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A B S T R A C T   

The traditional description of a hydrological system with a deterministic, conceptual model and a lumped output 
error term does not explicitly consider the main mechanisms of uncertainty generation due to approximate 
process representation, unobserved variability in processes and influence factors, and input uncertainty. In this 
study, we test the description of such intrinsic uncertainty in conceptual models by making process rates sto
chastic through stochastic, time-dependent rate parameters. We analyze the advantages and challenges of this 
approach by using Bayesian inference to jointly estimate model parameters, parameters of the stochastic pro
cesses, and the time series of the stochastic parameters. Numerically, we use a particle filter to infer the sto
chastic time series and to approximate the marginal likelihood for Markov chain sampling of the constant 
parameters. Compared to the lumped error formulation, we achieve a more realistic description of uncertainty, as 
we obtain larger errors in intrinsic states, larger uncertainty during prediction than calibration periods (a feature 
missing for simple lumped error models), and autocorrelated model outputs. However, the additional degrees of 
freedom introduced with stochastic parameters can lead to an unintentional compensation for model deficits or 
input errors. This problem is symptomatic of model structure inadequacy or poor selection of the parameters that 
are made stochastic, and can be diagnosed through cross-validation and careful posterior analysis. The proposed 
approach is computationally more demanding and its implementation more challenging than the traditional 
description of hydrological systems using a deterministic model with a lumped error term. However, its ad
vantages both in providing a more realistic representation of uncertainties and in diagnosing model deficiencies 
suggest its adoption and further development in future studies.   

1. Introduction 

Process based catchment models are traditionally deterministic, and 
their uncertainty is accounted for by separated, lumped error terms, 
which are applied to their output (e.g., McInerney et al., 2017). Such 
lumped error models describe the effect of all sources of uncertainty, 
including input, model structure, intrinsic and externally caused 
randomness, and observation error on modelled output (e.g., Schoups 
and Vrugt, 2010; Reichert and Schuwirth, 2012; Evin et al., 2013; Evin 
et al., 2014; McInerney et al., 2017; Ammann et al., 2019). This 
approach leads to an efficient inference procedure at the cost of the need 
for an empirical error model parameterization and of the underestima
tion of the uncertainty of all internal model states (Reichert et al., 2021). 

To mitigate these problems, it has been argued in favor of modeling 

the uncertainty where it supposedly arises, rather than grouping all 
contributions in a single error term on the output of the model. This can 
be done by making the hydrological process model stochastic (e.g., 
Moradkhani et al., 2005; Kuczera et al., 2006; Liu and Gupta, 2007; 
Reichert and Mieleitner, 2009; Reichert et al., 2021). The first argu
ments for the need of stochastic models in hydrology were introduced 
more than 50 years ago by Mandelbrot and Wallis (1968). More 
recently, they consider general reasoning on the lack of suitability of 
deterministic models to describe hydrological features (Kuczera et al., 
2006), the intrinsically variable nature of hydrological parameters (Liu 
and Gupta, 2007), the characterization of structural model deficits 
(Leisenring and Moradkhani, 2011), and the opportunities for their 
identification (Wagener et al., 2003; Reichert et al., 2021). Within the 
domain of stochastic approaches to hydrology, stochastic time- 
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dependent (STD) parameters have been suggested as a tool to describe 
the effects of intrinsic uncertainty on model states and output, and to 
possibly identify structural model deficits (Reichert and Mieleitner, 
2009; Reichert et al., 2021). Indeed, by representing variability within 
the model structure, they appear particularly suited to account for our 
uncertain knowledge of the system at hand. 

A clear benefit of modeling uncertainty with STD parameters is the 
consequential natural propagation of it through the model structure to 
the output. In fact, autocorrelation effects can be induced by the sto
chastic processes, and are also directed and amplified by the propaga
tion of stochasticity throughout the model. Additionally, making process 
rate parameters stochastic is consistent with the fulfillment of mass 
balance equations, which might not be granted with other specific 
modeling strategies. Indeed, for example, if it is the level of the water in 
the reservoirs that is treated as a stochastic variable (Moradkhani et al., 
2005; Vrugt et al., 2013), then mass balance equations are not exactly 
fulfilled. Importantly, STD parameters pose no theoretical limitations to 
the concurrent use of other complementary ways to treat uncertain 
knowledge. Observational error models on input and/or output, 
including models for systematic bias (Sikorska and Renard, 2017), as 
well as stochastic model states, can all be used concurrently with STD 
parameters. 

Despite these appealing features, STD parameters are seldom applied 
to demanding modeling scenarios. This is mainly because of the in
tricacy of the algorithms needed to cope with the calibration of sto
chastic models, because of the computational resources required to 
achieve converged results, and possibly also because more complex and/ 
or informative outcomes can be more challenging to mine and interpret. 
Hence, the overarching goal of this contribution is to comprehensively 
test and discuss the feasibility of using STD parameters for a non-linear 
multi-reservoir conceptual hydrological model applied to real-world 
data, and to show the ensuing implications on uncertainty quantifica
tion. By doing so, we advance previous studies by considering a more 
complex model, and by using up to 3 STD parameters at once. We also 
resort to a novel parallel framework (Šukys and Bacci, 2021), which 
allows us to benefit from available high-performance computing (HPC) 
infrastructure and to use the Particle Filter (PF) method coupled with a 
Markov Chain Monte Carlo approach to Bayesian inference (PMCMC) (e. 
g., Doucet and Johansen, 2009; Andrieu et al., 2010; Fearnhead and 
Künsch, 2018; Van Leeuwen et al., 2019). Although not pursued here, 
this could in principle be used to extend our work to non-linear sto
chastic processes, differently from what is possible with other methods, 
such as conditional Ornstein–Uhlenbeck sampling (Buser, 2003; Tom
assini et al., 2009; Reichert and Mieleitner, 2009; Reichert et al., 2021). 
On the other hand, the calibration of stochastic models with the PMCMC 
method is usually more computationally expensive, and hence also 
likely to require expertise in parallel programming, or at least familiarity 
with and access to HPC resources. Thus, an additional goal of this 
contribution is to report on the algorithmic and computational aspects 
implicit in this more universal and wider-ranging approach to stochastic 
modeling in hydrology. 

Ultimately, the main motivation for the present and possible future 
endeavors of this type, comes from the fact that approaches like this one 
can allow the modeler to improve the characterization of uncertainty by 
improving the partition of the variability into the different sources, and 
can help identify and correct possible model deficits (Reichert et al., 
2021). Thus, we also list among our objectives the discussion of these 
aspects for our case study. With this aim in mind, we consider and 
discuss in particular the possible “misuse” of stochastic parameters, 
which occurs when the posterior dynamics of the stochastic parameters 
systematically adjusts for model deficits. Such a misuse can only occur, 
however, when the data are known and used to inform the dynamical 
behavior of the model, as in calibration/data-assimilation procedures. In 
contrast, compensation of model deficits simply cannot take place dur
ing prediction as observations are not used to inform the response of the 
model. This inevitably reduces the predictive power of those models for 

which misuse of stochastic parameters occurred in calibration, and this 
can be detected and quantified with cross-validation. Further steps, such 
as the explicit modeling of input uncertainty and the consideration of 
data sets with higher, e.g. hourly, time resolution, are all challenges that 
we suggest should be tackled in forthcoming studies. 

In summary, the aims of this study are to explore, characterize, and 
discuss the application of STD parameters to a conceptual hydrological 
model structure by using the PMCMC method within a parallel 
computational framework. Efforts are specifically directed to determine 
the ensuing implications for uncertainty quantification and to assess 
possible modeling limitations of the proposed approach and of the un
derlying hydrological model, which the proposed approach can help to 
detect. In order to meet and communicate all the mentioned goals the 
following design is taken. First, we select and describe our hydrological 
case study including the observational data in Section 2.1, and the hy
drological model that we use for its description in Section 2.2. Then we 
go into more details regarding STD parameters, inference, and PF 
method, see Sections 2.3,2.4,2.5,2.6. We close the methodological part 
with an overview on prior and post-processing, which hinges on the 
need to quantify and compare the results of the simulated models, both 
for calibration and cross-validation, Sections 2.7 and 2.8. Results are 
presented and interpreted in Section 3, and further discussed in 4. The 
contribution ends with laying down our Conclusions in Section 5. 

2. Materials and methods 

2.1. Study area and data 

We apply our approach for inference and cross-validation to the 
Murg catchment, a small (80 km2) pre-alpine foothill catchment in 
northeastern Switzerland, which is sometimes addressed to as Wängi 
catchment from the name of the village where the gauging station is 
located. This catchment belongs to the larger Thur river basin, and has 
been object of several previous studies (e.g., Dal Molin et al., 2020; 
Ammann et al., 2019; Schirmer et al., 2014), to which we address the 
reader for further specific hydro-geological information. Here, it suffices 
to say that the Murg area is characterized by steep slopes that can make 
the streamflow peaks quite sharp by draining directly into the river 
(Ammann et al., 2019), and that only 5% of precipitation is falling as 
snow, which implies that snowfall is not a prominent influencing factor 
of the streamflow (Dal Molin et al., 2020). Additionally, there are no 
natural or artificial reservoirs in the study area. All these notions are 
used to inform the building up of the hydrological model in Section 2.2. 

The data used in this study consist of daily precipitation, potential 
evaporation, and streamflow for a 6 years period ranging from 01–09- 
1993 to 31–12-1999. As in previous works, (Dal Molin et al., 2020; 
Ammann et al., 2019), streamflow values come from the Swiss Federal 
Office for the Environment (FOEN), while precipitation and potential 
evapotranspiration from MeteoSwiss (2018). All data are pre-processed 
as described by Dal Molin et al. (2020). The selection of a daily temporal 
resolution is justified by a previous study (Dal Molin et al., 2020), and by 
the necessity to keep the computational time and budget within 
reasonable limits while still exploring multiple hydrological hypotheses. 
We use the observations from 01–09-1993 to 31–08-1997 for calibra
tion, with a warm-up period to let the initial condition equilibrate equal 
to 365 days. The data from 01–09-1997 to 31–12-1999 serve for cross- 
validation. 

2.2. Hydrological model and experiments 

The lumped model structure used in this study is schematically 
shown in Fig. 1, and in terms of complexity and processes representa
tion, is broadly reflective of typical conceptual rainfall-runoff models 
such as HBV (Lindström et al., 1997), GR4J (Perrin et al., 2003) or 
HyMod (Wagener et al., 2001). 

More specifically, the model follows the classic three elements setup 
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outlined by Jakeman and Hornberger (1993), composed by an upstream 
element connected in series to two downstream units working in par
allel. The upstream element is an “unsaturated” reservoir (UR, u 
subscript), and it exchanges directly with the environment through 
precipitation and evapotranspiration terms. The balance between these 
two determines the amount of water stored in UR, which controls, 
through a nonlinear term and a splitting unit, the flow to the two 
downstream elements. These last two units are both linear reservoirs, a 
“fast” reservoir (FR, f subscript) intended to represent the hydrograph 
peaks, and a “slow” reservoir (SR, s subscript) intended to represent 
baseflow. The model structure is built by using the SUPERFLEX 
modeling framework (Fenicia et al., 2011). We do not consider a lag 
function as in other models such as HBV as deemed unnecessary based 
on preliminary simulations. Supported by precipitation data, see Section 
2.1, we also do not implement a snow component. 

