
1. Introduction
Unsaturated porous media, where liquid and gas phases coexist, play a central role in a broad range of envi-
ronmental and industrial applications, including contaminant transport (Lahav et al., 2010; Sebilo et al., 2013), 
artificial groundwater recharge (Bouwer,  2002), underground gas storage (Panfilov,  2010), radioactive waste 
disposal (Winograd, 1981), and energy storage (Barbier, 2002), among others. Previous studies have shown that 
under saturated conditions, that is, for single-phase flow, structural heterogeneity in the solid phase is sufficient to 
induce anomalous transport (de Anna et al., 2013; Holzner et al., 2015; Kang et al., 2014; Le Borgne et al., 2011; 
Morales et al., 2017; Moroni et al., 2007; Stoop et al., 2019). This typically translates to early solute arrival and 
longer tailing at a given control plane, as well as non-Fickian scaling of spatial solute spreading (Berkowitz 
et al., 2006; Bijeljic et al., 2011), all features that cannot be described using classical transport formulations.

In unsaturated porous media, the presence of several immiscible or partially miscible fluid phases in the pore 
space induces complex flow topologies, increasing flow tortuosity, and resulting in more extreme high and low 
velocities (Birkholzer & Tsang, 1997; Datta et al., 2013; de Gennes, 1983; Jiménez-Martínez et al., 2017; Nütz-
mann et al., 2002; Wildenschild & Jensen, 1999). The consequences of this heterogeneity for solute transport 
properties remain controversial. Both an increase (Aziz et al., 2018; Bromly & Hinz, 2004; Haga et al., 1999; 
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Padilla et al., 1999) and a decrease (Birkholzer & Tsang, 1997; Vanderborght & Vereecken, 2007) of dispersion 
with decreasing saturation have been reported. However, these studies have resorted to continuum/effective-scale 
theories, where the use of locally averaged velocity values does not reflect the complexity of the pore-scale ve-
locity field.

Here, we use images from millifluidic experiments and pore-scale numerical simulations to derive a new theo-
retical framework linking medium structure parameters and saturation degree (Sw, fraction of the pore volume 
occupied by the liquid) to the probability density function (PDF) of both flow rate through pore throats and 
velocities and to anomalous transport dynamics. We identify a previously unknown abrupt change in the veloc-
ity statistics, which become much broader even for low desaturations. Our theory is built on the partition of the 
pore space into two contrasting structures, a backbone of preferential flow paths and dead-end regions of low 
velocity. While the backbone/dead-end structure is known since the work of de Gennes (1983), dead-ends were 
simply assumed to have zero velocities, and its direct impact on velocity statistics remained unknown. Our theory 
elucidates the mechanisms leading to the observed transition and predicts the change exerted by the presence of 
dead-ends on the velocity PDF scaling for unsaturated systems, compared to fully saturated conditions. Using a 
continuous time random walk (CTRW) approach, parameterized according to the theoretical velocity PDFs, we 
predict a transition from quasi-Fickian to highly anomalous, quasi-ballistic transport in unsaturated systems, in 
agreement with resolved simulations.

2. Methods
2.1. Numerical Flow Simulations

We employ experimental images of a quasi two-dimensional (2D) porous medium characterizing the arrange-
ment of two immiscible phases (water and air) under different Sw (1.00, 0.83, 0.77, and 0.71; Jiménez-Martínez 
et al., 2017) and simulate flow at the pore scale. Experiments were performed for low capillary numbers, hence 
the air clusters (nonwetting phase) remain immobile (Tang et al., 2019). Under these conditions, variations in 
the viscosity of the nonwetting phase are not relevant. The dimensions of the system are 132 mm × 87 mm, 
and its thickness (vertical gap) h = 0.5 mm. The average pore-throat width (shortest distance between grains) 
am = 1.17 mm, and the mean pore size (meeting point of pore throats) λ = 1.85 mm, leading to a porosity of 0.71, 
similar to that reported in other studies addressing 2D systems (Andrade et al., 1997; Tallakstad et al., 2009).

