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A B S T R A C T

Synthetic design storms are often used to plan new drainage systems or assess flood impacts on infrastructure.
To simulate extreme rainfall events under climate change, design storms can be modified to match a different
return frequency of extreme rainfall events as well as a modified temporal distribution of rainfall intensities.
However, the same magnitude of change to the rainfall intensities is often applied in space. Several hydrological
applications are limited by this. Climate change impacts on urban pluvial floods, for example, require the use
of 2D design storms (rainfall fields) at sub-kilometer and sub-hourly scales. Recent kilometer scale climate
models, also known as convection-permitting climate models (CPM), provide rainfall outputs at a high spatial
resolution, although rainfall simulations are still restricted to a limited number of climate scenarios and time
periods. We nevertheless explored the potential use of rainfall data obtained from these models for hydrological
flood impact studies by introducing a method of spatial quantile mapping (SQM). To demonstrate the new
methodology, we extracted high-resolution rainfall simulations from a CPM for four domains representing
different urban areas in Switzerland. Extreme storms that are plausible under the present climate conditions
were simulated with a 2D stochastic rainfall model. Based on the CPM-informed stochastically generated
rainfall fields, we modified the design storms to fit the future climate scenario using three different methods:
the SQM, a uniform quantile mapping, and a uniform adjustment based on a rainfall–temperature relationship.
Throughout all storms, the temporal distribution of rainfall was the same. Using a flood model, we assessed
the impact of different rainfall adjustment methods on urban flooding. Significant differences were found in
the flood water depths and areas between the three methods. In general, the SQM method results in a higher
flood impact than the storms that were modified otherwise. The results suggest that spatial storm profiles may
need to be re-adjusted when assessing flood impacts.
1. Introduction

Floods are one of the main natural hazards contributing to mas-
sive economic losses and casualties (Paprotny et al., 2018). Especially
vulnerable to damage from river overflows and flash floods are ur-
ban areas, which contain significant concentrations of infrastructure
including residential, commercial, and industrial structures (Gueneralp
et al., 2015). Flash floods are commonly triggered by short-duration but
intense rainfall bursts (e.g. Fowler et al., 2021b); while river overflows
are caused primarily by prolonged rainfall events (and other climate
factors, such as snow-melt and evaporation, see Bloeschl et al., 2019).
Global warming is predicted to cause both short- and long-duration
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extreme rainfall events to occur more frequently and with greater inten-
sity in the future (Trenberth, 2011; Westra et al., 2014; Moustakis et al.,
2021; Fowler et al., 2021a). Consequently, higher flood-frequencies,
damages, and economic losses are predicted (Hirabayashi et al., 2013;
Jongman et al., 2014; Mallakpour and Villarini, 2015).

Design storms are a commonly used tool for assessing flood im-
pacts (Sun et al., 2011). They are often synthetic hyetographs that
represent extreme rainfall events for a given return period and storm
duration (Berk et al., 2017). Hyetographs can either have a simple
bell-like shape with a length and maximum rainfall intensity matching
observed extreme rainfall events, or they can be stochastically modeled
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to simulate pseudo extreme rainfall events (Onof et al., 2000; Chimene
and Campos, 2020). On the basis of climate model data, their intensities
can be adapted to reflect extreme rainfall events at future climates (e.g
Berggren et al., 2014; Peleg et al., 2015).

Design storms can be conceptualized at a point scale [i.e. in a one-
dimensional (1D) spatial configuration], representing the areal rainfall
over a catchment (Onof et al., 2000). In some circumstances, however,
using design storms with a two-dimensional (2D) configuration is more
appropriate (e.g. Paschalis et al., 2014; Niemi et al., 2016; Peleg et al.,
2020); especially when extreme rainfall events are convective in nature,
as they often exhibit a high degree of spatial heterogeneity (Belachsen
et al., 2017). Additionally, fast-response catchments, such as those in
mountainous or urban areas, are sensitive to rainfall heterogeneity (Pe-
leg et al., 2017a; Moraga et al., 2021), making spatially distributed
simulations necessary. Another advantage of using stochastic mod-
els to simulate design storms is that their output is an ensemble of
multiple space–time realizations of the storm. Since stochastic space–
time variability is a significant source of uncertainty in hydrological
impacts (Fatichi et al., 2016; Peleg et al., 2017a; Moraga et al., 2021), it
is beneficial to simulate it in order to, for example, evaluate the effects
of climate change on changes in storm properties on flood statistics. A
number of stochastic models are available to simulate 2D design storms.
These include the STREAP model (Paschalis et al., 2013), the HiReS-
WG (Peleg and Morin, 2014), and the STORM model (Singer et al.,
2018), among others.

