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Abstract: Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics ex-
periments have become increasingly popular because of the wide range of metabolites that can
be analyzed and the possibility to measure novel compounds. LC-MS instrumentation and analy-
sis conditions can differ substantially among laboratories and experiments, thus resulting in non-
standardized datasets demanding customized annotation workflows. We present an ecosystem of R
packages, centered around the MetaboCoreUtils, MetaboAnnotation and CompoundDb packages that
together provide a modular infrastructure for the annotation of untargeted metabolomics data. Initial
annotation can be performed based on MS1 properties such as m/z and retention times, followed by
an MS2-based annotation in which experimental fragment spectra are compared against a reference
library. Such reference databases can be created and managed with the CompoundDb package. The
ecosystem supports data from a variety of formats, including, but not limited to, MSP, MGF, mzML,
mzXML, netCDF as well as MassBank text files and SQL databases. Through its highly customizable
functionality, the presented infrastructure allows to build reproducible annotation workflows tailored
for and adapted to most untargeted LC-MS-based datasets. All core functionality, which supports
base R data types, is exported, also facilitating its re-use in other R packages. Finally, all packages are
thoroughly unit-tested and documented and are available on GitHub and through Bioconductor.

Keywords: metabolomics; untargeted analysis; annotation; R programming; small-compound
databases; reproducible research
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1. Introduction

Metabolomics studies small molecules that are substrates, products, or intermediates
of metabolic reactions in a biological organism or system. One of the major analytical
technologies for the analysis of the metabolome is liquid chromatography-mass spectrome-
try (LC-MS). LC-MS can be employed in targeted mode, analyzing a pre-selected subset
of metabolites and/or metabolite classes or untargeted mode aiming to detect as many
metabolites as possible. Similar analyses are carried out in environmental research or
exposomics. This type of analysis yields features, defined as mass-to-charge-ratios (m/z)-
retention time (RT) pairs, their corresponding intensity or peak area in the respective
samples and potentially one or more associated fragmentation spectra. These features need
to be assigned to metabolite entities in order to make sense of metabolomics data, a process
called metabolite annotation.

Different levels of annotation and identification have been defined by the Metabolomics
Society and others [1,2]. Highest level identifications are achieved by comparing detected
features against chemical reference standards measured in the same laboratory with the
same analytical methods (normally referred to as in-house database). Since the availability
of reference standards is limited, other ways of initial annotation are required, e.g., using
public available reference spectra.

Several software tools for metabolite annotation and identification are available [3],
ranging from simple accurate mass search to library matching and in silico tools such as
CSI:FingerID [4,5]. In the programming and statistical environment R, many software pack-
ages for metabolomics data annotation and identification already exist [6]. Among more
recently developed R tools are MetaboAnalystR 2.0 [7], patRoon [8] and metID [9]. Metabo-
AnalystR integrates the mummichog algorithm [10] and hence allows users to perform a
functional annotation of untargeted metabolomics data. patRoon builds upon a large set of
software packages and provides automated annotation workflows specifically designed
for environmental samples. metID is an R package that, by exporting a single function,
allows users to perform MS1- and MS2-based annotations against user-supplied reference
databases of m/z values, retention times and MS2 spectra. The msPurity [11] R package also
provides a function for spectral matching of query MS2 spectra against a reference library.
All these packages, similar to most others reviewed in [6], were designed to be used as
standalone applications. Most packages lack modularity or the possibility to re-use their
core functionality in other packages or workflows without extensive use of glue-code or
wrappers to convert between the used data objects. Even more importantly, most packages
implement their own routines for data import and MS data handling as well as their own
versions of established spectra similarity scores. Furthermore, these are in most cases not
exported and are in some cases not covered with unit tests to ensure their correctness.
Another common problem is that many R packages are not maintained after their initial
publication or are only infrequently updated. From the 39 R packages listed in [6] that
provide some functionality for MS annotation and identification, 20 were not updated for
more than 2 years, and three have been removed or deprecated. To guarantee reproducible
analysis workflows, software maintenance and active development is however essential.