We numerically simulate 2D steady-state Stokes flow, in which the flow of water around the solid grains and 
air bubbles is exclusively controlled by viscous dissipation. The effect of the third dimension on depth-averaged 
flow is introduced in the Stokes equation through a Darcy-like term (Ferrari et al., 2015) representing the drag 
force exerted on the liquid by the upper and lower walls in the experimental configuration (Jiménez-Martínez 
et al., 2017). A constant flow rate of 1.375 mm3/s for the saturated case and 0.277 mm3/s for the unsaturated cases 
is imposed at the inlet (Jiménez-Martínez et al., 2017). Atmospheric pressure is imposed at the outlet. We assign 
a no-slip boundary condition to solid–liquid interfaces and a slip boundary condition to liquid–gas interfaces, that 
is, zero longitudinal stress is imposed along these interfaces rather than a zero velocity (Kazemifar et al., 2016).

2.2. Particle Tracking Simulations

To investigate the consequences of our velocity analysis for advective transport, we also perform advective par-
ticle tracking simulations to allow for a numerical quantification of dispersion. We perform a flux-weighted 
injection of 104 particles along the inlet boundary of the porous medium, over an area with a length equal to 
the medium width in the y-direction and a width equal to the average grain size (i.e., 0.83 mm) along the x-axis. 
Particle positions are tracked isochronically over fixed time steps Δt (t-Lagrangian sampling). For Sw = 1.00, 
Δt = 0.05 ta, where 𝐴𝐴 𝐴𝐴a = 𝜆𝜆∕�̄�𝑣 is the advective time over the mean pore size λ at the mean velocity 𝐴𝐴 𝐴𝐴𝐴 . For the un-
saturated cases, Δt ranges between 0.021 ta and 0.029 ta. A 100 times finer time discretization is introduced at 
early times to improve resolution in the ballistic dispersion regime.
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3. Prediction of Unsaturated Flow Distribution
3.1. Impact of Saturation on Flow Velocities

While the simulated velocity fields exhibit limited variability under saturated conditions (Figure 1a), the flow 
heterogeneity is strongly enhanced in the unsaturated case (Figure 1b). The introduction of air induces a partition 
of the flow field into two flow structures (de Gennes, 1983): a backbone of preferential flow paths and dead-end 
regions (velocity is nonzero [Jiménez-Martínez et al., 2015, 2017]) that branch out from the backbone (Figures 1c 
and 1d). For the Eulerian velocity PDF �E(�) , this reorganization of flow compared to the saturated case leads 
to an increase in the probability of low velocities (Figure 2a), as they are encountered not only close to the sol-
id–liquid interfaces but also within dead-end regions (Figure 1b). This is described by the sharp transition from 
a plateau for Sw = 1.00 to a power-law-like behavior for Sw < 1.00. High velocities follow an exponential trend, 
in agreement with existing literature (Datta et  al., 2013), and can be characterized by a saturation-dependent 
characteristic velocity 𝐴𝐴 𝐴𝐴c .

We partition the flow field into backbone and dead-end regions (Figures 1c and 1d) by selecting a velocity thresh-
old at the transition between the power law and exponential velocity regimes. Results suggest a more accentuated 
flow separation with lower saturation, where dead-end regions increase in both size and number as Sw decreases, 
and where the dead-end area PDF pA decays as a power law (Figure 3). Note that previous studies in 2D porous 
media have analyzed air cluster area distributions, rather than fluid dead-end area distributions, and found a 
power law behavior with an exponential cutoff at large cluster sizes (Jiménez-Martínez et al., 2017; Tallakstad 
et al., 2009).

Figure 1. Velocity fields obtained from Stokes flow numerical simulations, displayed in terms of the velocity magnitude 𝐴𝐴 𝐴𝐴 
normalized by its mean value 𝐴𝐴 𝐴𝐴𝐴 , for (a) Sw = 1.00 and (b) Sw = 0.71. The colorbar is common to (a) and (b), with red colors 
indicating high velocities and blue colors low velocities. Regions where 𝐴𝐴 log10(𝑣𝑣∕�̄�𝑣) ≤ −1 are shown in the darkest blue tone. 
The solid phase (circular obstacles) is shown in gray and air clusters in black. (c, d) show the partition of the velocity field 
into two types of flow structures: (i) backbone or preferential paths, depicted in red, and (ii) dead-end regions of low velocity, 
depicted in blue, for Sw = 0.83 and Sw = 0.71, respectively. The inset in (d) depicts the geometry of a dead-end region, with ℓ 
representing the dead-end region’s depth.
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3.2. Theoretical Flow Model