In many locations, we can estimate how the magnitude, duration
and temporal structure of storm hyetographs will likely change under
future climate conditions. Climate models can provide this type of
information or it can be obtained from empirical relationships between
2

extreme rainfall properties and climate variables, such as temperature
increase (Ban et al., 2014; Wasko and Sharma, 2015; Li et al., 2018;
Moustakis et al., 2020; Ali et al., 2021). It is possible to modify 1D
design storms for climate change impact studies when this information
is available (e.g. Olsson et al., 2013).

Global warming is also projected to change the spatial patterns
of extreme rainfall. A number of studies linked changes in tempera-
ture to changes in storm extent and spatial heterogeneity of rainfall
fields (Wasko et al., 2016; Lochbihler et al., 2017; Peleg et al., 2018;
Chen et al., 2021). Climate-induced changes in the spatial properties of
extreme rainfall have been found to influence catchment hydrological
responses (Peleg et al., 2020, 2021). As a result, when using 2D design
storms, it is crucial not only to modify the rainfall intensities and
temporal structure but also the spatial structure of the storm.

Convection-permitting climate models (CPM) can simulate rainfall
fields at high spatial and temporal resolution (i.e. on kilometers and
sub-hour scales, Prein et al., 2015; Schär et al., 2020). As a result of
their high computational demand and the time required to run them,
CPM are not currently used to simulate a wide range of emissions
scenarios for long periods of time (e.g. simulating the entire 21st
century). Thus, CPM data tend to underrepresent low-frequency intense
storms. Consequently, in the vast majority of cases, their data cannot be
used directly for hydrological flood assessment studies. Their data can
be used to understand how, for example, rainfall intensities are affected
by air temperatures (Lenderink et al., 2021), allowing design storms to
be adjusted accordingly. Based on their ability to explicitly simulate
deep convection, these models have proven to reproduce the spatial
structure of rainfall adequately at the kilometer-scale for numerous
areas (Ban et al., 2014, 2021; Leutwyler et al., 2017), including over
Fig. 1. An illustration of the steps taken in the study. The spatio-temporal characteristics of an extreme rainfall event are derived from weather radar and parameterized in
a stochastic rainfall generator (1). On the basis of this parameterization, a design storm that represents an extreme event for the present climate is simulated (2). With a
convection-permitting model (CPM), the changes to extreme rainfall intensities, temperatures during extreme rainfall events, and the spatial structure of extreme rainfall between
present and future periods are analyzed (3). The design storm is modified and simulated for future climate conditions using the spatial quantile mapping (SQM, 4) method, the
rainfall–temperature relationship method (CC, 5), and the uniform quantile mapping (UQM, 6) method. The design storms (present and future) are used as inputs to a 2D flood
inundation model (7). The relevant section of the paper is indicated in brackets and the colors indicate rainfall intensity from low (brownish) to high (dark blue).
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Fig. 2. An example of a present (a) and future (b) storm composite (see Section 2.1) obtained from a CPM. The cumulative distribution functions of the spatial rainfall intensities
of the composites are presented in (c), where 𝑠𝑞 is the spatial quantile.
complex terrain (e.g. Lind et al., 2020). In the context of climate
change, CPM can be used to investigate how the spatial structure of
extreme storms will change in the future (e.g. Prein et al., 2017, 2020;
Chen et al., 2021). While theoretically this information can be used
to alter the spatial structure of 2D design storms for flood assessment
applications, in practice this has not been done yet.

