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A key challenge in mass spectrometry, particularly in metabo-
lomics and non-targeted analysis, is feature annotation, or 
the assignment of chemical identity to unknown signals 

from their exact mass and fragment (tandem mass spectrometry 
(MS2)) spectra. Compounds may be identified by either searching 
against mass spectral libraries from synthetic standards or searching 
against data inferred from structures (so-called ‘in silico methods’). 
Both approaches have limitations. Matching against experimen-
tal libraries1,2 is limited by the actual availability of standards and 
curated spectral data that poorly represents the diversity and com-
plexity of the chemical space. Searching against structural databases 
(for example, PubChem3 or KEGG4) includes nontrivial simulation 
of spectra5 or fragmentation patterns6 for candidate compounds, or 
the prediction of high-dimensional molecular descriptors for spec-
tra7–9. Importantly, none of these methods is able to identify truly 
novel and unexpected compounds like unknown natural products, 
drug metabolites or environmental transformation products.

In principle, the simplest and entirely database-independent 
approach to assigning a structural identity to truly unknown com-
pounds is to first determine the molecular formula, then enumer-
ate all possible candidates, and finally score against experimental 
data10–12. This approach fails in practice because of the combinato-
rial explosion in the number of structures that can exist even for 
simple formulas13. Recent strategies for identification of true 
unknowns have instead relied on expanding compound databases 
using chemical reaction rules14,15, identifying partial structures 
using spectral networking16 and ‘hybrid search’ (MS2 library search 
including mass shifts)17 or, recently, assigning chemical classes in 
silico using machine learning18.

In the context of computational drug design, deep learning 
algorithms for targeted de novo molecule generation have recently 
emerged. These methods allow querying a large chemical space of 
novel compounds without enumerating candidates. In analogy to 
the methods used for text generation, Gómez-Bombarelli et al.19 
used a variational autoencoder (VAE) with a recurrent neural net-
work (RNN) to generate textual representations of molecules, that 

is, SMILES20. Similarly, Segler et al.21 used an RNN sequence model 
to generate molecules. Numerous variations of these models gener-
ate molecules in the form of SMILES, SMILES-related representa-
tions, or directly as graphs, achieving specific chemical properties 
by fine-tuning, optimization in latent space, or reinforcement learn-
ing (see, for example, refs. 22–24).

For mass spectrometry, two recent approaches have used mol-
ecule generation to generate candidate libraries based on a target 
collision cross-section (CCS) and mass25, or for a specific com-
pound class26. However, these methods do not take the structural 
information from MS2 spectra into account, and therefore only pro-
vide a list of candidates that needs further filtering. If information 
from MS2 spectra could be used directly for targeted structure gen-
eration, this would bypass the combinatorial bottleneck for de novo 
structure elucidation. Unfortunately, using MS2 spectra to directly 
train molecule generation models is currently not feasible because 
of the limited amount of training data. In fact, we estimate that, 
even by merging the largest MS2 repositories (that is, NIST2020, 
MoNA, MassBank.EU, Global Natural Product Social Molecular 
Networking (GNPS)), experimental MS2 data would be available 
for circa 60,000 molecules, which is an order of magnitude below 
standard requirements for generative models, typically trained with 
>500,000 structures19,21,22. Many repositories include simulated MS2 
data, but these are based on class-specific fragmentation rules, for 
example, for peptides and lipids, and therefore of little use to train 
generative models for more heterogeneous classes.

We tackle the MS2-to-structure challenge in two consecutive 
tasks. We first use CSI:FingerID8,9 to tackle the MS2-to-fingerprint 
problem. CSI:FingerID predicts a high-dimensional molecular fin-
gerprint, which is normally used to query a molecular structure 
database searching for candidates that have a matching fingerprint. 
Here, we substitute the database search with an RNN generative 
model that was trained to address the fingerprint-to-structure task. 
Combining the two components in a unique workflow resulted 
in MSNovelist, a method that generates a ranked list of candidate 
structures directly from MS2 spectra. As MSNovelist doesn’t use any 

MSNovelist: de novo structure generation from 
mass spectra
Michael A. Stravs   1,3, Kai Dührkop   2, Sebastian Böcker   2 and Nicola Zamboni   1 ✉

Current methods for structure elucidation of small molecules rely on finding similarity with spectra of known compounds, but 
do not predict structures de novo for unknown compound classes. We present MSNovelist, which combines fingerprint predic-
tion with an encoder–decoder neural network to generate structures de novo solely from tandem mass spectrometry (MS2) 
spectra. In an evaluation with 3,863 MS2 spectra from the Global Natural Product Social Molecular Networking site, MSNovelist 
predicted 25% of structures correctly on first rank, retrieved 45% of structures overall and reproduced 61% of correct database 
annotations, without having ever seen the structure in the training phase. Similarly, for the CASMI 2016 challenge, MSNovelist 
correctly predicted 26% and retrieved 57% of structures, recovering 64% of correct database annotations. Finally, we illustrate 
the application of MSNovelist in a bryophyte MS2 dataset, in which de novo structure prediction substantially outscored the 
best database candidate for seven spectra. MSNovelist is ideally suited to complement library-based annotation in the case of 
poorly represented analyte classes and novel compounds.