To derive a theoretical framework for �E(�) , we first consider the local flow 
rate through a pore throat, or pore flow rate q. It is computed by integrating 
flow velocities over the cross section of the pore throat. For all unsaturated 
conditions, the PDF of pore flow rates over the ensemble of throats pQ(q) 
shows a scaling similar to that of �E(�) for both low and high magnitudes 
(Figure 2a). However, for Sw = 1.00, pQ(q) increases with q at low values in-
stead of the plateau observed for �E(�) . For Sw = 1.00, pQ(q) is well captured 
by the flow rate PDF in the backbone 𝐴𝐴 𝐴𝐴

𝑏𝑏

Q
 , which follows a gamma distribution,

𝑝𝑝
𝑏𝑏

Q
(𝑞𝑞) =

𝑞𝑞𝑞𝑞
−𝑞𝑞∕𝑞𝑞c

𝑞𝑞
2
c

, (1)

where the saturation-dependent characteristic flow rate qc controls the ex-
ponential high-flow tailing. This is consistent with the random aggregation 
model of Alim et al. (2017), based on the random splitting and merging of 
flow throughout the pore network (Coppersmith, 1996).

To model pQ(q) and �E(�) for Sw < 1.00, we quantify the flow statistics in 
backbone 𝐴𝐴 (𝑝𝑝𝑏𝑏

Q
) and dead-end 𝐴𝐴 (𝑝𝑝𝑑𝑑

Q
) regions. We first determine the ratio f of the 

area occupied by dead-end regions to the total area of the pore space (e.g., 
0.2601 for Sw = 0.71, refer to Supporting Information S1 for the remaining 
Sw). We express pQ(q) as

�Q(�) = ���Q(�) + (1 − � )��Q(�). (2)

Next, we determine 𝐴𝐴 𝐴𝐴
𝑑𝑑

Q
 . Simulation data suggest that flow rate magnitudes 

within dead-end regions decay exponentially with depth 0 ⩽ z ⩽ ℓ (see Sup-
porting Information S1), up to the total depth ℓ of the dead-end region, which 
extends from the contact with the backbone to the far liquid–gas boundary 
(see inset in Figure 1d). Such exponential decay is consistent with the fun-
damental solutions of the Laplace equation for the propagation within the 
dead-end of the pressure perturbation applied from the boundary with the 
backbone (Bland,  1965). We expect macroscopic pressure gradients with-
in dead-end regions to obey a Laplace equation resulting from Darcy’s law 
(Whitaker, 1986). We thus approximate the flow rate decay along the depth 
as

�
d
(�|�) ≈ �

0
�−�∕�m�(� − �), (3)

where q0 = qd(0|ℓ) is the flow rate at the contact with the backbone and H is the Heaviside step function. Since 
this flow rate profile is monotonically decreasing, the associated PDF for a given q0 and ℓ can be computed as 
(Aquino & Le Borgne, 2021)

��Q(�|�, �0) =

(

�
��

d
(�|�)
��

|

|

|

|

|�=�q(�)

)−1

, (4)

where zq(q) is the point at which the flow has a given value q, that is, qd[zq(q)|ℓ] = q. Thus, inverting Equation 3 
for depth as a function of flow rate, computing dqd(z|ℓ)/dz, and substituting, Equation 4 becomes

��Q(�|�, �0) =
�m
��

�(�
0
− �)�(� − �

0
�−�∕�m), (5)

for the dead-end flow rate PDF ��Q(⋅|�, �0) , given maximum depth ℓ and flow rate q0 = qd(0|ℓ) at the entrance. 
Taking q0 to be distributed according to Equation 1 and averaging over the latter, we can now express the flow 
rate PDF in dead-ends given ℓ as

Figure 2. Numerical (continuous lines) and predicted (dashed lines) 
probability density functions (PDFs) for (a) Eulerian velocities and (b) 
pore flow rates, normalized by their respective average values 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴 , for 
Sw = 1.00, 0.83, 0.77, and 0.71. The log–log scale highlights the scaling of low 
magnitudes; the power law scalings are shown for visual reference. Semi-log 
insets highlight the exponential behavior at high magnitudes.
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��Q(�|�) = ∫

