
1. Introduction
Many large river basins in the world have vast geographical coverages, spreading across regions and countries. 
The hydrological data observed and accessible are usually unevenly distributed for different parts/catchments of 
a given river basin: Some have relatively abundant data and others hardly any. Lack of observed data in parts 
of a river basin often impedes the application of hydrological models to adequately simulate river flows and to 
provide information to support a holistic water resources management on the river basin scale. Filling this data 
gap is therefore important. This is particularly so for transboundary rivers where the data in some parts are not 
available or difficult to obtain.

The Global Land Data Assimilation System (GLDAS) provides long-term fine resolution gridded meteorolog-
ical data on a global scale (Rodell et  al.,  2004), which are beneficial to water-related studies in some trans-
boundary rivers lacking in situ observation. However, GLDAS used satellite and reanalysis-based meteorological 
data sets, which have large uncertainties and therefore, applicability evaluations of GLDAS data are a key issue 
to its successful application (Qi et  al.,  2018; Scanlon et  al.,  2018; Zaitchik et  al.,  2010). Many studies have 
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evaluated uncertainty in GLDAS1.0 (Chen et al., 2013; Huang et al., 2013; Kato et al., 2007; Qi et al., 2015; 
Wang et al., 2011; Zaitchik et al., 2010; Zhou et al., 2013). For example, Qi et al. (2015) and Wang et al. (2011) 
investigated input and output of GLDAS1.0 and developed correction equations to reduce the uncertainty of 
GLDAS1.0 forcing data in two rivers (less than 18,000 km2 in total) in Northeast China; Bai et al. (2016) investi-
gated runoff uncertainty in GLDAS1.0 in the Tibetan Plateau and found overestimation of runoff by GLDAS1.0. 
Regarding GLDAS2.0, a few studies have investigated its applicability. For example, Wang, Li, et  al.  (2016) 
investigated the uncertainty of land surface temperature estimation at a point scale and found underestimation 
generally; Wang, Cui, et al. (2016) investigated the applicability of GLDAS2.0 precipitation, evapotranspiration, 
air temperature, water storage, and runoff in China and also found underestimation; Liu et al. (2020) evaluated 
the precipitation data of GLDAS2.0; and Qi, Liu, Yang, et al. (2020) studied the runoff data of GLDAS2.0. De-
spite these progresses, few studies have been carried out for evaluation and correction of GLDAS2.0 data, such 
as radiation, specific humidity, and wind speed in a large area for transboundary rivers specifically in the Tibetan 
Plateau and Northeast China.

China has several large transboundary rivers, for example, the Amur River/Heilong Jiang, Yarlung Tsangpo—
Brahmaputra River, Lancang—Mekong River, and Nu-Salween River. The Amur River forms the border between 
Northeast China and the Russian Far East region and sustains the developments of agriculture and industry of the 
region (Simonov & Egidarev, 2017). The Brahmaputra River, Mekong River, and Salween River originate from 
the Tibetan Plateau of China and flow to South and Southeast Asian countries, such as Thailand, Laos, Myanmar, 
Cambodia, Vietnam, and Bangladesh. Because of the rich water resources, high hydropower potential, upstream 
and downstream flood and drought management, and interests from multiple countries on them, these large trans-
boundary rivers have drawn much attention globally.

The overall objective of this study is to evaluate GLDAS2.0 forcing data and to explore correction approaches 
for GLDAS2.0 data in four large transboundary rivers in China. They are the Amur River, Brahmaputra River, 
Mekong River, and Salween River. The data used are the GLDAS_NOAH025_3H_2.0 product (Matthew & 
Hiroko Kato, 2015). A distributed hydrological model including biosphere after calibration and validation was 
implemented. The data from 1982 to 2010 were studied considering the availability of observation data. By 
comparing the differences of the uncertainty in Northeast China and Tibetan Plateau, the necessity of developing 
equations for the uncertainty corrections specifically in the Tibetan Plateau was revealed. This paper is unique in 
that, for the first time, it evaluates GLDAS2.0 forcing data specifically for the four large transboundary rivers in 
the Tibetan Plateau and Northeast China and also provides the corrected data with reduced uncertainty.

