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Abstract Microorganisms capable of biomineral-

ization can catalyze mineral precipitation by modify-

ing local physical and chemical conditions. In porous

media, such as soil and rock, these microorganisms

live and function in highly heterogeneous physical,

chemical and ecological microenvironments, with

strong local gradients created by both microbial

activity and the pore-scale structure of the subsurface.

Here, we focus on extracellular bacterial biomineral-

ization, which is sensitive to external heterogeneity,

and review the pore-scale processes controlling

microbial biomineralization in natural and engineered

porous media. We discuss how individual physical,

chemical and ecological factors integrate to affect the

spatial and temporal control of biomineralization, and

how each of these factors contributes to a quantitative

understanding of biomineralization in porous media.

We find that an improved understanding of microbial

behavior in heterogeneous microenvironments would

promote understanding of natural systems and output

in diverse technological applications, including

improved representation and control of fluid mixing

from pore to field scales. We suggest a range of

directions by which future work can build from

existing tools to advance each of these areas to

improve understanding and predictability of biomin-

eralization science and technology.

Keywords Biomineralization � Porous media � Pore-
scale � Microenvironments � Fluid mixing

1 Introduction

Biomineralization is a widespread process by which

organisms produce minerals as part of their metabo-

lism. Here, we focus on extracellular biomineraliza-

tion, also called biologically induced-mineralization,

and its role in shaping biophysical processes in natural
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Eawag, Dübendorf, Switzerland

e-mail: joaquin.jimenez@eawag.ch; jjimenez@ethz.ch

J. Jimenez-Martinez

Department of Civil, Environmental and Geomatic

Engineering, ETH Zurich, Zürich, Switzerland
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and engineered porous media (e.g., soils, aquifers,

concrete). The most studied extracellularly formed

minerals are silicates, carbonates and metal oxides.

Some macroorganisms, such as mollusks, are capable

of extracellular biomineralization (Skinner and Jah-

ren, 2005), though the majority is performed by

microbes (van Cappellen 2003; Philipps et al., 2013;

Dhami et al. 2013; Zhu and Dittrich 2016; Anbu et al.

2016; Gahlawat and Choundhury, 2019). In fact,

bacterial biomineralization may have produced the

Earth’s oldest macroscopic fossils. Nearly all modern

conical stromatolites display a characteristic spacing

between cones, consistent with spacing found in

ancestral stromatolites formed 2.8 billion years ago

(Petroff et al. 2010). This remarkably consistent

spacing has been attributed to the periodic rhythms

of mineral precipitation, driven by the daily metabolic

cycles of photosynthetic cyanobacteria (Petroff et al.

2010). Thus, the spatial organization of biomineral-

ization is dependent on microbial responses to

dynamic environmental conditions. In this review,

we focus on the dynamics of extracellular biominer-

alization, which we now refer to simply as ‘‘biomin-

eralization’’, by bacteria in a markedly heterogeneous

and spatially structured environment: porous media.

A mechanistic understanding of biomineralization

dynamics is not only important for interpreting Earth’s

chemical and geological records (Pérez-Huerta et al.

2018), but also for the success of several environmen-

tal and industrial applications. Considered an envi-

ronmentally friendly process, biomineralization has

been applied towards the removal of harmful metals

and radionuclides from soil (Gavrilescu et al. 2009;

Spycher et al. 2011; Li et al. 2016), the extraction of

valuable metals from rock and mine waste (i.e.,

biomining) (Johnson 2014), the removal of ions and

hydrocarbons from wastewater and polluted sites

(Atekwana and Aal 2015), geological sequestration

of CO2 (Cunningham et al. 2009; Phillips et al. 2012),

enhanced oil recovery (Zhu et al. 2013), and the

remediation of building materials such as ornamental

stones and concrete (Jiménez-López et al. 2007; De

Muynck et al. 2010). A growing number of geome-

chanical applications have used biomineralization to

consolidate and stabilize soil and rock (Mitchell and

Santamarina 2005; Ivanov and Chu. 2008; Chou et al.

2011; DeJong et al. 2013; Salifu et al. 2016; Mujah

et al. 2017) and to mitigate seismic-induced soil

liquefaction (Burbank et al. 2011; Han et al. 2016;

Xiao et al. 2018; Zango et al. 2018). Biomineralization

has also been considered for large-scale environmen-

tal applications such as the sealing of geologic

formations produced by fracking (Phillips et al. 2013).

The promise of understanding and harnessing

biomineralization at geologically and technologically

relevant scales (i.e., mesoscale, meters and kilome-

ters) has motivated interest in the spatial distribution

of biomineralization, which is controlled by pore-scale

processes. Biomineralization occurs within the pores

or cracks of porous or fractured media, which are

matrixes of solid grains and void spaces (i.e., the pores

or cracks). The structure of these void spaces varies

considerably, and their volumes can be occupied by

diverse physical and chemical microenvironments.

Whether these voids contain a single or multiple fluid

and/or gas phases determines whether biomineraliza-

tion occurs under saturated (i.e., no continuous gas

phase) or partially saturated conditions. These differ-

ences in hydration state and phase distribution within

the porous media dictate an array of other constraints

on gas transport and biological function (Tecon and Or

2017). The high degree of heterogeneity in porous

media challenges ability to spatially control the extent,

rate and uniformity of biomineralization for desired

outcomes.

The specific objectives of this review are: (i) to

disentangle the numerous factors (e.g., fluid flow

dynamics, environmental chemistry and microbial

ecology) that contribute to microenvironment hetero-

geneity and currently complicate the predictability of

bacterial biomineralization, and (ii) to outline exper-

imental and computational strategies for integrating

existing tools and new approaches towards improving

spatial control over biomineralization in porous media

(Fig. 1). We focus primarily on microbially-induced

carbonate precipitation in porous subsurface environ-

ments as a model system. However, many other

systems are porous (e.g., bones, filters, concrete,

cultural heritage monuments) and would benefit from

the concepts and insights outlined here.

2 Key ingredients for biomineralization in porous

and fractured media

The mechanisms that promote or suppress biominer-

alization in porous media are intimately linked to

physical and chemical heterogeneity, fluid flow
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dynamics and microbial ecology. Here, we focus on

pore-scale processes that affect the immediate envi-

ronment surrounding bacterial cells and discuss how

each of these factors contribute to pore-to-pore

variability in biomineralization rates, producing chal-

lenges for reliable predictions or engineered applica-

tions of biomineralization at meso- or field-scale.

2.1 Microbial metabolism

From soils to sediments, aquifers to hot springs, and

lakes to oceans, microorganisms produce a large

variety of biominerals, including phosphates, silicates,

carbonates and oxides, and sulfates and sulfides of

various metals (Sarikaya 1999; Riding and Awramik

2000). Biominerals may differ distinctly from their

inorganically formed equivalents in shape (Mann

2000), size, crystallinity, isotopic, and trace element

composition (Heim 2011). Evidence suggests that

biomineralizing microorganisms are ubiquitous in all

geologic environments (i.e., soils and rocks) and that

their activity plays important roles in the functions of

local and global ecosystems (Brussaard 1997).

Biominerals are key components of global biogeo-

chemical cycles and serve as critical indicators of past

environmental conditions when observed in geologi-

cal and fossil records (Weiner and Dove 2003).

Microbially-induced carbonate precipitation

(MICP) is one of the most studied process of bacterial

biomineralization in porous media and the most

abundant globally, accounting for up to 42% of the

total carbon on Earth (Ehrlich 1998). Carbonate

formed through MICP fixes atmospheric CO2 and is

thus a major sink of this greenhouse gas (Prentice et al.

2001). Microorganisms can catalyze the precipitation

of carbonate via different metabolic pathways, includ-

ing urea hydrolysis, denitrification, ammonification,

sulfate reduction, methane oxidation and photosyn-

thesis (see Eq. 1–6) (Achal et al. 2015).