In order to limit the number of model calibration parameters, simi
larly to what done in some other conceptual models such as GR4J, some 
model parameters are fixed. In particular, we use β=5 unless otherwise 
stated, which approximates a smooth threshold behavior for discharge 
generation and is justified by preliminary simulations, see Section 3.1. 
We also use m = 0.01 as in previous works (Fenicia et al., 2013; Fenicia 
et al., 2018), which implies that actual evaporation is approximately 
equal to the potential evaporation unless the reservoir is close to empty. 

The dynamics of a model with structure as in Fig. 1 is controlled by 
Eqs. (1): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSu

dt
= Pt − Qq − Eu = Pt − Pt

(
Su

SuMax

)β

− CeEp
Su/SuMax(1 + m)

Su/SuMax + m

dSf

dt
= Pf − Qf =

(

1 − D

)

Qq − kf Sf =

(

1 − D

)

Pt

(
Su

SuMax

)β

− kf Sf

dSs

dt
= Ps − Qs = DQq − ksSs = DPt

(
Su

SuMax

)β

− ksSs

Qm = Qf + Qs = kf Sf + ksSs

(1) 

From eq. (1), SuMax controls the maximum water level in UR (any
thing above that level is spilled out to the downstream units in a single 
time step as in a truly on–off model), Ce is the scaling coefficient for the 
evapotranspiration term, D is the split parameter that controls how the 
water from UR is partitioned between the two downstream reservoirs 
(the larger D the larger the flux to the slow reservoir), and kf and ks are 
the coefficients that control the linear storage-discharge relationship in 
the corresponding reservoir (FR and SR, respectively). 

In the following case studies, parameters kf , ks, and/or D can be 
either deterministic (meaning, constant in time) or stochastic (meaning, 
represented by a suited time-dependent stochastic process, see Section 
2.3). In particular, we investigate a fully deterministic model and 4 

stochastic models with different selections of STD parameters. The 5 
experiments and the associated model calibration parameters are sche
matically shown in Table 1. The deterministic model Det does not 
include any stochastic process, hence it only numbers 5 fitted parame
ters that we summarize in vector θm = (SuMax, Ce, D, kf , ks). In model 
Sto − Kf the STD parameter is kf , in Sto − Ks it is ks and in Sto − D is D. 
Finally, in Sto − KKD we make all of them concurrently stochastic. In the 
stochastic models, the temporal dynamics of the STD parameters is 
inferred jointly with both the parameters of the processes that model 
them and with the other model parameters. 

The choice of making kf ,ks, and/or D stochastic rests on both theo
retical and practical aspects. Indeed, by limiting stochastic modeling to 
process rates, mass balance equations formulated in the deterministic 
model remain valid. This would be more difficult for capacity parame
ters such as maximum reservoir levels. The three parameters mentioned 
above are the key process rate parameters. 

2.3. STD parameters 

By denoting a general STD parameter with θs, we model the evolu
tion of a suited transformation of that parameter f(θs), with a linear 
time-continuous autoregressive stochastic process χOU

f(θs)
called Orn

stein–Uhlenbeck (OU) process (Uhlenbeck and Ornstein, 1930). This 
formally writes as f(θs(t)) = χOU

f(θs)
(t) ∀t. Practically, this means that, 

given the value of the transformed STD parameter θs at time t0, f(θs(t0) ), 
then the probability distribution of its subsequent value f(θs(t1)) at time 
t1 > t0 is given by the Normal distribution: 

f
(
θs
(
t1
))
|f
(
θs
(
t0
))

∼ N

⎛

⎝μOU
f (θs)

+
(

f (θs(t0)) − μOU
f (θs)

)
exp

(

−
t1 − t0

τOU
f (θs)

)

,

σOU
f (θs)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − exp

(

− 2
t1 − t0

τOU
f (θs)

)√
√
√
√

⎞

⎠

(2) 

From eq. (2), the parameters of the OU process are its asymptotic 
mean μOU

f(θs)
, its asymptotic standard deviation σOU

f(θs)
, and its autocorrela

tion time τOU
f(θs)

. We summarize these parameters in the parameter vector 

θOU =
(

μOU
f(θs)

, σOU
f(θs)

, τOU
f(θs)

)
and we keep the notation θOU also for the cases 

with multiple stochastic parameters where this parameter vector con
tains the means, standard deviations and correlation times of all the STD 
parameters. 

While an OU process has unbounded codomain, model parameters 
might not exceed a given range of values. This is the reason why we 
generally need the transformation f on θs. Such a transformation allows 
us to map the usually limited support of the modeled parameter onto the 
values that the OU process can take, χOU

f(θs)
(t) ∈ R. In this study, we make 

Fig. 1. Schematics of the conceptual hydrological model. The upstream unsaturated reservoir exchanges with the environment through precipitation Pt and 
evapotranspiration Eu terms. Its water level is Su and its outflow feeds two downstream linear reservoirs through a splitting component. The final discharge Qm is the 
sum of the outflow of the two downstream compartments. 
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model parameters kf ,ks, and D stochastic. Since kf and ks are constrained 
to R+, we need a transformation f(kf ) : R+→R. To this aim, we simply 
choose the natural logarithm as in previous works (Reichert et al., 2021; 
Reichert and Mieleitner, 2009). This means that what we describe with 
the OU process is not kf or ks, but it is their natural logarithms, e.g., 
ln(kf (t)) = χOU

ln(kf )
(t). The equation for ks is analogous. For the split 

parameter, the transformation that we choose is the logit function. This 
is because D ∈ [0,1], and the logit function is a possible way to map this 

interval to R: logit
(

D
(

t
))

= ln
(

D(t)
1− D(t)

)

= χOU
logit(D)

(

t
)

. 

In summary, when a parameter is modeled by an OU process, we 
have to infer the value of the asymptotic mean of the process μOU

f(θs)
, its 

asymptotic standard deviation σOU
f(θs)

, and its autocorrelation time τOU
f(θs)

, 
jointly with the posterior of its actual time course. To simplify the no
tation and to highlight the fact that we always refer to the back- 
transformed parameters θs, we use the symbol < θs > to indicate the 
time-mean of f − 1(χOU

f(θs)
(t))where appropriate in Section 3. We now 

proceed by considering the error model that we use, to then be able to 
discuss our inference framework. 

2.4. Observational and lumped error models 

In our setup, the output error term applies to the discharge of the 
hydrological model in the same way regardless of the type of process 
model (deterministic or stochastic). The parameterization that we 
choose is also the same. These choices are supported by simplicity, by 
the willingness to be able to perform direct comparisons, and by the 
flexibility of the selected error parameterization. However, we should 
notice that the error term on the output has in principle a different 
meaning for the deterministic or stochastic models. In the first case, the 
error lumps together all sources of uncertainty, while for stochastic 
models it ideally just represents the observation error, as parametric, 
model structure uncertainty, and intrinsic stochasticity are considered 
by the STD parameters. 

In the remainder of the text, for simplicity, we call the output error 
model observational likelihood even when, for the deterministic hy
drological model, it represents the distribution of observations resulting 
from intrinsic uncertainty in addition to observation error. 

To model the lumped or observational error for the streamflow Qobs, 
we opt for a widespread approach. As it is well known, the precision of 
the measurement depends on the magnitude of the streamflow itself. A 
possible way to deal with such a heteroscedastic error term is to trans
form the data and the model output via a Box-Cox (BC) transformation 
(Box and Cox, 1964), and to then apply a homoscedastic Gaussian error 
model in the transformed space (McInerney et al., 2017): 

BC(Qobs) = BC(Qm) + ∊BC
∊BC ∼ N(0, σBC)

→BC(Qobs) ∼ N(BC(Qm), σBC)

(3)  

where BC
(

Q
)

= Qλ − 1
λ ,Qm is the streamflow output by the hydrological 

model, Qobs is the observed discharge, and the last expression in (3) 
provides the expected distribution of the observed data given the model 

output. In other words, it provides the basic and actionable definition of 
the observational likelihood given data and model output, definition 
that is required to calibrate the deterministic model in a Bayesian 
setting, see Section 2.5. We note that the observational error model (3) 
adds 2 parameters per hydrological model to the ones in Table 1: the 
standard deviation of the normal distribution in BC space, σBC, and the 
parameter λ of the transformation. As it is commonplace, we inferr σBC 
while fixing λ to 0.5 as recommended in previous work (McInerney et al., 
2017). Our parameter vector for the error model thus consists of a single 
element, θy = (σBC). We also note that we use the back-transformed error 
∊ = Qobs − Qm = BC− 1(BC(Qm)+∊BC) − Qm to expose the relevant results 
in Section 3. 

In order not to also have to resolve identifiability problems between 
input and intrinsic uncertainties, we do not consider input uncertainty 
explicitly, but analyse potential implicit effects of input uncertainty in 
our results. We also note that input uncertainty could be considered in 
the used framework, for example by modelling precipitation as a 
transformed stochastic process and using the observations to condition it 
(Del Giudice et al., 2016). 

All our models, namely the hydrological model, see Eqs. (1) and also 
Table 1, and the observational or lumped error model, eq. (3), have 
parameters, which are grouped in the vectors θm and θy, respectively. 
These parameters are inferred based on the available data, as detailed in 
the following Section. 

2.5. Inference 

The parameters of the deterministic hydrological model given by Eq. 
(1) and the lumped error model given by Eq. (3) are inferred from the 
data using Bayes equation: 

P
(

θ|Qobs

)

=
P(Qobs, θ)
P(Qobs)

=
L(Qobs|θ)π(θ)

E(Qobs)
∝L
(

Qobs|θ
)

π
(

θ
)

. (4) 

Here, θ = (θm, θy) are the parameters of both the hydrological and 
error models, the joint probability density of data and parameters P(Qobs,

θ) is made explicit as the customary product between likelihood L(Qobs|θ)
and prior π(θ), and the the unconditional probability density of the 
observations P(Qobs) is simply renamed evidence E(Qobs) as it is 
commonplace. The likelihood function of the model L(Qobs|θ) is the 
probability density of the observed data Qobs given the parameters θ, and 
used as a function of the parameters by substituting the actual obser
vations for the corresponding argument, π(θ) summarizes previous 
knowledge about plausible parameters values, and the evidence results 
from the joint distribution through marginalization over the parameters, 
E(Qobs) =

∫
L(Qobs

⃒
⃒θ)π(θ)dθ, hence it is constant for a given model. 