NAture MethoDS | VOL 19 | JULy 2022 | 865–870 | www.nature.com/naturemethods 865

mailto:zamboni@imsb.biol.ethz.ch
http://orcid.org/0000-0002-1426-8572
http://orcid.org/0000-0002-9056-0540
http://orcid.org/0000-0002-9304-8091
http://orcid.org/0000-0003-1271-1021
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01486-3&domain=pdf
http://www.nature.com/naturemethods


Articles NAture MethodS

structural or spectral database to retrieve candidates, it is particu-
larly suited to identify poorly represented analyte classes or novel 
compounds. We evaluate the method’s performance in the con-
text of the current state-of-the-art database search on a reference 
dataset from the GNPS spectral library with >3,800 MS2 spectra27 
and on the CASMI 2016 structure identification challenge28. As an 
exemplary application of de novo spectral annotation, we apply our 
method to a bryophyte liquid chromatography–mass spectrometry 
dataset and putatively annotate seven novel chemical structures.

overview of the method
MSNovelist performs de novo structure elucidation from MS2 spec-
tra in two steps (Fig. 1). First, it relies on SIRIUS and CSI:FingerID 
to predict a molecular formula xM and a structural fingerprint xF, 
respectively, from the MS2 spectrum9. The fingerprint xF consists of 
a vector with 3,609 values ranging from 0 to 1 to express the likeli-
hood that the molecule of interest has given structural character-
istics. If known, the molecular formula xMMxM can be specified by 
the user to bypass the SIRIUS prediction. Second, we trained an 
encoder–decoder RNN model to predict structures in the form of 
a SMILES sequence from the fingerprint xF under the constraints 
imposed by the formula xM. Conceptually, the model learns how to 
represent the structural fingerprint features in a SMILES string. For 
every query tuple (xF, xM), the model returns a set of k structures 
ranked by the raw RNN model score, that is, the probability of the 
sequence under the model. As the RNN model can generate invalid 
SMILES, or also generate different SMILES strings that encode for 
the same structure, the k structures are validated and dereplicated. 
Finally, the candidate structures are re-ranked by calculating the 
match to the query fingerprint xF using the modified Platt score8.

A key advantage of our approach is that the training of the RNN 
model for the second step is independent of spectral libraries. As 
fingerprints can be computed for any molecular structure and inde-
pendently from spectral libraries, we can obtain virtually unlimited 
training points18 without the constraints imposed by limited MS2 
data availability. Specifically, the RNN model was trained on a data-
set of 1,232,184 chemical structures compiled from the databases 
HMDB (4.0)29, COCONUT30 and DSSTox31, and 14,047 predicted 
fingerprints to parametrize fingerprint simulation (that is, to add 
error to the input). All structures used for fingerprint simulation or 
present in evaluation datasets were removed from the training set 
to effectively evaluate the ability to identify structures that have not 
been observed before, that is, two disjoint sets were used: a test set 
and a training set (Methods).

Method validation
We benchmarked MSNovelist with two large, diverse and frequently 
used MS2 datasets for which the correct structure is known. The 
full structural prediction model was first validated using 3,863 

MS2 spectra from GNPS27 closely matching the evaluation setup by 
Dührkop et al.8,9. These spectra cover heterogeneous types of com-
pounds, samples, instrumentation, spectral quality, and so on. No 
additional quality control or cleanup was performed before subject-
ing these spectra to MSNovelist. For each spectrum, we retrieved 
the 128 highest-scoring SMILES sequences (top-128). In 99.5% of 
the instances, MSNovelist generated valid structures with the cor-
rect molecular formula. The correct structure was retrieved for 45% 
and ranked first for 25% of the instances (Fig. 2a). In comparison, 
a database search with CSI:FingerID was able to rank the correct 
structure on top for 39% of the spectra. This represents the maxi-
mum that MSNovelist can reach, because it uses the same fingerprint 
for structure generation as CSI:FingerID uses for database search. 
In this subset (GNPS-OK, 1,507 spectra; Supplementary Table 2), 
MSNovelist correctly retrieved 68% of the true structures. In 61% 
of the instances, the true structure matched with the top-ranked 
candidate (Fig. 2b). In the cases where the true structure was not 
ranked first by MSNovelist, the generated structures were typically 
very similar to the target molecule. This is shown by ten examples 
randomly picked from all incorrect predictions of the GNPS dataset 
(Fig. 2e and Supplementary Fig. 2). In this sample, seven mispre-
dictions were close isomers of the correct structure, one instance 
showed a partial mismatch in the skeleton, and only two predictions 
were completely wrong. Further cases are available in the provided 
supplementary dataset; a quantitative evaluation of similarity on the 
entire dataset is provided below.

The importance of structural information was tested with a 
model that lacked the fingerprint input to the encoder. This naïve 
generator creates structures with a specific molecular formula, but 
cannot make use of structural information. Importantly, the results 
of the naïve generator were ranked by the modified Platt score as in 
the full workflow. In the GNPS dataset, naïve generation retrieved 
only 31% of all correct structures, and 17% were ranked first. While 
this is clearly lower than guided de novo generation, it also shows 
that deceptively high performance can be achieved purely by sam-
pling large numbers of molecules and a posteriori ranking using the 
modified Platt score. A similar trend was observed for the GNPS-OK 
subset, with 37% of structures retrieved, and 35% were first in the 
ranking. In both datasets, inclusion of structural information from 
fingerprints in de novo generation increased the recovery of true 
structures by 13 to 31 percentage points.

As a second benchmark, we generated structures for the 127 
positive-mode MS2 spectra from the CASMI 2016 competi-
tion28, which is a common benchmark for structure elucida-
tion (Supplementary Fig. 3 and Supplementary Tables 3 and 4). 
MSNovelist retrieved 57% of structures (26% ranked first). The 
naïve model achieved 52% retrieval, and 24% top-1 hits. The 
marginal improvement of MSNovelist over the naïve model indi-
cates that the structures are likely very similar to training set data. 
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Fig. 1 | Conceptual overview of MSNovelist. Using the existing SIRIUS and CSI:FingerID approach, a molecular fingerprint and a molecular formula were 
predicted. These data were used as input to an encoder–decoder RNN model with LSTM architecture to predict a SMILES sequence. Finally, candidate 
structures were ranked by modified Platt score, that is, according to the match to the predicted molecular fingerprint.