Urea hydrolysis: CO NH2ð Þ2þH2O��!
urease

2NH3 þ CO2

NH3 þ H2O $ NHþ
4 þ OH�

CO2 þ OH� $ HCO�
3

Ca2þ þ HCO�
3 þ OH� $ H2Oþ CaCO3

ð1Þ

Denitrification: 1:25CH2Oþ NO�
3 ! 1:25CO2

þ0:5N2 þ 0:75H2Oþ OH�

Ca2þ þ CO2 aqð Þ þ 2OH� ! CaCO3 þ H2O

ð2Þ

Amonification: Amino acidsþ O2 þ Ca2þ

! NHþ
4 þ CaCO3 þ Hþ ð3Þ

Sulfate reduction: 6CaSO4 þ 4H2Oþ 6CO2

! 6CaCO3 þ 4H2Sþ 2Sþ 11O2 ð4Þ

Methane oxidation: CH4 þ SO2�
4 Ca2þ

! H2Oþ CaCO3 þ H2S ð5Þ

Photosynthesis: 2HCO�
3 þ Ca2þ

! CH2Oþ CaCO3 þ O2 ð6Þ

MICP is performed by diverse microorganisms

(bacteria, fungi, algae and metazoans) (Gadd 2010)

and contributes to major geological processes, includ-

ing carbonate sediment formation and lithification and

dolomite precipitation (Sánchez-Román et al. 2011;

Fig. 1 Biomineralization in natural (e.g., soils and aquifers) and

engineered (e.g., building materials) porous systems is con-

trolled bymultiple interacting components: fluid flow dynamics,

environmental chemistry, microbial activity and mineralogy of

the solid substrate. The intrinsic heterogeneity of porous media

affects all these processes, rendering the prediction and control

of extracellular biomineralization processes highly uncertain.

We propose several potential solutions requiring further

research on the understanding of mixing in the porous media

and microbial behavior in heterogeneous microenvironments,

and the inclusion of pore-scale process in large scale modeling

approaches (upscaling)
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Zhang 2020). This review focuses on bacterial

carbonate biomineralization in porous media, though

many microorganisms, including fungi and algae

(Table 1), catalyze reactions and produce precipitates

important to the chemistry and structure of their

environments.

The rates of bacterial biomineralization are orders

of magnitude higher than that of mineral precipitation

under abiotic conditions (Zhu and Dittrich 2016;

Prasianakis et al. 2017). Typical abiotic rates of

CaCO3 (calcite) precipitation range from 1 10-10 to

6.5 10-9 g cm-2 s-1 for spring-fed streams and from

10-20 to 10-8 g cm-2 s-1 for deep sea sediments

(Sanjuan and Girard 1996). In contrast, rates of

carbonate production by urea hydrolysis range from

3.5 10–6 to 1.4 10-5 g cm-2 s-1 with Bacillus species

(Chu et al. 2012) and from 9.3 10-9 to 5.1 10–8 -

g cm-2 s-1 with Sporosarcina pasteurii (Cuthbert

et al. 2012). Single-cell biomineralization rates have

been estimated to be 7.2 10-13 and 16 10-13 g Ca2?

h-1 cell-1 with S. pasteurii and Bacillus pasteurii,

respectively (Ganendra et al. 2014).

The rate enhancement achieved by biotic mineral-

ization is facilitated by individual cells and bacterial

biofilms, which are aggregates of cells residing within

a self-produced extracellular matrix (Conolly et al.,

2015; Keren-Paz et al. 2018). Both can catalyze

biomineralization by two primary processes. In the

first, mineral precipitation is a by-product of bacterial

metabolism. For example, bacterial hydrolysis of urea

(via urea amidohydrolase) produces bicarbonate and

ammonium, increasing environmental pH and there-

fore calcite precipitation when enough dissolved

calcium ions are present (Eq. 1). In the second,

bacteria can nucleate mineral precipitation on their

cell walls or on the extracellular matrix of biofilms

(i.e., extracellular polymeric substances, EPS), which

provide a scaffold for biomineralization (Zhu and

Dittrich 2016; Flemming et al. 2016; Bao et al. 2018;

Han et al. 2019). Increased EPS in the environment

increases the consumption of calcium from solution by

increasing the number nucleation sites (Bains et al.

2015). Because the exact sites of nucleation are

dependent on the charge of cell wall or EPS functional

groups (Görgen et al., 2021) (Fig. 2a), the precise

biochemical composition of EPS (which varies

between bacterial taxa) influences the resulting mor-

phology of mineralized carbonate (Braissant et al.

2003; Ercole et al. 2007). Mineralized carbonate

generally precipitates on cell surfaces layer by layer

(i.e., successive stratification), implying that bacteria

can eventually embed themselves in precipitate (De

Muynck et al. 2010; Ghosh et al., 2019) (Fig. 2b).

Whether the products of biomineralization are of

ecological benefit to these bacteria remains unclear

(Dhami et al. 2013). Some authors argue that the

organisms construct a precipitated environment to

their advantage (Ehrlich 1996; McConnaughey and

Whelan 1997), whereas others find the precipitation an

incidental by-product of metabolism (Knorre and

Krumbein 2000).

In either case, bacteria alter the rates of mineral

precipitation by altering the local environment. That

the rate of biomineralization reactions is strongly

dependent on environmental conditions complicates

our ability to accurately predict biomineralization

rates in environments like porous media, where

microscale spatial heterogeneity in many variables is

inherent.

2.2 The physico-chemical environment

The porous environment in which bacteria reside (i.e.,

the host matrix) creates strong gradients in a number of

physico-chemical variables, including temperature,

salinity, pH, redox conditions, and substrate compo-

sition (Hammes and Verstraete 2002; Mortensen et al.

2011; Han et al. 2019). These variables each modulate

all biomineralization processes, from the precipitation

of minerals (Liang et al. 2015; Zhu and Dittrich 2016;

Bindschedler et al. 2016) to the weathering of parent

rock minerals (Gorbushina 2007; Parchert et al. 2012;

Seiffert et al. 2014).

Increases in temperature generally increase the rate

of MICP (Ferris et al. 2004; Mitchell and Ferris, 2005;

Tobler et al. 2011). For example, an increase in

ambient temperature from 10 to 20 �C increased B.

pasteurii calcite precipitation by 6% (from 1.96 10-10

to 2.1 10-10 g cm-3 s-1), even at low concentrations

of urea substrate (Mitchell and Ferris, 2005). Even

higher temperatures within the mesophilic range

(20–45 �C) enhance microbial activity, mineral nucle-

ation and growth (Nemati and Voordouw 2003).When

incubated on agar plates, Bacillus sphaericus was

observed to produce carbonate at 13% higher rates at

37 �C than 10 �C (De Muynck et al. 2013).

These relations between biomineralization charac-

teristics and temperature serve only as general
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Table 1 Metabolic pathways of carbonate precipitation in diverse microorganisms

Metabolic

pathway

Species References

Urea hydrolysis Bacteria

Sporosarcina
pasteurii

Cunningham et al. (2009); Chou et al. (2011); Cuthbert et al. (2012); Ghosh et al. (2019);

Mortensen et al. (2011); Martin et al. (2012); Terzis & Laloui (2018); Dawaoud et al.

(2014a,b); Zhao et al. (2014); Schultz et al. (2011); Al Qabany et al. (2012); Zambare

et al. (2012); Lauchnor et al. (2013); Hommel et al. (2016); DeJong et al. (2014); Gomez

et al. (2016); Nassar et al. (2018); Barkouki et al. (2011); Martinez et al. (2014); Ebigbo

et al. (2012); Wang et al. (2019); Fridjonsson et al. (2011); Lauchnor et al. (2015);

Whiffin et al. (2007)

Bacillus cohnii Zhang et al. (2017)

Bacillus subtilis Sarkar et al. (2015)

Escherichia coli Connolly et al. (2013, 2015)

Pseudomonas
aeruginosa

Connolly et al. (2013); Bai et al. (2017)

Bacillus sphaericus De Muynck et al. (2011, 2013); Cheng et al. (2013); Wang et al. 2012b)

Sporosarcina
psychrophila

De Muynck et al. (2013)

Terrabacter
tumescens

Li et al. (2016)

Bacillus megaterium Lian et al (2006)

Algae

Mychonastes sp. Ariyanti & Handayani (2012)

Chlorella sp. Ariyanti & Handayani (2012)

Ammonification Bacteria

Myxococcus xanthus Jiménez-López et al. (2007); Rodriguez-Navarro et al. (2012); Chekroun et al. (2004)

Brevundimonas
diminuta

Rodriguez-Navarro et al. (2012)

Denitrification Bacteria

Halomonas
halodenitrificans

Martin et al. (2013)

Pseudomonas
aeruginosa

Erşan et al. (2015)

Diaphorobacter
nitroreducens

Erşan et al. (2015)

Pseudomonas
stutzeri

Singh et al. (2015)

Bacteria

Sulfate

reduction

Desulfovibrio Atlas and Rude (1998)

Bacteria

Methane

oxidation

Methanosarcinales Nauhaus et al. (2002)

Desulfococcus

Photosynthesis Cyanobacteria

Synechococcus Southam (2000)

Nostoc punctiforme Seiffert et al. (2014)

Unspecified

pathway

Bacteria
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guidelines. Very high temperatures ([ 50 �C) can kill
ureolytic microorganisms (Rebata-Landa 2007) and

decrease the size of carbonate crystals, from 15 to

20 lm at 25 �C to 2–5 lm at 50 �C (Cheng et al.