2. Study Region and Data Sets
2.1. Study Region

The Amur River is the tenth longest river in the world and has a catchment area of around 2 million km2. The 
Amur River basin is located in Northeast China and an adjacent area outside China. Figure 1a shows the locations 
of Northeast China, which covers a total area of 1.22 million km2. The Brahmaputra River basin has a catchment 
area of about 0.65 million km2. The Yarlung Tsangpo River basin is located in the upstream of the Brahmaputra 
River and accounts for about 51% of the Brahmaputra River basin. The Salween River basin has a catchment 
area of about 0.26 million km2, and its upper stream is located within China (i.e., the Nu River) accounting for 
about 47% of the total area of the Salween River basin. The Mekong River basin is about 0.81 million km2. In 
China, the Mekong River is named the Lancang River, which has a catchment area of about 0.16 million km2. 
Figure 1b shows the locations of the Brahmaputra River basin, the Salween River basin, and the Mekong River 
basin. The Yarlung Tsangpo River, Lancang River, and Nu River basins will be termed as Southwest China river 
basins hereafter.

2.2. Data Sets

In the Southwest China river basins, the China Gauge-based Daily Precipitation Analysis (CGDPA) data were 
used. CGDPA is based on about 2,400 precipitation gauges (Shen & Xiong, 2016; Zhao & Zhu, 2015). Other 
data were from the China Meteorological Forcing Dataset (CMFD) (He & Yang, 2011; Xue et al., 2013; Yang 
et al., 2017; Zhou et al., 2015). For Northeast China, the input data used were the same as our previous study, and 
more details can be found in the study by Qi, Feng, et al. (2020).

Writing – review & editing: Wei Qi, 
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Figure 1. Study regions. (a) Northeast China and basins off the main irrigated cropland for model calibration. (b) Southeast China river basins and hydrological gauges 
in the Tibetan Plateau, which are close to natural conditions. The irrigated cropland distribution in Northeast China is from http://waterdata.iwmi.org/applications/
irri_area/.
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The GLDAS2.0 forcing data originate from the Princeton meteorological data 
set (Sheffield et al., 2006). Specifically, the precipitation originates from dis-
aggregated Global Precipitation Climatology Project (GPCP) monthly data 
(Huffman et al., 2001) using Tropical Rainfall Measuring Mission (TRMM) 
3B42 real-time data, National Center for Atmospheric Research precipitation 
data, and Climatic Research Unit (CRU) TS2.0 data (Kalnay & Cai, 2003; 
Sheffield et al., 2006). Downward shortwave and longwave radiation data of 
GLDAS2.0 are produced based on the National Centers for Environmental 
Prediction (NCEP) (Kalnay et al., 1996) and NASA Langley Surface Radia-
tion Budget (SRB) data (Stackhouse et al., 2011). GLDAS2.0 air temperature 
is generated based on the CRU TS2.0 and NCEP data. GLDAS2.0 uses wind 
speed and specific humidity from NCEP without correcting bias (Sheffield 
et al., 2006). Our study included the data before 2000, which is important for 
long-term studies. GLDAS2.1 does not have data before 2000 and therefore, 
it was not included in this study.

3. Methodology
3.1. Overview

The flowchart of the method is shown in Figure 2. The methodology included 
four main steps. First, the water and energy budget-based distributed bio-

sphere hydrological model (WEB-DHM-S) (Wang, Koike, Yang, & Yang, 2009; Wang, Koike, Yang, Jackson, 
et al., 2009; Wang, Koike, Yang, & Yeh, 2009) was calibrated and validated using observed discharge. Second, 
GLDAS2.0 data were compared with in situ observed data sets. Third, correction approaches were developed to 
correct the uncertainty in the GLDAS2.0 data. Fourth, simulated discharge using corrected GLDAS2.0 forcing 
data was evaluated by comparing it against observation.

3.2. Assessment Criteria

The uncertainty and temporal trends of annual averages of a number of variables from 1982 to 2010 were studied. 
The criteria used for uncertainty evaluation were correlation coefficient (R), Mean Bias Error (MBE), Root Mean 
Square Error (RMSE), and unbiased RMSE (ubRMSE).
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where Xsi and Xoi represent GLDAS data and observation at time i, respectively; n represents number of data 
points; �� and �� represent the average of GLDAS data and observation, respectively.