NAture MethoDS | VOL 19 | JULy 2022 | 865–870 | www.nature.com/naturemethods866

http://www.nature.com/naturemethods


ArticlesNAture MethodS

However, from the 47 instances that were correctly identified by 
database search (CASMI-OK), MSNovelist retrieved 74% and iden-
tified 64% at the first rank, while naïve generation only retrieved 
56% and identified 51% at the first rank. This demonstrates that the 
model effectively uses structural information when present in the 
spectra. Overall, these evaluation tests with two large, diverse and 
representative datasets demonstrate that de novo structural annota-
tion is in principle possible and in 50–70% of the cases generates 
candidates that are consistent with the true structure.

extrapolation, chemical similarity and model score
We conducted further evaluations to demonstrate model perfor-
mance and to verify that de novo structures outscore training set 
structures in terms of similarity to the query fingerprint and mol-
ecule. To provide a numerical measure of how close to truth typi-
cal predictions are, we compared the chemical similarity of the best 
incorrect prediction (compare also Cooper et al.32) to the correct 
structure. This allows a direct comparison of de novo predictions 
with the training set data, which contains only incorrect results 
(as all true structures are removed from RNN training). Figure 2c 
shows the histogram of similarity scores over all instances (median 
and 25–75% quantile; Supplementary Table 1). The best incor-
rect de novo predictions (median 0.80) scored higher than the 

best-in-training set (0.76) and nearly as high as the best incorrect 
database structure (0.84). This demonstrates that the model system-
atically generates combinations of chemical features not seen in the 
training set. In contrast, naïve generation slightly underperformed 
the best training set candidate, as expected from generation without 
structural guidance.

The modified Platt score quantifies the match of the generated 
structure to the input fingerprint. Therefore, it directly measures 
the performance of the fingerprint-to-structure step of MSNovelist, 
independent of errors in the fingerprint prediction. For the best 
MSNovelist candidates, the modified Platt scores (median −5,886) 
were essentially identical to the best database compounds (−5,883) 
and higher than best compounds in the training set (−5,928;  
Fig. 2d). Again, the naïve model performed slightly worse than the 
best training set candidate.

We also evaluated the relevance of posterior re-ranking with the 
modified Platt score. The RNN model without re-ranking by modi-
fied Platt score reached notable 19% and 39% correct (top-ranked) 
identifications in the GNPS and GNPS-OK datasets, respectively 
(Fig. 2a,b). The best compounds identified by the RNN model 
alone had a higher modified Platt score (median −5,910) than the 
best training set compounds, and reached nearly the same chemi-
cal similarity (0.74; Supplementary Fig. 6). This indicates that the 
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raw RNN score is already informative about the structure–spec-
trum match, but the additional re-ranking by modified Platt score 
yields more correct identifications and higher scores in the auxiliary 
benchmarks.

Similarly, we examined the necessity of element counting and 
hydrogen estimation for the generation of valid results and their 
effect on model performance (Supplementary Fig. 4 and 5 and 
Supplementary Tables 1–4). In summary, the model was still able 
to produce high-scoring results without the additional components; 
they increased the number of valid results with the correct molecu-
lar formula, and consequently, slightly improved overall retrieval.

Finally, we examined the impact of the number of generated can-
didates. Generation of only 16 candidates by MSNovelist was suf-
ficient to outcompete the top-128 naïve candidates in all metrics for 
all four datasets and sub-datasets, except overall retrieval in CASMI 
(see Supplementary Fig. 3 and 6 and Supplementary Tables 1–4). 
This provides further evidence that MSNovelist directly generates 
structures with a high spectrum–structure match without requiring 
extensive sampling.

De novo annotation of bryophyte metabolites
An objective of de novo annotation in discovery metabolomics is to 
identify novel biological small molecules. We demonstrate the use 
of MSNovelist for this application for a dataset of nine bryophyte 
species (Peters et al.33). Bryophytes are known to produce diverse 
secondary metabolites, but are not extensively studied, presenting 
a likely opportunity for natural product discovery. From the data 
repository (MTBLS709), we extracted 576 consolidated MS2 spec-
tra and analyzed them with SIRIUS to infer formula. For 224 spec-
tra, we obtained a molecular formula with high confidence (≥80% 
explained peaks, ≥90% explained intensity, ≥0.9% ZODIAC score). 
These were further analyzed by MSNovelist to predict the molecular 

structure. First, we compared the modified Platt scores for the best 
de novo and database candidates. (Fig. 3a). In 27 cases the same 
structure was identified with both approaches. For 169 cases (75%), 
the MSNovelist structure scored higher than the database, indicat-
ing that the de novo structure was a better fit to the spectrum than 
any database entry.

We inspected in depth the seven cases that had the largest differ-
ence between the de novo and database-based modified Platt scores. 
A detailed discussion of the results is provided in Supplementary 
Tables 5–13. For the example of feature 377 (mass-to-charge rati 
(m/z) 381.1020, C21H16O7), the de novo-predicted structure 377a 
is a polyphenolic compound with a flavonoid core (Fig. 3c) and 
all observed fragments (Fig. 3b) are consistent with the proposed 
structure (Supplementary Fig. 7). Fragment 153 and neutral loss 126 
(fragment 255) are shared with the flavonoid hesperetin. Seven peaks 
are shared with the structurally similar chrysin-7-O-glucuronide 
and all matching peaks relate to the aglycon. In contrast, the best 
database candidate fails to explain peaks 153 and 179. The struc-
ture predicted de novo is similar to known natural products for-
mosumone A and struthiolanone. The biosynthetic origin of a C21 
polyphenol remains unclear, but we hypothesize that it could arise 
from a condensation as in the case of struthiolanone34. We noted 
that multiple alternative de novo structures also strongly outscored 
the best database suggestion and are compatible with the observed 
spectrum. In any case, there is solid evidence that feature 377 is a 
novel natural product with a flavonoid core and an interesting can-
didate for further structure and biosynthetic pathway elucidation.