2014). Certain organisms, such as Sporosarcina

psychrophila, do not produce significant amounts of

calcium carbonate under mesophilic conditions

(Tobler et al. 2011). Additionally, the urease enzyme

can function extracellularly (Dupraz et al. 2009b) even

at temperatures higher than the mesophilic range

(Bachmeier et al. 2002). Calcite produced from

purified urease has been observed to increase by

100% between 22 and 50 �C, from 2.5 10-8 to 5

10-8 g cm-3 s-1 (Nemati and Voordouw, 2003). In

short, while biomineralization depends on tempera-

ture, the precise nature of this dependency can be

specific to a given species or application.

The salts dissolved in the aqueous phase and the

overall ionic strength of fluid within a porous medium

can affect biomineralization rates. High salinity

Table 1 continued

Metabolic

pathway

Species References

Arthrobacter
sulfonivorans

Keiner et al. (2015)

Fungi

Aspergillus nidulans Menon et al. (2019)

Knufia petricola Seiffert et al. (2014)

Fig. 2 Microbially-induced mineral precipitation. a Precipitate,
although distributed heterogeneously at the cell wall, encapsu-

lates the bacterium over time. Ca2? ions in the solution are

attracted to the bacterial cell wall due its negative charge. The

presence of Ca2? ions can result in local supersaturation and

precipitation of calcium carbonate on the bacterial cell wall.

Imprints of bacteria appear in these minerals, either due to cell

death or cell migration after substantial precipitation. b Electron

microscopy image of S. pasteurii cells. The inset square

indicates the formation of CaCO3 coating the cell surface

( adapted from Ghosh et al. 2019) c Bacterial ‘‘voids’’ within the
calcium carbonate (adapted from De Muynck et al., 2010)
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increases carbonate precipitation by ureolysis,

depending on the bacterial species (Dupraz et al.

2009a,b; Harkes et al. 2010; Rusu et al. 2011).

Salinity-dependent changes in mineral precipitation

have been attributed to changes in ionic strength that,

in turn, affect bacterial attachment to solid surfaces in

the porous medium. Bacterial attachment is generally

enhanced with higher salinity and ionic strength due to

the decrease in repulsive electrostatic forces between

bacteria and solid surfaces (Scholl et al. 1990; Foppen

and Schijven 2006). A solution of 9 g L-1 of NaCl

increased S. pasteurii attachment to solids by 30%

compared to fresh water (Harkes et al. 2010), indicat-

ing stronger association of bacterial cells with surfaces

and enhanced retention of bacteria in the porous

medium. Biomineralization is controlled not only by

the concentration of ions but also by the ion species

present. Calcium carbonate nucleation takes longer as

the ionic radii of background ions decreases (Burgos-

Cara et al. 2017). The presence divalent cations has

also been observed to affect calcite wettability. Calcite

surfaces with Sr, Ba or Pb are more hydrophobic,

while calcite surfaces with Mg are more hydrophilic,

which weakens organic compound adsorption and thus

controls the growth and shape of mineral precipitate

(Andersson et al. 2016).

The pH and redox conditions of the host matrix

greatly influence microbial community composition

and activity. From a chemical perspective, the forma-

tion of hydroxyl ions (OH-) as generated with

ammonium ions (NH4
?) during urea hydrolysis —

induces an alkaline environment (Eq. 1). Higher pH

environments enhance carbonate precipitation (De

Jong et al., 2010). Thus, the chemical process of

biomineralization enhances further precipitation by

increasing the local pH immediately surrounding

bacterial cells (Rebata-Landa 2007). However, many

bacterial species grow optimally at environmental pH

values between 7 and 8. As a result, while higher pH

environments may chemically favor precipitation,

these same environments may limit the abundance of

microbes performing it. Furthermore, solution pHmay

alter the charge of bacterial cell surfaces, which

contain zwitterions, and thus alter bacterial attachment

and the distribution of cells within the porous medium.

In addition to pH, the redox conditions are impor-

tant to biomineralization pathways. Methane oxida-

tion by sulfate-reducing bacteria (Eq. 5) produces

calcite precipitation under anaerobic conditions only

(Cui et al. 2015). In the presence of dissolved metals,

sulfate-reducing bacteria can also precipitate metal

sulfides (Fortin et al. 1995; Kimber et al. 2020). In

soils and aquifers, local redox conditions depend on

oxygen diffusion, which is limited by hydration

conditions (as oxygen transport is facilitated by the

aqueous phase) and by the consumption of oxygen by

plant roots and microorganisms. Redox conditions in

soil often fluctuate in response to changes in the

activity of microbial respiration pathways and the

increase or decrease of different respiration products

(Kuzyakov and Blagodatskaya 2015).

That said, some metabolic pathways – like urea

hydrolysis (Eq. 1) – can produce calcite precipitates

under aerobic and anaerobic conditions. Rates of

calcite precipitation by B. sphaericus and S. pasteurii

in anaerobic conditions were comparable to those in

aerobic conditions, despite the lack of observable

bacterial growth in anaerobic conditions (Mitchell

et al. 2019). Thus, it appears that calcite precipitation

by urea hydrolysis is not significantly affected by the

absence of oxygen, at least in this system for the initial

24 h in culture (Mitchell et al. 2019).

Sediments and rocks are composed of diverse and

spatially distributed parent minerals, the composition

of which greatly influence biomineralization. For

example, carbonate production by Myxococcus xan-

thus and Brevundimonas diminuta is strongly depen-

dent on the mineralogy of the solid substrate. Placing

either species on a calcium substrate stimulated

tenfold greater cell density (cells cm-2) than on a

silicate surface with a commensurate increase in

carbonate production (Rodriguez-Navarro et al.

2012). In addition to substrate mineralogy, the pres-

ence of environmental contaminants in the host matrix

can also alter the size and solubility of biomineralized

precipitates. Strontium, for example, decreases car-

bonate biomineralization by B. pasteurii via ureolysis

when present in the environment, likely reflecting a

strontium-induced decrease in available active sites

for nucleation and crystal growth. It is possible the

large ionic radius of the Sr ion disrupts the sterics of

the calcite lattice (Mitchell and Ferris, 2005, 2006).

Changes in physico-chemical properties also affect

bacterial production of EPS, affecting the amount of

available sites for mineral nucleation. Lower temper-

atures have been shown to alter bacterial growth and

metabolism in amanner that increased the availability

of precursors for EPS biosynthesis, thereby increasing
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EPS production (Gorret et al. 2001). Saline environ-

ments are favorable for microbial formation of Mg-

rich carbonates (Al Disi et al. 2019). Indeed, environ-

mental shifts from low- to high- salinity has been

shown to increase the fraction of carboxylic groups on

EPS, suggesting that such shifts could increase the

Mg-consuming precipitation of dolomite (Diloreto

et al. 2021). At low pH, EPS from Bacillus mega-

terium shows a more dense and compact structure due

to altered interactions of intermolecular hydrogen

bonds (Wang et al. 2012a). Higher EPS and biofilm

production by Lysinibacillus sp. YS11 (non-ureolytic

metabolic pathway) in both aerobic and anaerobic

conditions have been observed when calcium is

provided in the medium, suggesting that EPS and

biofilm formation are altered by MICP (Lee et al.

2017).

2.3 The spatial context: complex

and heterogeneous pore networks

The chemical conditions discussed above occur in a

host matrix of porous and fractured media with void

spaces and fractures containing variable amounts of

microbes, liquid and gaseous phases in variable spatial

configurations. The spatial structure of the solid-void

architecture and the presence of multiple phases

fragment microbial aqueous habitats (Or et al. 2007)

create a mosaic of fluid flow velocities, punctuated by

preferential paths (high velocities) and stagnation

zones (low velocities). Convection by fluid flow

dominates chemical and particulate transport in cer-

tain porous systems, such as aquifers and wetlands.

Thus, in determining flow patterns, solute mixing, and

chemical dissolution between fluids and surfaces,

the spatial heterogeneity of porous media exerts

important effects on the activity of microorganisms,

including biomineralization. Biochemical mineral

precipitation and dissolution are highly sensitive to

the distribution of water saturation and the porosity

and permeability of the host matrix. For example,

natural soils generally decrease in carbon content and

oxygen with depth (Ebrahimi and Or 2016), transi-

tioning from oxic to anoxic conditions with distance

from the soil surface (Zhang and Furman 2021). A

decrease in porosity and permeability or an increase in

water saturation limits the diffusion of oxygen,

promoting anoxic conditions and therefore biominer-

alization by anaerobic microbial communities.