Relative Bias (RB) and Nash-Sutcliffe Efficiency (NSE) were used for evaluating discharge simulation, which 
has been commonly implemented (Qi et al., 2015; Qi, Zhang, Fu, Sweetapple, & Zhou, 2016; Qi, Zhang, Fu, & 
Zhou, 2016; Qi, Zhang, Fu, Zhou, & Liu, 2016):

Figure 2. Flowchart of this study. P = Precipitation. Rsw = Downward 
shortwave radiation. Rlw = Downward longwave radiation. W = Wind speed. 
Tair = Air temperature. Qs = Specific humidity.
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where Qpi and Qti represent simulated and observed runoff at time i, respectively; �� represents average of ob-
served runoff. The criteria were used in the cross-validation by evaluating the model performance in the cali-
bration and validation periods, respectively. In the calibration period, NSE and RB were used to evaluate the 
performance of the calibrated model parameters. In the validation period, NSE and RB were used to validate the 
model performance in discharge predictions using the calibrated model parameters.

3.3. The Hydrological Model, Its Calibration, and Validation

The WEB-DHM-S combines a geomorphology-based hydrological model (Yang,  1998) with a Simple Bio-
sphere scheme (SiB2) and improved snow physics (Shrestha et al., 2010; Qi et al., 2015, 2018, 2019; Qi, Liu, 
et al., 2020; Qi, Zhang, Fu, Sweetapple, & Zhou, 2016; Wang, Koike, Yang, & Yang, 2009; Wang, Koike, Yang, 
& Yeh, 2009). More detailed descriptions of the model can be found in Wang, Koike, Yang, Jackson, et al. (2009).

WEB-DHM-S was calibrated and validated in Northeast China in our previous study (i.e., Qi, Feng, et al., 2020) 
and showed good performances in discharge simulation. More details about the model calibration, validation, 
calibrated model parameters, and model performance evaluations can be found in Qi, Feng, et al. (2020). The 
Yarlung Tsangpo, Lancang, and Nu Rivers are close to the natural environment, and therefore, the hydrological 
gauge data in their mainstreams were used for calibration and validation of the model parameters. Data from 1982 
to 1996 were used for calibration for the Yarlung Tsangpo River and Lancang River; data from 1997 to 2010 were 
used for validation. Data from 1982 to 1992 were used for calibration for the Nu River (7-year data and no data 
for 1986, 1988, 1989, and 1990), and data from 1993 to 2000 (8-year data) for validation. The Dynamically Di-
mensioned Search algorithm was used in the calibration on a monthly scale because daily scale observed runoff 
data were not available. In the three rivers originated from the Tibetan Plateau, the sum of NSE and |RB| was used 
as the objective function, that is, minimize (|NSE−1| + |RB|).

4. Results and Discussion
4.1. Model Evaluations

Average parameter values after calibration are listed in Table S1 in Supporting Information S1 for the river ba-
sins in the Tibetan Plateau. Table S2 in Supporting Information S1 shows the NSE and RB values for the river 
basins in the Tibetan Plateau. The overall NSE and RB are up to 0.95% and 1.0%, respectively, in the Southwest 
China river basins. The overall NSE and |RB| are 0.80% and 8.0%, respectively, in Northeast China (Qi, Feng, 
et al., 2020). Overall, these results show that WEB-DHM-S can simulate the hydrological processes well in the 
studied regions. In addition, these results suggest that the 1,000 objective function evaluations and the data used 
in the calibration are acceptable for obtaining reasonable hydrological simulations. Therefore, WEB-DHM-S 
will be utilized to validate the correction methods for GLDAS2.0 forcing data later with the help of discharge 
simulation.

4.2. GLDAS2.0 Data Evaluations

Figure 3 shows the assessments of regional averages of GLDAS2.0 data from January 1982 to December 2010 
on a monthly scale in Northeast China.

GLDAS2.0 has higher precipitation estimation than observation especially in summer with RMSE, ubRMSE, 
MBE, RB, and R being 0.36, 0.36, 0.05, 3.95%, and 0.98, respectively. Different from precipitation, GLDAS2.0 
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downward longwave radiation has lower error in summer periods than other months. Different from both precip-
itation and downward longwave radiation, GLDAS2.0 downward shortwave radiation has higher estimation in 
summer and lower estimation in winter than the observation. For specific humidity and wind speed, GLDAS2.0 
largely overestimates with RB being 18.16% and 30.99%, respectively. Comparatively, GLDAS2.0 and the ob-
servation have a good agreement for air temperature estimation with RMSE, ubRMSE, MBE, RB, and R being 
0.57, 0.57, 0.11, 0.04%, and 0.99, respectively. Similar to the results in Northeast China, GLDAS2.0 largely 
overestimates precipitation (especially in summer), specific humidity, and wind speed in the Southwest China 
river basins (as shown in Figure 4). GLDAS2.0 also has higher downward longwave radiation estimation than the 
observation (Figure 4c). Downward shortwave radiation of GLDAS2.0 has higher estimation than the observation 
in summer (Figure 4d). GLDAS2.0 and observation have a good agreement in air temperature estimation, though 
GLDAS2.0 slightly overestimates air temperature in summer (Figure 4b).