In this paper, we describe a new spatial quantile mapping technique
that allows for the modification of the spatial structure of 2D design
storms. The extreme storm observed in Lausanne in summer 2018
served as our case study in order to construct a 2D design storm and
modify its spatial structure to fit future climate conditions. With our
2D modified design storm, we examined flood statistics in four Swiss
cities using a flood inundation model and discuss the importance of
modifying the spatial structure of storms by comparing our new method
with other widely-used methods that allow changes in storm magnitude
but lack the spatial dimension.

2. Rainfall adjustment methods

We simulated a 2D design storm, altered it spatially to take into ac-
count the modifications expected due to climate change, and examined
the changes in flood statistics. In addition, we also tested two other non-
spatial rainfall modification methods. These processes are illustrated
and explained in Fig. 1; the methods for modifying the rainfall patterns
and intensity are explained in the subsequent subsections, and the
numerical experiment we conducted as a case study is described in
Section 3.

2.1. Spatial quantile mapping

The initial step in performing the spatial quantile mapping (SQM)
method is to calculate storm composites using the CPM, both for storms
occurring in the present climate (Fig. 2a) and future climate (Fig. 2b).
The choice of storms to include depends on the application. Suppose
the aim is to modify a design storm that represents a 10-year return
period; the relevant rain fields for this return period should then be
extracted from an archive of present and future CPM simulations. The
storm composite is constructed by centering each rainfall field from
the 10-year storm archive on the location of their maximum rainfall
intensity over one another and calculating the mean of the rainfall
intensities at each grid cell. We assume that the spatial structure of the
storm composite is stationary, and that the adjustment factors derived
from the composite can be applied to each distinct rainfall field of the
design storm.

The empirical cumulative distribution function (CDF) of the spatial
rainfall intensities of the present and future storms is then compiled
(Fig. 2c). The rainfall intensities obtained from the storm composites
are sorted and linearly ranked from the lowest rainfall intensity (𝑠𝑞 = 0)
3

to the highest (𝑠𝑞 = 1). Linear interpolation is used to compute rain
intensity continuous over the entire quantile ranges, 𝑠𝑞 ∈ [0, 1]. In most
cases, it is possible to fit a probability distribution to the data, instead
of the empirical CDF; for example, the rain fields presented in Fig. 2 can
be fitted with a lognormal distribution, which is a common probability
distribution in rain fields (e.g. Cho et al., 2004). In order to calculate
the adjustment factor of rainfall intensity per quantile (𝐶𝐹𝑠𝑞), we divide
the future storm profile, 𝑃𝑟𝐹𝑠𝑞 , by the present storm profile, 𝑃𝑟𝑃𝑠𝑞 (both
are illustrated in Fig. 2c):

𝐶𝐹𝑠𝑞 =
𝑃𝑟𝐹𝑠𝑞
𝑃𝑟𝑃𝑠𝑞

, (1)

The adjustment factor can then be applied to adjust the rainfall
intensities of the design storm:

𝑅𝐹
𝑖,𝑠𝑞 = 𝑅𝑃

𝑖,𝑠𝑞 ⋅ 𝐶𝐹𝑠𝑞 , (2)

where 𝑖 are the individual rain fields composing the design storm 𝑅.
In addition to changes in rainfall intensity, it is likely that the

area of the storm will change in the future. Adjusting the area of the
storm is therefore also necessary and should be applied per rainfall
field. It is essential to know which probability distribution the rainfall
intensities follow in space in order to perform the adjustment. The area
adjustment procedure is done as follows: (i) the rainfall intensity field
is transformed into its quantile field; (ii) a random quantile vector is
generated, with the size of the ‘‘wet’’ number of grid cells representing
the new area; (iii) in the quantile field, ‘‘dry’’ grid cells that are close to
‘‘wet’’ grid cells (by euclidean distance) are converted into ‘‘wet’’ grid
cells so as to reach the desired storm area; (iv) the quantiles from the
second step are assigned to the quantile field; and (v) the quantile field
is back-transformed into a rainfall intensity field. Using this procedure,
the area of the rainfall field can be modified while the storm spatial
structure remains largely intact. In the case of shrinking fields, the same
procedure can be applied but in step (iii) the grid cells with the lowest
rainfall intensities are classified as ‘‘dry’’ until the desired rainfall area
is met.