Although the prior is an important component of Bayesian inference, 
see Section 2.7, the core prior element are the modeling choices re
flected by the likelihood. The error model in eq. (3), which assumes 
independence between model residuals, implies the following 
likelihood: 

L

(

Qobs|θ

)

= Lt1 :tn

(

Qt1 :tn
obs |θ

)

=
∏n

k=1
pQ

tk

(
Qtk

obs

⃒
⃒Qtk

m

(
θm), θy) (5)  

where 

Table 1 
Parameters present in the models. “–” means that the parameter is absent in the relevant model. Parameters β and m in Eqs. (1) are kept fixed in all models to 5 and 0.01 
respectively, unless stated otherwise.   

SuMax Ce kf ks D χOU
f(kf )

μOU
f(kf )

σOU
f(kf )

τOU
f(kf )

χOU
f(ks)

μOU
f(ks )

σOU
f(ks )

τOU
f(ks)

χOU
f(D) μOU

f(D) σOU
f(D) τOU

f(D)

Det ✓ ✓ ✓ ✓ ✓ – – – – – – – – – – – – 
Sto-Kf ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – – – – – – 
Sto-Ks ✓ ✓ ✓ ✓ ✓ – – – – ✓ ✓ ✓ ✓ – – – – 
Sto-D ✓ ✓ ✓ ✓ ✓ – – – – – – – – ✓ ✓ ✓ ✓ 

Sto-KKD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
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p
Q

tk

(
Qtk

obs

⃒
⃒Qtk

m

(
θm), θy) = ρN(BC(Qtk

m (θm)),σBC)

(

BC
(

Q
tk

obs

))

⋅
dBC(Q)

dQ |
Q=Qtk

obs

= ρ
N

(
BC

(
Q
tk

m

(
θm

))
, σBC

)
(

BC
(

Q
tk

obs

))

⋅Q
tk

obs
λ − 1

(6) 

Here pQ
tk (Q

tk
obs

⃒
⃒
⃒Qtk

m(θ
m), θy) is the probability that we measure Qtk

obs at 

time tk given the output of the model Qtk
m at that time, with ρN(μ,σ)(x) the 

probability density of a Normal distribution with mean μ and standard 
deviation σ evaluated at x. This expression is substituted into Eq. (4) to 
complete our definition of the posterior for the deterministic model. 

If one or multiple parameters of the model are chosen to be sto
chastic, however, we get a hierarchical model. In this case, we denote 
the stochastic parameter(s) (a subset of the parameters θm of the hy
drological model) by θm

s , and the remaining constant parameters by θ− s 

= (θm
− s, θy, θOU), where θm

− s are the constant parameters of the hydro
logical model, θy are the parameters of the error model, and θOU =
(

μOU
f(θs)

, σOU
f(θs)

, τOU
f(θs)

)
are the parameters of the Ornstein–Uhlenbeck pro

cess(es), see Section 2.3. We then have to modify Eq. (4) to:  

Here, p(θm
s
⃒
⃒θOU

s ) is the back-transformed joint probability density of 
the Ornstein–Uhlenbeck process at all time points of a grid with fine 
resolution. For a single stochastic parameter, this joint density is given 
as the product of an unconditional normal distribution for the initial 
point multiplied by the product of the conditional distributions of the 
next point given the previous one, see eq. (2), and multiplied by the 
correction factor for back-transformation:   

Note that, for multiple stochastic parameters, we would need a 
product of expressions of the form given by Eq. (8). Note also that we use 
the same notation for the time steps in Eq. (8) as in the observation 
likelihood (5), since this is the implementation used in this paper. 
However, this is not a requirement of this technique. The time dis
cretization of the stochastic process is required only to integrate the 
differential equations of the hydrological model, hence it is completely 
independent of the observation time spacing. In Eq. (7), π(θ− s) is the 
joint prior of the constant parameters and will usually be assumed to be 
the product of independent distributions of the three categories of pa
rameters, π(θ− s) = π(θm

− s)π(θy)π(θOU
s ) (independence assumptions are 

often taken also between the parameters within these three categories), 
and E(Qobs) is now given by ∬ L(Qobs

⃒
⃒θ− s, θm

s )p(θ
m
s
⃒
⃒θOU

s )π(θ− s)dθm
s dθ− s. 

Since the parameterization of the error model is the same for all process 
models, we note that (5) and (6) (with (θm

− s, θm
s ) for θm and (θ− s, θm

s ) for θ) 
are still valid for Lt1 :tn (Q

t1 :tn
obs

⃒
⃒θ− s, θm

s ) in (7), once Qm is available at each 
time step tk by simple time-integration of the hydrological model and of 
the respective stochastic process(es), the propagation of which in time 
evaluates (8). 

From (7) we get the marginal posterior of the constant parameters by 
integrating out the stochastic dynamics θm

s : 

P
(

θ− s|Qt1 :tn
obs

)

∝
∫

Lt1 :tn

(

Qt1 :tn
obs |θ− s, θm

s

)

p
(

θm
s |θ

OU
s

)

dθm
s ⋅π
(

θ− s

)

= Lmarg
t1 :tn

(

Qt1 :tn
obs |θ− s

)

π
(

θ− s

)

(9)  

with marginal likelihood: 

Lmarg
t1 :tn

(

Qt1 :tn
obs |θ− s

)

=

∫

Lt1 :tn

(

Qt1 :tn
obs |θ− s, θm

s

)

p
(

θm
s |θ

OU
s

)

dθm
s . (10) 

Note that the last expression in Eq. (9) is again of the form of (4). 
However, the (marginal) likelihood is now the very high-dimensional 
integral (10), which implies the need to infer the time series of θm

s . 
This makes inference for a stochastic model a much harder problem than 

inference for a deterministic one. 

2.6. Numerical approach 

For the deterministic model we use a Markov Chain Monte Carlo 
(MCMC) approach to sample from the posterior given by Eq. (4) with the 
likelihood defined by Eqs. (5) and (6), and choose the affine invariant 
Markov chain Monte Carlo ensemble (EMCEE) sampler by Foreman- 
Mackey et al. (2013) to achieve fast convergence. 

When using stochastic parameter(s) we apply the Particle Markov 
Chain Monte Carlo (PMCMC) scheme described in Andrieu et al. (2010). 
This approach consists of combining a Particle Filter (PF) (e.g., Doucet 
and Johansen, 2012; Fearnhead and Künsch, 2018; van Leeuwen et al., 
2019) to sample the posterior marginals of the stochastic parameter(s) at 
each time point conditional on the constant parameters (and on past to 
present observations), and using these conditional samples to approxi
mate the marginal likelihood (10). The approximate marginal likelihood 
is then used within an MCMC scheme to sample the constant parameters, 
including the parameters of the stochastic process, according to Eq. (9). 
Again, for this last step, we use the EMCEE sampler cited above. We 
provide some more details on this PMCMC approach in the next 
paragraph. 

P
(

θ− s, θm
s |Qobs

)

=
Lt1 :tn

(
Qt1 :tn

obs

⃒
⃒θ− s, θm

s

)
p
(
θm

s

⃒
⃒θOU) π

(
θ− s
)

E(Qobs)
∝Lt1 :tn

(

Qt1 :tn
obs |θ− s, θm

s

)

p
(

θm
s |θ

OU
)

π
(

θ− s

)

. (7)   

p

⎛

⎝θm
s |θ

OU

⎞

⎠ = ρ
N

(
μOU

f(θm
s )

,σOU
f(θm

s )

)
(
f
(
θm

s

(
t1
)) )∏n

k=2
ρN(μk ,σk )

(
f
(
θm

s

(
tk
)) )

⋅
∏n

k=1

df (θ)
dθ

|θm
s (tk)

with

μk = μOU
f(θm

s )
+
(

f
(

θm
s

(
tk− 1

))
− μOU

f (θs)

)
exp

(

−
tk − tk− 1

τOU
f(θm

s )

)

, σk = σOU
f(θm

s )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − exp

(

− 2
tk − tk− 1

τOU
f(θm

s )

)√
√
√
√

(8)   
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Fig. 2 provides an overview of the PMCMC scheme to the joint 
inference of constant and stochastic parameters. 

PMCMC (Andrieu et al., 2010) starts with sampling posterior mar
ginal states of the stochastic parameter θm

s at each time point for given 
constant parameters by the PF. As illustrated in Fig. 2, this is done by 
sampling values θm

s (ti) at a given time point from samples of points 
(particles) at the previous time point, ti− 1, integrating the hydrological 
model for each of these trajectories within the interval from time ti− 1 to 
time ti, and then calculating importance weights proportional to the 
observation likelihood at the new time point. The values (particles) are 
then resampled according to the weights (observational likelihoods), 
and the weights are used to calculate the approximate marginal likeli
hood. To derive this approximate marginal likelihood, we first write the 
marginal likelihood (10) as a product of an unconditional distribution 
for the first observed discharge multiplied by conditional distributions 
for discharge at subsequent time points: 

Lmarg
t1 :tn

(

Qt1 :tn
obs |θ− s

)

= p

(

Qt1
obs|θ− s

)
∏n

k=2
p

(

Qtk
obs|Q

t1 :tk− 1
obs , θ− s

)

, (11)  

where n is the number of observations. This equation allows us to 
calculate approximate marginal likelihoods, L̂, based on samples 
{θm

s,i(tk)}
Np
i=1 of the marginal distributions at all time points from the 

Particle Filter: 

L̂
marg
t1 :tn

(

Qt1 :tn
obs |θ− s

)

=
∏n

k=1

1
Np

∑Np

i=1
pQ

tk

(
Qtk

obs

⃒
⃒
⃒Qtk

m

(
θm
− s, θm

s,i

(
t1 : tk

))
, θy
)

(12)  

where Np is the number of particles and pQ
tk 

is given by (6) in this work. 
There are two main reasons why this expression is approximate. First, 
the samples of the time series of θm

s are replaced by the samples from the 
marginals at each time point that are only conditioned on the data up to 
this time point (this is a property of the filtering approach) and second, 
with finite samples, distributional properties can only be calculated 
approximately. In an “outer loop”, the approximation given by Eq. (12) 
can be used in (9) to sample from the marginal posterior of the constant 
parameters, θ− s, using the EMCEE sampler. 

All calculations are carried out using the SPUX framework by Šukys 
and Bacci (2021). In each simulation, if not differently stated, we use 24 

Fig. 2. Sketch of the coupling between a Metropolis MCMC scheme with an inner Particle Filter. At each observational time, the (instantaneous) observational 
likelihood pQ

tk 
of each model execution (particle) is used to fully resample the particles ensemble. In this sketch, the green and blue particles are far from the data, 

hence their likelihood value is small, hence they are not resampled. The imagined result is that they are restarted by cloning the purple and red particles, which are 
envisaged to be the resampled particles. Propagation then proceeds independently to the next observation point, and trajectories diverge due to the stochasticity of 
the model. At the end the (marginal) likelihood is used to evaluate whether or not to reject the current proposed parameters θ. 

Table 2 
Prior distributions for the model of the physical system and for the observational error model of the output. LN(a,b) stands for log-normal distribution with mean a and 
coefficient of variation b. N(a,b) stands for normal distribution with mean a and standard deviation b. α in σOU

logit(D) has been numerically estimated by using the logit 
transformation over a large number of samples drawn from the prior of D of the deterministic model to estimate the variance of D in OU space (α = 1.636077).   