Figure 5 shows assessment results of GLDAS2.0 forcing data in Northeast China from January 1982 to Decem-
ber 2010 on a multiyear mean monthly scale. All the forcing data can reasonably replicate seasonal variations of 
observation with R being over 0.99 with the exception of wind speed, which has an R value of only 0.59. Figure 6 
shows assessments of regional averages of GLDAS2.0 forcing data in the Southwest China river basins. Similar 
to the results in Northeast China, the seasonal variations of GLDAS2.0 and observation are similar except for 
wind speed data.

Figure 7 shows spatial and temporal variation comparisons in Northeast China. GLDAS2.0 reproduces well the 
seasonal and spatial variations of precipitation, air temperature, downward longwave radiation, downward short-
wave radiation, and specific humidity. However, the spatial and temporal variations of wind speed data are not 
well replicated, which is similar to the results shown in Figure 5. Figure 8 shows the comparisons of spatial and 
temporal variations in the Southwest China river basins. Similar to the results in Northeast China, GLDAS2.0 
replicates seasonal and spatial variations well with the exception of wind speed data.

Figure 3. Assessments of regional averages of GLDAS2.0 forcing data in Northeast China from January 1982 to December 2010 on a monthly scale.
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Figure 9 compares changing trends of annual averages of observation and GLDAS2.0 data from 1982 to 2010 in 
Northeast China at a significance level of 0.05. The nonparametric Mann-Kendall test was used to test the signif-
icance. Both GLDAS2.0 and observation show decreasing trends in precipitation and wind speed, though the de-
creasing trend of wind speed is significant only for the observation. Different from precipitation and wind speed, 
observation shows that air temperature has a significant increasing trend, but temperature of GLDAS2.0 shows 
an insignificant increasing trend, which is similar to the results of downward longwave radiation (Figure 9d). 
For downward shortwave radiation and specific humidity, the observation shows insignificant increasing trends, 
whereas GLDAS2.0 shows decreasing trends. Figure 10 compares the trends of annual averages of observation 
and GLDAS2.0 data from 1982 to 2010 in the Southwest China river basins. Both GLDAS2.0 and observation 
show that there are increasing trends for precipitation, air temperature, downward shortwave radiation, and spe-
cific humidity, and that there are decreasing trends for downward longwave radiation and wind speed. Therefore, 
the changing trends of all GLDAS2.0 forcing data reproduce the observations very well in the Southwest China 
river basins, and both observational data and GLDAS2.0 show that the Southwest China river basins have a wet-
ting, warming, and dimming trend.

The high bias in heavy rainfall intensity estimation in GLDAS2.0 may result from uncertainty in TRMM data. In 
other months, the reason that GLDAS2.0 estimation is close to the observation may be that GLDAS2.0 utilized 
GPCP and CRU data to correct bias. GLDAS2.0 utilized the SRB data sets (Stackhouse et al., 2011) to correct 
its bias in downward shortwave and longwave radiation estimation, which may result in its good performance 
of representing the seasonal variations of observation. The large uncertainties in the specific humidity and wind 
speed are most likely due to the fact that NCEP reanalysis data are directly used to generate them without bias 
corrections using observations (Sheffield et al., 2006).

Figure 4. Assessments of regional averages of GLDAS2.0 forcing data in the Southwest China river basins from January 1982 to December 2010 on a monthly scale.
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4.3. Correction of the GLDAS2.0 Data

Due to the uncertainties in GLDAS2.0 forcing data, it is necessary to reduce the uncertainties before the applica-
tion for hydrological simulation. In this study, based on visual inspection on the uncertainty patterns in different 
months, linear and nonlinear regression equations derived from their scatterplots were utilized as correction 
functions. In Northeast China, the developed correction functions are as follows:

𝑅𝑅𝑠𝑠𝑠𝑠 = 1.1015 × 𝑅𝑅𝐺𝐺𝐺𝑠𝑠𝑠𝑠 − 17.688 (6)