Additionally, soils often have dynamic hydrologic

regimes across dry–wet cycles. These meso- and

microscale spatial variations present a major challenge

for predictability of biomineralization in natural

systems and the success of practical applications at

meso- and field-scale, which generally desire uniform

distributions of precipitate.

The degree of water saturation, being the fraction

of the void space occupied by an aqueous phase, plays

an important role in the spatial distribution of biolog-

ically precipitated minerals (Terzis and Laloui 2018).

This is particularly true in natural examples of

unsaturated porous media, in which water is prefer-

entially retained in crevices, small pores and the sites

of contact between grains. These regions thus exhibit

increased biomineralization compared to regions

without water (Cheng and Cord-Rywisch, 2012;

Cheng et al. 2013), producing microscale heterogene-

ity in the distribution of mineral precipitate. Increasing

the degree of water saturation increases the connec-

tivity between pores and therefore accessibility of

more regions to solutes and microorganisms. Never-

theless, even under fully liquid saturation conditions,

homogeneous biomineralization is not guaranteed due

to variable porosity within the host matrix.

Biomineralization is generally greater in regions of

higher permeability, which have an increased ability

to transport fluids (Dawoud et al. 2014a,b). Larger

pores, such as macropores (voids larger than 75 lm),

have been associated with deeper and broader areas of

biomineralized precipitate (De Muynck et al. 2011).

Likely, macropores are locations of preferential flow

that can deliver more of the necessary components to

favor biomineralization (Bundt et al. 2001). The

effective porosity of the host matrix, being the con-

nected fraction of void space within the total soil or

rock volume, controls not only the accessibility of

fluids (and dissolved nutrients and gases) to different

spatial locations within the porous medium, but also

the accessibility of microorganisms. The pore size

distributions of natural soils and rocks can span from

nanometers to centimeters, implying that a consider-

able fraction of the porous medium is inaccessible to

microorganisms based on size exclusion (bacteria:

0.2–10 lm; fungal hyphae: 2–50 lm). Knowing the

pore size distribution and connectivity of a host matrix

can contribute to effective spatial control of biomin-

eralization, by informing the selection of microorgan-

isms for biomineralization applications and estimates
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of local variation in permeability within the host

matrix.

The texture of a soil, being the size distribution of

its primary particles or grains, also contributes to the

spatial pattern of biomineralization. Studies in homo-

geneous porous media have found two limitations

imposed by soil texture. First, very fine textures,

despite having a larger solid specific surface area than

coarse textures, hindered carbonate biomineralization

due to their very low permeability. Second, coarsely

textured soil, which has a high permeability and

bacterial accessibility (Zhao et al. 2014), did not

observe significant cementation of mineral precipitate

when soil grains are very large (Rebata-Landa 2007).

In heterogeneous fractured rock, aperture and rough-

ness control permeability and therefore biomineral-

ization rates and spatial patterns. Because fluid flow

velocity in fractured media self-organizes into chan-

nels that remain stable, the biomineralized precipitate

is distributed in the same manner as fluid flow (El

Mountassir et al. 2014; Minto et al. 2016).

2.4 The local ecology: temporal and spatial

distribution of diverse bacteria

The ecological implications of biomineralization and

implications of local ecology on biomineralization

remain an open area of research. It is thought that

bacteria eventually become encapsulated by the

precipitate (periplasmic encrustation), which limits

nutrient and oxygen transfer and ultimately results in

cell death, leaving bacteria-shaped ‘‘voids’’ within the

bulk precipitate (Fig. 2c) (Tazaki et al. 2003; De

Muynck et al. 2010; Cuthbert et al. 2013; Miot et al.

2015). However, some recent evidence suggests that

cells and biofilms can detach from the mineral

substrate during biomineral growth (Li et al. 2015;

Bai et al. 2017). An improved understanding of

whether cells die or migrate in these circumstances

would serve to inform biomineralization models that

consider the distribution of cells within a structured

host matrix.

The distribution of single cells within porous media

is far from uniform and most likely affects the spatial

distribution of biomineralization products. Chemo-

taxis, the ability to sense and move towards a chemical

source (Matthäus et al. 2009; Ahmed et al. 2010),

enables bacteria to position themselves along gradi-

ents within a fully or partially saturated porous matrix

(Godány et al. 2017; Creppy et al. 2019; Ebrahimi and

Or 2015; Scheidweiler et al. 2020). Chemotactic

bacteria can accumulate in a region of high nutrient

concentration and then disperse as the nutrient

concentration is decreased by diffusion, flow or

microbial metabolism. Such ephemeral pulses of

bacterial density may determine the locations and

rates of biomineralization.

The microorganisms hosted in porous media are

subjected to environmental fluctuations both in space

and time (Nguyen et al. 2020), affecting both micro-

bial distributions and activity. Like chemotaxis, bac-

terial gene expression and metabolism can respond

strongly to gradients and fluctuations in porous media

(Nguyen et al. 2020). Sudden inputs of nutrient can

induce soil bacteria to increase nutrient decomposition

for hot moments of minutes to hours (Kuzyakov and

Blagodatskaya 2015). Fluid flow can also lead to

heterogeneity in gene expression by affecting local

concentrations of autoinducers, molecules secreted by

bacteria to coordinate biofilm formation based on

bacterial population density (Kim et al. 2016). In

environments with fluid flow, autoinducers accumu-

late at concentrations highest at the most downstream

regions of a bacterial population (Kim et al. 2016).

Thus, spatial heterogeneities in the host matrix can

alter local biomineralization rates through affecting

the spatial expression of traits like biofilm formation,

which can influence biomineralization directly or

indirectly by altering fluid flow.

Biofilm formation, a prominent trait in many

microbial communities, affects the distribution and

rates of biomineralization. Biofilms are dense micro-

bial structures, composed of single or mixed species

surrounded by a housing of extracellular polymeric

substrates (EPS). Functional groups within the EPS

have been observed to serve as initial nucleation sites

or control the extent of precipitation and the morphol-

ogy of precipitates (Braissant et al. 2003; Ercole et al.

2007; Decho 2010). Charge density has also been

observed for inducing higher nucleation rates (Görgen

et al., 2021). Thus, the spatial location of biominer-

alization in porous media likely depends on the

location of biofilms, which are initiated at sites where

bacteria attach to surfaces and dependent on chemical

gradients (de Anna et al. 2020) and flow (Rusconi et al.

2014; Secchi et al. 2020). Variation in biofilm location

and growth in turn contributes further pore-scale

heterogeneities in fluid flow and chemistry (Drescher
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et al. 2013) (Fig. 3). Carbonates formed by biofilms

are morphologically distinct from those produced

under abiotic conditions (Li et al. 2015), suggesting

that biofilm architecture affects precipitate properties.

Indeed, carbonate biomineralization appears to form

primarily at the base of biofilms (Li et al. 2015).

Altogether, biofilms present an excellent example of

how the interplay between chemical, physical and

biological processes at pore- and single cell-scales

produce non-uniform biomineralization at the meso-

scale.

3 Controlling biomineralization processes

in porous media

Efforts to achieve spatial control over biomineraliza-

tion at useful/application scales have focused on the

manipulation of the microbes and/or the pore envi-

ronment within the host matrix (Antwis et al. 2017). In

certain applications, microorganisms capable of

biomineralization may already be present in the host

matrix (e.g., soil consolidation and stabilization,

pollution remediation, ornamental stone consolida-

tion), albeit at low abundance or under unfavorable

conditions. In other applications (e.g., geological

sequestration of CO2, enhanced oil recovery, concrete

consolidation), native microorganisms may not be

able to biomineralize under prevailing conditions. To

overcome these two challenges, applications have

sought to stimulate biomineralization: (i) by providing

nutrients (biostimulators) to the existing microbial

community or chemical amendments designed to

select for dominant metabolic activity, (ii) by intro-

ducing specific microorganisms to augment native

populations (bioaugmentation), or (iii) by a combina-

tion of both (Dhami et al. 2017). Together, these

methods of enhanced biomineralization have been

proposed as environmentally-friendly alternatives to

the use of concrete, polymers or resins. Both methods

inject solutions of prescribed composition into the host

matrix, aiming to induce biomineralization in target

regions and circumvent limitations due to uncon-

trolled bacterial activity or heterogeneous fluid flow

and chemical transport. An understanding for how

these injected solutions spread and mix with the

resident fluids in a host matrix, and particularly how

the injected solutions arrive to the microorganisms

within the matrix, is key for successful spatial control

of enhanced biomineralization strategies.

3.1 Biochemical methods for enhancing specific

biomineralization pathways

The primary challenge of enhanced biomineralization

is to promote the survival of desired microorganisms

in desired locations under often suboptimal host

matrix conditions. Current methods have sought to

enable specific metabolic pathways or bacterial sur-

vivability, through a variety of injected inoculates.