Det Sto − KF Sto − KS Sto − D Sto − KKD 

SuMax LN(200,1) LN(200,1) LN(200,1) LN(200,1) LN(200,1) 
Ce LN(1,1) LN(1,1) LN(1,1) LN(1,1) LN(1,1) 
kf LN(5,1) – LN(5,1) LN(5,1) – 
ks LN(10− 3,1) LN(10− 3,1) – LN(10− 3,1) – 
D LN(0.5,0.5) LN(0.5,0.5) LN(0.5,0.5) – – 

μOU
ln(kf )

– 
N
(

ln(5) − 0.5ln(2),
̅̅̅̅̅̅̅̅̅̅̅
ln(2)

√ ) – – Infer 

σOU
ln(kf )

– LN(1,1) – – LN(1,1) 

τOU
ln(kf )

– LN(12,1) – – LN(12,1) 

μOU
ln(ks )

– – N
(

ln(10− 3) − 0.5ln(2),
̅̅̅̅̅̅̅̅̅̅̅
ln(2)

√ ) – 
N
(

ln(10− 3) − 0.5ln(2),
̅̅̅̅̅̅̅̅̅̅̅
ln(2)

√ )

σOU
ln(ks )

– – LN(1,1) – LN(1,1) 

τOU
ln(ks )

– – LN(12,1) – LN(12,1) 

μOU
logit(D)

– – – N(0,1) N(0,1) 

σOU
logit(D)

– – – LN(α,1) LN(α,1) 

τOU
logit(D)

– – – LN(12,1) LN(12,1) 

σBC LN(1,1) LN(1,1) LN(1,1) LN(1,1) LN(1,1)  
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particles and 40 Markov chains propagated in parallel as a trade-off 
between accuracy and computational load and time. 

2.7. Prior 

Table 2 collects the prior marginal distributions for all the parame
ters that we infer. The joint prior is constructed by assuming indepen
dence. As it is often the case, with the exception of parameter D and of 
the parameters that characterize the OU process and the error model, we 
sample in log space. This means in practice that prior log-normal dis
tributions are transformed into the corresponding normal distributions 
in the numerical implementation. To start the Markov chains, we draw 
from Gaussian distributions centered at the mean of the marginal priors 
and with standard deviation equal to 10% the value of the mean. As a 
general note, we use quite lenient priors in terms of support, albeit with 
clear preferences for those specific values that expert knowledge sug
gests. Regarding the initial states, as mentioned in Section 2.1, we use a 
1 year long warm-up phase at the beginning of each model execution to 
allow the level of the water in the initially empty reservoirs to adapt. 

2.8. Analysis of Results 

We distinguish three main steps for the analysis of results:  

1. Analysis of convergence of the Markov chains, Section 3.1.  
2. Model deficit analysis, Section 3.2.  
3. Posterior analysis and prediction, Section 3.3. 

The first step is a prerequisite for any interpretation of the results. In 
case of poor convergence, we would have to improve the sampling 
procedure or extend the Markov chains. The second step is intended to 
establish whether the additional degrees of freedom of the stochastic 
parameters are misused during calibration to compensate for model 
deficits. If this is the case, the statistical properties of the inferred 
parameter time series are not valid and either the model would have to 
be improved or the parameters leading to these problems would have to 
be kept constant. We check this by cross-validation and by analyzing the 
inferred parameter time-series. Finally, after these checks have been 
passed, we can move on to the third step of interpretation of the results 
and prediction. We discuss the methodologies applied in these three 
steps in the following three subsections. 

2.8.1. Convergence analysis 
In most cases, visual analysis of the Markov chains provide sufficient 

information of convergence deficits due to extended burn-in periods, 
weak mixing, or long residence time in secondary modes. Visual in
spection also provides insights that can be useful in resolving the 
convergence issue. On the other hand, quantitative convergence mea
sures, such as the estimation of the effective sample size and standard 
MCMC convergence tests, can be very useful for getting indications on 
which chains need a more detailed inspection. Although we make use of 
both approaches in Section 3.1, the most satisfactory corroboration of 
convergence comes from diagnostic runs, where we change the models 
slightly, and achieve marginal posteriors that are very similar to the 
original ones. We obtain this while testing the influence of the number of 
particles on model Sto − Kf , Section 3.1, and of the prior for τOU

ln(ks)
on 

model Sto − Ks, Section 3.2.3. 

2.8.2. Model deficit analysis 
The strongest methodology to identify misuse of the degrees of sto

chasticity to compensate for model deficits is cross-validation, which 
means that the model is run with the calibrated parameters without 
assimilating the available output data, which are used exclusively to 
asses the model’s predictive power. This check is particularly important 
for stochastic models, where during calibration the time course of the 

time dependent parameters is inferred. In such a case, the difference in 
model performance between calibration and cross-validation can be 
indicative of the extent to which the time dependent parameters 
compensate for model deficits. If during inference the time-dependence 
of a stochastic parameter is used to compensate for systematic model 
deficits, a good performance will not be reproducible in cross-validation 
due to the (uninformed) random evolution of the stochastic process. For 
this reason, predictions will be poor and cross-validation will make the 
problem, if present, identifiable. 

As shown in Section 3.2.1, aside from visual inspections, to assess 
cross-validation results we use four summary metrics, similarly to pre
vious work (Reichert et al., 2021). Those are the relative spread, σrel, the 
distribution of the values that Qobs attains within the cumulative dis
tribution function relevant to the model outputs Qm, which we simply 
refer to as CDF, the well-known Nash–Sutcliffe efficiency (NSE) (Nash 
and Sutcliffe, 1970), and the flashiness index (FI) (Baker et al., 2004; 
Fenicia et al., 2018). 

The relative spread is a diagnostic metric that aims to inform on the 
width of the distribution of the model output Qm. It does so by taking the 
average of the ratio between the standard deviation (SD) of the model 
predictions at a given time and the value of the corresponding obser
vation. For a stochastic model, we can in principle partition the data by 
grouping according to particles, parameters, or both. Namely, at any 
observational time ti, we can compute the SD across parameters, keeping 
the particles separated, across particles keeping the parameters sepa
rated, Eq. (13b), or across all the data, Eq. (13a): 

σrel

⎛

⎜
⎜
⎜
⎜
⎝

Qm,Qobs

⎞

⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
n

∑n

i=1

SD[Qm(ti)]parameters,particles

Qobs(ti)
(a)

1
n
∑n

i=1

SD[Qm(ti)]particles

Qobs(ti)
(b).

(13) 

Note that with Eq. (13a) we obtain one single scalar, while with 
(13b) we get as many σrel values as there are parameters samples. Hence, 
we can display a distribution of values. In general, we find that grouping 
the data by the parameters does not add much to the description ob
tained by Eq. (13a), and so we do not include those results for brevity. 

We examine the CDF, eq. (14), to complement and extend the 
analysis by σrel, as this is another metric that reports on the match and 
span of the simulation data with respect to the observations. Indeed, if 
the observations are drawn from the model realizations, then the 
respective CDF values should delineate an uniform distribution. Any 
deviation hints to specific issues. An excessive weight on any of the tail 
would point to coverage problems, as such a shape would manifest that 
observations are too often outside the range of model’s predictions. In 
contrast, distributions peaked around the center would suggest that 
either overparameterization is at play (especially if the respective value 
of σrel is small), or that there might be an excess of uncertainty (espe
cially if the corresponding σrel is large). For simplicity, for this metric, we 
just group all the data together, as the metric itself amounts to a 
distribution: 

CDF
(

Qm,Qobs

)
= F[Qm(ti)]parameters,particles

(
Qobs

(
ti

))
. (14) 

The NSE is likely the most used metric in hydrology and is defined by 
Eq. (15a), where E[⋅] is the expected value operator: 

NSE

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Qm,Qobs

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

⎡

⎢
⎢
⎢
⎣

1 −

∑Nobs

i=1
(Qm(ti) − Qobs(ti))

2

∑i=1

Nobs

(Qobs(ti) − E[Qobs])
2

⎤

⎥
⎥
⎥
⎦

(a)

1 −

∑Nobs

i=1
(Qm(ti) − Qobs(ti))

2

∑i=1

Nobs

(Qobs(ti) − E[Qobs])
2

(b).

(15) 
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Essentially, the NSE is a measure of fit of the predictions to the data. 
Acceptable model performance customarily implies values >= 0.5. In 
principle, each model trajectory, each of which is generated by a specific 
combination of particles and parameters, has its own NSE value. In 
Section 3.2.1 we present the distribution for all those values, Eq. (15b), 
and their expected value (15a). 

The FI provides a measure of the fluctuation of models predictions, 
Eq. (16a): 

FI

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Qm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

⎡

⎢
⎢
⎢
⎢
⎣

1
Nobs − 1

∑Nobs

i=2

⃒
⃒
⃒
⃒
⃒
Qm

(

ti

)

− Qm

(

ti− 1

)⃒
⃒
⃒
⃒
⃒

∑Nobs

i=1
Qm

(

ti

)

⎤

⎥
⎥
⎥
⎥
⎦

(a)

1
Nobs − 1

∑Nobs

i=2

⃒
⃒
⃒
⃒
⃒
Qm

(

ti

)

− Qm

(

ti− 1

)⃒
⃒
⃒
⃒
⃒

∑Nobs

i=1
Qm

(

ti

) (b).

(16) 

Similarly to the NSE, each model trajectory has in principle its own 
scalar FI value, (16b), and this is what we plot in the relevant distri
butions in Section 3.2.1, together with the average value (16a). 

For all the metrics, we never resort to smoothing of trajectories in 
post-processing. This means that the state of the model for a model’s 
trajectory is always the one that emerges from the resampling scheme 
set by the PF up to the relevant observational time point, see Section S1 
and Table S1 in the Supplementary Material. If the quantitative assess
ment of cross-validation results points to misuse of the STD parameter 
(s), to determine the cause of the problem, an analysis of the posterior 
time-series of the stochastic parameter(s) is very useful, see Section 
3.2.2. This can lead to the identification of dependencies of the STD 
parameter(s) on external influence factors or internal model states, 
Section 3.2.2, and/or can help formulating additional hypotheses, Sec
tion 3.2.3. For our case study, to perform cross-validation tests, we draw 
400 parameters samples from the joint parameters posterior distribu
tion, select the associated model state at the end of inference, and 
continue the simulation for a couple of years time. For stochastic 
models, we still run as many executions per sample as we do for infer
ence, viz., we run 24 cross-validation simulations per parameter sample. 