To overcome these issues, we developed a modular ecosystem of R packages, Metabo-
CoreUtils, MetaboAnnotation, MsCoreUtils, Spectra, MsBackendMassbank, MsBackendMgf, Ms-
BackendMsp and CompoundDb that together provide a comprehensive infrastructure for the
annotation and identification of features from untargeted LC-MS and LC-MS/MS experi-
ments using established methods. Importantly, in addition to the more end-user-oriented
functions, reference implementations for a large set of commonly used algorithms are
exported, and all functions are extensively documented and come with a comprehensive
set of unit tests.
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2. Results
2.1. Package Ecosystem

We implemented a set of R packages that together provide a customizable infras-
tructure for the annotation and identification of features from untargeted metabolomics
or small-compound MS experiments. The infrastructure provides both high-level func-
tions specifically designed for users less experienced with bioinformatic tools as well
as low-level core functionality that can be easily integrated and re-used also in other
R software packages.

2.1.1. Overview and Architecture

This ecosystem comprises the R packages MetaboAnnotation, Spectra, MsBackendMass-
bank, CompoundDb, MetaboCoreUtils and MsCoreUtils that are maintained under the umbrella
of the RforMassSpectrometry initiative (https://www.rformassspectrometry.org, accessed
on 4 February 2022). Core functionality such as similarity scores, or other low-level func-
tions were implemented in the MetaboCoreUtils and MsCoreUtils packages, while the more
user-oriented functions were implemented in the MetaboAnnotation package. The former
packages also allow for re-use of the core functionality in other R packages since the pro-
vided functions do not depend on specific data or result object classes. The MsBackendMgf,
MsBackendMsp, MsBackendMassbank and CompoundDb packages provide access to annota-
tion resources and reference libraries for MS1 and MS2 annotation. The functionality from
all these packages is well integrated with other Bioconductor R packages such as xcms, from
which pre-processing results can be directly used as the starting point for the annotation
workflow. An overview of the various R packages of the presented package ecosystem and
a graphical description of which packages are used for the different annotation strategies is
provided in Figure 1.

Figure 1. R-package ecosystem for MS1- and MS2-based annotations. Functionality from the various
R packages is combined for specific annotation tasks. The MetaboAnnotation package represents the
main interface to the end user, while other packages such as MsCoreUtils, MetaboCoreUtils or Spectra
provide the base functionality, which can also be easily integrated into other R packages or R-based
workflows. A variety of input and output formats are supported, also enabling integration with other
analysis software.

https://www.rformassspectrometry.org
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2.1.2. Development and Maintenance Processes

To guarantee a high quality and reliability of the code base and to reduce the number
of potential software bugs, a code review from at least one of the experienced core package
developers from the RforMassSpectrometry initiative is required for any functionality
added to these packages. This extensive code review also ensures a stable code base even if
developers would leave the project. Following the development strategy from Bioconductor,
all functions are extensively documented, and examples are being provided. To ensure
the validity of the packages’ methodology even after future developments or changes in
its dependencies or R itself, extensive unit tests are implemented for all functions, which
also include comparisons of their results against results from reference implementations,
if available. All packages are part of the Bioconductor project guaranteeing reliability,
availability, and longtime support. While all the present code was developed by the
authors (working at several different institutions), contributions from the community in
the form of Github pull requests to the main package repositories are highly welcome.

2.2. Utility Functions

Several tasks are recurring in metabolomics data analysis workflows such as calcu-
lation of m/z from exact masses or handling and formatting of chemical formulas. We
implemented utility functions for such tasks in the MetaboCoreUtils package. In partic-
ular, the package provides functions for handling chemical formulas, for conversion of
exact masses to m/z and back and for working with retention time indexing and mi-
gration times in capillary electrophoresis-mass spectrometry CE-MS (see Table 1 for a
listing of the currently implemented functions). All these functions take base R data
types as input and return base R data types facilitating portability and their re-use in
other R packages. Exact masses for chemical formulas can be calculated for example with
calculateMass(c(’C27H42O3’, ’C26H28O11’)), which returns the numeric c(414.3134,
516.1632) with the exact masses for the two compounds. Conversion between m/z values
for ions and exact masses can be performed with the mass2mz() and mz2mass() functions,
mass2mz(c(414.3134, 516.1632), ’[M+H]+’) would for example return the m/z values
for the protonated ions of the provided compounds’ masses. Currently, 58 adducts from
both positive and negative ionization mode are covered, but to maximize flexibility, the
functions also support user provided adduct definitions.