3.1.1 Considerations of metabolic pathway

Biomineralization often occurs in extreme chemical

and physical environments that stunt bacterial activity

and growth. A potential solution for improving

activity under suboptimal conditions, is to choose

and introduce bacterial species tolerant of specific

conditions. For example, desiccation-resistant and

aerobic microorganisms, such as ureolytic bacteria

and myxobacteria (e.g., Myxococcus xanthus), are

well suited for near-surface applications, such as the

consolidation of ornamental stones and soils (Ro-

driguez-Navarro et al. 2003; De Muynck et al. 2010;

Jonkers and Schlangen 2009). However, oxygen

availability limits the long-term use of aerobic

microorganisms in deeper parts of geological forma-

tions (DeJong et al. 2013), for example, in geological

Fig. 3 An unsaturated porous media with solid grains (gray), a

gas phase (black), liquid phase (dark blue) and chemical con-

centration gradients. Preferential paths emerge as fluid flow

moves around the air pockets. Preferential paths correspond to

regions of higher fluid flow velocities and higher chemical

concentrations ( adapted from Jiménez-Martı́nez et al. 2017).

Orange inset: The existence of concentration gradients and

shear flow control the development of bacterial biofilms.
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sequestration of CO2 or enhanced oil recovery.

Controlling the aerated locations is a potential engi-

neering control for promoting an ecological niche for

aerobic organisms in an anaerobic subsurface. Cur-

rently, injecting air, oxygen, or an oxygenated solution

is technically difficult and expensive and remains an

area of ongoing work.

Many subsurface applications focus on promoting

anaerobic pathways for biomineralization, such as

urea hydrolysis and, andmore recently, denitrification.

Carbonate precipitation by urea hydrolysis (Eq. 1) has

been the most studied process for applications and is

performed by some facultative anaerobes, such as B.

pasteurii (Ferris et al. 1997). It is important to note,

however, that while urea hydrolysis itself does not

require oxygen, some MICP catalyzing organisms

may still be sensitive to oxygen availability. Recently,

the biomineralization of a prominent MICP model

organism, S. pasteurii, was found to be inhibited under

anoxic conditions (Martin et al. 2012). This finding

has led to the exploration of denitrifying bacteria, such

asHalomonas halodenitrificans, as microbial catalysts

for carbonate precipitation (Martin et al. 2013).

3.1.2 Bacterial growth and survivability

Uncontrolled microbial growth is a recurrent chal-

lenge, as the overgrowth of microorganisms ultimately

limits the long-term effectiveness of biomineralization

applications. First, rapid overgrowth often leads to the

accumulation of detrimental by-products, such as

ammonia produced by urea hydrolysis (Eq. 1). Exces-

sive ammonia leads to the eutrophication and acidi-

fication of ecosystems, amounting to toxic effects on

humans, animals and vegetation. Ammonia can also

discolor stone and is thus counterproductive in appli-

cations like ornamental stone consolidation (Sutton

et al. 2009; Tobler et al. 2011). Second, uncontrolled

microbial overgrowth also diminishes the spatial

extent of biomineralization. In biostimulation, rapid

growth can deplete the biostimulator before it can

reach and induce biomineralization at further locations

in the host matrix. Improved temporal control over the

injection of biostimulator can enhance control over

microbial growth by limiting nutrient availability over

the course of application (Zhu and Dittrich 2016;

Sect. 4.2). To control growth such that mineral

precipitation can occur more uniformly over time

and space, proposed bioaugmentation strategies

include the use of inactive cells, such as lyophilized

bacteria or spores, which can be viable for up to

200 years (Schlegel and Zaborosch 1993).

Uncontrolled undergrowth or cell death is another

challenge, particularly in bioaugmentation. Microor-

ganisms introduced to soils often decline in abundance

or activity shortly after injection (van Veen et al.

1997). Several environmental factors can limit micro-

bial survival and activity, including high pressure,

high temperature, saline conditions, competition or

predation from native organisms, and the extreme pH

conditions often present in applications such as

groundwater decontamination and enhanced oil recov-

ery (Okwada and Li, 2010; Phillips et al. 2015). Some

mesophilic bacteria, such as S. pasteurii, are recom-

mended for biomineralization applications occurring

at pressures up to 7.5 MPa (Mitchell et al. 2013). S.

pasteurii can also tolerate high salinities (Kuhlmann

and Bremer 2002; Mortensen et al. 2011) and

catalyzes carbonate precipitation in salinities below

sea water (35 g L-1) (Dupraz et al. 2009a). S. pasteurii

is also a favorable species for concrete sealing

applications, given its tolerance for high alkalinity

and high pH (* 9) conditions (Mobley et al. 1995;

Bang et al. 2001). However, pressures higher than

7.5 MPa inhibit S. pasteurii DNA replication and

protein synthesis, suppressing metabolic functions and

growth (Abe et al. 1999). Thus, anaerobic denitrifiers

such as H. halodenitrificans have been recommended

for biomineralization applications when anoxic and

high-pressure conditions coincide (Martin et al. 2013).

Spores can also survive exposures to high pressure,

such as those associated with injections of supercrit-

ical CO2 during geological sequestration, though

chemical additives to the CO2 can reduce their

viability (Zhang et al. 2006).

3.1.3 Composition of injected inoculates

and performance assessment

Given the complexity of controlling microbial activity

in porous media, in situ biostimulation or bioaugmen-

tation remains experimental (El Fantroussi and

Agathos 2005). Here, we highlight recent findings

from controlled conditions that exemplify how the

composition of an inoculum can be designed to

enhance biomineralization. We first introduce the

specific application of self-healing (pre-mixed
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inoculum) and then highlight more general strategies

for the composition of injected inoculates.

Self-healing is a special application in that the host

matrix, in particular concrete and mortar, can be pre-

seeded with biomineralizing microorganisms in effort

to achieve more uniform distribution of precipitate

(Seifan et al. 2016; Castro-Alonso et al. 2019). To

prepare a self-healing material, spores and other

microorganisms with low metabolic activities and

extremely long lifetimes can be added during the

production of the concrete or mortar (Le Metayer-

Levrel et al. 1999; Sarkar et al., 2015; Zhang et al.

2017) and contribute to the long-term durability of the

building material. Over time, the precipitates pro-

duced by these long-lasting microorganisms continue

to maintain the structural integrity of the material

within which they are embedded.

Two different self-healing techniques have been

proposed: one directly introduces only bacteria to the

material and the other immobilizes bacteria within

‘‘carriers’’ that are then mixed into the material. These

carriers prevent bacterial movement within the host

matrix and can be fabricated from a variety of

materials. A recent study compared carriers made of

silica gel and polyurethane and found that biominer-

alization by B. sphaericus was two-fold higher when

carried by silica gel (Wang et al. 2012b). However,

cracked mortar specimens containing polyurethane

immobilized bacteria regained up to 60% more

strength and were up to 102 times less permeable than

cracked mortar specimens containing bacteria in silica

gel carriers. Experiments with Bacillus cohnii have

also highlighted the effectiveness of carriers made

from volcanic powders (e.g., perlite), completely

healing crack widths up to 0.79 mm within 28 days

(Zhang et al. 2017). Carriers made from expanded

clays could fully heal cracks of smaller widths

(0.45 mm).

Bacterial carriers have also been proposed for

biomineralization applications requiring injected

inoculates. Hydrogel encapsulation of biomineralizing

microorganisms has been explored as a means of

providing an advantage for introduced bacteria (Wu

et al. 2017). For example, a hydrogel can physically

protect bacteria from adverse conditions (El Fan-

troussi and Agathos 2005) or maintain a higher local

concentration of nutrient (e.g., urea) around the

bacteria to promote precipitation. The injection of a

biostimulator metabolically available only to a co-

injected bacterial strain can also provide a metabolic

niche to the biomineralizer unused by native local

microbiota, offering a potential solution for the long-

term amendment of the host matrix with a desired

biomineralizer (El Fantroussi and Agathos 2005).

Assessing the success of biomineralization appli-

cations is complicated in situ, but a variety of methods

enable performance assessment in experimental set-

tings. In the lab, assessment of urea hydrolysis can be

performed by measuring the decomposition of urea or

the production of ammonium, by visually or chemi-

cally measuring calcium carbonate, or by strength or

waterproof testing the treated host matrix (Wang et al.

2012b; Wu et al. 2017). In the field, the survival of

biomineralizers introduced to a soil may be assessed

by targeted quantification of the abundance of the

introduced bacteria by 16S sequencing (El Fantroussi

and Agathos 2005) or by measuring microbial com-

munity diversity (Dhami et al. 2017). Whole commu-

nity monitoring represents an exciting next step in

biomineralization applications, as recent work has

begun to demonstrate that some biomineralizers (e.g.,

S. pasteurii) may have synergistic interactions with

native organisms in the host matrix that increase

carbonate precipitation (Dhami et al. 2017).