As an example, we used a rainfall field characterized by a spatial
lognormal distribution (Fig. 3a). The following parameters can be
derived from this synthetic rainfall field: the mean areal rainfall (�̂�), the
total wetted area (𝑅𝑎), and the spatial rainfall coefficient of variation
(𝑅𝑐𝑣). Based on this information, the rainfall field can be transformed
into its quantile field (Fig. 3b) using the following transformation (see
Paschalis et al., 2013; Peleg et al., 2020, for details):

𝑄(𝑥, 𝑦) = 𝐿𝑁

⎛

⎜

⎜

⎜

⎝
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⎟

⎠

, (3)

where 𝑄(𝑥, 𝑦) is the quantile field obtained from the 𝐿𝑁 cumulative
lognormal distribution; 𝑅(𝑥, 𝑦) is the rainfall intensity field,



Advances in Water Resources 166 (2022) 104258N. Peleg et al.
Fig. 3. (a) A rainfall field with a lognormal spatial distribution of rainfall intensities. From the field, the mean areal rainfall (�̂�), the total wetted area (𝑅𝑎), and the spatial
rainfall coefficient of variation (𝑅𝑐𝑣) are calculated. (b) is the quantile field of (a). (c) is a new quantile field with an increased wetted area (see Section 2.1 for details). In (d),
the quantile field (c) is converted back to the rainfall intensity field.
𝑙𝑜𝑔

(

𝑅𝑎
√

𝑅2
𝑐𝑣+1

)

is the 𝜇 parameter, and
√

𝑙𝑜𝑔(𝑅2
𝑐𝑣 + 1) is the 𝜎 parameter

of the probability distribution.
The next step is to generate the quantile vector 𝑄𝑁 with a length

that correspond to the number of grid cells of the newly desired area:

𝑄𝑁 = 𝑁−1 [∼𝑁(0, 1), 0, 1] , (4)

where 𝑁−1 is the inverse cumulative normal distribution and ∼𝑁
is a randomly generated Normal vector (a zero-mean, unit-variance
Gaussian). The length of 𝑄𝑁 determines the new area of the rainfall
field (𝑅∗

𝑎) and is defined as 𝑅∗
𝑎 = 𝑅𝑎 𝐶𝐹𝑎; where 𝐶𝐹𝑎 is the adjustment

factor of the total wetted area, obtained from dividing the future total
wetted area of the rainfall composite with the present one. Using a
simple image morphological dilation method (e.g. van den Boomgaard
and van Balen, 1992), the quantile field [𝑄(𝑥, 𝑦)] is then adjusted to
match the desired area, and the values of the simulated vector (𝑄𝑁 )
are sorted similarly to the original field and assigned to the newly
adjusted quantile field [𝑄∗(𝑥, 𝑦)] (Fig. 3c). By using a morphological
method to adjust the wetted area, we assume that the spatial correlation
structure of the rainfall field is approximately stationary, i.e. changes in
the spatial correlation structure due to climate change are not explicitly
accounted for.
4

The newly adjusted quantile field is finally back-transformed into a
rainfall intensity field:

𝑅∗(𝑥, 𝑦) = 𝐿𝑁−1

⎛
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, (5)

where 𝑅∗(𝑥, 𝑦) is the new rainfall intensity field (Fig. 3d), 𝑄∗(𝑥, 𝑦) is the
adjusted quantile field (Fig. 3c), and 𝐿𝑁−1 is the inverse cumulative
lognormal distribution.

The above example used the lognormal distribution, but the same
procedure can be applied to any probability distribution.