Summarizing the in-depth analysis of the seven spectra, in four 
cases the MSNovelist was better at explaining the MS2 spectrum, and 
one is equally good as the top database candidate. This witnesses 
the complementarity of the two approaches. We initially limited the 
analysis to m/z < 500, but could find five additional instances above 
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threshold analyzing the entire dataset (Supplementary Fig. 8 and 
Supplementary Table 5). Regardless of the origin, all proposed top 
structures should be seen as starting points for further investigation. 
These could entail further analyses with more fine-grained MSn 
data, alternative dissociation techniques, or preparative isolation 
and characterization by nuclear magnetic resonance. Eventually, 
pure standards would have to be synthesized and analyzed by iden-
tical means to validate predictions.

Discussion
MSNovelist demonstrates that de novo generation of molecular 
structure from MS2 spectra without dependency on a structural 
database is possible. This result challenges the paradigm that the 
complexity of small-molecule chemical space precludes these 
approaches. MSNovelist constitutes the first direct application of a 
chemical generative model to mass spectrometry data. While deep 
learning models have previously been used to generate candidate 
libraries to use with independent methods for structure identifi-
cation by MS2 (refs. 25,26), MSNovelist is capable of integrating the 
structural information encoded in probabilistic fingerprints. Given 
that certain isomers fragment (almost) indistinguishably, structural 
elucidation from this data is clearly not possible in all cases; yet, 
MSNovelist suggested reasonable molecular structures for more 
than half of the MS2 spectra.

Three aspects made this achievement possible. First, structural 
fingerprint predictions from MS2 spectra (by CSI:FingerID) directly 
encode structural information and may act as a blueprint for a mol-
ecule. Second, we decoupled MS2 interpretation from structure gen-
eration, allowing us to train the generative model with millions of 
structures18 and independently from experimental MS2 data. Third, 
we exploited the analogy between writing a SMILES code based on a 
chemical fingerprint and image captioning, that is, writing a descrip-
tive sentence based on a feature vector. In this context, de novo 
structure elucidation is interpreted as a translation-like task from 
fingerprint to structure. Trained in this manner, the model works 
independently of preexisting scores for spectrum-to-structure 
matching; although we acknowledge that final re-ranking with the 
modified Platt score is important for best results.

De novo annotation could alternatively be treated directly as an 
optimization task with a preexisting scoring function; that is, can-
didate structures can be obtained by traversing the latent space in 
a generative model or with reinforcement learning on the score. 
This would not require input directly informative about structure 
(such as fingerprints), and would therefore work with any spec-
trum–structure score, such as match to simulated MS2 spectra using 
CFM-ID5 or any other score used by database search approaches. It 
would also allow the integration of orthogonal information, most 
trivially, retention time prediction.

From the point of view of chemical generative models, the task 
to generate structures compatible with a fingerprint resembles 
Tanimoto and Rediscovery benchmarks (for example, ref. 24), for 
which strong results have been achieved with existing models. It 
was, however, unclear whether the probabilistic predicted finger-
print input would provide constraints narrow enough to enable 
structure elucidation. We showed that our model retrieves a large 
proportion of correct hits, as well as additional incorrect struc-
tures that score highly in the database search. Further, incorrect 
high-scoring structures were highly similar to the correct answers, 
both anecdotally and by objective metric. Given how vast we usually 
perceive small-molecule chemical space to be35, our results appear 
better than naïvely expected. Further, a notable part of results could 
be rediscovered even by isomer sampling, without structural finger-
print input. This indicates that the chemical space described with 
the present model and training set is comparably well confined. This 
might limit the model’s ability to discover chemistry extremely dif-
ferent from known molecules. Even with this ‘conservative’ model 

of chemical space, we were able to predict plausible novel mol-
ecules in biological datasets. Finally, generative models using robust 
SMILES alternatives36,37 and non-SMILES representations38–41 could 
provide avenues for further exploration and development, although 
even the simple SMILES model achieved convincing performance 
in our setting.

The MSNovelist method specifically addresses the task of struc-
ture generation, and relies on existing methods (or external knowl-
edge) for molecular formula determination. For small compounds 
with m/z < 300, error rates of formula determination by SIRIUS are 
<10%; however, they increase to >50% for compounds with m/z 
up to 800 when considering individual spectra. However, when 
considering all spectra in a biological sample jointly, error rates 
of <10% up to m/z 800 can be achieved42; this is recommended to 
achieve best results with biological datasets. Alternatively, if the 
molecular formula is known through orthogonal information, the 
SIRIUS formula prediction may be bypassed and the formula pro-
vided directly. Finally, to address practical limitations, MSNovelist 
is currently only trained for positive-mode data. CSI:FingerID per-
formance is slightly lower on negative-mode MS2 spectra; this will 
be likely reflected in MSNovelist performance in the future. Also, 
CSI:FingerID and correspondingly MSNovelist processes MS2 
spectra with a minimum of three fragment ions; richer spectra are 
desirable for best performance.