3.2 Injection methods for controlling fluid flow

and chemical transport

Another strategy to spatially control biomineralization

focuses on the how the chemical amendments and

inoculates are injected, rather than the specific

contents. Recent work has introduced temporal and

spatial controls over injections, designed to facilitate

the transport of reagents to circumvent undesirable

patchiness in precipitate formation. The precipitation

of surface scabs is a major limitation of shallow

applications, such as the treatment of ornamental

stone, and arises from the inability of the injected

nutrient solution (i.e., urea in growth medium) to

penetrate regions farther from the surface (Le

Metayer-Levrel et al. 1999). Similarly, a recurrent

problem in subsurface applications is the rapid

precipitation of mineral around the injection site,

plugging adjacent pores and fractures and preventing

deeper penetration of the solution and decreasing

biomineralization further from the injection site

(Schultz et al. 2011). Lower injection rates with lower

reactant concentrations in the injected solution have
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been demonstrated to improve precipitation efficiency

and uniformity in biomineralization applications with

S. pasteurii (Dawoud et al., 2009a, b; Al Qabany et al.

2012; Zambare et al. 2019). Similarly, injecting

bacteria before injecting the cementation fluid pro-

duced a more homogeneous precipitate distribution

than when both were injected simultaneously (Tobler

et al. 2012). Still, controlling the local precipitation at

the injection site remains an on-going challenge.

Pulsed injections have recently been proposed to

reduce precipitation near the injection inlet. Indeed,

the intermittent injection of a ureolytic treatment over

recurring cycles has reduced the build-up of carbonate

around inlets (Lauchnor et al. 2013; Hommel et al.

2016). It is thought that this pulsing maintains

bacterial activity over several days while avoiding

uncontrolled growth by interrupting longer no-flow

periods of low positive mineral saturation index (SI),

which determines whether mineral precipitates or

stays in solution, with short high-flow periods, which

deliver additional growth media and dissolved mineral

(increasing SI). This temporal control over microbial

activity enables biomineralization to occur further into

the host matrix, improving the efficiency and spatial

control.

Other injection designs make use of multiple

injection inlets, patterning injections to control flow

fields and ultimately the location of biomineralization.

These multi-point injection designs perform various

types of injections: single and multiphase injections,

shallow and deep injections, and injections of low and

high chemical concentrations (DeJong et al.

2013, 2014; Gomez et al. 2016, 2019; Nassar et al.

2018). By changing which inlets are actively injecting,

multi-point injections can change the flow direction

within individual pores, creating time-dependent flow

fields that promote chemical spreading (Fig. 4).

Changing flow fields can also recirculate nutrients

around bacteria within the host matrix, shifting

conditions towards those of a chemostat. Overall,

multi-point injection designs have improved the

spatial distribution of biomineralization (DeJong

et al. 2014; Minto et al. 2019). Further improvements

could be achieved by designing injection programs

that produce chaotic mixing (Mays and Neupauer

2012; Neupauer et al. 2014), which would help the

field overcome the topologically complex difficulties

presented at small scale that currently limit spatial

control over biomineralization at meso- and field-

scale.

4 How modeling tools can guide biomineralization

in porous and fractured media

The spatio-temporal heterogeneity in the biological,

chemical and hydraulic processes involved in biomin-

eralization make its predictability extremely difficult.

While laboratory experiments can provide informa-

tion about the fundamental mechanisms that control

dispersion, mixing and biochemical reactions in

porous and fractured media (Kim et al. 2020), they

are not able to simultaneously capture all relevant

features of natural environments. In particular, indi-

vidual experiments cannot account for the different

types of heterogeneities, i.e., physical, chemical and

biological, across different spatial scales (i.e.,

micrometers to kilometers) (Gelhar et al. 1992).

Field-scale transport parameters can differ by orders

of magnitude from the values estimated by laboratory

experiments, which are by necessity performed on

smaller scales (Weber et al. 1992; Vanderborght and

Vereecken 2007). The inability to scale experimental

results to field applications arises from the hydraulic,

geochemical and microbial heterogeneity that exist at

each scale and the fact that averaging biomineraliza-

tion at a single scale (i.e., averaging within a

representative elementary volume) cannot fully cap-

ture the process at other scales. Thus, the dependency

on scale for accurate depictions of these hetero-

geneities in a porous medium is particularly critical

when attempting to predict biomineralization.

To accurately predict biomineralization in hetero-

geneous porous and fractured media, models need to

couple the various processes contributing to biomin-

eralization. A few pore-scale models that consider

microscale structure and implement some of the

involved processes are found in the literature (Nogues

et al. 2013; Qin et al. 2016). However, high compu-

tational costs limit the application of pore-scale

models to larger scales. In fact, scaling up of

biomineralization can be understood as the elimina-

tion of pore-scale processes by appropriate averaging

of them. At the meso-scale, most of the existing

models implement the complex reactions in water as a

function of the equilibrium in the chemical system

following the mass action law. For example, in urea
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hydrolysis, the calcite precipitation and dissolution are

considered kinetically controlled (Barkouki et al.

2011; Martinez et al. 2014). However, these models

do not account for the transport of bacteria and

changes in physical or hydraulic properties (porosity

and permeability). Models that currently consider

changes in physical and hydraulic properties make

important simplifications about the kinetic rates that

control chemical reactions (Fauriel and Laloui 2012;

Cuthbert et al. 2013; Wang and Nackenhorst 220) or

assume an immobile and homogeneous distribution of

bacteria (van Wijngaarden et al. 2011, 2013, 2016). In

some of these works, the simplifications of the kinetics

rates are carefully and rationally justified, exemplify-

ing a notable form of upscaling (Fauriel and Laloui

2012). More complex models simultaneously con-

sider multiphase flow, biofilm growth and changing

ureolysis rates (Ebigbo et al. 2012; Hommel et al.

2015).

At the field-scale, the scarcity of spatially and

temporally distributed information invites the main-

tenance of simple models, classically based on effec-

tive parameters (permeability, dispersivity) (Roden

and Scheibe 2005; Cuthbert et al. 2013; Phillips et al.

2016; Cunningham et al. 2019). However, the high

degree of heterogeneity and the existence of inter-

faces induce complex transport and mixing that can-

not be captured by this smoothed representation.

Fundamentally, these models cannot appropriately

account for processes such as mixing and chemical

reactions, which intrinsically occur at pore scale

(Rolle et al. 2009; Williams et al. 2009; de Anna

et al. 2014). Thus, while recent models are starting to

couple the processes contributing to biomineralization

and some upscaling attempts have been reported

(DeJong et al. 2009; Terzis and Laloui 2019), the

scaling up of biomineralization still presents a number

of challenges to be addressed, such as bacterial

attachment (Minto et al. 2019).

5 Outlook

Precise control over the spatial distribution of biomin-

eralization in porous media requires holistic consid-

eration of the spatial distribution of physical, chemical

and biological factors. Generally, these factors create

challenging heterogeneities, that fundamentally shape

soils and subsurface ecological processes (Tecon and

Or 2017), such as fragmented aqueous phases in

unsaturated soils (Or et al. 2007), preferential flow

paths that lead to non-uniform transport of nutrients

(Le Borgne et al. 2013; Jiménez-Martı́nez et al. 2015),

and highly localized gradients in oxygen and carbon

(Borer et al. 2018). Advances in the field should

account and systematically control for this

complexity.

Fig. 4 Multi-point injection strategy. Biocementation experi-

ments using a bioaugmentation approach with S. pasteurii and a
biostimulation approach, which stimulated native ureolytic

microorganisms to complete the process. Uniformity in the

calcite content was not achieved in any of the approaches.

Adapted from Gomez et al. (2016, 2019)
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5.1 Characterization of structure and processes

in porous media

Combining recent advances can provide simultaneous

quantitative measurements of the various factors and

processes that control biomineralization (Robinson

et al. 2008). Promising geophysical methods have

enabled visualization of dynamic processes such as

fluid dynamics and biogeochemical reactions within

porous media (Binley et al. 2015). Electrical methods

have characterized the physico-chemical environ-

ment, such as the spatial distribution of conductive

(i.e., iron) (Atekwana and Aal 2015) and non-

conductive minerals (i.e., calcite) (Wu et al. 2010).

A minimally invasive technique has used spectral

induced polarization to monitor the temporal evolu-

tion of urea hydrolysis and calcite precipitation in

porous media (Zhang et al. 2012). Combining these

methods with tracers that report on the metabolic

activity of bacteria (Haggerty et al. 2009) are promis-

ing avenues by which biochemical reactions and

mixing processes may be quantified in porous and

fractured environments.