∞

0
��

0
��Q(�|�, �0) �

�
Q(�0), (6)

which after computing the integral leads to

��Q(�|�) =
�m
��c�

[

�−�∕�c (� + �c) − exp
(

−
��∕�m�
�c

)

(

��∕�m� + �c
)

]

. (7)

By approximating 𝐴𝐴 𝓁𝓁 ≈
√

𝐴𝐴 , with A the dead-end area, and averaging over areas, we obtain an expression for the 
PDF of dead-end flow rates,

��Q(�) ≈ ∫

∞

0
����Q

(

�|
√

�
)

�
A
(�). (8)

The PDF pA of dead-end areas, defined for a given flow field such that pA(A) dA is the probability of a uniformly 
randomly chosen dead-end region to have area in an infinitesimal neighborhood dA of A, is shown in Figure 3 
for each unsaturated flow field. The area PDFs were determined based on the flow field partitions, as shown in 
Figure 1 for Sw = 0.83 and Sw = 0.71. We approximate pA by a Pareto PDF,

�
A
(�) =

�
�2m

(

�
�2m

)−1−�

�(� − �2m), (9)

where the exponent γ decreases with decreasing Sw, indicating broader dead-end area variability. The approxima-
tions thus obtained are plotted as dashed lines in Figure 3. We consider the minimum area of a dead-end region 
to be equal to the area of one pore throat, approximated as 𝐴𝐴 𝐴𝐴

2

m
 .

We can now expand the integrand in Equation 8 using Equation 9, obtaining

��Q(�) ≈ ∫

∞

0
�� �m

�c
√

�
�−�∕�c�

A
(�). (10)

Computing this integral, and combining it with the expression for ��Q(�) (Equation  1) in Equation  2, we de-
duce an expression for pQ(q). For q ≪ qc, the latter is controlled by the dead-end contribution as long as f ≠ 0, 

Figure 3. PDF of the dead-end areas pA for (a) Sw = 0.83, (b) Sw = 0.77, and (c) Sw = 0.71. For all three cases, pA is well approximated by a Pareto PDF (Equation 9) 
describing power law decay. Corresponding values of the fitting parameter γ describing a power law decay ∝ A−1−γ, which decreases with decreasing liquid-phase 
saturation, are also shown. Quantities are non-dimensionalized with respect to the area 𝐴𝐴 𝐴𝐴

2

m
 associated with the average pore-throat aperture.
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corresponding to Sw < 1.00. Notice also that the nested exponential in Equation 7 varies rapidly from zero to 
unity around � = �c�

−�∕�m , so that it is well approximated by a cutoff for � ≈ �2 > [�mln(�c∕�)]
2 . This leads to

��Q(�) ≈

∞

∫
0

�� �m
�c
√

�

[

1 −�

(

[

�mln
(�c

�

)]2

− �

)]

�A(�),

≈
2�

�(1 + 2�)

[

ln
(�c

�

)]−1−2�

, � ≪ �c,
 (11)

which, combined with Equations 1 and 2, leads to

�Q(�) ≈
2��

�(1 + 2�)

[

ln
(�c

�

)]−1−2�

. (12)

Thus, our model predicts that for Sw < 1.00, pQ(q) scales for low flow rates as a power law, q−1, corrected by a log-
arithmic factor, raised to a power controlled by pA(A) through the exponent γ. In the particular case f = 0, that is, 
Sw = 1.00, Taylor expansion of 𝐴𝐴 𝐴𝐴

𝑏𝑏

Q
 (Equation 1) for low q leads to 𝐴𝐴 𝐴𝐴Q(𝑞𝑞) ≈ 𝑞𝑞∕𝑞𝑞2c , linear in q. Proceeding similarly 

for q ≳ qc, for which we must consider contributions from both 𝐴𝐴 𝐴𝐴
𝑏𝑏

Q
(𝑞𝑞) and 𝐴𝐴 𝐴𝐴

𝑑𝑑

Q
(𝑞𝑞) , we obtain the exponential decay

�Q(�) ≈
[

2��
1 + 2�

+ (1 − � )
�
�c

]

�−�∕�c
�c

. (13)

We now turn our attention to �E(�) . It results from the combined effect of pQ(q) and the intra-throat variability 
arising from the local velocity profile within each throat. Thus, these two PDFs are related by