2.8.3. Posterior analysis and prediction 
Once convergence is established and the stochastic model is either 

improved to avoid misuse of the STD parameters during calibration to 
compensate for model deficits, or those parameters are kept constant, or 
there are not such problems, the model can be used for conventional 
posterior analysis, such as assessing marginal posteriors, 3.3.1–3.3.2 and 
prediction time series, Section 3.3.3. Due to the explicit consideration of 
intrinsic uncertainty by the stochastic approach, we expect a more 
realistic description of the uncertainty in internal model states than for a 
lumped error model that only adds the uncertainty to the final outcome. 
We also expect a much more realistic distinction of (smaller) uncertainty 
during the calibration period when we condition the model to the ob
servations, compared to (larger) uncertainty for prediction when we do 
not have observed information about the model state, although this 
limitation of the deterministic approach could be alleviated by resorting 
to a more complex formulation of the lumped error model (Reichert and 
Schuwirth, 2012). 

2.8.4. Post-processing tools 
All the routines used for post-processing are coded within a 

specialized branch of the software SPUX (Šukys and Bacci, 2021), and 
partly rely on the R scripting language (R Core Team, 2020). 

3. Results and interpretation 

According to the methodology recommended by Reichert et al. 
(2021), we first check convergence of the posterior sampling process 
(Section 3.1), then analyze potential problems of misuse of stochastic 
degrees of freedom to compensate for model structure deficits and 
interpret these deficits (Section 3.2), and finally analyze and discuss 
selected results to emphasize our findings (Section 3.3). 

3.1. Convergence of sampling procedure for Bayesian inference 

Convergence for deterministic models is achieved easily, even when 
we infer the exponent β of the storage-discharge relationship, which we 
do in a preliminary diagnostic run, see Fig. S1. In that case, a strong 
positive correlation is apparent between β and SuMax, see Fig. S2, which 
is confirmed for model Sto − D, Fig. S3. For this model, a secondary 
posterior mode for small values of β and SuMax, and large values of Ce, 
exacerbates convergence issues, Fig. S4. Hence, correlation problems 
and small secondary modes, both appearing when inferring STD pa
rameters and β concurrently, let us lean towards fixing β = 5. This value 
roughly corresponds to the marginal posterior mode of model Det, 
Fig. S1. 

Figs. S5–S9 show the evolution of the Markov chains for all the 
models when β is set to 5. Our core results are based on these models, 
although we have also performed additional control simulations with β 
fixed to 1 or 2, which we do not find to substantially alter the overall 
picture that we describe below. With β = 5, we notice that secondary 
modes are eliminated when a large initial portion of the data is dis
carded, see in particular Figs. S5b–S9b. In some cases, for instance for 
parameters D and Ce in model Sto − Ks, see Fig. S7, or parameters μOU

logit(D),

ks and σOU
logit(D) in model Sto − D, Fig. S8, it is clear that at least 2500 pa

rameters batches are required for burn-in not to surely falsify conver
gence. These correspond to 100 k parameters samples as we propagate 
40 chains in parallel. Hence, if not differently specified, our results are 
based on the last 450 batches (18 k parameters samples). 

The achieved slow convergence underscores the heavy computa
tional load and wall-clock time required by this type of investigations. 
Overall, to conduct the numerical experiments, we use about 75 k node- 
hours on the Swiss National Supercomputing Centre’s flagship machine 
Piz-Daint using on average 180 parallel processes per stochastic model, 
roughly partitioned 3:1 between the parallel propagation of the Markov 
chains and the parallel propagation of the hydrological and stochastic 
models. Memory limitations bound the maximum number of samples 
that we can analyze to ∼20 k. Tackling this limitation is dealt with in a 
newer version of our software (Šukys and Bacci, 2021). 

Despite this large sampling effort, in the worst case scenarios 
(Sto − Kf and Sto − Ks) we can not obtain more than a few hundred in
dependent samples, see Table S2. Figs. S10–S14 quantify the overlap 
among Markov chains. This is done by comparing one another the 
2.5 − 97.5 percentiles spanned by the Markov chains in parameters 
space, see Figs. S10a,b-S14a,b. For the most critical cases, we also pro
vide the evolution of the chains with the smallest overlaps for specific 
parameters, Figs. 10c,d–S14c,d. Taking these results together, we deem 
the overlap among chains acceptable, although we cannot fully dispel 
concerns regarding possible within-mode mixing barriers for a few 
parameters. 

It is well-known that the PF method can degenerate due to high levels 
of stochasticity, high-dimensionality of the state space, and/or extreme 
observations. Filter degeneracy usually implies a poor estimate of the 
marginal likelihood, which in turn can hamper the estimation of the 
posterior density. To consider this aspect, we monitor the number of 
independent particles present in the filter at each resampling step. As 
shown in Figs. S15–S16, there are some cases when the filter collapses 
onto just one or two particles. These episodes are mainly limited to 
specific observational times. However, at those critical time-points up to 
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about 50% of the observational likelihood evaluations for models 
Sto − Kf or model Sto − KKD can result from collapsed filters. Despite 
these unsound cases account for only a very small fraction of the total 
number of observational likelihood evaluations, we also consider a 
diagnostic run for model Sto − Kf where we double the number of par
ticles (from 24 to 48). This inference produces results that are very 

similar to the ones relevant to 24 particles, see marginal posteriors in 
Fig. S17. Although this is not enough to completely rule out possible 
detrimental effects owed to filter collapse, it is a clear indication that the 
confined collapses of the filter that we experience are unlikely to seri
ously hinder our results. However, it is also clear that filter collapses can 
in general be critical for this type of applications. Attempts to use, during 

Fig. 3. Outflow Q for end of calibration and for cross-validation. Vertical dotted lines separate the last ∼1 year of inference from cross-validation. Lines depict single 
model realization 2.5 − 97.5% uncertainty bands. (a) Precipitation. (b) Outflow plus output error for model Det. (c) Same as (b) for Sto − Kf . (d) Same as (b) for 
Sto − Ks. (e) Same as (b) for Sto − D. (f) Same as (b) for Sto − KKD. 
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a preliminary inference phase, a number of particles that varies ac
cording to a measure of quality on the estimate of the marginal likeli
hood is a recent addition to our software framework. Incidentally but 
importantly, the results in Fig. S17 provide us with a strong and positive 
assessment of convergence. 

3.2. Deficit analysis 

3.2.1. Cross-validation 
Visual Assessments. Visual inspection indicates a clear difference 

between the selected models regarding predictions of Q, see Fig. 3. 
Models Det, Sto − Kf , and Sto − D appear to generate a similar extent of 
total predictive uncertainty in calibration and cross-validation, in the 
sense that there is a seamless transition between these two periods. On 
the contrary, model Sto − Ks seems to produce larger uncertainty bands 
as soon as the filter is switched off, that is, as soon as cross-validation 
starts. A similar but less dramatic behavior is visible for model 
Sto − KKD as well, which also suggests overconfidence during calibration 
when compared to all other cases. In terms of relative contribution of 
parametric and residual uncertainty to model predictions, as apparent 
when comparing the modeled output data with and without the 
contribution of the error term, see Figs. 3 and S18 respectively, the 
models show distinct behaviors based on their type (deterministic or 
stochastic). The predictive uncertainty of model Det is almost exclu
sively ascribable to the lumped error model. In contrast, the quota of 
uncertainty due to the observational noise is much diminished for all the 
stochastic models. We expect that these visual differences be mirrored in 
and quantified by those metrics that summarize the performance of a 
model. This comes next. 

Quantitative assessments 
The perceptions illustrated above are quantified by first considering 

the relative spread, Eq. (13). As mentioned in Section 3.2, we explore 
different possible aggregations of the data, and decide to plot in Fig. 4 
the values of the spread when aggregating by particles, Eq. (13b), and 
the single scalar from aggregating all data per time, Eq. (13a), as 

aggregation by parameters gives very similar results to aggregating 
parameters and particles concurrently (tight distributions close to the 
scalar value). 

Fig. 4 shows that for model Det, the spread of model predictions 
attributable to parametric uncertainty alone is the smallest both during 
calibration and cross-validation (left column in Fig. 4). For this model, 
predictive uncertainty is accounted for almost entirely by the residual 
error term (right column in Fig. 4). 

For the stochastic models, three observations are plain. First, the 
spreads of model predictions attributable to parametric uncertainty are 
much larger than for model Det, and accounts for a substantial part of the 
total predictive uncertainty (roughly half, when comparing the left and 
right columns of Fig. 4). Second, spreads are smaller in inference than in 
prediction in contrast to model Det. Both results are evident indications 
of an improved partitioning of uncertainty by the stochastic models, 
which better reflects the different knowledge status about the system 
during calibration (more certain as conditioned on the observations) and 
cross-validation (more uncertain as the observations during the cross- 
validation period are not used to derive prediction uncertainty). Third, 
models Sto − Ks and Sto − KDD have an even much wider uncertainty 
during cross-validation than in calibration compared to the models 
Sto − Kf and Sto − D, indicating a potential misuse of the stochasticity of 
model parameters during inference. This does not seem to be the case for 
Sto − Kf and Sto − D, as their σrel is slightly lower than the one of model 
Det in prediction, Fig. 4d. Additionally, overconfidence for model 
Sto − KKD in calibration is manifest in the relevant distribution of σrel in 
Fig. 4b. 

Fig. 5 shows the evaluations of the cumulative distribution function 
(CDF) of the model predictions at the observational data points, see eq. 
(14). If our predictions would be perfect, the obtained CDF values of Qobs 
should be uniformly distributed. In inference, the CDF metric spans all 
scenarios, from peaked tails for models Det and Sto − D, Fig. 5a, to 
excessive data-fidelity for Sto − Ks and Sto − KKD, Figs. 5a,b (see also 
Figs. 4a,b to indeed assess that the respective σrel is small). In these cases, 
the more ideal scenarios seem to pertain to model Sto − Kf without 

Fig. 4. Spread for Q with and without error terms from inference or cross-validation. Densities are obtained by a tight kernel density estimation and refer to data 
aggregated across particles, Eq. (13b). Vertical lines indicate the scalar values when spreads are calculated by aggregating both particles and parameters (this is the 
only value available for deterministic simulations), Eq. (13a). (a) Spread for Q from inference simulations and without errors. (b) Same as (a) but with errors on top 
of model output. (c) Same as (a) but from cross-validation simulations. (d) Same as (a) but from cross-validation simulations and with errors. 
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observational noise and to model Det with output error. However, when 
we consider cross-validation with errors, Fig. 5d, all models perform 
comparably well. Overall, the CDF data underscore under a different 
corner the crucial role of the error model for model Det as opposed to the 
very small role of parametric uncertainty, while stochastic models seem 
confirmed to better partition the uncertainty into the different sources, 
providing adequate scenarios under most circumstances, especially in 

prediction, Figs. 5c,d. 
Besides considering spread and CDF values, we are interested in 

assessing model performance through customary hydrological metrics. 
Fig. 6 reports the values of the Nash–Sutcliffe efficiency (NSE). As 
described in Section 2.8, these metrics are computed trajectory by tra
jectory, and reported using the full distributions and the associated ex
pected values. The NSE decreases from inference to cross-validation (top 

Fig. 5. CDF value for Qobs with and without output errors from inference or cross-validation. Densities are obtained by kernel density estimation and refer to data 
aggregated across particles and parameters, Eq. (14). (a) CDF values of Qobs when the CDF is computed from model’s inference simulations without output errors. (b) 
Same as (a) but with output errors on top of model output. (c) Same as (a) but for cross-validation simulations. (d) Same as (a) but for cross-validation simulations 
and with output errors added to the model output. 