Table 1. Listing of core utility functions for metabolite annotation. The first panel contains functions
to work with chemical formulas followed by a panel with various utility functions. The last panel
contains functions to calculate established spectra similarity scores.

Function Description Package

countElements Counts elements in chemical formulas. MetaboCoreUtils
pasteElements Converts element counts to chemical formulas. MetaboCoreUtils

subtractElements Removes elements from chemical formulas. MetaboCoreUtils
addElements Adds elements to chemical formulas. MetaboCoreUtils

standardizeFormula Standardizes formulas according to the Hill notation [12]. MetaboCoreUtils

calculateMass Calculates exact masses from chemical formulas. MetaboCoreUtils
mass2mz, mz2mass Converts between masses and m/z values. MetaboCoreUtils
isotopologues Groups potential isotopologue peaks in MS1 data. MetaboCoreUtils

closest Matches numeric values accepting differences. MsCoreUtils

ndotproduct Normalized dot product [13]. MsCoreUtils
neuclidian Normalized Euclidian distance [13]. MsCoreUtils
navdist Normalized absolute values distance [13]. MsCoreUtils

nspectraangle Normalized spectra angle [14]. MsCoreUtils
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The isotopologues() function in MetaboCoreUtils allows to identify and group mass
peaks in a spectrum that potentially represents isotopologues of the same original com-
pound based only on their m/z and intensity values, hence without any prior knowledge
of chemical formulas or expected isotopes. This grouping is performed considering m/z
differences induced by isotopic substitutions frequently observed in a reference database
such as HMDB as well as substitution-specific observed ranges of intensity ratios between
monoisotopic and isotopologue peaks. The function loops over the peaks in the spectrum,
assumes the current peak being the monoisotopic peak of a certain compound and checks
for peaks that are, in terms of m/z and intensity, compatible with one of the predefined most
frequently observed substitutions, eventually grouping them into an isotopologue group.

Annotation-related functionality provided by the MsCoreUtils package comprises
various spectra similarity scores (listed in Table 1) and the closest() function for matching
of m/z values between spectra, accepting differences that can be expressed as an absolute
error (tolerance) or an m/z-relative error (ppm). This function is used across all annotation
functions (spectra similarity calculations but also MS1 annotations) and is implemented in
C to ensure an optimal performance.

2.3. Creating, Managing and Using Reference Databases

Versioned and portable annotation resources are crucial for reproducible analyses. The
CompoundDb package provides all functionality to create, manage and use portable SQLite-
based databases providing compound annotations. The format of these databases (called
CompDb) is flexible, hence supporting data import from many public resources including
ChEBI [15], HMDB [16], MassBank [17] or PubChem [18]. If available, reference MS2 spectra
can also be imported. In addition, through an object-oriented approach, the basic CompDb
database format can be extended to the IonDb format and information about measured
ions, such as adduct definition, m/z, retention time or MS2 spectra, can be added to an
existing database. This enables users to combine and enrich publicly available annotations
with the information from measurements of pure standards on specific LC–MS setups and
thus to create reliable in-house reference databases. A related example is given in section
“Annotation using reference m/z and retention times” of the Supplementary Material.

Importantly, these annotation databases are portable and can be versioned ensuring
reproducibility. It is also planned to distribute pre-built CompDb annotation databases
(e.g., for specific MassBank or HMDB releases) through Bioconductor’s AnnotationHub.

2.4. Functions for Working with Retention and Migration Times

Retention times represent a valuable orthogonal information to MS1 and MS2 for
metabolite identification but are only partially transferable between laboratories. Even
when using nominally the same separation chemistry, meaning the same column and
eluents, differences in absolute retention times based on the used instrumentation can be
observed. In GC-MS retention time indexing (RTI), e.g., based on a homologous series of
n-alkanes, it has been suggested to normalize these effects [19]. Recently, a new retention
indexing system for RP-LC-MS-based metabolomics was reported [20]. Further, the NOR-
MAN network has demonstrated that RTI not only increases intra- and interlaboratory
reproducibility, but can also be used as quality measure for different LC conditions [21].
Functions for such retention time indexing are also available in the MetaboCoreUtils pack-
age. The indexRtime() function is applicable to all of these systems. It accepts a numeric
vector of retention times and a data.frame with the columns rtime and rindex as well as
a function defining how the conversion from retention times to retention indices shall be
performed. The default function uses linear interpolation but can be replaced by any other
user-provided function. In addition, the function is independent of the substances used
for indexing and can be generally adapted. An example illustrating this functionality is
presented in the Supplementary Material.



