluoride ingestion through groundwater. (a) Population density of areas at risk of exposure to fluoride >1.0 mg/L at a 
probability cutoff 0.49. (b) Zoomed-in sections of the districts around Bongo, Karaga and Tamale. (c) Plot of the total population by district against the at-risk 
population, excluding the population in areas of high uncertainty (3% of at-risk population). The size of the bubbles shows the percentage of population at risk 
in each district out of the total population. 
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Monitoring Program (JMP), 2019). Furthermore, this area, and partic
ularly the Northern region, has a poverty level close to 50% of the 
population, and this level, unlike in other regions of Ghana, has not been 
reduced in recent decades (UNICEF, 2016). Children and adults must 
also often deal with psychological problems stemming from the social 
stigma of having teeth with fluorosis (Castilho, 2009; Dongzagla et al., 
2019). Of note, Ghana conducted a census in 2021, such that the number 
of at-risk people can be updated when this new information becomes 
available. Regardless, new spatially disaggregated population databases 
would increasingly help to identify risk groups, rather than considering 
the population as a whole. This will provide a better understanding of 
the spatial patterns of the distribution and characteristics of these at-risk 
populations, thereby allowing the provision of information at more 
relevant administrative scales. 

4.5. Applicability 

The hazard and risk maps are at a scale that can serve the authorities 
as a basis for more detailed research on water quality in Ghana. Priority 
areas for further investigation and possible mitigation could be deter
mined in part, for example, by the list of districts with a higher presence 
of young children potentially exposed to levels of fluoride that can harm 
their health (Fig. 6), or by the identification of fluoride hazard areas 
(Fig. 4). The results highlight not only hotspots of fluoride contamina
tion and potentially exposed populations but also data gaps. Both the 
modeling approach and the choice of variables can serve as a basis for 
studying groundwater quality in other areas outside of Ghana. 
Furthermore, the spatial approach for model validation should be rele
vant to other machine learning applications that are conducted in a 
spatial context. 

5. Conclusions 

We present the first hazard map of fluoride in groundwater resources 
throughout Ghana, which was produced by geospatially modeling the 
fluoride concentration using a random forest machine-learning algo
rithm. The northeastern part of the country consistently exceeds a 
fluoride concentration of 1.0 mg/L in groundwater. Although the 
southern part of the country has a very low probability of reaching this 
concentration, a better and broader distribution of sampling data would 
be needed to confirm these results, refine the model, and create a more 
accurate model of contamination. We also identified that approximately 
240,000 children and 680,000 adults are potentially exposed to levels of 
fluoride that may affect their health. An important point to be stressed is 
that the majority of the child population is located in the north of the 
country, where a higher probability exists for exposure to high fluoride 
levels in groundwater. This region of Ghana has a greater reliance on 
groundwater as well as the poorest population. Therefore, these con
cerns highlight the challenges the country faces in protecting its at-risk 
population. A remaining question is to what extent the expected increase 
in aridity in the northern region might affect fluoride concentrations. 
Overall, climate change is expected to make water scarcer and as a result 
increase fluoride concentrations in this area, which would force people 
to seek unsafe drinking water sources. 

We have reduced the effect of spatial dependencies in the training 
and testing data by evaluating model performance through spatial cross- 
validation, thereby avoiding overly optimistic results. Using the area of 
applicability has allowed us to identify areas with greater confidence in 
the prediction. Partial dependence plots depict the relationships be
tween variables and the probability of high fluoride contamination. 
These techniques assist the validation and interpretation of otherwise 
black-box models. Overall, the model created here is a valuable resource 
for estimating the presence and absence of fluoride contamination 
throughout Ghana, particularly in areas without widespread well 

Fig. 6. Children in Ghana potentially exposed to high fluoride ingestion through the consumption of groundwater as drinking water. (a) Percentage of at-risk 
children per district. (b) Population density of children aged 0–9 years potentially exposed to high levels of fluoride. 
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tute, Emmanuel Sunkari from the Ömer Halisdemir University, and 
Philip Deal from the University of Oklahoma for their assistance in 
accessing data. This project benefitted from financial support of the 
Swiss Agency for Development and Cooperation (project no. 7F- 
09963.01.01). Michael Kumi acknowledges the Faculty of Science at 
the University of Johannesburg, South Africa, and financial support 
from the National Research Foundation of South Africa 
(TTK170405225933). 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.watres.2022.118083. 