In conclusion, this work contributes a further building block 
to the growing set of methods for untargeted computational 
mass spectrometry. It complements recent methods by Dührkop 
et al.: CANOPUS18 predicts compound classes for unknown spec-
tra, which can provide biological insight at substance-class level 
without requiring complete structures, whereas COSMIC43 aims 
to increase confidence when annotating compounds in compound 
databases but not spectral libraries. In contrast, MSNovelist focuses 
on proposing structures for compounds not in compound data-
bases. Complementary application of MSNovelist and CANOPUS 
may provide even more information as a starting point for elucida-
tion of specific unknowns.
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Methods
RNN model architecture. The encoder consists of three hidden layers and yields 
a real-valued vector z, which we consider the latent representation of the molecule 
(Supplementary Fig. 1). Vector z is further transformed via a single layer to starting 
state vectors sDec for the decoder. The decoder is a three-layer long short-term 
memory (LSTM) RNN44, which for any position i in a SMILES sequence, predicts 
probabilities for SMILES character ySi  and state sDeci  from an input of the previous 
character ySi−1, the preceding state sDeci−1, and the context vector z. This basic 
decoder model can be extended with additional information from an augmented 
feature vector vi to increase performance. Vector vi contains the running count 
of remaining atoms per chemical element, that is, the atom count in xM minus 
the sum of atoms of this element in the partial sequence up to yi, and the number 
of open brackets, that is, the count of open minus closing brackets in the partial 
sequence. This auxiliary vector aids the generation of syntactically correct SMILES, 
and molecules of a particular formula, because sequence termination is contingent 
on |vi| = 0 in the training set. Vector vi is directly given from the SMILES sequence 
for heavy atoms, whereas the number of hydrogen atoms is not directly evident in 
a partial SMILES. To this end, an auxiliary two-layer LSTM predicts a sequence of 
hydrogen atom counts per SMILES character, trained such that their sum matches 
the total hydrogen count in the molecule. For sequence prediction, xF and xM are 
encoded into z and sDec0 , and the top-k sequences are decoded via beam search. For 
every query tuple (xF, xM), the model returns k′ ≤ k valid structures S(1..k′), with 
the corresponding probability under the model (RNN score). To find the structure 
with the best match to the query fingerprint, the structures are re-ranked by the 
modified Platt score8, which measures the match between the input fingerprint 
(predicted by SIRIUS) and the deterministic fingerprint of each k′ candidate 
structure.

Definitions. We refer to deterministically calculated structural fingerprints for 
a molecule as structural fingerprints (struct-FP), and to fingerprints predicted 
from an MS2 spectrum with CSI:FingerID as spectrum fingerprints (spec-FP). 
Fingerprints that were predicted with CSI:FingerID in a tenfold structure–
disjoint cross-validation setup are called cross-validated spectrum fingerprints 
(CV-spec-FP). Fingerprints generated by perturbation from struct-FP to simulate 
spec-FP are called simulated fingerprints (sim-FP).

We denote ‘Dense<n>’ a dense, fully connected layer with n units and linear 
activation. We denote Dense<n>ReLU a corresponding layer with the activation 
function ReLU (x) = max (0, x). We denote LSTM<n,m> an LSTM RNN with 
n layers and m units per layer as described by Hochreiter and Schmidhuber44 
and implemented in Keras/Tensorflow, with tanh activation, sigmoid recurrent 
activation and no dropout.

We denote ‘CounterM’ the (recurrent) countdown function

CounterM (xi , vi−1) = vi−1 − M × xi

with a starting state v0 ∈ R
n and a (constant, non-trainable) matrix M ∈ R

n,dim(x). 
Typically M ∈ {1, 0,−1}n,dim(x).

We denote ‘BatchNormθ’ as the batch normalization function as implemented 
in Keras/Tensorflow:

BatchNormθ (xi) =
(

γi,θ
(

xi − xi
)

/
√

var(xi) + ϵ
)

+ βi,θ

for an input vector x with elements x1 ..xn. During training, xi is the batch mean 
and var(xi) is the batch variance, and, during inference, xi and var(xi) are the 
moving mean and variance obtained during training, respectively. γθ and βθ are 
learned during training, and ϵ is set to 0.001. In summary, BatchNormθ normalizes 
each batch to mean and variance of 0 and 1 per channel during training, and each 
sample to an approximate overall mean/variance during inference.

Dataset and data preprocessing. A training set for the LSTM RNN was composed 
from the databases HMDB (4.0)29, COCONUT30 and DSSTox31. The training set 
was filtered to remove molecules that couldn’t be parsed with RDKit, SMILES 
codes longer than 127 characters, disconnected SMILES codes (containing a dot), 
molecular weight larger than 1,000 Da, a formal charge, more than seven rings (as 
specified in SMILES) or elements other than C, H, N, O, P, S, Br, Cl, I and F. All 
structures contained in the CV-spec-FP dataset (see below) were removed from the 
training set. Finally, the training set contained 1,232,184 molecules with 1,048,512 
distinct structures (by InChIKey2D), and was split into ten structure–disjoint folds.

For the generation of sim-FP (see below) and model evaluation, a dataset of 
14,047 CV-spec-FP was obtained, corresponding to the openly available part of 
the CANOPUS18 evaluation data, the GNPS dataset and the CASMI dataset. The 
CV-spec-FP dataset was split into ten structure–disjoint folds, and (arbitrarily) 
matched to onefold in the training set. All structures present in the CASMI dataset 
were assigned to the same fold, such that the dataset is completely unknown to the 
corresponding model.

All molecules in input data were initially retrieved as SMILES code or InChI 
code. For every molecule, a SMILES string standardized with the PubChem 
standardization service was retrieved. Using RDKit, the structure was parsed, 
the InChIKey was generated, and the first 14 characters (a hash describing 

atom connectivity ignoring stereochemistry and charge, ‘InChIKey2D’) was 
extracted. For every unique InChIKey2D, a PubChem-standardized SMILES 
string45 was retrieved, from which stereochemical information was removed 
using regular expressions. The resulting stereochemistry-free SMILES code 
was processed in Java using the CDK toolkit (version 2.3) and SIRIUS libraries 
(version 1.4.3-SNAPSHOT at the time of writing) to obtain an aromatic canonical 
SMILES code and a >8,000-bit struct-FP as described elsewhere containing CDK 
substructure fingerprints, PubChem fingerprints, Klekota–Roth fingerprints46, 
FP3 fingerprints, MACCS fingerprints, ECFP6 topological fingerprints47 and 
custom rules for larger substructures18. The aromatic canonical SMILES code 
was parsed with the toolkit RDKit, and the molecular formula extracted. The 
struct-FP, SMILES code and molecular formula were stored in a database, or 
in a CSV-formatted text file. For the CV-spec-FP dataset, the CV-spec-FP was 
additionally stored. The multiple-kernel SVM method used by SIRIUS predicts (at 
the time of writing) 3,609 bits from the >8,000-bit struct-FP; in the following, the 
struct-FP shall denote only these 3,609 bits, and FP(S) shall denote the function 
that calculates the 3,609-bit struct-FP for a chemical structure S.