�E(�) = ∫

∞

0
�� �Q(�)�E(�|�), (14)

where pE(⋅|q) is the PDF of velocities associated with a pore throat characterized by q. Since pore-throat widths 
are comparable in size to the channel thickness h, we consider the impact of this third dimension on the intrapore, 
depth-averaged 2D velocity profile. The latter differs from the parabolic profile expected in a purely 2D scenario 
(see Supporting Information S1 for plot of velocity profiles across the system). By approximating the pore throat 
as a cuboid channel of width am and thickness h, we express the velocity profile for Stokes flow over the channel 
thickness h as a series in the form (Bruus, 2008):

𝑣𝑣x(𝑦𝑦𝑦 𝑦𝑦) =
4ℎ2Δ𝑝𝑝

𝜋𝜋3𝜇𝜇𝜇𝜇

∞
∑

𝑛𝑛𝑦odd

1

𝑛𝑛3

⎡

⎢

⎢

⎢

⎣

1 −
cosh

(

𝑛𝑛𝜋𝜋
𝑦𝑦

ℎ

)

cosh
(

𝑛𝑛𝜋𝜋
𝑎𝑎m

2ℎ

)

⎤

⎥

⎥

⎥

⎦

sin
(

𝑛𝑛𝜋𝜋
𝑦𝑦

ℎ

)

𝑦 (15)

where μ is the viscosity of the liquid (wetting) phase, Δp is the pressure difference across the cuboid channel of 
length L, and the sum extends over odd values of n as indicated. Here, we have set a local coordinate system at 
each pore throat, with x representing the local mean flow direction, the throat width running parallel to y, and z 
running along the channel thickness. Averaging this function over z values between 0 and h, we obtain

⟨𝑣𝑣x(𝑦𝑦𝑦 𝑦𝑦)⟩𝑦𝑦 =
8ℎ2Δ𝑝𝑝

𝜋𝜋4𝜇𝜇𝜇𝜇

∞
∑

𝑛𝑛𝑦odd

1

𝑛𝑛4

⎡

⎢

⎢

⎢

⎣

1 −
cosh

(

𝑛𝑛𝜋𝜋
𝑦𝑦

ℎ

)

cosh
(

𝑛𝑛𝜋𝜋
𝑎𝑎m

2ℎ

)

⎤

⎥

⎥

⎥

⎦

𝑦 (16)

where <⋅> denotes the mean value. Given the low variability of pore-throat sizes across the medium, we approx-
imate throat widths by their average value am. For the dimensions of our porous medium (thickness h and average 
throat width am), this series is governed by its first term, reducing the expression to

⟨𝑣𝑣x(𝑦𝑦𝑦 𝑦𝑦)⟩𝑦𝑦 ≈
ℎ
2Δ𝑝𝑝

2𝜋𝜋4𝜇𝜇𝜇𝜇

⎡

⎢

⎢

⎢

⎣

1 −
cosh

(

2𝜋𝜋
𝑦𝑦

ℎ

)

cosh
(

𝜋𝜋
𝑎𝑎m

ℎ

)

⎤

⎥

⎥

⎥

⎦

. (17)
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The Eulerian velocity PDF associated with the velocity profile across a pore 
throat with local flow rate q is then (see Supporting Information S1 for fur-
ther details)

𝑝𝑝E(𝑣𝑣|𝑞𝑞) =
2ℎ

𝜋𝜋𝜋𝜋m𝑣𝑣max(𝑞𝑞)

(𝐶𝐶 − 1)𝐻𝐻[𝑣𝑣max(𝑞𝑞) − 𝑣𝑣]
√

[𝐶𝐶 − (𝐶𝐶 − 1)𝑣𝑣∕𝑣𝑣max(𝑞𝑞)]
2 − 1

, (18)

where C = cosh[πam/(2h)], and 𝐴𝐴 𝐴𝐴max(𝑞𝑞) = 𝛼𝛼𝑞𝑞∕(ℎ𝑎𝑎m) is the maximum velocity 
within the pore throat, with

𝛼𝛼 = 2

(

1 + coth
(

𝜋𝜋𝜋𝜋m

4ℎ

)

[

coth
(

𝜋𝜋𝜋𝜋m

4ℎ

)

