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 Naturally occurring, geogenicmanganese (Mn) and iron (Fe) are frequently found dissolved in groundwater at concen-
trations that make thewater difficult to use (deposits, unpleasant taste) or, in the case ofMn, a potential health hazard.
Over 6000 groundwater measurements of Mn and Fe in Southeast Asia and Bangladesh were assembled and statisti-
cally examinedwith other physicochemical parameters. Themachine learningmethods random forest and generalized
boosted regression modeling were used with spatially continuous environmental parameters (climate, geology, soil,
topography) to model and map the probability of groundwater Mn > 400 μg/L and Fe > 0.3 mg/L for Southeast
Asia and Bangladesh. The modeling indicated that drier climatic conditions are associated with a tendency of elevated
Mn concentrations, whereas high Fe concentrations tend to be found in a more humid climate with elevated levels of
soil organic carbon. The spatial distribution of Mn > 400 μg/L and Fe > 0.3 mg/L was compared and contrasted with
that of the critical geogenic contaminant arsenic (As), confirming that high Fe concentrations are often associatedwith
highAs concentrations,whereas areas of high concentrations ofMnandAs are frequently found adjacent to each other.
The probability maps draw attention to areas prone to elevated concentrations of geogenic Mn and Fe in groundwater
and can help direct efforts to mitigate their negative effects. The greatest Mn hazard is found in densely populated
northwest Bangladesh and the Mekong, Red and Ma River Deltas of Cambodia and Vietnam. Widespread elevated
Fe concentrations and their associated negative effects on water infrastructure pose challenges to water supply. The
Mn and Fe prediction maps demonstrate the value of machine learning for the geospatial prediction modeling and
mapping of groundwater contaminants as well as the potential for further constituents to be targeted by this novel
approach.
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1. Introduction

Groundwater is the primary source of drinking water for a large pro-
portion of the world's population, with an estimated 2.5 billion people re-
lying solely on it for drinking water (WWAP, 2015). Manganese, one of
the most abundant metals in Earth's crust, can occur naturally in ground-
water from the dissolution of manganese oxides, silicates and carbonates
within rocks and soil. It varies in concentration around the world, and it
is usually found associated with iron-bearing water (Kohl and Medlar,
2006).

Even at very low concentrations in drinking water, manganese and iron
can damage infrastructure by forming coatings on water pipes, which can
then flake off and make the taste and color of water unpleasant (Kohl and
Medlar, 2006; Sly et al., 1990). At low concentrations, manganese is essen-
tial for human health; however, it has been associated with adverse health
effects at higher concentrations. In 2004, the World Health Organization
(WHO) recommended a health-oriented guideline value of 400 μg/L for
manganese in drinking water and an aesthetic and taste-oriented threshold
of 0.3 mg/L for iron (WHO, 2004). However, manganese exposure from
water consumption is generally lower than from food consumption, and
iron does not pose a threat to human health (WHO, 2003). The manganese
value was discontinued in 2011 as a global reference to guide public water
policies as it was found not to be a health threat in concentrations found in
drinking water (WHO, 2011). However, the WHO does encourage coun-
tries to establish their own standards and regulations (WHO, 2017). For ex-
ample, the US EPA lifetime health advisory, the USGS health-based
screening level and the standard of the Indian Bureau of Standards all use
300 μg/L for manganese (EPA U, 2004). Nevertheless, there is an ongoing
debate on the neurotoxic effects on human health from exposure to exces-
sive levels of manganese in drinking water (Bouchard et al., 2007;
Bouchard et al., 2011; Claus Henn et al., 2017; Haynes et al., 2015; Iyare,
2019; Kondakis et al., 1989; Rahman et al., 2021; Sahni et al., 2007;
Schullehner et al., 2020; Wasserman et al., 2006; WHO, 2011; WHO,
2017; Woolf et al., 2002). For example, exposure to concentrations less
than the 400 μg/L guideline have been reported to negatively impact the
neurological development of children (Bouchard et al., 2011; Schullehner
et al., 2020). Also, the consumption of manganese through drinking water
can adversely affect neurological health, similarly to Parkinson's syndrome
(Holzgraefe et al., 1986; Perl and Olanow, 2007; WHO, 2011).