Input processing and encoding. While deterministic struct-FP by definition 
perfectly represent the chemical features of their corresponding molecules, spec-FP 
are statistical predictions and contain error. To train the model for use with such 
error-affected data, error-affected sim-FP were generated from struct-FP. For 
training, sim-FP were generated on the fly (during training) from struct-FP by 
random sampling from the CV-spec-FP dataset (minus the current training fold), 
using a procedure similar to the description in Dührkop et al.18 (‘first method’; 
Supplementary Algorithm 1).

More precisely, x∗speci + jitter is pseudocode for adding a random number 
from ( uniform (0, 1) − 0.5)) × noisefactor to x∗speci and subsequently clipping the 
results batchwise to the original range of the bit.

The sim-FP were either used verbatim (probabilistic input) or rounded to 0 
or 1 (discrete input). In the final model, discrete input was used for both training 
and prediction because it led to superior results in correct structure retrieval. For 
evaluation and in inference mode, spec-FP were also correspondingly rounded.

Additionally, a method based on correlated sampling (similar to ‘second 
method’; Dührkop et al.18) was implemented, which takes into account correlations 
between fingerprint bits. However, the method led to identical results in correct 
structure retrieval; therefore, the simpler method was further used.

The molecular formula was encoded as a vector xM ∈ N
m for the m = 10 

elements E ∈ C, F, I,Cl,N,O, P, Br, S,H (with xMi  denoting the sum of atoms 
of element Ei in the molecule). We denote MF(S) the function returning the 
molecular formula for a structure S.

The aromatic canonical SMILES codes were split into tokens consisting of 
a single character (for example, C,c, =, N,3), the two-letter elements Br and Cl 
substituted as R and L, or a sequence of characters delimited by square brackets 
(for example, [nH], [N+]), denoting special environments. t = 36 tokens occurring 
>100 times in the training set were retained, the remaining tokens (20 tokens 
with a total of <2,000 occurrences) were discarded and ignored. All token 
sequences were prefixed with a start token ($), postfixed with a final token (*) 
and padded to a fixed length of l = 128 with a pad token (&). The sequences s 
were then transformed to a one-hot encoded matrix YS

∈ {0, 1}(l,t) (such that 
YS
i,j = 1 ⇔ si = j) with column vectors ySi .

Data augmentation: element count and grammar balance. For promoting the 
formation of correct SMILES and the correct chemical formula, the input vector 
was augmented with a counter vi. This vector counted the remaining atoms for 
each element, and open parentheses in the current sequence, starting from the 
molecular formula xM (and zero open brackets) as the initial state. Formally,

vi = Hint
(

ySi , y
H
i , vi−1, xM

)

=

{ CounterM
(

Concatenate
(

ySi , yHi
)

, vi−1
)

, i > 0

Concatenate
(

xM, 0
)

, i = 0

The counter matrix M consisted of an upper part mapping input tokens, a row 
mapping the predicted implicit hydrogen count to the hydrogen element, and a row 
mapping tokens (,) to 1,−1, respectively:

(tokens)
C c [C−] N n [nH] ... ( ) ‘H’

M = C 1 1 1 0 0 0 0 0 0 (elements)

N 0 0 0 1 1 1 0 0 0

…

H 0 0 0 0 0 0 0 0 1 (implicit H)

() 0 0 0 0 0 0 −1 1 0 (parentheses)

Data augmentation: hydrogen count estimation. As opposed to heavy atom 
counts, which are directly specified by tokens in the SMILES sequence, hydrogens 
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are implicitly described, and assigned after constructing the molecular graph. For 
use in data augmentation (see above), we estimated implicit hydrogens for every 
token in a partial SMILES sequence from the sequence context. We trained an 
LSTM network with parameters ϕ

ŷHi , s
Hcount
i+1 = Hcountϕ

(

ySi , s
Hcount
i ;ϕ

)

:= Dense<1>ϕ ◦ LSTM<32,2>
ϕ (…)

where the output yHi  is the estimated hydrogen count for token i. Instead of 
deriving the hydrogen count per sequence element from actual molecular graphs 
for training, we summed yHtot =

∑

i y
H
i  and minimized the loss Lϕ =

(

ŷHtot − yHtot
)2, 

such that the sum of hydrogens assigned to each sequence element (ignoring 
termination and padding tokens) matches the total count in the molecule given by 
xM. Hcount is trained concomitantly, but separately from the remaining network 
(no gradients propagate through yH). We note that because only left-hand context is 
available, ‘hydrogen equivalents’ can be positive or negative numbers (for example, 
a branch opening may contribute a negative hydrogen).

Fingerprint encoder and sequence decoder. The encoder block Enc
(

xF, xM;θ
)

 
consists of a batch normalization layer and two dense layers (512 and 256 units, 
respectively; ReLU activation) to compute a latent code z from the concatenation 
of inputs xF and xM, and a dense layer (2*3*256 units, linear activation) to compute 
2*3 initial states sDec0  for three LSTM layers of 256 units each from the latent code z.

Similar to related work, the decoder was implemented as an LSTM with three 
layers of 256 units per layer and a final dense layer with the number of output 
tokens. The input to the LSTM consists of the context vector z (constant over the 
sequence), the preceding sequence token ySi , the molecule target vector vi and the 
LSTM state sDeci :

vin = BatchNormθ ◦ Concatenate
(

ySi , vi , z
)

P̂
(

ySi+1
)

, sDeci+1 := Dec
(

vin, sDeci ;θ
)

= Softmax ◦ Dense⟨t⟩θ ◦ LSTM⟨256,3⟩
θ (…)

Parameters θ (for Enc,Dec) and ϕ (for Hcount) were found (in parallel, but 
independently) through training in teacher-forcing manner48 to minimize the 
categorical cross entropy loss.