Metabolites 2022, 12, 173 6 of 13

Similar to retention times in GC- and LC-MS, migration times in CE-MS can vary
between sample runs or even laboratories, sometimes even more strongly than retention
times. Main variations in migrations times occur due to changes in the electroosmotic
flow (EOF) between measurements, and these changes might appear for example due
to adsorptions of analytes on the capillary wall or changes in the composition on the
background electrolyte. Similar to retention time indexing, the migration time data can
be normalized by converting them into an effective mobility, using mobility markers
that were added to each sample. The effective mobility is responsible for separation of
metabolites in CE and can be seen as a physicochemical property, which is stable in the same
electrophoretic system (i.e., the same background electrolyte) and can be used to improve
annotation of metabolites. It has already been shown that effective mobility transformation
results in much more stable and reproducible results [22,23]. The MetaboCoreUtils package
implements the convertMtime() function, which converts migration times into effective
mobility values via the EOF markers used in the CE–MS run [24]. The function requires
additional numerical vectors with the migration time of the markers, their corresponding
effective mobility, the total capillary length, and the applied electrical field. Moreover, an
optional numeric value with the time of the electrical field ramp (i.e., the time in which the
electrical field ramps from 0 to 100%) can be provided. If two EOF markers are used, the
function will not use information of the electrical field and capillary length, but it requires
one marker to be the neutral marker, having an effective mobility of zero.

2.5. MS1 Annotation

Annotation of measured m/z values with potential metabolites, albeit representing the
lowest level of annotation possible, is typically one of the first steps in metabolite identifica-
tion workflows, and different tools for this task have been suggested [25,26]. MS1-based
annotation involves matching of measured m/z values and/or retention times of LC–MS
features against reference values. MetaboAnnotation provides the matchMz() function to
perform such annotation in a user-friendly manner. This function supports a variety of
input formats and different algorithms that can be chosen and configured using dedicated
parameter objects (see Table 2). A simple m/z value-based annotation could be performed
with matchMz(fts, db, Mass2MzParam(adduct = ’[M+H]+’, ppm = 10)) with fts be-
ing a data.frame with a column “mz” containing the m/z values for LC-MS features and
db a CompDb database or a data.frame with a column “exactmass” that contains the exact
masses of target compounds. Based on the user’s adduct definition, target m/z values will
be calculated from these masses and matched against the query m/z values. Such annotation
can also be performed on an xcms result with matchMz(featureDefinitions(xdata), db,
Mass2MzParam(adduct = ’[M+H]+’, ppm = 10)) where xdata represents the xcms result
object. More examples, including one for MS1-based annotation of an MZmine result, are
provided in the Supplementary Material. The matching between query features and target
compounds can be one-to-many or also one-to-none. The result object returned by the
matchMz() function (called Matched) is specifically designed to simplify the handling of
such rather complicated relationships to the user. It bundles the query and target object
and internally represents the relationships between them in a data frame that also contains
the score for each match. Filtering, sub setting, re-ordering and extracting matches, all
potentially error prone operations, are all handled by the result object ensuring that the
relationship between the query feature and target compound is preserved. In addition,
the parameter object is stored along with all the input data within the result object, thus
providing clear documentation on what settings the annotation result is based on.
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Table 2. High-level functions to perform MS1 annotation. The algorithm used by matchMz can be
selected and configured with a parameter object. Supported input objects are at present numeric,
data.frame, SummarizedExperiment, CompDb and IonDb.

Function Parameter
Object Description

matchMz MzParam Performs m/z matching between query and target.
matchMz MzRtParam Matches m/z values and retention times from query and target.
matchMz Mass2MzParam Performs m/z matching after converting target masses to m/z values.

matchMz Mass2MzRtParam Matches m/z values and retention times between query and target
after conversion of target masses to m/z values.