−
4ℎ

𝜋𝜋𝜋𝜋m

])−1

. (19)

For Sw  =  1.00, the integral in Equation  14 can then be approximated for 
𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴c and 𝐴𝐴 𝐴𝐴  ≳ 𝐴𝐴 𝐴𝐴c = 𝑞𝑞c∕(𝑎𝑎mℎ) , respectively, by using Equation 1, as

𝑝𝑝E(𝑣𝑣) ≈
2ℎ

𝜋𝜋𝜋𝜋m𝛼𝛼𝑣𝑣c
tanh

(

𝜋𝜋𝜋𝜋m

4ℎ

)

, (20a)

𝑝𝑝E(𝑣𝑣) ≈
2ℎ

𝛼𝛼𝛼𝛼m𝑣𝑣c
sinh

(

𝜋𝜋𝛼𝛼m

4ℎ

)

√

𝑣𝑣

𝜋𝜋𝛼𝛼𝑣𝑣c
𝑒𝑒
−

𝑣𝑣

𝛼𝛼𝑣𝑣c . (20b)

Equation 20a describes a low-velocity plateau, while Equation 20b encodes exponential tailing at large velocities.

For Sw < 1.00, the previous derivation holds for the backbone component. Similar to pQ(q), �
E
(�) for 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴c is 

dominated by the dead-end regions, while for 𝐴𝐴 𝐴𝐴  ≳ 𝐴𝐴 𝐴𝐴c the contribution of both backbone and dead-ends matters. 
The low-velocity behavior is controlled by low flow rates. For small q, �

E
(�|�) becomes arbitrarily narrow, be-

cause the maximum velocity is linear in q, see Equation 18. Accordingly, �
E
(�) is well approximated for low 𝐴𝐴 𝐴𝐴 

by setting �
E
(�|�) ≈ �

[

� − �∕(ℎ�m)
]

 in Equation 14, where δ(⋅) is the Dirac delta, and by using Equation 12 for 
pQ(q). We obtain, for 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴c ,

�E(�) ≈
2��

�(1 + 2�)

[

ln
(�c
�

)]−1−2�
. (21)

Analogously, for 𝐴𝐴 𝐴𝐴  ≳ 𝐴𝐴 𝐴𝐴c , �E(�) can be computed using Equation 13 for pQ(q), and Taylor expanding Equation 18 
for 𝐴𝐴 𝐴𝐴 ≈ 𝐴𝐴max(𝑞𝑞) , which leads to

�E(�) ≈
[

2��
1 + 2�

√

��c
�

+ (1 − � )
√

�
��c

]

�∗�
− �

��c

��c
, (22)

where 𝐴𝐴 𝐴𝐴∗ = 2ℎsinh (𝜋𝜋𝜋𝜋m∕4ℎ) ∕(
√

𝜋𝜋𝜋𝜋m) . Note that for large h values compared to am, Equations 20a–22 reduce to 
expressions that correspond to those obtained under the assumption of a Poiseuille velocity profile (fully 2D case; 
see Supporting Information S1 for a complete mathematical deduction).

Figure 2 shows the predictions (dashed lines) for both pQ(q) and �E(�) . The model successfully captures the dif-
ferent regimes and scaling variation for the various Sw. The low-velocity plateau for Sw = 1.00 is also captured. 
The results shown here correspond to numerical computation of the full theoretical PDFs according to Equa-
tions 1, 2, 8, and 14. Further details on the regime scalings and parameter values can be found in the Supporting 
Information S1.

4. Prediction of Advective Transport
Using the results of the particle tracking simulations (see Section 2.2), we compute (advective) dispersion 𝐴𝐴 𝐴𝐴

2
𝑥𝑥(𝑡𝑡) , 

as a function of time t, as the variance of longitudinal particle positions. Lower saturation induces larger particle 
dispersion due to the increased velocity heterogeneity, as discussed above. At early times, a ballistic regime, 

𝐴𝐴 𝐴𝐴
2
𝑥𝑥 ∼ 𝑡𝑡

2 is observed in Figure 4 for all Sw, which then transitions to an asymptotic superdiffusive regime. The 
crossover time between the ballistic and asymptotic regimes is also larger for smaller Sw, that is, the Lagrangian 

Figure 4. Advective dispersion 𝐴𝐴 𝐴𝐴
2
𝑥𝑥 in time for Sw = 1.00, 0.83, 0.77, and 0.71. 