As in common image captioning models49, the latent space is not explicitly 
regularized; the translation task (from fingerprint features to SMILES 
representation) is expected to be a bona fide regularizer, given a small enough 
latent space. In variational inference, (over)regularized models with complex 
decoders (particularly when trained with teacher forcing) tend to ignore latent 
code50,51. This may be acceptable in tasks where a higher diversity of results is 
desired. However, the present task requires decoding to be as precise as possible. 
Multiple regularized models were additionally examined: for example, a VAE-like 
model regularized with Kullback–Leibler divergence (KL-VAE) or with the more 
information-preserving maximum mean divergence (MMD-VAE); and a model 
regularized by imposing the additional objective of reconstructing the true 
structural fingerprint of a compound from a spectrum-predicted fingerprint. All 
models with additional regularization performed worse than the base model.

Implementation and training details. The model, evaluation code and Docker 
container was implemented in Keras/Tensorflow, version 2.4.1 on Python 3.7.10, 
with associated packages (Reporting summary): matplotlib 3.3.4, pyteomics 4.4.1, 
rdkit 2020.09.1.0 and 2021.03.1, scipy 1.6.1, sqlite3 3.35.2, tqdm 4.59.0, dill 0.3.3, 
h5py 2.10.0, jpype1 1.2.1, numpy 1.19.2, pandas 1.2.3, requests 2.25.1, selfies 1.0.3, 
spectrum_utils 0.3.4, tensorflow 2.4.1, bitstring 3.1.7, chempy 0.8.0, pywebio 1.3.3, 
molmass 2020.6.10, pyyaml 5.4.1; based on Miniconda 4.10.3, with additional Java 
libraries BitToBoolean (edu.rutgers.sakai.java.util.BitToBoolean, no version) and 
ProgressBar (me.tongfei.progressbar 0.8.1), and the shell utility yq (4.9.6) Java code 
was compiled with Maven 3.7.0 for OpenJDK 11. The network was trained with 
stochastic gradient descent using the Adam optimizer52 with a learning rate of 0.001, 
β100 = 0.9, β2 = 0.999 and ϵ = 10−7 over 30 epochs. Although the evaluation loss on 
sim-FP continued to minimally improve up to epoch 30, the evaluation performance 
of models did not improve or decrease meaningfully anymore after approximately 
15 epochs. For evaluation, the weights after 20 epochs were used for all models. 
Because weights were only stored if the loss had improved over the last epoch, not all 
folds have a weight at epoch 20; in this case, the last preceding weight was used. The 
model was trained on an HPC cluster on a GPU node, using one dedicated Nvidia 
GTX 1080 or Nvidia GTX 1080 Ti GPU, five cores of a Xeon E5-2630v4 processor, 
and 80 GB RAM. Training time was approximately 45 min per epoch.

Prediction. For sequence prediction from spec-FP, the latent code z and starting 
states sDec0  were predicted with the encoder. For hydrogen prediction, sHcount

0  was 
initialized with zeros; for formula/grammar hinting, v0 = Concatenate

(

xM, 0
)

 
as stated above. Given z and the combined initial state s0 =

(

sDec, sHcount, v
)

0, a 
beam search with beam width typically k = 128 was performed with the decoder as 
described in Supplementary Algorithm 2, with argtopk(x) the positions of the top-k 
elements in vector x. In the implementation, the decoding is performed in parallel 
for multiple queries.

For evaluation, structure–disjoint cross-validation was used; that is, the model 
used for structure prediction for any CV-spec-FP was trained without any fingerprints 
for this structure in the CV-spec-FP dataset used for fingerprint simulation.

For ablation studies, stochastic decoding was additionally used. Here, k 
sequences are sampled independently. Starting with the initial token, and the given 
(deterministic) starting state, a token yi+1 = t is sampled according to its probability 
distribution P̂

(

ySi+1 = t
)

, until the termination token is sampled.

Recurrent neural network score and modified Platt score. The RNN score is the 
(log) probability of a SMILES sequence under the RNN model, given the input. 
It is calculated by adding the log probabilities for each predicted token over the 
sequence:

RNNscore =
∑

i
log P̂

(

ySi
)

|yS1..i−1

The modified Platt score8,53 measures the match between a spec-FP xF ∈ R
n 

and a struct-FP yF for a structure S; yF = FP (S) ∈ {0, 1}n, taking into account 
the predicted Platt probability (after additive smoothing) and the CSI:FingerID 
prediction statistics for each bit. The sensitivity ai = TPi/ (TPi + FNi) and 
specificity bi = TNi/ (TNi + FPi) (with TN indicating the true negatives, TP 
the true positives, FP the false positives and FN the false negatives for bit i, 
respectively) are obtained from CSI:FingerID output. The ModPlatt score is then 
calculated as follows:

ModPlatt
(

xF, yF
)

=
∑

i∈(1..3609)



























0.75 log xFi + 0.25 log (1 − ai) , xFi ≥ 0.5, yFi = 1

0.75 log
(

1 − xFi
)

, xFi ≥ 0.5, yFi = 0

0.75 log xFi , xFi < 0.5, yFi = 1

0.75 log
(

1 − xFi
)

+ 0.25 log (1 − bi) , xFi < 0.5, yFi = 0

Evaluation metrics. The model and the corresponding baselines were compared 
with multiple metrics. The following scores were calculated for every instance of 
a dataset, and their median and first and third quartiles, and/or their histograms, 
were reported.
•	 ‘% valid SMILES’: for every instance of a dataset, the percentage of predicted 

sequences that could be successfully parsed to a molecule using RDKit without 
any modifications.