𝑅𝑅𝑙𝑙𝑙𝑙 = 1.0636 × 𝑅𝑅𝐺𝐺𝐺𝑙𝑙𝑙𝑙 − 29.749 (7)

𝑄𝑄𝑠𝑠 = 0.9329 ×𝑄𝑄𝐺𝐺𝐺𝑠𝑠 − 0.0005 (8)

⎧

⎪

⎨

⎪

⎩

Jan, Feb, Dec ∶ � ��� = 0.640124 ×� ����

Sep, Oct, Nov ∶ � ��� = 0.738065 ×� ����
Mar to Aug ∶ � ��� = 0.842757 ×� ����

 

(9)

In the Southwest China river basins, the developed correction functions are as follows:

𝑅𝑅𝑠𝑠𝑠𝑠 = 1.1529 ⋅𝑅𝑅𝐺𝐺𝐺𝑠𝑠𝑠𝑠 − 18.216 (10)

𝑅𝑅𝑙𝑙𝑙𝑙 = 0.8603 ⋅𝑅𝑅𝐺𝐺𝐺𝑙𝑙𝑙𝑙 + 30.079 (11)

𝑄𝑄𝑠𝑠 = 0.6975 ⋅𝑄𝑄𝐺𝐺𝐺𝑠𝑠 + 0.000005 (12)

Figure 5. Assessments of regional averages of GLDAS2.0 forcing data in Northeast China from January 1982 to December 2010 on a multiyear mean monthly scale.
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Jan to May ∶ 𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊 = 0.2752 ⋅𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝐺𝐺
2 − 1.9585 ⋅𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝐺𝐺 + 5.1974

Jun to Sep ∶ 𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊 = 0.2752 ⋅𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝐺𝐺
2 − 1.9585 ⋅𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝐺𝐺 + 4.7717

Oct to Dec ∶ 𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊 = 0.2752 ⋅𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝐺𝐺
2 − 1.9585 ⋅𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝐺𝐺 + 5.0881

 (13)

where RG,sw, RG,lw, QG,s, and WindG represent downward shortwave radiation, downward longwave radiation, spe-
cific humidity, and wind speed data of GLDAS2.0, respectively. Figures 11 and 12 show comparisons between 
observations and corrected GLDAS2.0 forcing data on a multiyear mean monthly scale. It can be seen that the 
uncertainty is reduced significantly after the corrections. For example, RMSE, ubRMSE, MBE, and RB of wind 
speed reduce to 0.12, 0.12, −0.005, and −0.19%, respectively, and R improves from 0.59 to 0.96 in Northeast 
China. Therefore, the developed functions perform well in reducing the uncertainties.

Table 1 shows the NSE and RB/|RB| values of simulated discharge using GLDAS2.0 forcing with and without 
corrections on a multiyear mean monthly scale. The simulated discharge with corrected GLDAS2.0 forcing per-
forms much better than simulation using the data without corrections. In Northeast China, average NSE increases 
from 0.69 to 0.77, and |RB| decreases from 17.4% to 13.1%. Similar to the results in Northeast China, in South-
west China river basins, simulated discharge with corrected GLDAS2.0 forcing performs much better than the re-
sults without correction on average: The average NSE and |RB| improve from 0.89 to 0.92 and from 9.3% to 2.8%.

Figure 6. Assessments of regional averages of GLDAS2.0 forcing data in the Southwest China river basins from January 1982 to December 2010 on a multiyear mean 
monthly scale.
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4.4. Discussion

For radiation, specific humidity, and wind speed data, there are no gauge data readily available in the studied river 
basins outside of China. Therefore, detecting their uncertainties in the GLDAS2.0 data set and conducting correc-
tions are necessary for hydrological simulation. No similar studies have been carried out to develop GLDAS2.0 
data correction equations for radiation, specific humidity, and wind speed data for the large transboundary rivers 
in the Tibetan Plateau and Northeast China. In this study, we developed methodologies for correcting the data 
in GLDAS2.0 for potential use in the transboundary rivers. In the west and north parts of the Tibetan Plateau, 
Hindu Kush, Pamir, Karakorum, and southern Himalayan ranges, in situ meteorological gauge data are sparse, 
which have disrupted comprehensive hydrological studies in the regions. Meanwhile, these regions are important 
water sources for Nepal, India, Pakistan, Afghanistan, Tajikistan, etc. The developed correction equations could 
also be beneficial to hydrological studies in these regions. Northeast China is adjacent to the Russian Far East 

Figure 7. Spatial and temporal comparison between GLDAS2.0 forcing data and CMFD in Northeast China. Averages from January to March, April to June, July to 
September, and October to December are listed from left to right.