Despite the health-related concerns and the high levels of manganese in
drinking water that have been reported in Asia (Bacquart et al., 2012;
Bacquart et al., 2015; Buschmann et al., 2008; Ghosh et al., 2020;
Wasserman et al., 2006; Winkel et al., 2011), Africa (Amoako et al.,
2011), South America (Carretero and Kruse, 2015; de Meyer et al., 2017),
North America (Bouchard et al., 2007; Dion et al., 2018; Johnson et al.,
2018; Spangler and Spangler, 2009), Europe (Homoncik et al., 2010;
Kondakis et al., 1989; Roccaro et al., 2007) and Australia (Koppi et al.,
1996), only a few isolated studies have spatially predicted areas prone to
manganese contamination in groundwater (Erickson et al., 2021b;
Johnson et al., 2018; Thapa et al., 2018). However, groundwater contami-
nation modeling using environmental predictor variables has proven valu-
able in identifying potentially contaminated areas of concern, thereby
helping how to prioritize the testing of groundwater sources (e.g.
DeSimone et al., 2020; DeSimone and Ransom, 2021; Erickson et al.,
2021a; Erickson et al., 2021b; Huang et al., 2021; Podgorski and Berg,
2020; Podgorski et al., 2020; Sajedi-Hosseini et al., 2018; Wu et al., 2021;
Zhong et al., 2021).

Manganese and iron can be released from their constituent mineral
phases in the aquifer matrix into groundwater along the same redox chain
as arsenic (Buschmann et al., 2008; Van Geen et al., 2008; Ying et al.,
2017). Since redox conditions may vary smoothly over broad regions,
high manganese concentrations in groundwater may be found near areas
with high arsenic concentrations in anoxic groundwater (de Meyer et al.,
2017; Erickson et al., 2021b; Ying et al., 2017). This association between ar-
senic and manganese has been explored across Southeast Asia (Phan et al.,
2019; Richards et al., 2017; Winkel et al., 2011; Ying et al., 2017), a global
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hotspot for arsenic. However, there are no studies for the region that ex-
plore this relationship spatially.

Here we investigate the geochemical and environmental conditions as-
sociated with high concentrations of manganese and iron in Southeast Asia
and Bangladesh.We do so through comparison with other physicochemical
parameters as well as by using machine learning (ML) to model these ele-
ments, utilizing both groundwater chemistry and environmental parame-
ters. The occurrence of manganese and iron are then compared with that
of the highly toxic geogenic contaminant arsenic.

2. Materials and methods

2.1. Groundwater chemistry measurements and geospatial predictor variables

Georeferenced measurements of manganese (Mn; n = 6122) and iron
(Fe; n=6107) in groundwater in Southeast Asia aswell as 14 other concur-
rently measured physicochemical parameters were assembled from multi-
ple published sources (Table S1). These other parameters were used to
help examine the conditions leading to high concentrations of dissolved
Mn/Fe and include: ammonium (NH4), arsenic (As), bicarbonate (HCO3),
chloride (Cl), dissolved oxygen (O2), electrical conductivity (EC), nitrate
(NO3), pH, phosphate (PO4), redox potential (Eh), sodium (Na), sulfate
(SO4), water temperature and well depth. These groundwater quality mea-
surements stem from five general areas: Bangladesh, the Irrawaddy Delta
(Myanmar), Mekong Delta (Cambodia and Vietnam), Red and Ma River
Deltas (northern Vietnam) and Sumatra (Indonesia). The Mn and Fe mea-
surements are plotted in Fig. 1, and descriptive statistics are given in
Table 1.