•	 ‘% correct MF’: for every instance of a dataset, the percentage of predicted 
sequences that could be successfully parsed to a molecule using RDKit without 
any modifications, and that additionally matched the molecular formula of the 
correct structure.

•	 ‘Modified Platt score’: for every instance of a dataset, the modified Platt score 
of the highest-ranked candidate versus the query fingerprint. This score is a 
direct measure of how closely the generated candidate approaches the target 
fingerprint.
•	 This metric was calculated both for modified Platt-ranked and RNN 

score-ranked results.
•	 The top score by modified Platt ranking is (trivially) the highest modified 

Platt score overall (the score of the candidate with the highest score).
•	 The top score by RNN ranking is the modified Platt score of the candidate 

that ranks highest by RNN score.
•	 ‘Similarity’: for every instance of a dataset, the Tanimoto similarity of the 

highest-ranked candidate to the correct structure, based on the full (8,925-bit) 
fingerprint of the molecule parsed from SMILES and the correct structure. For 
this analysis, SMILES that parse to the correct structure are removed from the 
result set. This permits to compare chemical accuracy of the model with, for 
example, the training set, without biasing the analysis based on the presence or 
absence of the correct structure in the dataset.

•	 This metric was calculated both for modified Platt-ranked and RNN 
score-ranked results.

•	 The score was calculated by selecting the candidate with the highest 
modified Platt score or highest RNN score, respectively, and calculating 
Tanimoto similarity to the correct structure.

•	 We note that this is not necessarily the highest Tanimoto similarity 
overall, as there is no way to find the candidate with the highest Tanimoto 
similarity without knowing the correct structure.

The following scores were calculated for an entire dataset:
•	 retrieval (‘% found’): the fraction of instances for which the correct structure 

was present in the set of predicted structures
•	 rank (top-n retrieval): the fraction of instances for which the correct structure 

was at rank n or better in the ordered set of predicted structures
•	 This metric was calculated both for modified Platt-ranked and RNN 

score-ranked results.
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Results were post-processed, analyzed and plotted with R 4.0.4 and 4.1.1 with 
packages colorblindr (https://github.com/clauswilke/colorblindr/) 0.1.0@e6730be, 
directlabels 2021.1.13, ggthemes 4.2.4, glue 1.4.2, gridExtra 2.3, khroma 1.7.0, 
RColorBrewer 1.1-2, scales 1.1.1 and tidyverse 1.3.1.

De novo annotation of bryophyte metabolites. The dataset MTBLS709 was 
downloaded from the MetaboLights repository (ftp://ftp.ebi.ac.uk/pub/databases/
metabolights/studies/public/MTBLS709). Using an R script, the 10,436 MS2 spectra 
were consolidated by precursor (within 0.002 m/z) and similarity (>0.9), and 
uninformative spectra were removed to yield a dataset of 4,628 spectra. The dataset 
was submitted to GNPS for further clustering, molecular networking, initial 
annotation and visualization (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b
8b481147b844ebda2481bf9656baec8). From the resulting clustered spectra set, the 
576 spectra with m/z < 500 were selected. For completeness, the entire dataset (667 
spectra up to m/z 750) was also processed. Spectra were processed with SIRIUS 
4.4.29 for formula prediction (SIRIUS with profile Q-TOF and 20 ppm maximal 
MS2 deviation, standard settings; ZODIAC with standard settings), fingerprint 
prediction and structure annotation (CSI:FingerID, search in ‘all databases 
except in silico’). The resulting dataset was filtered to retain only instances with 
high-confidence formula annotation of ≥80% explained peaks, ≥90% explained 
intensity and ≥0.9 ZODIAC score; 224 spectra) and used as input for de novo 
structure prediction.

The structure candidates from database search and de novo prediction were 
both ranked by modified Platt score and the top candidate selected. Instances 
where the top candidate from de novo prediction was a markedly better spectrum 
fit (ModPlattMSNovelist − ModPlattdatabase > 50) were selected for further analysis 
(seven instances). The corresponding MS2 spectra were analyzed by hand, by 
library search (NIST MS version 2.4, in MS/MS Hybrid mode; product ion 
tolerance 0.02 m/z) with the NIST 20 library and the MassBank library, and using 
the NIST MS Interpreter (version 3.4.4; using protonated mass and 20 ppm).

We note that the implementation and parameters of the modified Platt score 
are minimally different from the score implemented in SIRIUS 4.4.29, and in 
rare exceptions the top candidate found by the modified Platt score might differ 
from the SIRIUS top candidate; however, rescoring was necessary to achieve a 
comparison based on the same metric.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset and scripts required to reproduce the validation, bryophyte analysis and 
figures are provided on Zenodo at https://doi.org/10.5281/zenodo.5705830. The 
dataset MTBLS709 analyzed during the current study is available in the MetaboLights 
repository at https://www.ebi.ac.uk/metabolights/MTBLS709. Processed data are 
available on the GNPS repository at https://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=b8b481147b844ebda2481bf9656baec8. The HMDB and COCONUT 
databases are available on Zenodo at https://zenodo.org/record/3375500 and https://
zenodo.org/record/3778405. The DSSTox database is available at ftp://newftp.epa.
gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/MetFrag_
metadata_files/CompTox_17March2019_SelectMetaData.csv. All further data are 
available from the authors on reasonable request.

Code availability
MSNovelist is available on GitHub (https://github.com/meowcat/MSNovelist) or 
as a Docker image on Dockerhub (stravsm/msnovelist). The software requires 
a Docker installation, and can be run as a pure command line tool or with a 
simple web interface. It was tested on Windows and Linux (Ubuntu 18.04, 
20.04) computers with 16 or 32 GB RAM. Processing of a single spectrum takes 
<5 min. Processing of the entire bryophyte dataset (550 spectra) requires 1 h 

on a workstation with ten cores, and 2.5 h on a laptop with four cores. Note that 
high-m/z molecules may require a long time for spectral fragmentation tree 
computation.
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