5.2 Microbial activity in heterogeneous porous

media

An ongoing challenge is to understand how the spatial

and temporal heterogeneity in porous media affect

bacterial distribution and function. Pore-scale exper-

iments and simulations have shown that bacterial

growth varies considerably in space in the presence of

chemical gradients (Knuston et al., 2005). We propose

that future attention to how porous media affects

motility range and bacterial migration and/or transport

will inform efforts to control the spatial distribution of

bacterial biomass and therefore biomineralization.

Attention should also be paid to the dynamics of

bacterial biomineralization in the presence dynamic

local environments. Minute-scale fluctuations in

nutrient concentration have been experimentally

shown to induce fluctuations in the growth rate of

E. coli, leading to differences in net growth compared

to steady environments of equal average nutrient

availability (Nguyen et al. 2021). Similar fluctuations

in porous media may change biomineralization rates

over time (e.g., through changes in growth rate). It is

also possible that diverse soil microorganisms may be

less responsive to fluctuations. Communities in coastal

sediments appear to have evolved the capacity to

continuously denitrify, even as oxygen (generally a

denitrification inhibitor) fluctuates around them

(Marchant et al. 2017). Similarly, some soil commu-

nities have been found to grow faster (as seen by

higher RNA to DNA ratios) when exposed to fluctu-

ating conditions (oxic/anoxic) than to steady ones

(steadily oxic or anoxic) (DeAngelis et al. 2010). How

communities can maintain steady activity and growth

under fluctuations may provide solutions for biomin-

eralization applications that desire steady precipitation

under difficult to control conditions.

5.3 Genetic engineering or experimental

evolution of microorganisms

To achieve uniform biomineralization across meters

or kilometers, a possible strategy could include the

engineering of an organism that regulates biominer-

alization in a cell density-dependent manner. Bacterial

quorum sensing systems, which mediate density-

dependent gene expression, have already been manip-

ulated to improve the treatment of wastewater and

energy production from microbial fuel cells (Yong

et al. 2015). Manipulating microbial activity such that

higher cell densities, such as those occurring at

injection inlets or in biofilms, coincide with lower

single-cell biomineralization rates could help prevent

uneven formation of precipitates, such as clogging at

inlets.

Another possible avenue for spatial control could

be the bioengineering of bacterial strains with

enhanced dispersal capabilities, such as reduced

attachment to surfaces and slower rates of surface-

attached colony growth. Reducing the number of cells

within a surface-attached colony has been shown to

increase the spatial range at which the human

pathogen Pseudomonas aeruginosa colonizes its host

(Laventie et al. 2018). Engineering biomineralizers to

disperse more effectively through increased swim-

ming speeds or tumbling rates could similarly spread

the distribution of biomineralization throughout a host

matrix. Strains of E. coli with enhanced motility have

been evolved in soft agar environments that facilitate

the selection of mutants that disperse the fastest (Ni

et al. 2017).

Strains that are more genetically tractable can be

metabolically engineered to catalyze specific bio-

chemical reactions. P. aeruginosa MJK1 and E. coli
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MJK2 have previously been engineered to perform

urea hydrolysis (Connolly et al. 2013). While respec-

tively 4- and tenfold lower than the endogenous

ureolytic activities of S. pasteurii, the engineered

strains exhibited substantial ureolysis rate under

standard laboratory growth conditions, but were able

to grow 1.5- and twofold faster and to higher

population densities. Genetically engineered spore-

forming bacteria, such as the alkaliphilic B. subtilis,

have been developed for self-healing applications

(Sarkar et al., 2015). For applications of specific pH,

candidate organisms include mutants of the fungus

Aspergillus nidulans MAD1445 that can grow and

promote calcium carbonate precipitation (Menon et al.

2019). For high temperature and hypersaline applica-

tions, strains isolated from hot springs and growing in

highly saline environments offer initial candidates for

engineered strains that tolerate and biomineralize in

such conditions (Fouke 2011; Okumura et al. 2013).

5.4 Abstracting and mimicking natural

microenvironments

For pore-scale studies, microfluidics represents a

powerful tool to study biomineralization processes at

the microscale. Microfluidics offers the ability to

precisely control fluid flow and mimic natural

microenvironmental conditions, while allowing opti-

cal observation and quantification (Schultz et al. 2011;

Lauchnor et al. 2013; Yin et al. 2009; Singh et al.

2015). Classic microfluidic materials, such as glass

and silicone (Rusconi et al., 2014; Son et al. 2015),

may not contain many physico-chemical properties

occurring in natural or engineered porous media

(Aleklett et al. 2017). The inclusion of a mineral

surface would offer the ability to perform microfluidic

experiments with substrates that directly reproduce

more natural conditions of asperity, wettability,

porosity, and heterogeneity. So far, only a handful of

devices have been developed to study fluid–solid

reactions and mineral leaching (Satoh et al. 2007;

Song et al. 2014; Ciceri and Allanore 2015; Osselin

et al. 2016; Neuvulle et al., 2017; Jiménez-Martı́nez

et al. 2020), or fluid dynamics (Porter et al. 2015;

Singh et al. 2017). Adopting mineral microfluidics for

biomineralization studies would enable experiments

that include all fundamental characteristics that affect

fluid flow, chemical reactions and microbial interac-

tions at the fluid–solid interface.

5.5 Achieving spatially controlled

biomineralization at the field scale

Mixing is a combination of stirring, which increases

the interfacial area between the resident and the

injected solution and creates concentration gradients,

and diffusion, which smooths out the concentration

gradients and homogenizes the concentration field.

Stirring, in particular, can be controlled through

designing fluid injection strategies to stimulate

biomineralization in a spatially-controlled manner.

Multi-point injection strategies can be used to stretch

and fold the injected chemical plumes and further

spread the inoculum into the host matrix (Mays and

Neupauer 2012; Neupauer et al. 2014). Current multi-

point injection applications tend to create encapsulat-

ing flows, which can isolate fluid zones for lengthy

periods (Tefrey et al., 2012). However, mixing can be

accelerated by designing injection programs that

produce chaotic flows (Lester et al. 2016) (Fig. 5).

The design of a multi-point injection program that

mixes even in laminar flow conditions represents an

immediate challenge that, if solved, can greatly

improve our spatial control over biomineralization.

The tendency of bacteria to aggregate or attach near

the inlet of injection sites remains a challenge, as it

produces spatial heterogeneities in biomineralization

applications. Sonication, the use of ultrasounds, have

been demonstrated to efficiently produce bacterial

suspensions without aggregates (Sanz et al. 2003)

and without killing bacteria (Piyasena et al. 2003).

Sonication prevents microbial biofilms (Wang et al.

2017) and can increase the rate of bacterial cell growth

(Pitt and Ross, 2003). Ultrasonication is already used

in soil and sediment remediation (Radu et al. 2020)

and could serve as an environmentally friendly (no

toxic chemicals are used or produced), low cost, and

compact (allowing on-site treatment) solution to

improve the spreading of inoculated bacteria across

the host matrix (Pham et al. 2009).

Enhanced mixing in unsaturated porous media can

be achieved by manipulating the degree of water

saturation, which exerts strong control over solute

mixing and chemical reactions (Jiménez-Martı́nez

et al. 2015, 2017). When an injected suspension of

bacteria and nutrients does not significantly change the

degree of saturation, then the bacteria and nutrients in

the injection travel through preferential paths in the

host matrix. This produces a fingering pattern, and the
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bacteria and nutrients are then unable to reach isolated

clusters of water, resulting in patchy biomineralization

due to incomplete mixing. If the water saturation of the

porous host matrix is increased before or during

injection, the accessibility of the porous media to

bacteria and nutrient increases.

Some environments cannot be saturated. To

enhance mixing in unsaturated environments, we

propose two possibilities: (i) a simultaneous injection

of an immiscible phase (e.g., air) to enhance mixing of

the injected inoculum with the resident fluid (Jiménez-

Martı́nez et al. 2016); and (ii) a forced desaturation

(e.g., by evaporation) of an initially low concentration

solution to concentrate the inoculum into several small

water volumes (McLean et al. 1997). The latter

proposition would still produce patchy mineralization,

but in smaller patches that are more homogeneously

distributed as controlled by the texture of the host

matrix.

5.6 Harnessing the predictive power of numerical

tools

From a modelling perspective, the key challenge is the

inclusion of the effects of pore-scale processes and

bacterial behavior into multi-scale numerical models.