In addition, a total of 57 spatially continuous environmental parameters
were also assembled from publicly available global datasets for use as pre-
dictors of high concentrations of manganese and iron (Table S2). These pre-
dictors generally fall into the categories of climate, geology, land use, soil
properties or topography and were chosen based on their use in related
studies for the prediction of manganese (DeSimone and Ransom, 2021;
Erickson et al., 2021b) or arsenic (Ayotte et al., 2017; Bretzler et al.,
2017; Erickson et al., 2021b; Podgorski and Berg, 2020; Podgorski et al.,
2020; Podgorski et al., 2017; Wu et al., 2021). Nearly all of these variables
were available with a resolution of either 7.5″ or 30″, which roughly corre-
spond to 250 m and 1 km at the equator, respectively.

2.2. Analysis of groundwater chemistry and depth distribution

In order to help identify associations and potential geochemical rela-
tionships, Kendall rank correlations were calculated between manganese
and iron and the 14 other groundwater parameters As, Cl, EC, Eh, HCO3,
Na, NH4, NO3, O2, pH, PO4, SO4, temperature and well depth. As opposed
to Pearson correlation, which quantifies the linearity between two parame-
ters, a Kendall rank correlation instead evaluates their ranked order, such
that a high rank correlation coefficient can ensue from two parameters
that vary proportionally though non-linearly with each other. To explore
the vertical dimension of the presence or absence of Mn, Fe and As,
which lie along the same redox reaction chain, the moving averages of
their proportions exceeding the WHO guidelines of Mn > 400 μg/L, Fe >
0.3 mg/L and As >10 μg/L (WHO, 2011) were plotted against well depth
using a 20-m averaging window for each of the five main locations.

2.3. Machine-learning modeling

2.3.1. Relationships of physicochemical groundwater parameters
Machine learning (ML) was used to further explore relationships be-

tween Mn and Fe concentrations and the groundwater chemistry as well
as to create predictionmaps ofMn and Fe using the spatially continuous en-
vironmental parameters. The measured concentrations of Mn and Fe were
converted into binary format according to the previouslymentioned thresh-
olds of Mn > 400 μg/L and Fe > 0.3 mg/L. The modeling described below
therefore classifies the presence or absence of high Mn (>400 μg/L) or



Fig. 1. Data points of groundwater measurements of a) manganese (n = 6122) and b) iron (n = 6107) used in this study. The data sources are listed in Table 1.

Table 1
Descriptive statistics of manganese and iron measurements in groundwater, sorted by region.

Mn Fe Source

Region n Mean ± Std
(μg/L)

Median
(μg/L)

Proportion > 400
μg/L

n Mean ± Std
(mg/L)

Median
(mg/L)

Proportion > 0.3
mg/L

Bangladesh 4213 580 ± 750 321 0.45 4209 3.2 ± 5.0 1.1 0.66 (BGS and DPHE, 2001;
Hoque et al., 2014)

Irrawaddy Delta (Myanmar) 55 411 ± 499 246 0.29 55 6.3 ± 5.9 5.1 0.85 (Van Geen et al., 2014)
Mekong Delta
(Cambodia/Vietnam)

351 1444 ± 3582 400 0.48 351 2.7 ± 5.9 0.1 0.41 (Buschmann et al., 2008)

Red and Ma River Deltas
(Vietnam)

1028 848 ± 1386 390 0.49 1028 10.5 ± 18.6 3.9 0.70 (Berg et al., 2001;
Buschmann et al., 2008;
Winkel et al., 2011)

Sumatra (Indonesia) 475 127 ± 410 16 0.06 464 2.5 ± 5.8 0.5 0.60 (Marohn et al., 2012;
Winkel et al., 2008)

Total 6122 638 ± 1235 300 0.42 6107 4.4 ± 9.4 1.1 0.65
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high Fe (>0.3mg/L) andwas carried out with the R programming language
(R Core Team, 2014). (This choice of units corresponds to those typically
used in reporting these constituents.)

For all of the models, the original dataset was randomly split into train-
ing (80%) and testing (20%) subsets and stratified to maintain the propor-
tion of high and low measurements in the full dataset. In order to ensure
that the majority class of either high or low measurements does not domi-
nate a model, the majority class was under-sampled in the training dataset
to match the size of the minority class (Podgorski et al., 2018). The process
of training a model on 80% of the data and testing it on the other 20% was
repeated 100 times and the results subsequently averaged.