2.2. Other rainfall adjustment methods

The two other non-spatial rainfall modification methods that were
used here are a uniform adjustment based on a rainfall–temperature
relationship (CC relation) and uniform quantile mapping (UQM) meth-
ods (Fig. 1). The first is based on the well-known Clausius–Clapeyron
relation (Trenberth et al., 2003) that link extreme rainfall intensifi-
cation (mostly convective in type) and increase in temperature (see
recent publications by Moustakis et al., 2020; Ali et al., 2021; Fowler
et al., 2021a, among many others). Based on the assumption that the
rainfall will intensify at a rate of 7% ◦C−1 (a valid assumption for
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Fig. 4. A map of Switzerland with the locations of Geneva, Bern, Zurich, Bellinzona (red squares), and Lausanne (blue square). Each square is 16 km 𝑥 16 km. A black triangle
marks the location of the Lausanne (LSN) rain gauge.
Switzerland; Molnar et al., 2015; Ban et al., 2015), we defined the
rainfall intensification factor as follows:

𝐶𝐶 = 1.07𝑇 , (6)

where 𝐶𝐶 is the ‘‘Clausius–Clapeyron’’ intensification factor that is
determined by the increase in temperature 𝑇 . The new rainfall field
𝑅∗(𝑥, 𝑦) is simply a multiplication of 𝑅(𝑥, 𝑦) with 𝐶𝐶.

The UQM is expressed as:

𝑅∗(𝑥, 𝑦) = 𝐹−1 [𝑈 (𝑅(𝑥, 𝑦))] , (7)

where 𝑈 is the quantile function and 𝐹−1 is an inverse cumulative
probability distribution function. We used the generalized Pareto dis-
tribution in our case study (as in Peleg et al., 2017b). It was fitted to
the CPM’s rainfall intensities of the present climate (replacing 𝑈) and
of the future climate (replacing 𝐹−1).

3. Modifying an intense storm: a case study

The numerical experiment is illustrated in Fig. 1. As our case study,
we selected the extreme storm recorded over the city of Lausanne (Sec-
tion 3.1). Applying a stochastic rainfall generator model, we simulated
multiple realizations of this storm (Section 3.2). Then, we evaluated the
abilities of CPM to generate extreme rainfall in this region (Section 3.3)
and determined how the spatial structure of the storm is expected to
change (Section 3.4). We duplicated the ‘‘Lausanne storm’’ for four
other cities in Switzerland (Fig. 4), which are considerably larger than
Lausanne, and modified its spatial structure using the methods listed
in Section 2. The selected cities are located in different climatic zones
with different urban forms and terrain characteristics, thus representing
a wide variety of urban hydrological responses to extreme rainfall. As
a final step, we used an inundation model (Section 3.5) to examine the
hydrological response.

3.1. The ‘‘Lausanne storm’’

On June 11th, 2018, an intense convective storm swept through the
city of Lausanne in Switzerland (Fig. 4). The storm lasted for four hours,
5

between 7 PM and 11 PM local time, and is the most intense short rain
burst ever recorded in Switzerland. At around 9 pm, a rain gauge in the
city’s vicinity (LSN) recorded a peak of 41 mm of rainfall within 10 min
(Fig. 5). The rain burst flooded several streets and the underground
metro system, causing damage but no casualties.

The storm was captured not only by the local rain gauge but also
by the MeteoSwiss weather radar system, which enabled the analysis of
the space–time evolution of the storm at a fine resolution of 1 km and
5 min (Germann et al., 2015). A 16 km 𝑥 16 km window centered over
Lausanne was used to analyze the storm’s mean areal rainfall intensity
(�̂�), rainfall spatial structure (𝑅𝑐𝑣), and fraction of wetted area (𝑅𝑎,
Fig. 5).

Fig. 5. Rainfall intensities (blue, as measured by the LSN rain gauge, for 10-min
intervals) and wetted area (red, as recorded by the weather radar) of the storm that
hit the city of Lausanne on June 11th, 2018.
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Fig. 6. The standardized rainfall spatial profiles of extreme storms as recorded by the weather radar (black dashed lines) and simulated by the CPM (blue solid lines) for the four
cities.
3.2. Stochastic rainfall generator model

Stochastic rainfall generators are used to simulate extreme storms
for flood assessments, especially in urban areas (McRobie et al., 2013;
Peleg et al., 2017a). The models can be used to generate multiple
storms with extreme rainfall events for a given climate or they can be
used to generate individual extreme storms with a known return period.
Storms simulated by gridded rainfall generators can be parameterized
to reproduce the temporal structure of an observed extreme rainfall
event, such as the storm duration and the temporal distribution of mean
rainfall over the domain, but differ in the spatial distribution of rainfall
intensities within the domain.