2.6. MS2 Annotation

The next step in metabolite identification after MS1 annotation involves the compar-
ison of potentially generated experimental MS2 spectra against reference spectra, either
from in-house or external libraries. The basic infrastructure for spectra similarity calcu-
lations is provided by the Spectra package with the compareSpectra() function. Spec-
tra similarity calculations are performed as a two-step approach: first, peaks from the
query and target spectrum are mapped to each other based on their m/z values and a
given error (absolute or in ppm), and then a similarity score is calculated based on these
matched peaks. A complete pairwise spectra similarity calculation between all spectra
in Spectra objects a and b can be performed for example with compareSpectra(a, b,
MAPFUN = joinPeaks, FUN = ndotproduct). Parameters MAPFUN and FUN allow for speci-
fication of the peak mapping function and the similarity score function, respectively. These
can be one of the peak mapping functions listed in Table 3 (see also Figure 2 for peak
mapping strategies) or similarity scores listed in Table 1. In addition, any of the similarity
and distance quantification algorithms from the philentropy package [27] are supported, and
even custom, user-provided, functions can be submitted. As a result, a matrix of pairwise
similarity scores is returned.

Table 3. Functions for MS2-based annotation. The first panel contains function to map peaks between
compared spectra. The second panel high-level functions to perform spectra similarity calculations.

Function Parameter Object Description

joinPeaks - Maps peaks between two spectra accepting differences between the
peaks’ m/z values that can be defined by ppm and tolerance.

joinPeaksGnps -
Hybrid search approach [28–31]: also peaks for which the difference
in m/z values matches the difference of the precursor m/z of the two

spectra are considered matching.

compareSpectra - Calculates pairwise similarity scores between two spectra objects.
matchSpectra CompareSpectraParam Identifies spectra with a similarity score above a user-defined threshold.

matchSpectra MatchForwardReverseParam
Identifies spectra with a similarity score above a user-defined

threshold and calculates in addition the reverse score.

The matchSpectra() function from the MetaboAnnotation package makes this pow-
erful spectrum similarity calculation framework available to the end user, enabling an
efficient and fast way to perform pairwise comparisons between experimental and ref-
erence MS2 spectra. Native parallelization is supported and can be configured with the
BiocParallel package. Similar to the matchMz() function for MS1-based annotation, the
algorithm can be configured with a dedicated parameter object (see Table 3), while the
experimental query and reference target MS2 spectra have to be provided as Spectra ob-
jects. As an example, matchSpectra(qry, db, CompareSpectraParam()) would identify
matching spectra between qry and db with a similarity score > 0.7 (default setting). The
Spectra package natively supports import of MS data from mzML, mzXML and netCDF
files and through its add-on packages MsBackendMgf, MsBackendMsp and MsBackend-
Massbank from files in MGF, MSP or MassBank format [17]. It is thus possible to use
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for example results from MS-DIAL or MZmine as input for matchSpectra by importing
them with qry <- Spectra(’mzmine_result.mgf’, source = MsBackendMgf()). Alter-
natively, query MS2 spectra can also be directly extracted from a xcms result objects with qry
<- featureSpectra(xdata, return.type = ’Spectra’). As target parameter (variable
db in the example above), either a CompDb database or a Spectra object with data imported
from MSP or MGF files can be used. Through the MsBackendMassbank package, it is also
possible to directly interact with a MassBank SQL database hence not requiring import or
export of thousands of individual records. The result returned from the matchSpectra()
function (called MatchedSpectra) contains, similar to the result from the MS1-based anno-
tation, the query and target data, the matching results, and scores as well as the parameter
object. In addition, this object is designed to simplify the handling of the possible many-to-
many matching results to the user. It provides functions to filter, subset, plot, and extract
data. A visual inspection of two matched spectra could for example be performed with
plotSpectraMirror(mtch[1]) where mtch is the result returned by a matchSpectra() call.
This will create a mirror plot as shown in Figure 3. An example for MS2-based annotation
is also provided in the Supplementary Material.

Figure 2. Peak mapping strategies of the joinPeaks() function. Peaks returned by the joining
strategy are highlighted in yellow, those not considered in red. Mapping strategies are named
according to the join terminology in SQL. Top left: the outer join option reports all peaks from both
spectra. Top right: the inner join reports only matching peaks from both spectra. Bottom left: the left
join option includes all peaks from the query spectrum and matching peaks from the target spectrum.
Bottom right: the right join includes all peaks from the target spectrum and only matching peaks
from the query spectrum.
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Figure 3. Mirror plot created with plotSpectraMirror for visual inspection of MS2 annotation
results. The upper panel shows an experimental MS2 spectrum and the lower a reference spectrum
for Caffeine from HMDB. Matching peaks are highlighted in blue.