For modeling with the physicochemical parameters, the random forest
(RF) (Breiman, 2001) algorithm was implemented using the randomForest
package in R. A random forest grows many different decision trees by first
randomly sampling the training dataset with replacement and then consid-
ering only a random subset of the predictor variables at each branch or
node, which divides the target variable as heterogeneously as possible.
This “forest” of decision trees is then averaged to produce the random forest
model. For the modeling here, 5000 trees were grown for each random
forest, which could be run in a reasonable amount of time and was not
3

any worse than using more iterations. For the number of predictors made
available at each node, the default value of the rounded down square root
of the total number of predictors (e.g.

ffiffiffiffiffiffi

15
p

≈3) was used.
Despite the physicochemical parameters potentially being indicative of

the presence of Mn/Fe, they are point data and cannot be used for continu-
ous spatial prediction, i.e. the creation of a probability map, as they are
known only where the Mn/Fe measurements are already available. There-
fore, in order to create prediction maps of manganese and iron, ML model-
ing was employed with the spatially continuous environmental predictor
variables (Table S2). Although both sets of variables can be used to better
understand the geochemical conditions under which the dissolution of
Mn/Fe takes place, only spatially continuous variables can be used for
creating a prediction map.
2.3.2. Spatially continuous prediction modeling of Mn and Fe
The spatial prediction modeling of Mn and Fe was carried out using

both RF and generalized boosted regression modeling (GBM) (Ridgeway
and Ridgeway, 2004). The results from the two different processes
were then combined to form a final model according to their relative



Fig. 2. Kendall rank correlations between manganese (Mn), iron (Fe) and arsenic
(As) at the 0.05 significance level. Blank cells indicate the correlation did not
meet the 0.05 significance level.
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performance (see Prediction maps below). This was done in order to create a
more robust final model by emphasizing the areas where the results of the
two methods agree and placing less weight on where they do not.

As opposed to the RFmodels with the physicochemical variables, the RF
geospatialmodelswere createdwith subsets (different forMn and Fe) of the
statistically most important predictor variables. This was done using recur-
sive feature elimination with the varSelRF package and opting for the least
number of variables that result in an error rate within one standard devia-
tion of the lowest cross-validation error rate with the out-of-bag (OOB)
data points (Diaz-Uriarte and de Andrés, 2005). This was done to reduce
the relatively large number of initial independent variables (n = 57) and
help identify the most important variables as well as create additional di-
versity in the model outcomes.

GBM is also a tree-based method and works by creating an ensemble of
decision trees that are grown successively and improved by reducing the
error of the ensemble of previous trees. The overall result consists of the av-
erage of the final full set of trees. It uses decision trees with relatively few
branches, which are considered to be weak learners that make small reduc-
tions in errors. This helps reduce overfitting and results in a more robust
model, which is further promoted by utilizing a random subset of the train-
ing dataset for each tree. As such, three to seven decision-tree branches typ-
ically work well with GBM (Hastie et al., 2008).

The GBM was set up by first tuning the various modeling parameters
using the Caret package (Kuhn, 2008). These parameters are the total num-
ber of trees, interaction depth or number of branches, shrinkage factor or
learning rate and the minimum number of observations in a node. The
GBM models were developed using the full set of 57 spatial predictor vari-
ables (Table S2) and randomly selecting one-half (default value) of the
training dataset for growing each tree.

2.4. Model verification and assessment

Various metrics were used for assessing the classification of the binary
target variable, i.e. Mn > 400 μg/L or Fe > 0.3 mg/L:

(1) Sensitivity TP
P

(2) Specificity TN
N

(3) Balanced accuracy sensitivityþspecificity
2

where TP is true positives, P is total positive cases, TN is true negatives,N is
total negative cases

(4) Kappa p0−pe
1−pe

where p0 is the agreement between predicted and actual values, and pe is
the expected agreement based on chance agreement.