References 

Abusa, Y., Anom, P.A., Doamekpor, M.E.A.M., Gyamfi, E.E., Doamekpor, L.K., 2018. 
Physico-chemical assessment of drinking water with special emphasis on fluoride 
concentration in the akatsi-north district in the volta region of Ghana. West Afr. J. 
Appl. Ecol. 26, 72–92. https://doi.org/10.4314/wajae.v26i2. 

Addo, M.A., Darko, E.O., Gordon, C., Nyarko, B.J.B., 2011. Water quality analysis and 
human health risk assessment of groundwater from open-wells in the vicinity of a 
cement factory at Akporkloe, Southeastern Ghana. e-Journal Sci. Technol. 4, 16–30. 

Affam, M., Arhin, E., Asamoah, D.N., 2012. Source of endemic fluorosis attributed to 
igneous granitiods in northern Ghana: a case study. In: 2nd UMaT Biennial 
International Mining and Mineral Conference, pp. 242–248. 

Agyemang, V.O., 2020. Hydro chemical characterization and assessment of groundwater 
suitability for drinking, domestic and irrigation purposes in the agona east district, 
Ghana. IRE J. 3, 112–125. 

Alfredo, K.A., Lawler, D.F., Katz, L.E., 2014. Fluoride contamination in the Bongo District 
of Ghana, West Africa: Geogenic contamination and cultural complexities. Water Int. 
39, 486–503. https://doi.org/10.1080/02508060.2014.926234. 

Ambroise, C., McLachlan, G.J., 2002. Selection bias in gene extraction on the basis of 
microarray gene-expression data. Proc. Natl. Acad. Sci. USA 99, 6562–6566. https:// 
doi.org/10.1073/pnas.102102699. 

Amini, M., Mueller, K., Abbaspour, K.C., Rosenberg, T., Afyuni, M., Møller, K.N., Sarr, M., 
Johnson, C.A., 2008. Statistical modeling of global geogenic fluoride contamination 
in groundwaters. Environ. Sci. Technol. 42, 3662–3668. https://doi.org/10.1021/ 
es071958y. 

Anim-Gyampo, M., Zango, M.S., Apori, N., 2012. The origin of fluoride in groundwaters 
of the paleozoic sedimentary formations of Ghana-a preliminary study in Gushiegu 
District. Res. J. Environ. Earth Sci. 4, 546–552. 

Anku, Y.S., Banoeng-Yakubo, B., Asiedu, D.K., Yidana, S.M., 2009. Water quality analysis 
of groundwater in crystalline basement rocks, Northern Ghana. Environ. Geol. 58, 
989–997. https://doi.org/10.1007/s00254-008-1578-4. 

Anornu, G., Gibrilla, A., Adomako, D., 2017. Tracking nitrate sources in groundwater 
and associated health risk for rural communities in the White Volta River basin of 
Ghana using isotopic approach (δ15N, δ18O[sbnd]NO3 and 3H). Sci. Total Environ. 
603–604, 687–698. https://doi.org/10.1016/j.scitotenv.2017.01.219. 

Apambire, W.B., 1996. Groundwater Geochemistry and the Genesis and Distribution of 
Groundwater Fluoride in the Bolgatanga and Bongo Districts. Carleton University, 
Ghana.  

Apambire, W.B., Boyle, D.R., Michel, F.A., 1997. Geochemistry, genesis, and health 
implications of fluoriferous groundwaters in the upper regions of Ghana. Environ. 
Geol. 33, 13–24. https://doi.org/10.1007/s002540050221. 

Araujo, M., Pearson, R., Thuiller, W., Erhard, M., 2005. Validation of species-climate 
impact models under climate change. Glob. Chang. Biol. 11, 1504–1513. https://doi. 
org/10.1111/j.1365-2486.2005.001000.x. 