2.7. Examples and Use Cases

Examples and use cases are shown in the rendered R vignette provided as Supple-
mentary Material, with the raw code and data files available in the GitHub repository
https://github.com/jorainer/MetaboAnnotationTutorials (accessed on 4 February 2022).
All required R packages as well as the raw data and vignette can be installed in R with
BiocManager::install(’jorainer/MetaboAnnotationTutorials’) after first installing
the BiocManager package with install.packages(’BiocManager’). In the Supplementary
Material, the MetaboAnnotation package is used to MS1 annotate chromatographic peaks
from a small LC-MS/MS dataset based only on m/z values as well as using m/z and reten-
tion times previously determined for a set of pure standards on the same LC–MS setup
and instrumentation. Additional MS2-based annotation of the chromatographic peaks
is performed by comparing experimental MS2 spectra against reference spectra from the
Human Metabolome Database [32]. The reference annotation database for this example was
created with the CompoundDb package based on HMDB 5.0 data release 2 November 2021
and contains annotations for 217,776 compounds as well as 64,920 MS2 spectra (predicted
spectra were excluded).

Retention time indexing can help to make retention information more comparable.
The example in section “Annotation using reference m/z and retention indices” of the
supplement illustrates how functions from the MetaboCoreUtils and MetaboAnnotation
packages can be combined to perform retention time indexing and annotation on the
MS1 level using m/z and retention index (RI). Picked and isotope grouped features from
C. elegans metabolite extracts are subjected to retention time indexing, and annotation of
metabolites is performed based on m/z and retention index instead of retention time.

Finally, examples for import and usage of analysis results from MZmine, together with
the presented packages, are shown based on test files and results from [33].

Additional documentation is provided in the individual packages’ vignettes as well as
at https://jorainer.github.io/SpectraTutorials/ (accessed on 4 February 2022).

3. Discussion

We implemented a set of R packages that together provides a comprehensive and
modular infrastructure for untargeted metabolomics data annotation. While there exist al-
ready a considerable number of software packages with similar methodology, our packages
provide in addition a rich infrastructure with functionalities ranging from reference imple-
mentations of established algorithms (some not available in R before) to routines for data
import and export for a vast number of file formats as well as functions to efficiently handle,
process, and filter MS data. Especially, the former helps against a frequently observed issue
in R software development, which is the re-implementation of standard operations. Our

https://github.com/jorainer/MetaboAnnotationTutorials
https://jorainer.github.io/SpectraTutorials/
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packages export, next to the high-level functions, all their core functions that work with
base R data types, hence enabling their re-use in other software. This will ultimately help
to advance the field by allowing future developers to focus more on the implementation of
improved annotation algorithms without the need to re-implement established methods or
functions for MS data handling, import and export.

Another important aspect is the validity and correctness of algorithms and software.
In contrast to many other R packages, we use comprehensive unit tests for all our functions
(unit test coverage is above 90% for all our packages) that, if available, compare results
with the results from the original reference implementations. These unit tests are evaluated
daily by the Bioconductor build servers for all three main operating systems.

In addition, all our functions are well documented, and examples as well as compre-
hensive tutorials are provided. Unfortunately, many other R packages, especially those
hosted only on GitHub, are only poorly documented, making their use difficult.

Lack of unit tests or poor documentation in original implementations were also reasons
why some of the utility functions, albeit already available in other R packages such as
nontarget or Rdisop, were re-implemented in our MsCoreUtils and MetaboCoreUtils packages.
In addition, ultimately, we aim at collecting such frequently used core functionality in
a single place, ideally through contributions from the original authors. The culture of
open-first development and supportive attitude toward contributions is an incentive to
support the ecosystem, instead of rewriting yet another implementation.

Next to documentation and unit tests, long-term support is also critical for the use-
fulness of software. There is a growing number of R packages for metabolomics data
analysis being developed, but many of these are no longer maintained or updated after
their initial publication or after the developing student moves on to a different job. By
distributing the development on a large team of developers with different levels of seniority
and from different institutions, we try to ensure long-term support of our code base. In
addition, requiring code reviews from at least one other experienced developer adds to
the robustness of the code and guarantees continuity even if individual developers should
leave the team.