The appropriate averaging of these small-scale pro-

cesses would allow upscaling by eliminating the need

to model them explicitly. Advection–dispersion model

is commonly used in continuum models to simulate

the transport of bacteria through porous media, and

more recently, chemotaxis has been incorporated as an

additional advection-like term (Adadevoh et al. 2017).

However, this approach fails to predict the bacterial

residence time and distribution in the host matrix, and

therefore the rate of biologically-driven reactions.

Furthermore, models typically employ simplified

kinetics that do not account for cell density, pH

effects or product inhibition. Thus, the reaction rate

and therefore the mass of precipitate produced under

natural conditions differs by orders of magnitude with

respect to rates calculated under well-controlled

laboratory conditions (i.e., batch experiments from

which kinetics are measured). Because the rate of

Fig. 5 Chaotic mixing in porous media spatially distributes a

solution of nutrient and bacteria over time in an optimal stirring

protocol. Flow from an injection well (red) to an extraction well

(blue). If the time scale of biomineralization (i.e., kinetic) is

larger than the time needed to reach the well mixed conditions

(t8), a more homogeneous spatial distribution of precipitated

could be obtained. Adapted from Lester et al. (2009)
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biomineralization changes in space and time, it is very

difficult to know a priori. This fact reduces the

predictive capacity of current numerical models.

Recent advances in multispecies reactions modeling

developed for geochemical purposes (Valdes-Abellan

et al. 2017), along with new theories coupling complex

fluid dynamics with transport processes in both fully

and partially saturated porous media (e.g., lamella-

based model) (Le Borgne et al. 2013, 2014, 2015;

Jiménez-Martı́nez et al. 2017), inform about the

mixing of nutrients and chemical amendments and

provide a new opportunity to study and predict

chemical heterogeneity at meso-scale. The models

developed in the last decade for the transport of

microorganisms (Creppy et al. 2019) and the growth of

biofilms (Ezeuko et al. 2011) in porous media, as well

as the biologically induced reactions and clogging

processes (Thullner et al. 2002; Brovelli et al. 2009)

will serve as the basis to complement and optimize the

meso-scale models of biomineralization.

6 Summary

Biomineralization processes have been intertwined

with the origins of life on Earth, as evident in the

geologic record. An improved understanding of

biomineralization processes in porous media requires

a pore-scale integration of the physical and chemical

micro-environments that contribute to its spatial

heterogeneity. An improved understanding of how

the spatial heterogeneity of porous media affects

biomineralization would improve our interpretation of

ancient and ongoing natural processes and promises

for improved control over several technological

applications that rely on biomineralization. Immediate

challenges towards this perspective include an

improved understanding of microbial behavior in

heterogeneous microenvironments, using a pore-scale

understand to inform the control of fluid mixing at

field-scale, and the upscaling of microscale processes

in predictive tools. By integrating these elements, we

can then develop a predictive understanding of

biomineralization in porous media, its rate and spatial

distribution, in nature and in practice.
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González-Muñoz MT (2012) Influence of substrate min-

eralogy on bacterial mineralization of calcium carbonate:

implications for stone conservation. Appl Environ Micro-

biol 78(11):4017–4029

Rolle M, Eberhardt C, Chiogna G, Cirpka OA, Grathwohl P

(2009) Enhancement of dilution and transverse reactive

mixing in porous media: experiments and model-based

interpretation. J Contam Hydrol 110(3–4):130–142

Haggerty R, Martı́ E, Argerich A, von Schiller D, Grimm NB

(2009) Resazurin as a ‘‘smart’’ tracer for quantifying

metabolically active transient storage in stream ecosys-

tems. J Geophy Res 114(G3). https://doi.org/10.1029/

2008JG000942

Rusconi R, Guasto JS, Stocker R (2014) Bacterial transport is

suppressed by fluid shear. Nat Phys 10:212–217

Rusu C, Cheng X, Li M (2011) Biological clogging in Tangshan

sand columns under salt water intrusion by Sporosarcina

pasteurii. Adv Mater Res 250:2040–2046

Salifu E, MacLachlan E, Iyer KR, Knapp CW, Tarantino A

(2016) Application of microbially induced calcite precip-

itation in erosion mitigation and stabilisation of sandy soil

foreshore slopes: a preliminary investigation. Eng Geol

201:96–105

Sánchez-Román M, Romanek CS, Fernández-Remolar DC,

Sánchez-Navas A, McKenzie JA, Pibernat RA, Vascon-

celos C (2011) Aerobic biomineralization of Mg-rich car-

bonates: Implications for natural environments. Chem

Geol 281(3–4):143–150

Sanjuan B, Girard JP (1996) Review of kinetic data on carbonate

mineral precipitation. BRGM Rep R39062(1996):91p

Sanz R, Battu S, Puignou L, Galceran MT, Cardot PJ (2003)

Sonication effect on cellular material in sedimentation and

gravitational field flow fractionation. J Chromatogr A

1002(1–2):145–154

Sarikaya M (1999) Biomimetics: materials fabrication through

biology. Proc Natl Acad Sci 96:14183–14185

Sarkar M, Alam N, Chaudhuri B, Chattopadhyay B, Mandal S

(2015) Development of an improved E coli bacterial strain

for green and sustainable concrete technology. RSC Adv

5(41):32175–32182

Satoh H, Nishimura Y, Tsukamoto K, Ueda A, Kato K, Ueta S

(2007) In-situ measurement of dissolution of anorthite in

Na-Cl-OH solutions at 22�C using phase-shift interfer-

ometry. Am Mineral 92:503–509

Scheidweiler D, Peter H, Pramateftaki P, de Anna P, Battin TJ

(2019) Unraveling the biophysical underpinnings to the

success of multispecies biofilms in porous environments.

ISME J 13(7):1700–1710

Scheidweiler D, Miele F, Peter H, Battin TJ, de Anna P (2020)

Trait-specific dispersal of bacteria in heterogeneous porous

environments: from pore to porous medium scale. J R Soc

Interface 17(164):20200046

Schlegel HG, Zaborosch C (1993) General microbiology.

Cambridge University Press

Scholl MA, Mills AL, Herman JS, Hornberger GM (1990) The

influence of mineralogy and solution chemistry on the

123

50 Rev Environ Sci Biotechnol (2022) 21:27–52

https://doi.org/10.1002/2016WR019128
https://doi.org/10.1029/2008JG000942
https://doi.org/10.1029/2008JG000942


attachment of bacteria to representative aquifer materials.

J Contam Hydrol 6(4):321–336

Schultz L, Pitts B, Mitchell AC, Cunningham AB, Gerlach R

(2011) Imaging biologically induced mineralization in

fully hydrated flow systems. Microscopy Today

19(5):12–15

Secchi E, Vitale A, Miño GL, Kantsler V, Eberl L, Rusconi R,

Stocker R (2020) The effect of flow on swimming bacteria

controls the initial colonization of curved surfaces. Nat

Commun 11:2851. https://doi.org/10.1038/s41467-020-

16620-y

Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: next

generation of self-healing concrete. Appl Microbiol

Biotechnol 100(6):2591–2602

Seiffert F, Bandow N, Bouchez J, Von Blanckenburg F, Gor-

bushina AA (2014) Microbial colonization of bare rocks:

laboratory biofilm enhances mineral weathering. Procedia

Earth Planet Sci 10:123–129

Singh R, Yoon H, Sanford RA, Katz L, Fouke BW, Werth CJ

(2015) Metabolism-induced CaCO3 biomineralization

during reactive transport in a micromodel: implications for

porosity alteration. Environ Sci Technol

49(20):12094–12104

Singh R, Sivaguru M, Fried GA, Fouke BW, Sanford RA,

Carrera M, Werth CJ (2017) Real rock-microfluidic flow

cell: a test bed for real-time in situ analysis of flow,

transport, and reaction in subsurface reactive transport

environment. J Cont Hydrol 204:28–39

Skinner HCW, Jahren AH (2005) Biomineralization. In: Sch-

lesinger WH (ed) Biogeochemistry treatise on geochem-

istry 8. Elsevier, Amsterdam, The Netherlands, pp 117–184

Son K, Brumley DR, Stocker R (2015) Live from under the lens:

exploring microbial motility with dynamic imaging and

microfluidics. Nat Rev Microbiol 13:761–775

Song W, de Hass TW, Fadaei H, Sinton D (2014) Chip-off-the-

old-rock: the study of reservoir-relevant geological pro-

cesses with real-rock micromodels. Lab Chip

14:4382–4390

Southam G (2000) Bacterial surface-mediated mineral forma-

tion. In: Lovley DR (ed) Environmental microbe-metal

interactions. ASM Press, Washington, D.C., pp 257–276

Spycher NF, IssarangkunM, Stewart BD, Şengör SS, Belding E,
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