The values of the metrics outlined above are typically reported using a
probability cutoff of 0.5. However, another metric used that takes account
of all possible cutoff values is the area under the ROC (receiver operating
characteristic) curve (AUC). TheROC curve plots the true positive rate (sen-
sitivity) against the false positive rate for many different probability cutoffs
between 0 and 1. The AUC is simply the area beneath this curve, which
ranges from 0 (model always incorrect), through 0.5 (equivalent to a ran-
dom guess), to 1 (model always correct).

The relative importance of the predictor variables in contributing to
eachmodel was assessed by randomizing each variable in turn andmeasur-
ing the resulting reduction in prediction performance (Breiman, 2001). To
further help interpret the effect of each independent variable on the model
outcome of the dependent variable, partial dependence plots (PDP) were
produced of the predictors used in the random forest models. A PDP plots
the model response for changes in a given predictor while holding all
other variables constant at their average values.

2.5. Prediction maps

The entire dataset (training and testing) was used in creating a single
model of each model type (GBM and RF) for each target variable (Mn >
4

400 μg/L and Fe> 0.3mg/L). Each of thesewas then applied to its predictor
variables to produce the spatially continuous probability predictionmaps of
Mn and Fe exceeding the threshold values. The final hazard prediction
maps were then generated by averaging the GBM and RF prediction maps
and weighting according to their respective AUC values.

In order to determine the parts of the prediction maps that can be con-
sideredmore reliable, an assessment was made of the diversity of predictor
data sampled by the concentration data points. This was then compared
with the distribution of values of the predictor datasets across the entire
study region to locate where the conditions are reasonably similar to
those associated with the data points and thereby identify where the
model can be most trusted. This was carried out using the CAST package
(Meyer and Pebesma, 2021) by calculating a dissimilarity index (DI) for
all points (pixels) within the study area. The DI is based on the distance
in predictor space between two points (dissimilarity), weighted by variable
importance, and represents the minimum distance to a training data point
standardized by the average dissimilarity among all training points and
can range from 0 to infinity. The DI was calculated separately for the RF
and GBM models and combined according to their respective AUC values,
analogously to the prediction maps themselves. This combined DI was
then applied to the prediction maps as follows:

DI 0–1: prediction displayed in full.
DI 1–2: prediction displayed with hatch marks and considered “less re-

liable”.
DI 2–3: prediction displayed with double hatch marks and considered

“least reliable”.
DI >3: prediction completely masked.
In addition, the uncertainty (or consistency) of the models as repre-

sented by the coefficient of variation (ratio of standard deviation to
mean) was calculated by generating a prediction map from each of the
100 model iterations from cross-fold validation and then calculating their
mean and standard deviation.

3. Results

3.1. Analysis of groundwater chemistry and depth distribution

The Kendall rank correlations among the concentrations of Mn, Fe and
As for all of the locations are shown in Fig. 2. The correlations among all of
the physicochemical parameters are in Fig. S1. At all of the sites, there is a
significant correlation between the concentrations of Fe and As. Mn and As
as well as Mn and Fe are positively correlated in Bangladesh, Indonesia and
the Red andMa River Deltas in northern Vietnam. However, in theMekong
Delta, Mn and As are slightly negatively correlated and Mn and Fe show no
significant correlation.

The depth profiles of Mn, Fe and As are shown in Fig. 3. In Bangladesh,
the concentrations of Mn, Fe and As exceeding their respective thresholds
in groundwater are all high near the surface and decrease to about 50 m
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depth (Fig. 3a). Below this depth, Mn concentrations continue to decrease
and stay low to the limit of the depths sampled. Fe and As are strongly cor-
related and show both sharp increases and decreases between about
50–200 m depth (Fig. 3a, b). Between 200 and 250 m depth, both Mn
and Fe show a sharp increase and then decrease.

In theMekong Delta (Fig. 3c) and the Red andMa River Deltas of north-
ern Vietnam (Fig. 3d), a strong negative correlation is seen betweenMn and
As in the shallowest aquifer to about 25 m depth. In the Mekong Delta, Fe
concentrations stay roughly constant over this interval, whereas Fe in the
Red and Ma River Deltas also decreases somewhat. At depths greater than
about 50 m at these two locations, the concentrations of Mn, Fe and As
often appear to vary together, sometimes offset by up to about ten vertical
meters. Analysis of the vertical distribution of dissolved Mn, Fe and As in
Myanmar (Fig. 3b) is hampered somewhat by limited vertical resolution
due to a relatively small dataset. In Sumatra the data show variation in all
three elements to about 100 m depth, often in the same sense.