Earth and Space Science

QI ET AL.

10.1029/2020EA001576

11 of 17

region of the Amur River basin. Therefore, studies in Northeast China on the uncertainty of GLDAS2.0 data 
and uncertainty correction approaches for GLDAS2.0 forcing data are beneficial to the potential applications of 
GLDAS2.0 data in the Amur River basin. When there are no other reliable sources of radiation, specific humid-
ity, and wind speed data, the corrected GLDAS2.0 data based on the developed correction equations could be 
considered to use.

Comparisons with other studies including GLDAS data corrections are shown in Table 2. Qi et al. (2015) and 
Wang et al. (2011) assessed the uncertainty of GLDAS1.0/Noah in two river basins in Northeast China with the 
largest river basin area being only 14,700 km2. Compared to the studies by Qi et al. (2015) and Wang et al. (2011), 
our study assessed the new version of GLDAS (i.e., GLDAS2.0) in entire Northeast China, which covers an area 
of 1.22 million km2. Our correction methodology is based on 29 years of data. The study by Wang et al. (2011) 
used 7 years of data, and the study by Qi et al. (2015) used 8 years of data. Therefore, our methodology can be 

Figure 8. Spatial and temporal comparison between GLDAS2.0 forcing data and CMFD in the Southwest China river basins. 
Averages from January to March, April to June, July to September, and October to December are listed from left to right.
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considered more robust than the previous studies. We used a hydrological with a snow physics module. The 
Tibetan Plate and Northeast China have a lot of snow, and the previous studies used hydrological models that 
cannot consider snow melt, which may influence the evaluation of corrected GLDAS data based on hydrological 
simulation.

Because the changing trends of GLDAS2.0 forcing data are consistent with observation in the Southwest China 
river basins and the corrections do not change the trends, the corrected GLDAS2.0 forcing data are also suitable 
for long-term change studies around the Southwest China river basins. The corrected GLDAS2.0 forcing data are 
suitable for the multiyear mean monthly scale studies in regions around Northeast China, because the GLDAS2.0 
data's changing trends are different from observation in Northeast China.

The Asian Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation of Water Re-
sources (APHRODITE) (Xie et al., 2007; Yatagai et al., 2012) precipitation product is freely available for the 
entire Asian continent and is considered the closest precipitation data to gauge observation (Malsy et al., 2015; 
Pritchard, 2019; Qi, Zhang, Fu, Sweetapple, & Zhou, 2016). This precipitation data have been used in many 
studies as a surrogate for real precipitation data (e.g., Chen et al., 2018; Pritchard, 2019). APHRODITE can be 

Figure 9. Comparison of changing trends of annual averages from 1982 to 2010 at a significance level of 0.05 in Northeast China.
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directly used in the studied regions. Therefore, there is no need to correct the precipitation data in GLDAS2.0. In 
addition, APHRODITE also provides air temperature data set that is purely based on meteorological gauge data, 
covering the whole of Asia. Therefore, we did not correct the air temperature data of GLDAS2.0.

Our analysis based on comparisons between observation data and the corrected data has shown that the corrected 
data were comparable to observations. In addition, the discharge simulation using the corrected data also showed 
that the simulated discharge was comparable to observed discharge. Therefore, the correct equations in this study 
are reliable. The uncertainty in wind speed is more complex than other data. The quadratic equation for wind 
speed correction was selected based on the trial-and-error approach. Our trials showed the quadratic equations 
can effectively remove the uncertainty in wind speed and therefore, the quadratic equation was selected. The 
correction methodologies in this study are generic and therefore can be used for the corrections of the GLDAS2.0 
data in other regions of the world. We used simple equations with only a few parameters to fit the data, which 
can avoid the overparameterization problems. The simple fitting methods have been validated in previous studies, 
and the results show that the fitting methods are acceptable, for example, Qi et al. (2015) and Wang et al. (2011). 
Therefore, our results are not influenced by overfitting problems.

Figure 10. Comparison of changing trends of annual averages from 1982 to 2010 at a significance level of 0.05 in the Southwest China river basins.
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Figure 11. Comparison between observations and corrected GLDAS2.0 forcing data on a multiyear mean monthly scale in Northeast China.