Fig. 6. NSE with and without output errors for inference and cross-validation. Vertical lines refers to the single scalar obtained by taking the expected value across 
the NSE values gained trajectory by trajectory. Kernel density estimates refer to the distribution of those values. (a) NSE computed from Q without output errors and 
from inference simulations. (b) Same as (a) but with output errors on top of model output. (c) Same as (a) but from cross-validation simulations.(d) Same as (a) but 
with output errors and from cross-validation. 
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vs bottom row of Fig. 6). This drop is larger for the stochastic models 
than for the deterministic one because of the better fit during calibration 
and the higher uncertainty in prediction that also deteriorates the mean. 
For the same reason, NSE also generally decreases when adding the 
lumped or observational uncertainty (left vs right column of Fig. 6). In 
this case, it is the stochastic models that minimize the degradation in 
performance. This result is a consequence of the observational noise 
playing a less important role in the stochastic models than the lumped 
error in the deterministic model. Among the stochastic models, 
Sto − KKD and Sto − Ks are the ones performing worst during cross- 
validation. In particular, while Sto − KKD excels in calibration, it is 
also the model that shows the smallest NSE values in cross-validation. 
These results bring into question the assumptions of these models, 
such as an inappropriate selection of time dependent parameters. Note 
that it is not easy to distinguish a decrease in NSE during cross- 
validation due to model overparameterization or misuse of the sto
chastic degrees of freedom (which we try to avoid) from the decrease 
due to increased prediction uncertainty (which should be a natural 
feature of uncertainty quantification). The distributions of the NSE 
shown in Fig. 6 provide here an important insight. Fig. 6d shows that the 
right tails of the NSE distributions of models Sto − Kf and Sto − D extend 
to the largest values, even larger than those of the deterministic model, 
despite the mean NSE is smaller, lending this way additional confidence 
on the adequacy of models Sto − Kf and Sto − D. On the other hand, this is 
not true for models Sto − Ks and Sto − KKD, which is another indication of 
their inappropriateness. 

Fig. 7 shows the assessment of model performance in terms of the 
flashiness index (FI). It is striking to see the influence of the lumped error 
on the FI for the Det model, with values that roughly double, moving 
from substantially below to substantially above the observed value. The 
stochastic models show an improved ability to match this signature. For 
those models, the FI does not dramatically increase due to the contri
bution of the observational error and, in any case, the FI of the stochastic 
models matches the observed value more closely than model Det. 
Additionally, FI values remain comparable across inference and cross- 
validation, similarly to what happens with model Det. 

Taken together, these results indicate an improved partitioning of 

the uncertainty for the stochastic models Sto − Kf and Sto − D with 
respect to the deterministic case. Both of these models show the ex
pected increase in uncertainty for prediction compared to calibration, an 
aspect that is missing for the deterministic model with a simple lumped 
error term. The nearly perfect fit of models Sto − Ks and Sto − KKD during 
calibration and worse performance than any other model during vali
dation indicate an issue with overparameterization, or misuse of the 
stochastic degrees of freedom to compensate for model deficits during 
calibration, which cannot be replicated during cross-validation. We 
inspect the cause for these problems by analyzing the time series of the 
STD parameters and potential correlation with states and external in
fluence factors in the next section. 

3.2.2. Analysis of posterior parameter time series 
When using stochastic models it is important to ensure that the 

stochastic processes are not compensating for substantial structural 
model errors, as in that case statistical assumptions would be violated. 
As concluded in the previous section, we expect such problems in 
particular for models Sto − Ks and Sto − KKD. To scan for those, we first 
look at 2D projections that relate model inputs and states to the dy
namics of the STD parameters, see Figs. S21–S26. By visual inspection, 
we do not detect any strong trend between an STD parameter and a 
model’s input or state variable. This is an indication that the dynamics of 
the STD parameters are not systematically compensating in an obvious 
way for a trivial and strong (but missing in the model formulation) 
deterministic relationship. However, given the results of the calibration, 
we also consider specific plots for better discerning to what extent the 
stochastic dynamics of ks in model Sto − Ks drives the discharge, espe
cially the larger values of the Qs component of Q, see also Fig. S27. While 
we do perceive a weak trend from a zero-correlation scenario, indicating 
a possible role of ks in driving larger Qs, this trend is also present in the 
projection against Ss, as it is also confirmed by looking at time series. 

Fig. 8 compares the times series for Q,Ss,Sf , and the respective STD 
parameter for models Sto − Kf and Sto − Ks, while keeping the deter
ministic model as a baseline for a specific and interesting phase of the 
calibration (see Fig. S28 for the whole time-series). Fig. 8 let us identify 
two issues. First, the parameter kf increases in at least two of the 

Fig. 7. FI with and without output errors for inference and cross-validation. Vertical lines refer to the single scalar obtained by taking the expected value across the FI 
values obtained trajectory by trajectory. Kernel density estimates refer to the distribution of those values. (a) FI computed from Qm without output errors and from 
inference simulations. (b) Same as (a) but with output errors on top of model output. (c) Same as (a) but from cross-validation simulations. (d) Same as (a) but with 
output errors and from cross-validation. 
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recession phases. This indicates that a nonlinear release relationship of 
the fast reservoir may reduce deficits of the deterministic model. The 
time series of ks let us identify the problem of model Sto − Ks. It becomes 
evident that a fast, systematic variation of this parameter considerably 
contributes to the generation of the fourth discharge peak. It is a general 
danger of adding stochasticity to a release parameter of a slow reservoir 
that during calibration the variation of this parameter can be misused to 
generate any desired outflow, as this reservoir will hardly ever be empty. 
The reason why this seems to happen for just the fourth discharge peak 
in the selected calibration period can be seen from the deterministic 
simulation in Fig. 8g. The deterministic model underestimates this peak. 
A possible cause is thus that for this event the input was underestimated 
probably because the storm only partly hit the rain gauge. However, the 
fact that the misuse of ks occurs interspersed by increases in the water 
level Ss, which also drives Qs higher (see Figs. S27–S28), makes this 
problem hardly identifiable from the simple scatter plots discussed 
above. Indeed, Qs can be large also when ks is comparably small. Hence, 
a 3D analysis of Qs, ks and Ss would be optimal in this case, albeit 
difficult to visualize and anticipate. This demonstrates the importance of 
the cross-validation analysis done in Section 3.2.1 to identify this kind of 
problems. The poor behavior of the model Sto − KKD just results as a 
consequence that it also contains the STD parameter ks. As we expect 
stochastic variables of a release coefficient of a slow reservoir to be also 
slow, the question remains whether it would have been possible to avoid 
this behavior by a stronger prior for the correlation time of the STD 
parameter ks. This will be investigated in the next subsection. 

3.2.3. Control simulation for model Sto − Ks 
In an attempt to establish if the apparent misuse of parameter ks is 

actually just due to a lack of convergence owed to unfavorable starting 
conditions and/or naive prior belief for parameter τOU

ln(ks)
, we perform an 

extra simulation where we increase the mean of the prior of the corre
lation time from 12 to 60 days. Results appear well-converged as for 
τOU

ln(ks)
= 12, see Fig. S29. The log-posterior values depicted in Fig. S30 

are comparable, suggesting a lack of clear preference for one of the two 
cases, which confirms the notion that the parameters of the OU process 
are notoriously difficult to identify. This is also supported by Fig. S31, 
which makes the point that different marginal posteriors for the pa
rameters of the OU process do not necessarily imply fundamentally 
different marginal posteriors for the other parameters. However, it also 
provides us with a strong positive assessment on convergence of cali
bration for all the other parameters. 

Unfortunately, due to a correlation between τOU
ln(ks)

and σOU
ln(ks)

, which 
was already present in the original simulations, see Fig. S32, by favoring 
larger values of τOU

ln(ks)
we also favor larger fluctuations in the dynamics of 

ks. These impede an improvement of the metrics with respect to what 
already shown in Section 3.2.1, see Figs. S33–S36, highlighting this way 
a non-trivial balance between overparameterization and improved 
description of our state of knowledge when using ks as STD parameter, 
which might be difficult to control and optimize. Indeed, it appears that 
the misuse is also not corrected by the obtained larger values of the 
autocorrelation time, as from Fig. S37 we evince the striking similarity 
of the results irrespective of the different prior means that we use. 

3.2.4. Summary of deficit analysis 
In summary, from our deficit analysis, we conclude that we would 

have to exclude the models with the STD parameter ks from posterior 
analysis and prediction. This decision could only be revised if we would 
either be able to provide better input data or include a dynamic input 
uncertainty model, such as the one used by Del Giudice et al. (2016). 

Fig. 8. Time series of model states and STD parameters. Inference, Nov 1995 - Apr 1996, no errors displayed, 2.5–97.5 percentiles. (a) Observed rainfall. (b) Trend of 
streamflow Q for models Det and Sto − Kf . (c) Trend of STD parameter kf for Det and Sto − Kf . (d) Trend of reservoir level Ss for Det and Sto − Kf . (e) Trend of reservoir 
level Sf for Det and Sto − Kf . (f) Same as (a). (g) Same as (b) for models Det and Sto − Ks. (h) Same as (c) for Det and Sto − Ks. (i) Same as (d) for Det and Sto − Ks. (l) 
Same as (e) for Det and Sto − Ks. 
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3.3. Posterior analysis 

As presented in Section 3.2, models Sto − KKD and Sto − Ks are per
forming poorly compared to the other models and should be discarded. 
However, we keep them in the following analysis to didactically point 
out some additional features that the misuse of a stochastic parameter 
can cause. 

3.3.1. Parameters marginal posteriors 
Fig. 9 shows the marginal posterior distributions of the parameters of 

the various models. The most striking differences are apparent for pa
rameters Ce and SuMax. Models Det,Sto − Kf , and Sto − D behave similarly 
by showing peaked distributions for Ce and corresponding large uncer
tain values for SuMax. Models Sto − Ks and Sto − KKD show the opposite 
behavior, with wide distributions for Ce shifted to very large values, and 
peaked small values for SuMax, see Figs. 9a,b, which are likely just 
another footprint of the misuse of STD parameters. Incidentally, the 
obtained values of the evaporation parameter Ce for the models with 
stochastic ks clearly point to problems as they are much larger than 
expert knowledge would suggest. Additionally, models Sto − Ks and 
Sto − KKD show a correlation between Ce and SuMax, which is not present 
in any other model, see Fig. S19. This difference in behavior can be 
interpreted considering that models Sto − Ks and Sto − KKD have much 

smaller values of SuMax than models Sto − Kf and Sto − D. The values of 
SuMax for models Sto − Ks and Sto − KKD may even approach zero, 
meaning that the reservoir can run empty and cannot evaporate. The 
closure of the water balance in these models is then achieved by 
increasing the evaporation to unrealistically high values (i.e. Ce values 
much larger than one) when water is available in the reservoir. 