4. Materials and Methods

4.1. Acquisition of the Example Dataset for MS1- and MS2-Based Annotation

Individual stock solutions of 15 analytical standards from different chemical classes
were prepared by adding 1 mg of each of the following analytical standard into 1 mL of
water (or other solvent, if specified): 1-methyluric acid (water + 5 µL sodium hydroxide
5 mM), 3-methylhistidine, ADMA, caffeine, CDP-choline, creatinine, dAMP, glutaric acid,
glycero-phosphocholine, methionine, phenylpyruvic acid (ethanol), serine, sphingosine
(methanol), taurine and threonic acid. Next, 200 µL of each standard solution were pipetted
into a 5 mL Eppendorf tube, together with 40 µL of formic acid and 960 µL of ACN, resulting
in 4 mL of a standard mix solution at 50 ppm. For data acquisition, 5 µL of standard mix
solution was injected into a LC-MS system equipped with an Agilent 1290 UHPLC device
(Agilent Technologies, Santa Clara, CA, USA) coupled with a SCIEX 5600 QTOF (AB Sciex
LLC, Framingham, MA, USA). An Acquity UPLC BEH Amide Column (130 Å, 1.7 µm,
2.1 mm × 100 mm) was used in association with the respective pre-column. An IDA
experiment (information dependent analysis, also known as data dependent analysis or
DDA) was performed using a 50–1000 m/z range, with a 250 ms accumulation time for
MS1 data. MS2 data were acquired using the same m/z range and a 1000 cps threshold. In
addition, 50 mDa was used as mass tolerance with a maximum number of candidate ions
per cycle set at 20. Dynamic background subtract and dynamic accumulation were also
employed, with an accumulation time of 100 ms and collision energy set at 20 V.

4.2. Retention Indexing Example

For the retention indexing use case, MS1 data from [20] were used. Briefly, Caenorhabdi-
tis elegans N2 were extracted with 50% MeOH, and the extract was measured on a Supelco
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Ascentis Express C18 (150 × 2.1 mm, 3.0 µm particle size) using a Waters Acquity UPLC
(Waters, Milford, MA, USA) coupled to a Bruker maXis plus UHR-ToF-MS (Bruker Dalton-
ics, Bremen, Germany). Detailed experimental conditions as well as the retention index
databases can be found in the original publication [20].

5. Conclusions

Here, we present the R packages MetaboCoreUtils and MetaboAnnotation that are well
integrated with the R packages Spectra, MsCoreUtils, MsBackendMgf, MsBackendMsp and Ms-
BackendMassbank, and thus together provide a modular and expandable ecosystem for the
annotation of features from untargeted LC-MS and LC-MS/MS experiments using standard
and established algorithms. In contrast to other, monolithic, annotation tools, our packages
allow users to combine functions in a modular fashion. The ecosystem is expandable
because external or user-defined functions can be used as alternatives to package-internal
ones in the various annotation functions, e.g., to match peaks between compared spectra
or to calculate similarities between these. The CompoundDb package provides, in addition,
functionality to create, manage, and use reference databases that can be integrated directly
into the annotation process. The infrastructure represented by our packages is thus a
rich toolbox that enables building customized and reproducible annotation workflows in
R. Even more importantly, all core functionality is exported, which enables its re-use in
other software tools. Future developers of new, improved, annotation strategies can thus
build upon our infrastructure without the need to implement again standard functionality
for spectra comparison or functions to manipulate and handle MS data.

Finally, any functionality added to any of these packages requires code review from
at least one other experienced core package developer from the RforMassSpectrometry
initiative, ensuring high quality and reliability of the codebase.

The ecosystem will be further expanded in the future, for example, with function-
ality to group LC–ESI–MS features potentially representing ions from the same original
compound (currently being implemented in the xcms and MsFeatures R packages) or the in-
tegration of yet other (public) reference libraries, databases and file formats (e.g., Agilent.cef
or Bruker TimsTOF). Contributions from the community are highly welcome.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12020173/s1, Supplementary File S1: pdf document with
use cases and examples.
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