Arhin, E., Affam, M., 2010. Fluoride in groundwater and its implications in west Gonja 
District of Ghana. Ghana Min. J. 11, 47–52. https://doi.org/10.4314/gm. 
v11i1.53272. 

Arko, W.E., Hodgson, I.O.A., Nyame, F.K., 2019. Assessment of drinking water quality at 
Dodowa in the Dangbe West district of the Greater-Accra region, Ghana. Afr. J. 
Environ. Sci. Technol. 13, 181–190. https://doi.org/10.5897/ajest2019.2653. 

Asiamah, R.D, Senayali, J.K, Agjei-Gyapong, T, Spaargaren, O.C, 1997. Ethno-pedology 
surveys in the semi-arid Savannah zone of Northern Ghana. Soil Research Institute, 
Kwadaso- Kumasi and International Soil Reference and Information Centre (ISRIC) 
1–46. https://www.isric.org/sites/default/files/isric_report_1997_04.pdf. 

Atipoka, F.A., 2009. Water supply challenges in rural Ghana. Desalination 248, 212–217. 
https://doi.org/10.1016/j.desal.2008.05.057. 

Avi, C., Tettey, M., Ayitey, K., 2019. Evaluation of groundwater quality for drinking and 
irrigation in central Tongu District of the Volta Region of Ghana. J. Environ. Earth 
Sci. 9, 159–166. https://doi.org/10.7176/jees/9-10-16. 

Barbier, O., Arreola-Mendoza, L., Del Razo, L.M., 2010. Molecular mechanisms of 
fluoride toxicity. Chem. Biol. Interact. 188, 319–333. https://doi.org/10.1016/j. 
cbi.2010.07.011. 

Bindal, S., Singh, C.K., 2019. Predicting groundwater arsenic contamination : regions at 
risk in highest populated state of India. Water Res. 159, 65–76. https://doi.org/ 
10.1016/j.watres.2019.04.054. 

Boakye Opoku, R., 2013. Assessing the Water Supply Potential of Boreholes on Kwame 
Nkrumah University of Science and Technology Campus. Kwame Nkrumah 
University of Science and Technology. 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1201/ 
9780429469275-8. 

Bureau of Indian Standards (BIS), 2012. Indian Standard Drinking Water-Specification. 
Bureau of Indian Standards (BIS), New Delhi, India (second revision).  

Cao, H., Xie, X., Wang, Y., Liu, H., 2022. Predicting geogenic groundwater fluoride 
contamination throughout China. J. Environ. Sci. 115, 140–148. https://doi.org/ 
10.1016/j.jes.2021.07.005. 

De Castilho, L.S., 2009. Perceptions of adolescents and young people regarding endemic 
dental fluorosis in a rural area of Brazil : psychosocial suffering. Health Soc. Care 
Community 17, 557–563. https://doi.org/10.1111/j.1365-2524.2009.00859.x. 

Chegbeleh, L.P., Akurugu, B.A., Yidana, S.M., 2020. Assessment of groundwater quality 
in the Talensi District, Northern Ghana. Sci. World J. 2020, 1–24. https://doi.org/ 
10.1155/2020/8450860. 

CIDA, 2011. Hydrogeological Assessment Project of the Northern Regions of Ghana 
(HAP). CIDA, Quebec, Canada.  

Craig, L., Lutz, A., Berry, K.A., Yang, W., 2015. Recommendations for fluoride limits in 
drinking water based on estimated daily fluoride intake in the Upper East Region, 
Ghana. Sci. Total Environ. 532, 127–137. https://doi.org/10.1016/j. 
scitotenv.2015.05.126. 

Craig, L., Thomas, J.M., Lutz, A., Decker, D.L., 2018. Determining the optimum locations 
for pumping low-fluoride groundwater to distribute to communities in a fluoridic 
area in the Upper East Region, Ghana. Chem. Geol. 476, 481–492. https://doi.org/ 
10.1016/j.chemgeo.2017.12.001. 

Dolan, M.F.J., Ross, R.E., Albretsen, J., Skarðhamar, J., Gonzalez-Mirelis, G., Bellec, V.K., 
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