The correlation analysis between the presence in groundwater of high
Mn (>400 μg/L) and Fe (>0.3 mg/L) with each other as well as with high
As (>10 μg/L) at the five regions (Fig. 2) confirms that high Fe is often
found in connection with high As (Van Geen et al., 2008). This is also the
case in the RF model using physicochemical predictor variables, which
shows that As is generally positively associated with Fe (Fig. 4g). Although
high concentrations of Fe can be detrimental to water infrastructure, high
concentrations of As can be disastrous for health. While the presence of
Fe may be manifested visually or through taste, even very high concentra-
tions of arsenic remain undetected by our senses. Furthermore, due to the
hazardous concentrations of As generally being quite low (e.g. μg/L rather
than mg/L), it's analysis is relatively difficult and, as such, is often not un-
dertaken. Therefore, the relatively easily detected presence of Fe in ground-
water in Southeast Asia provides an indication that the given source should
also be tested for As (Biswas et al., 2012; Hoque et al., 2012).

The relationship betweenMn and As is less clear. Although it was found
that Mn is sometimes positively correlated with As, it is generally weaker
than the correlation between Fe and As (Fig. 2). In the measurements
Fig. 3. Proportion of manganese (Mn), iron (Fe) and arsenic (As) measurements exceed
proportions were calculated for every meter of depth using a window of 20 m (betw
(Myanmar), c) the Mekong Delta (Cambodia and Vietnam), d) the Red and Ma River D
to color in this figure legend, the reader is referred to the web version of this article.)
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available from Indonesia, this relationship is actually stronger, but in
Myanmar Mn and As are negatively correlated.

Considering the depth profiles of averaged high Mn, Fe and As (Fig. 3),
the pattern emerges that while Fe and As often fluctuate together over
depth, Mn and As frequently vary in the opposite sense. In addition, a
peak in Mn may occur vertically offset from a peak in As, for example, in
the Red and Ma River Deltas of Vietnam (Fig. 3d).

3.2. Random forest modeling with physicochemical variables

Random forest models of high Mn and Fe using the 14 other physico-
chemical parameters as predictors (performance results in Table S3)
were created in order to examine the relationships between these pa-
rameters and Mn and Fe. The importance of the variables in terms of
mean decrease in accuracy as well as the PDPs of four predictors (As,
Eh, NO3 and PO4) that show opposite effects on high concentrations of
Mn and Fe are shown in Fig. 4. Figs. S2 and S3 contain the PDPs of all
the predictors. This analysis confirms known mechanisms. Because
these parameters are point data, they could not be used for creating a
probability map.

3.3. ML modeling with spatially continuous variables

For the RF modeling of high Mn and Fe using the spatially continuous
predictor variables, eight predictors for Mn and 15 for Fe were selected.
Their importance, expressed as mean decrease in accuracy, is shown in
Fig. 5. The PDPs of these variables (Figs. S4 and S5) indicate that a drier cli-
mate and flatter terrain are associated with high Mn concentrations in
groundwater in Southeast Asia, while more humid conditions and greater
soil organic carbon predict high Fe concentrations. Some of the more im-
portant independent variables are displayed in Fig. S6.