For what concerns the splitting parameter D, models can be visually 
(and approximately) separated into three groups, see Fig. 9c. In model 
Sto − Kf parameter D tends to be smaller than 0.5, which favors routing 
the precipitation to the fast reservoir. In contrast, inference for Sto − Ks 
and Sto − KKD results in D > 0.5. Models Sto − D and Det do not seem to 
favor the routing of the rainfall to a specific reservoir. This result in
dicates that a stochastic dynamics of a release coefficient tends to foster 
higher fluxes of water to the corresponding reservoir, minimizing the 
flux to the others. In our study, this has particularly detrimental con
sequences when the reservoir in question is the slow one, see Section 
3.2.1. 

Another aspect of marginal posteriors that is worth to point out is 
relevant to parameters τOU

ln(kf )
and τOU

ln(ks)
. The difference in these time 

scales is limited to just about a factor of 3 (32 vs 11 days at mode values). 
Despite we expect a larger value for the correlation time of the OU 
process for ks than the one for kf , the obtained difference is not enough, 

Fig. 9. Marginal posterior distributions for the inferred parameters. Distributions are clipped at 2.5%-97.5% percentiles. Stochastic parameters are displayed as 
transformed-back mean of the corresponding stochastic process, see Section 2.3. The legend in panel (a) applies to all panels. 
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as we see in Section 3.2.2, to avoid response of the slow reservoir to 
quite fast outflow events for models Sto − Ks and Sto − KKD. Unfortu
nately, we also establish in Section 3.2.3 that it is difficult to correct this 
behavior straightforwardly, as it is not enough to just impose a lager 
prior value for τOU

ln(ks)
, as parameters posterior distributions differ only for 

τOU
ln(ks)

and σOU
ln(ks)

, while caveats persist. Although τOU
ln(kf )

is also not small 
enough to completely avoid that the fast reservoir contributes to the 
recession leg, it is clear that this could be corrected by a non-linear 
relationship, and that this problem is much less severe, as it does not 
undermine the model’s performances appreciably, see Section 3.2.1. 

3.3.2. States marginal posteriors 
In Fig. S20 we group together the values of some of the variables that 

compose the state of the models as resulting from calibration simula
tions. Those include the outflow Qm, the fluxes within the model Qf and 
Qs, the level of the water in the reservoirs Su, Sf and Ss, and the value of 
the STD parameters, if present. The differences in the marginal 

posteriors of the parameters in Fig. 9 are mirrored in the marginal 
posterior of the states. 

Models Sto − Ks and Sto − KKD differ from the other models especially 
in the distribution of Su, which is depleted of the bulk values, resulting in 
an often almost empty unsaturated reservoir. The distribution of Sf also 
appears thinner. Hence, evaporation and the level of water in the slow 
reservoir have to compensate. This is just one extra confirmation that 
when ks is made stochastic, inference can promote a model where the 
slow response leads not only the baseflow, but also part of the fast dy
namics, and this reciprocates with large values of Ce and small values of 
SuMax. The distribution of Qs also contains the footprint of the reaction of 
the slow reservoir to fast dynamics. Necessarily, this reduces the number 
of peak flows from the fast reservoir, which is a consequence visible in 
the distribution of Qf for model Sto − Ks, see Fig. S20c. A diminished role 
of the fast reservoir is also indirectly noticeable in the distribution of D in 
model Sto − KKD when compared to the same distribution in model 
Sto − D, see Fig. S20d,e. Other repercussions of the different underlying 
model behavior when a release coefficient is made stochastic are 

Fig. 10. Trends of STD parameters and water levels at end of inference and during cross-validation. (a) Observed rainfall. (b) Parameter kf for models Det, Sto − Kf , 
and D (c) Same as (b) for parameter ks. (d) Same as (b) for parameter D. (e) Water level in the unsaturated reservoir for models Det, Sto − Kf , and D. (f) Same as (e) for 
the slow reservoir. (g) Same as (e) for the fast reservoir. (h) Same as (a) (i) Same as (b) for models Det, Sto − Ks, and Sto − KKD. (l) Same as (i) for parameter ks. (m) 
Same as (i) for parameter ks. (n) Same as (e) for models Det, Sto − Ks, and Sto − KKD. (o) Same as (n) for the slow reservoir. (p) Same as (n) for the fast reservoir. 
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apparent when we compare the distribution of kf in model Sto − Kf with 
the one of the other models. An increased role of the fast reservoir is 
strongly suggested by the distribution in Fig. S20b. Importantly, these 
considerations are much easier in hindsight after cross-validation, see 
Sections 3.2.1 and 3.2.2. 

3.3.3. Posterior predictions 
Fig. 10 illustrates the dynamics of the STD parameters and of the 

level of water in the reservoirs in the deterministic and stochastic models 
for the final part of the calibration period and for the whole validation 
period. These results complement and extend the analysis of the outflow 
Q already shown in Fig. 3 by focusing primarily on the cross-validation 
period and on the internal variables. 

Overall, models Det, Sto − Kf and Sto − D produce similar dynamics 
throughout, both in terms of trends and values of the state variables of 
the process model. However, we should notice that there are specific 
differences within the Det, Sto − Kf , Sto − D group in the trends for the 
level of water, especially for Ss and Sf , while Su shows the smaller 
variability. It is hence interesting to point out that Su looks completely 
different when ks is stochastic, compare Figs. 10e,n, that Ss from model 
Sto − D appears gaining a long-term dynamics more similar to Sto − Ks 
and Sto − KDD, see Figs. 10f,o, and that the dynamics of Sf for Sto − Kf 

gains momentum at specific time-points well above what happens for 
the Det and Sto − D models. 

4. Discussion 

After having shown and interpreted the results of our case study, 
here we discuss potentially generalizable new results. It is appropriate to 
remark that our contribution centers on investigating and discussing the 
improvements that we can obtain in characterizing our uncertain 
knowledge about a hydrological system when we resort to using sto
chastic time-dependent parameters. Hence, we do not necessarily search 
with our approach improvements to hydrological peak perfomance 
quantified by goodness of fit metrics such as the NSE. In fact, the 
deterministic model that we employ already possesses satisfactory skills 
in reproducing the data according to this metric. Rather, it is its ability in 
partitioning the different sources of uncertainty and in describing the 
status of knowledge, which clearly differs from calibration to validation, 
that we want to improve upon. By doing so, we are also able to conceive 
data-driven suggestions for the improvement of the process represen
tation in the Det hydrological model for future assessments, which could 
allow maximizing peak performance while still including a stochastic 
representation of internal/intrinsic variability for its aptly partitioning 
between the different sources. In addition to improvements in the 
description of variability, describing uncertainties in hydrological 
models intrinsically, rather than imposing their overall effect on 
observed output at the end of the cascade of processes transforming 
input into output, is also more appealing conceptually, as previously 
discussed and demonstrated with didactical models (Reichert et al., 
2021). Compared to these previous examples, our more realistic con
ceptual model applications confirm the appropriateness of the proposed 
method in improving the partition of variability, and lead to additional 
insights on how different modeling choices may affect the performance 
of the stochastic models, occasionally leading to an unintended 
behavior, but also possibly exposing routes to model improvement. 
From our results, we expect an improved description of uncertainty of 
the model with STD parameters compared with the model with constant 
parameters and a lumped error term if we are able to choose stochastic 
parameters that do not lead to a systematic correction of deficits of the 
deterministic model during calibration. Recommendations on suitable 
diagnostic and data-mining approaches, as well as on suitable modeling 
choices are discussed next. 

A key difference in behavior between intrinsically stochastic models 
and deterministic models with a lumped error term is represented by 

their predictive performance in calibration and cross-validation. Sto
chastic models during calibration can have low predictive uncertainty 
and achieve an excellent fit to the observations, due to the calibrated 
time courses of the time dependent parameters. During validation, the 
uninformed (due to lack of data-awareness) stochastic variability tend to 
lead to larger predictive uncertainties than in calibration and, in case of 
misuse of the stochastic degrees of freedom in calibration, even to a 
critical degradation of performances. Deterministic models with a sim
ple lumped error term, in contrast, due to their fixed parameters, do not 
tend to show a significant difference in predictive uncertainty between 
calibration and cross-validation. 

The fact that stochastic models lead to a higher uncertainty in pre
diction than in calibration is arguably an appealing feature of these 
models, as it reflects that during calibration the data are known, whereas 
during prediction the knowledge description by the posterior probabil
ity distribution is based on the data during the calibration period. The 
absence of this behavior in deterministic models with a simple lumped 
error term can be interpreted as a symptom of unrealistic behavior, and 
in particular of their inability to distinguish between the conditions of 
whether the data are known. However, when dealing with stochastic 
models, it is important to assess when such an increase in uncertainty in 
model predictions from calibration to cross-validation is desirable, or at 
least unavoidable, from when it is excessive and symptomatic of over
fitting during calibration. In order to distinguish between these two 
cases, a careful analysis of model performance during cross validation is 
essential. Therefore, cross-validation plays a crucial role in the evalua
tion of stochastic models, much more than for deterministic models, 
where the performance during calibration and cross-validation can be 
very similar. Our analyses indicate that in order to operate this 
distinction, it may be useful to inspect the posterior distributions of the 
NSE during cross-validation. The mean NSE will drop in the prediction 
phase compared to the calibration phase due to the increased uncer
tainty (that also allows for smaller values). This is similar to overfitting 
with the mechanistic model. However, a comparison of the right tail of 
the posterior NSE distribution could indicate which stochastic models 
produce better NSE values than the deterministic approach, and which 
do not. In our case study, this diagnostic leads to a clear separation of the 
“problematic” from the “realistic” stochastic parameters. To discover the 
possible cause(s) of misuse of STD parameters, we find it important to 
analyze the time series of the parameters themselves, and of the other 
variables that describe the internal state of the model. This can also 
allow realizing opportunities for model improvements in a data-driven 
fashion, especially for the “realistic” settings, as in our case it would 
be natural to propose an improved hydrological model where the water 
release from the fast reservoir is controlled by the water level through a 
non-linear relationship. However, more experience is certainly needed 
to confirm the value of these analyses, and to identify more indicators to 
support a good selection of stochastic parameters. 

The differences between different stochastic models regarding pro
ducing a desirable behavior in prediction, raise the question of whether 
more general recommendations can be given on which model parame
ters are good candidates to reflect model intrinsic uncertainty. In our 
examples, bad performing models are associated with the choice of 
making release coefficients of slowly reacting reservoirs stochastic. This 
result suggests that this choice should be avoided. Slowly reacting res
ervoirs typically model groundwater and are of primary importance for 
modeling base flow. Consequently, such reservoirs are hardly ever 
empty. For this reason, with time-variation of its release coefficient, 
(nearly) any dynamic discharge pattern can be produced. This is 
dangerous because if the hydrologic model is unable to produce some 
observed pattern either due to input or model structural errors during 
model calibration, this release coefficient can be misused to produce this 
pattern. We have shown that, because of the amount of hydrological 
data, even a strong prior in favor of a long correlation time of such a 
release coefficient cannot avoid this problem. This is certainly an issue 
that would occur in other applications as well. It can be resolved by not 
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making this coefficient stochastic, even if some stochasticity due to 
varying releases from different water bodies with different release 
behavior would make a slow and hard to predict temporal variation 
realistic. 