Time is normalized by the advective time 𝐴𝐴 𝐴𝐴a = 𝜆𝜆∕�̄�𝑣 over the mean pore size 
λ. The plot compares 𝐴𝐴 𝐴𝐴

2
𝑥𝑥 from the particle tracking analysis (continuous lines) 

with 𝐴𝐴 𝐴𝐴
2
𝑥𝑥 from a continuous time random walk (CTRW) approach computed 

using the predicted velocity PDF �E(�) (dashed lines). Scalings for a ballistic 
𝐴𝐴 (𝜎𝜎2

𝑥𝑥 ∼ 𝑡𝑡
2) and a Fickian 𝐴𝐴 (𝜎𝜎2

𝑥𝑥 ∼ 𝑡𝑡
1) regime are also displayed for reference.
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correlation length ζx of velocities along the mean flow direction increases with decreasing saturation (refer to 
Supporting Information S1 for correlation plots).

To develop a transport modeling framework that links the dispersion dynamics to hydrodynamics, we employ a 
CTRW approach (Berkowitz et al., 2006; Cortis & Berkowitz, 2004; Dentz et al., 2016). The CTRW framework 
used here models transport in terms of Lagrangian particles taking fixed spatial steps of length ζx along the mean 
flow direction (s-Lagrangian sampling). Particle velocities remain constant over a step and are assumed to fully 
decorrelate between steps. They are sampled independently in each step from the s-Lagrangian velocity distri-
bution, which is given by the flux-weighted �E(�) , �s(�) = ��E(�)∕�̄ (Dentz et al., 2016). This approach captures 
the intermittent nature of the t-Lagrangian velocity signal through the distributed waiting times to cross the fixed 
distance ζx.

To assess the applicability of our theoretical model to predict advective transport, we employ �s(�) defined from 
the predicted �E(�) (dashed lines in Figure 2a) in the CTRW description. Figure 4 shows 𝐴𝐴 𝐴𝐴

2
𝑥𝑥 computed from the 

resulting CTRW for each Sw (dashed lines), together with 𝐴𝐴 𝐴𝐴
2
𝑥𝑥 computed from the particle tracking simulations. 

Dispersion is well predicted over both the ballistic and superdiffusive regimes, and so the impact of Sw on the 
temporal scaling. A slight overestimation of early-time dispersion is visible for Sw = 1.00, which might be ex-
plained by the assumption of full velocity decorrelation beyond ζx. Late-time dispersion is well captured in all 
cases, exhibiting more pronounced superdiffusive behavior for Sw < 1.00. Overall, these results support the suit-
ability of both our theoretical description of velocity statistics and the CTRW to predict advective transport in 
unsaturated porous media, representing a major step toward predicting solute transport in such systems from the 
sole knowledge of the medium’s geometry.

The CTRW model presented here provides a theoretical framework to quantify the relationship between disper-
sive scalings and velocity variability. In particular, the late-time scaling is controlled by the low-velocity behavior 
of �

E
(�) . If �

E
(�) exhibits power law decay near 𝐴𝐴 𝐴𝐴 = 0 , �

E
(�) ∼ �−� with 0 < θ < 1, late-time dispersion scales like 

𝐴𝐴 𝐴𝐴
2
𝑥𝑥 ∼ 𝑡𝑡

1+𝜃𝜃 (Dentz et al., 2016), between the Fickian and ballistic limits 𝐴𝐴 𝐴𝐴
2
𝑥𝑥 ∼ 𝑡𝑡 and 𝐴𝐴 𝐴𝐴

2
𝑥𝑥 ∼ 𝑡𝑡

2 . The scalings found here 
for saturated and unsaturated conditions correspond to two contrasting edge-cases. Under saturated conditions, 
θ = 0 (Equation 20a), which leads to logarithmically enhanced Fickian dispersion (Dentz et al., 2016). Note that 
pure power law decay characterized by θ ⩾ 1 is not integrable near 𝐴𝐴 𝐴𝐴 = 0 . In this sense, unsaturated conditions are 
characterized by maximal variability of low velocities, described by logarithmic corrections to power law decay 
with θ = 1 (Equation 21). This leads to logarithmically inhibited ballistic dispersion. In light of these considera-
tions, along with the fact that the unsaturated �

E
(�) is broader than for the saturated case (Figure 2), the apparent 

power law scalings in Figure 4 vary slowly with time, as logarithmic corrections and the effect of progressively 
lower velocities come into play. A rigorous derivation of asymptotic dispersion scalings is beyond the scope of 
this work and will be presented elsewhere.