As shown in Table 2, the GBM and RF models of high Mn using the spa-
tially continuous variables perform equally well, whereas the RF model for
Fe somewhat outperforms the GBM model. The GBM and RF models were
ing their respective thresholds of 400 μg/L, 0.3 mg/L and 10 μg/L with depth. The
een 10 m shallower and 10 m deeper) for a) Bangladesh, b) the Irrawaddy Delta
eltas of Vietnam and e) Sumatra (Indonesia). (For interpretation of the references



Fig. 4. Results of random forest (RF) models for Mn > 400 μg/L (a–e) and Fe > 0.3 mg/L (f–j) using physicochemical parameters as predictor variables. Variable importance
(a, f) is in terms of the mean decrease in accuracy when each variable's values are randomly sorted. Partial dependence plots (PDP) of predictor variables are shown of the
critical geogenic contaminant arsenic (b, g), redox potential (Eh) (c, h), nitrate (d, i) and phosphate (e, j). For example, the PDP ofAs for theMnmodel (b) indicates that higher
As concentrations lead to a lower probability of Mn > 400 μg/L. The tick marks at the bottom of each PDP indicate the distribution of the data in deciles.
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averaged to form the combined final probability maps (Fig. 6a, b),
weighting by their respective AUC values (Table 2). The respective dissim-
ilarity indexes were likewise averaged according to the AUC and applied to
the manganese and iron probability maps. For comparison, Fig. 6c contains
a section of the global groundwater prediction map of As >10 μg/L
(Podgorski and Berg, 2020) for the same area of Southeast Asia. For closer
inspection, all three of these maps are displayed in a larger format in
Figs. S7–S9. Maps of the coefficient of variation for the RF and GBMmodels
of Mn and Fe are shown in Fig. S10.
4. Discussion

Areas of elevated Mn groundwater hazard (Fig. 6a) include northwest
Bangladesh, the middle Irrawaddy basin in Myanmar, the plains along the
Chao Phraya River in Thailand, the lowlands of eastern Thailand and north-
west Cambodia, the Mekong Delta of Cambodia and Vietnam and the Red
and Ma River Deltas of northern Vietnam. The greatest hazard of Mn >
400 μg/L is found in Bangladesh, the Red and Ma River Deltas (Fig. 7a)
and Mekong Delta (Fig. 7c), all of which are very densely populated
areas. The proportion of people using untreated groundwater is, on aver-
age, 84% in Bangladesh, 40% in Cambodia and 45% in Vietnam (JMP,
6

2019). It is therefore imperative that the chemical testing of drinking
water wells in these areas include Mn.

Compared with Mn, there are many more predicted areas of Fe concen-
trations exceeding the associated WHO guideline of 0.3 mg/L (Fig. 6b). Al-
though not representing a health threat, excess Fe in groundwater makes
water undesirable to use and can negatively impact water infrastructure.
As such, the Fe probability map is important for water resource planning
and the siting of new water utilities.

BecauseMn, Fe and As get released along the same redox chain, areas of
an aquifer that have high concentrations of one element may be found next
to areas with high concentrations in another one. This is clearly observed in
the Red and Ma River Deltas, where areas of high Mn hazard (Fig. 7a) are
located immediately adjacent to or slightly overlapping with areas with
high As hazard (Fig. 7b). The same situation between Mn and As hazard
areas exists in the Mekong Delta (Fig. 7c, d). That high Mn correlates less
well with high As than does high Fe means that groundwater sources that
have already been tested and determined to be free from high As concentra-
tions may still contain high concentrations of Mn that pose a health risk.
The Mn and Fe prediction maps (Fig. 6a, b) can therefore be used by
water resource managers and well operators to help identify potentially
problematic areas in terms of high concentrations of either of these ele-
ments as well as their association with As. Specifically, the prediction



Fig. 5. Results of random forest (RF) models for Mn > 400 μg/L (a–e) and Fe > 0.3 mg/L (f–j) using spatially continuous parameters as predictor variables. Variable
importance (a, f) is in terms of the mean decrease in accuracy when each variable's values are randomly sorted. Partial dependence plots (PDP) are shown of the four
most important predictor variables from each model (b–e for Mn; g–j for Fe). The tick marks at the bottom of each PDP indicate the distribution of the data in deciles.

Table 2
Performance of models produced by the generalized boosted regression modeling
(GBM) and random forest (RF) algorithms for manganese (Mn) and iron (Fe) in
groundwater. Each of the results is based on 100-fold cross validation, with each
model being grown with 5000 trees using an 80%/20% training/test data split.
The probability cutoff was determined for each fold by finding the cutoff at which
sensitivity equals specificity, which by definition also equals balanced accuracy.