In our case study, the choice of making the release coefficient of the 
slow reservoir stochastic has a detrimental effect also on other param
eters. It leads, in fact, to higher water demand for the slow reservoir, 
which is achieved by modifying the water division coefficient and other 
model parameters. This results in unrealistic values of multiple constant 
model parameters of other model components. This is a phenomenon 
that would probably occur also in other applications. The conclusion is 
that unrealistic (in low-probability domains of the prior) posterior 
parameter values can be an additional indication of problems with 
stochastic parameters and need careful analysis. 

In summary, our results indicate that some general instruments can 
be used to distinguish the expected higher uncertainty during prediction 
periods (as in cross-validation) from excess uncertainty: (i) the analysis 
of the distribution of predicted Nash Sutcliffe Efficiencies (NSE) during 
cross-validation, and (ii) the shift of constant model parameters beyond 
their prior high-probability range. As a general recommendation 
regarding the choice of time dependent parameters, we highlight the 
particular danger of making release coefficients of slowly reacting res
ervoirs stochastic. Additionally, we also highlight the opportunity 
inherent to the analysis of the time course of the STD parameters and 
related internal variables to act as a possible data-driven source for 
model improvement. 

A final new aspect of our study is the application of a different nu
merical approach. Indeed, we apply a Particle Markov Chain Monte 
Carlo (PMCMC) approach as in Andrieu et al. (2010) to numerically 
sample from the posterior instead of conditional Ornstein–Uhlenbeck 
sampling as in earlier studies (Reichert and Mieleitner, 2009; Reichert 
et al., 2021). This is a general approach for sampling from stochastic 
state-space models. It combines a Particle Filtering (PF) process for 
sampling dynamic states (in our case stochastic parameters) and calcu
lating an approximate marginal likelihood for use in an outer Markov 
Chain Monte Carlo (MCMC) procedure for sampling the constant pa
rameters. The advantages of this approach are that the Monte Carlo 
algorithm can easily be parallelized, and that the PF does not require 
neither linearity in the process it samples from, differently from condi
tional Ornstein–Uhlenbeck sampling, nor normality in the distribution 
of the sampled space, differently from the Ensemble Kalman filter 
(Evensen, 2009). However, as any other approach to states estimation, it 
can suffer from all the caveats inherent to the sampling of high dimen
sional spaces (e.g., Verleysen and François, 2005), which are primarily 
manifest in filter collapses, see Section 3.1. Additionally, the particle 
resampling step poses challenges to the scalability of numerical codes. 
All these algorithms that we use are implemented in the recently 
developed framework SPUX (Šukys and Bacci, 2021). 

5. Conclusions 

Conceptual hydrological models are very successful in describing key 
features of observed discharge time series. On the other hand, they are 
highly simplified representations of streamflow generating processes, 
which leads to intrinsic model uncertainty that is propagated to the 
output. The traditional description of a hydrological system with a 
deterministic, conceptual model and a lumped output error model does 
not explicitly consider the main mechanisms of (intrinsic) uncertainty 
generation. Making mass fluxes between reservoirs stochastic by sto
chastic, time-dependent parameters is a means of describing such 
intrinsically generated uncertainty. The uncertainty in the states is then 
a consequence of the uncertainty in the mass fluxes. This is a concep
tually more convincing concept than making mass-balance equations 
stochastic, because it is a closer description of the underlying mecha
nisms and maintains mass-balances exactly. On the other hand, statis
tical inference for stochastic models is methodologically and 

computationally much more challenging than for deterministic models 
with a lumped error term. 

This study proposes a new implementation of stochastic, time- 
dependent parameters for Bayesian inference using a Particle Filter 
(PF) method coupled with a Markov Chain Monte Carlo approach. The 
method is tested on a real case study using a multi-reservoir hydrological 
model. In particular, we compare 4 stochastic hydrological model var
iants with different selections of time dependent parameters to a 
deterministic model variant. All variants include an “observational” 
error, which in the case of the deterministic model is intended to account 
for all sources of uncertainty. Our main conclusions are summarized as 
follows:  

1. The combined Particle Filter, Markov chain Monte Carlo method 
provides a feasible alternative to previous implementations, with the 
advantages of a potentially more efficient inference procedure, and 
of a more general range of applications, as it does not mandate 
linearity and/or Gaussian assumptions. New inference frameworks, 
such as the SPUX framework tested in this paper, are meant to 
facilitate the application of the method and shorten the execution 
time by parallelization, albeit scalability is difficult to achieve.  

2. The stochastic models have the potential to provide a more realistic 
description of uncertainty than the deterministic model. In partic
ular, two out of the four stochastic models, namely Sto − Kf , which 
makes the water release rate parameter of the fast reservoir sto
chastic, and Sto − D, which makes the split parameter from the un
saturated to the fast and slow reservoirs stochastic, achieve a better 
description of our uncertain knowledge than the deterministic model 
with a lumped error term. This assessment is based on the following 
results: (i) Although the deterministic and the stochastic models have 
similar predictive uncertainty bands, the portion of this uncertainty 
attributable to parametric uncertainty is much larger for the sto
chastic than for the deterministic model, compare Figs. 3 to S18, and 
the left to the right column of Fig. 4. This appears more realistic, 
especially for the characterization of the states. (ii) Differently from 
the deterministic model, the uncertainty of model output is smaller 
during the calibration than during the prediction period for the 
stochastic models, which should be a natural result as it reflects our 
posterior knowledge of discharge given the observations during the 
calibration period, compare the top row of Fig. 4 with the bottom 
row. (iii) The stochastic models generate autocorrelated errors in 
output naturally either through the stochastic process (e.g. in the 
case of the water release rate parameter) or even combined with 
autocorrelation produced by downstream reservoirs (e.g. in the case 
of the split parameter). The effect of this behavior is manifested in 
the ability of the stochastic models to improve the match to hydro
logical signatures sensitive to autocorrelation, such as the flashiness 
index shown in Fig. 7. These appealing features of improved char
acterization of uncertainty and more faithful adherence of the 
flashiness index to the observed value, do not mar the other hydro
logical metrics for those stochastic models devoid of over
parameterization effects. Indeed, we find that the NSE for models 
Sto − Kf and Sto − D, while showing a larger variability during vali
dation in compliance with the notion that the data are unknown, is 
not necessarily lower than the one of model Det, see Fig. 6 (in 
particular the right tail of the distributions). Similarly, the CDF 
metric does not seem impaired for those two stochastic models, see 
Fig. 5, and this despite a small reduction in the relative spread with 
respect to the Det model as in Fig. 4. All these observations taken 
together are an indication that a stochastic model can allow reducing 
the uncertainty in prediction for a similar value of consistency be
tween the model output and the data in the validation set, while also 
improving the partition of the variability between the different 
sources and the modeling of the correlation effects. 
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3. Stochasticity can be misused to compensate for model or input def
icits. This effect is shown by the other two stochastic models, namely 
Sto − Ks, which makes the water release rate parameter of the slow 
reservoir stochastic, and Sto − KKD, which makes all three considered 
parameters stochastic. These models have a significantly poorer 
performance during cross-validation than the other models, such as 
much larger uncertainty bands, and smaller NSE values. We attribute 
this effect to a misuse of time dependent parameters to compensate 
for model or input deficits. For example, model Sto − Ks reproduces a 
discharge peak that could not be reproduced by the deterministic 
model through the time-variation of the water release rate parameter 
of the slow reservoir. This is hardly a realistic description of the 
underlying system. Such a behavior is difficult to avoid because time- 
dependence of the water-release rate parameter of a reservoir that 
usually has sufficient water content (as it is typical for a slow 
reservoir, such as a reservoir representing groundwater) can produce 
any dynamic output.  

4. Our work indicates that model results can suggest additional 
modeling choices. In this context, looking at our results as a whole 
clearly suggests that making parameters D and kf concurrently sto
chastic should appear as a natural choice for a future set of additional 
investigations. Similarly, diagnostic analyses for model Sto − Kf turn 
into a data-driven discovery of a small model deficit that could be 
simply overcome by establishing a non-linear relationship for the 
dynamics of the fast reservoir. This could prove beneficial both for 
improving hydrological performance and for the description of 
parameteric and intrinsic variability. 

The varying performance of stochastic models suggest that the 
choice of which model parameters are made time dependent is impor
tant. In this study, we find that it is challenging to add stochasticity to a 
slowly reacting reservoir, while we find more encouraging results for 
parameters linked to faster components of the model. However, insuf
ficient experience is currently available to provide recommendations on 
which model parameters should be made stochastic. 

Our work underscores many potential areas for future exploration:  

• Consider the possible strategies for model improvement as identified 
through data-mining of the stochastic dynamics and of the influ
encing/influenced variables.  

• Explicitly consider input error and higher time resolution in input 
data.  

• Conduct more-in-depth sensitivity analyses on both prior and PF 
hyper-parameters (especially number of particles to avoid collapses 
completely).  

• Perform more simulations on different case studies to improve our 
understanding about overparameterization dependence/effects on 
the individual parameters.  

• Elucidate the dependence on/influence of the chosen stochastic 
process on the results.  

• Investigate the sensitivity to the error model (BC vs. other 
approaches). 

Regarding the suggested outlook, we would like to reiterate that 
investigating the effect of different input features, such as time resolu
tion, and/or of an input error model are beyond the scope of this paper. 
This is due to the need to maintain computational time and budget, as 
well as data footprint, within available resources, and due to our deci
sion to focus on analyzing the implications of choosing STD parameters 
among the ones of the hydrological process model. However, research 
relevant to the effects owed to the explicit modeling of the input error is 
currently in focus in our department. 

Albeit we test the effect of doubling the number of particles, addi
tional assessments on the consequences owed to filter collapses are 
hampered by the large scale investigations that we carry out. Indeed, 

here we focus on comparing multiple STD parameters, while we suggest 
that further diagnostic work shall focus on one specific case due to the 
computational load implied by changing the number of particles 
systematically. 

Finally, further exploration of the effects of other modeling choices is 
of interest as well. At variance with conditional Ornstein–Uhlenbeck 
sampling, PMCMC would allow extension of our work to non-linear 
stochastic processes. This can be interesting for further research, as it 
seems plausible that the OU process can pose some limitations owed to 
correlations between σOU

f(θs)
and τOU

f(θs)
, as it is demonstrated by the diag

nostic run where we change the prior of τOU
ln(ks)

with the aim to mitigate 
misuse. Similarly, different output error models can be object of further 
investigations too, as we find that by using a Box-Cox approach we are 
able to overcome identifiability issues relevant to the width of the error 
distribution (Reichert et al., 2021). 
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