Figure 12. Comparison between observations and corrected GLDAS2.0 forcing data on a multiyear mean monthly scale in the Southwest China river basins.
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5. Conclusions
GLDAS2.0 provides long-term fine resolution gridded meteorological data on the global land. Yet, few stud-
ies have been conducted to evaluate GLDAS2.0 forcing data and develop correction approaches for radiation, 
specific humidity, and wind speed for hydrological simulations in transboundary rivers. This study assessed the 
GLDAS2.0 forcing data and developed correction equations for the data for four large transboundary rivers in the 
Tibetan Plateau and Northeast China for the first time. Observation and a water and energy budget-based distrib-
uted hydrological model after calibration were employed. The results can instill the confidence that can be placed 
in the GLDAS2.0 data's applicability and provide ways to improve the confidence using them. The following 
conclusions are presented on the basis of this study.

First, specific humidity and wind speed of GLDAS2.0 have large uncertainty in Northeast China and the South-
west China river basins; GLDAS2.0 precipitation has large uncertainty in summer in both regions. However, all 
the forcing data of GLDAS2.0 can reasonably replicate seasonal variations of observations except for wind speed.

Second, the temporal trends of annual average precipitation, air temperature, downward longwave radiation, and 
wind speed in GLDAS2.0 data are consistent with observations in Northeast China, that is, drying and warming 
trends. Meanwhile, the temporal trends of all the GLDAS2.0 forcing data in the Southwest China river basins 
reproduce the observations very well.

Third, equations are developed to reduce the uncertainty in GLDAS2.0 forcing data. Validations show that the correc-
tion equations are effective, for example, RMSE, ubRMSE, MBE, and RB of wind speed reduce to 0.12, 0.12, −0.005, 
and −0.19%, respectively, and correlation coefficient improves from 0.59 to 0.96 in Northeast China. Discharge simu-
lation shows that corrected GLDAS2.0 forcing data can be used in hydrological simulation with improved performance 
relative to the use of the raw GLDAS2.0 data with Nash-Sutcliffe Efficiency up to 0.95 and relative bias up to −1.8%.

Data Availability Statement
GLDAS2.0 data were downloaded from https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/. The forcing data 
set used in this study (i.e., CMFD) was developed by the Data Assimilation and Modeling Center for Tibet-
an Multi-spheres, the Institute of Tibetan Plateau Research, and Chinese Academy of Sciences (https://data.

Region

GLDAS2.0: No correction GLDAS2.0: Corrected forcing

NSE RB/|RB| NSE RB/|RB|

Yarlung Tsangpo River 0.86 10.8% 0.93 −1.6%

Nu River 0.92 15.0% 0.95 5.0%

Lancang River 0.90 2.2% 0.89 −1.8%

Average 0.89 9.3% 0.92 2.8%

Northeast China 0.69 17.4% 0.77 13.1%

Note. Bold numbers represent the averages of absolute values of RB. "Average" represents the average values in the Yarlung 
Tsangpo, Nu, and Lancang Rivers. In Northeast China, the average values represent the average in the 16 river basins shown 
in Figure 1a.

Table 1 
NSE and RB (|RB|) Values of Simulated Discharge Using GLDAS2.0 Forcing Data With and Without Corrections on a 
Multiyear Mean Monthly Scale

Study Data Area (km2) Model

Qi et al. (2015) GLDAS1.0, 2000–2007 (8 years) 2,814 Do not consider snowmelt

Wang et al. (2011) GLDAS1.0, 2000–2006 (7 years) 14,700 Do not consider snowmelt

Our study GLDAS2.0, 1982–2010 (29 years) 1.8 million in total Consider snowmelt

Table 2 
Comparisons in Terms of Data, Area, and Model Used

https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/
https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
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tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/). CGDPA was developed by the National Mete-
orological Information Center of China. The discharge data in Northeast China were from hydrology bureaus 
and can be found by contacting Songliao Water Resources Commission (http://www.slwr.gov.cn/slwjj/slwgk/). 
The data in the Yarlung Tsangpo, Lancang, and Nu Rivers were from hydrology bureaus and can be found by 
contacting the Climate Change and Water Resources in the Great River Regions in the Southeast and South 
Asia (http://www.lancang-mekong.net/). The generated data in this study can be found by contacting the Cli-
mate Change and Water Resources in the Great River Regions in the Southeast and South Asia (http://www.
lancang-mekong.net/).
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