5. Conclusions and Outlook
Here, we have presented a new theoretical framework for the prediction of pore-scale flow PDFs and advective 
transport capturing the impact of liquid-phase saturation. Results reveal that the introduction of an immiscible 
gas phase leads to a shift in the scaling of the velocity PDFs that induces a sharp transition to strongly anomalous 
transport. Under saturated conditions, dispersion is quasi-Fickian. In contrast, even under slightly unsaturated 
conditions, dispersion becomes quasi-ballistic. In practice, this superdiffusive dispersion behavior is sustained 
until low-velocity cutoffs introduced by additional processes, such as diffusion, become relevant. The long-term 
residence time of a particle in a dead-end region is eventually controlled by molecular diffusion, effectively 
cutting off extreme slow velocities (de Gennes, 1983). While in the presence of diffusion the transport is thus 
always asymptotically Fickian at sufficiently late times, the dispersive scalings related to the velocity variability 
remain relevant over significant time scales. Our CTRW formulation also opens the door to the quantification of 
nontrivial scalings of dispersion (Aquino & Le Borgne, 2021; Bijeljic & Blunt, 2006).

The theoretical formulation developed here successfully predicts flow and velocity PDFs based only on a small 
set of parameters, which reflect characteristics of the porous medium (average pore-throat width am and thickness 
h), the relative occupancy of backbone and dead-ends in the system (power law tailing exponent γ and ratio of 
dead-end area to total pore-space area f), and flow properties (correlation length of longitudinal velocities ζx and 
tortuosity χ, along with the characteristic flow rate qc, used to determine the characteristic velocity �c = �c∕(ℎ�m) ). 



Geophysical Research Letters

VELÁSQUEZ-PARRA ET AL.

10.1029/2021GL096280

9 of 10

While the values of these parameters depend on properties such as porosity and liquid-phase saturation, we expect 
the uncovered transition in the velocity PDF and its impact on transport scaling properties to be robust.

We expect the power law dead-end area distribution to hold for (quasi-)2D systems, independently of the detailed 
pore geometry. In particular, it holds for fully 2D systems and so does the spatial distribution of pore flow rates in 
dead-end regions (Equation 3), providing good predictions for h/am ≫ 1. In addition, we also expect it to persist 
in 3D systems, as is known to happen for both wetting- and nonwetting-phase cluster size distributions (Iglauer 
et al., 2010, 2012; Scheffer et al., 2021). These authors also report this behavior for wetting-phase saturation 
degrees lower than 0.71, which we could not achieve in the present study, as they would approach the percolation 
threshold for the experimental medium. However, following previous works that report a decrease in dispersivity 
once the system is desaturated below the so-called critical saturation (Raoof & Hassanizadeh, 2013), we hy-
pothesize a decrease in the broadness of the velocity distribution through an increase in the dead-end area-PDF 
exponent γ for saturation degrees below that critical saturation. In addition, although the present study considers 
a high porosity (0.71), the distribution of nonwetting-phase cluster sizes still exhibits power–law behavior for 
porosity values as low as 0.11 (Iglauer et al., 2010, 2012; Scheffer et al., 2021). The effect of broader pore size 
variability (de Anna et al., 2017) under unsaturated conditions remains an important open question. Note, how-
ever, that even if a different functional dependency were observed for the dead-end area PDF, our new theoretical 
framework provides the means to quantify its impact on flow velocity distributions and transport. Furthermore, 
the upscaling of flow and transport presented here is a first step toward theoretical assessment of mixing and 
chemical reactions in unsaturated porous media, which are essential processes for the analysis and optimization 
of environmental and industrial systems.

Data Availability Statement
The raw experimental images for all four saturation degrees, employed in the numerical simulations, are available 
under open access in Jiménez-Martínez et al. (2017) (https://doi.org/10.1002/2016WR019849).
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