Mn (GBM) Mn (RF) Fe (GBM) Fe (RF)

Prob. cutoff 0.52 ± 0.01 0.48 ± 0.02 0.49 ± 0.01 0.53 ± 0.01
Balanced accuracy 0.72 ± 0.02 0.72 ± 0.01 0.70 ± 0.01 0.72 ± 0.01
Kappa 0.44 ± 0.03 0.44 ± 0.02 0.40 ± 0.03 0.43 ± 0.02
AUC 0.80 ± 0.01 0.80 ± 0.01 0.76 ± 0.01 0.79 ± 0.01

J. Podgorski et al. Science of the Total Environment 833 (2022) 155131
maps of high Mn and Fe are to be used in prioritizing areas that require fur-
ther testing of groundwater resources and are not a substitute for actual
testing.

We have demonstrated that it is feasible to create spatial prediction
models of the occurrence of high concentrations of the geogenic groundwa-
ter contaminants of Mn and Fe. Although they have generally received
much less attention than the geogenic contaminants of As and F, Mn and
Fe are nevertheless important from the standpoint of infrastructure damage
as well as human health, in the case of Mn. These maps also highlight the
possibility that other groundwater contaminants or constituents having
7

associations with spatially continuous surface parameters (geogenic or
even anthropogenic) may be suitable for ML-based spatial modeling.

4.1. Modeling limitations

Although the available groundwater quality data from the region are lo-
cated in clusters (Fig. 1), the applicability of the spatial model to intermedi-
ate areas could be estimated by comparing the values of the predictor
variables with those associated with the training data points. The dissimi-
larity index (DI) calculated and used to progressively mask areas of the pre-
diction maps with greater dissimilarity to the training data thereby gives a
sense of where the model results are more reliable (Fig. 6), which largely
corresponds to lower elevation areas (mainlyflood plains) that are also sim-
ilar in terms of the other main predictor variables (Fig. S6).

In general whenmodeling, it is important that the training data sample an
adequate diversity of values in the predictor data in order for the latter to be
able to provide much information about the former. With regard to this as-
pect as well as being able to make predictions for new areas, clustered data
can provide a challenge as closely spaced data points are generally associated
with a small range of values of environmental variables. A semi-quantitative
assessment, such as thatmade herewith theDI, therefore helps determine the
degree to which the available data can be applied elsewhere.

Complementary to this, the coefficient of variation calculated from the
maps generated during cross validation (Fig. S10) often shows greater var-
iability and therefore more uncertainty in areas with a higher DI. It is also



Fig. 6. Spatial probabilitymaps of Southeast Asia and Bangladesh produced of a)manganese>400 μg/L and b) iron>0.3mg/L in groundwater as well as c) an existing arsenic predictionmap adapted from Podgorski and Berg, 2020.
Less reliable sections of a) and b) are indicated with hatch marks; other areas that are considered too dissimilar to the training data are masked in gray. The dashed boxes in a) indicate the areas depicted in Fig. 7. Larger versions of
each probability map are found in the Supplementary Materials (Figs. S7–S9).
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Fig. 7. Detailed views of the modeled Mn hazard map of a) the Red and Ma River Deltas in northern Vietnam next to b) the modeled As hazard of the same area from
Podgorski and Berg (2020). Also shown are c) Mn and d) As in the Mekong Delta of Cambodia and Vietnam. These areas are indicated in the map in Fig. 6a. Less reliable
sections of a) and c) are indicated with hatch marks; other areas that are considered too dissimilar to the training data are masked in gray. Both examples clearly show
the presence of high hazard areas of Mn immediately adjacent to or slightly overlapping high hazard areas of As. Due to both areas being densely populated and relying
heavily on groundwater, there is a high risk of exposure to Mn concentrations (in addition to As) in groundwater that are hazardous to health. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.)

J. Podgorski et al. Science of the Total Environment 833 (2022) 155131
apparent from this analysis that the overall variability among the GBM re-
sults is considerably greater than that from RF.
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