We simulated the design storm with the STREAP rainfall generator
model (Paschalis et al., 2013), which was used in several climate impact
studies in the past (Paschalis et al., 2014; Skinner et al., 2020; Peleg
et al., 2020, 2021; Nyman et al., 2021; Ramirez et al., 2022, among
others). We first obtained the information needed to stochastically
generate a design storm that will have similar spatial characteristics
of a real storm (i.e., a time series of �̂�, 𝑅𝑎, 𝑅𝑐𝑣, and mean advection
velocity and direction). These parameters can all be determined using
weather radar data. Then, we used the Fast Fourier Transform method
to simulate a Gaussian-mixture (bimodal) quantile field as we found
that it enable a better representation of the convective structure of the
rainfall. We allowed the quantile fields to advect and evolve over time
using an auto-regressive moving average model (see Paschalis et al.,
2013, for additional details). Last, we applied the inverse lognormal
functions, as described in Section 2.1, to create rainfall-intensity fields
from the quantile fields. We embedded the SQM, UQM and CC relation
adjustment methods in the model to enable simulating the design storm
for future climate conditions (Fig. 1), according to information obtained
from CPM. The storm is simulated at a spatial resolution of 10 m 𝑥 10 m
and temporal resolution of 5 min.

3.3. Convection-permitting model

We used convection-permitting climate simulations conducted with
a horziontal grid spacing of 2.2 km over European domain (presented
in Hentgen et al., 2019; Leutwyler et al., 2017). The simulations were
conducted using the Consortium for Small-Scale Modeling in Climate
Mode (COSMO-CLM) model (Baldauf et al., 2011) over 10 years long
periods in present day climate driven by ERA-Interim reanalysis and
future climate driven by pseudo-global-warming (PGW) approach (e.g.
Schär et al., 1996; Rasmussen et al., 2011). The basic idea of the
PGW approach is to apply large-scale perturbations (calculated as
climate change signal from a General Circulation Model) at the lateral
boundaries of a present-day simulation. The PGW simulations represent
climate at the end of the century based on RCP8.5 greenhouse gas
emission scenario.

First, we have investigated the CPM’s capabilities to reproduce the
spatial structure of extreme storms by comparing the storm profile of
the 1% most intense rainfall fields obtained from the evaluation period
6

Table 1
Scaling of rainfall variables �̂� and 𝑅𝑎 with temperature 𝑇 [% ◦C−1].

Radar CPM

�̂� 𝑅𝑎 �̂� 𝑅𝑎

Bern 4.3 −4.1 5.3 −5.4
Geneva 3.3 −2.5 3.5 −5.3
Zurich 2.4 −3.9 5.5 −5.1
Bellinzona 3.6 −1.5 1.5 −5.7

of the CPM (for the years 1999–2009) with the radar data (2015–
2019), assuming stationary climate for the 1999–2019 period. The
rainfall spatial profiles represent the distribution of rainfall intensities
according to their cumulative area, and they are computed for the
rainfall composite as explained above. An illustration of the different
types of rainfall spatial profiles, standardized from 0 (no rain) to 1
(peak intensity) to enable comparison between fields with different
maximum rainfall intensities, is provided in Fig. S1. Since the lengths
and periods of the sampled data differed as well as the space–time
resolutions of the two products, we are not expecting a perfect match
between the storm profiles, but we aimed to investigate if there was
a general agreement between them. Still, it appears that the CPM
simulates the rainfall spatial structure of extreme storms properly in the
four cities, as there is a general agreement that storms exhibit spatial
profiles between types 3 and 4 (Fig. 6).

A second issue we examined was the validity of applying the ‘‘CC
relation’’ adjustment, i.e., whether the scaling relationship between
rainfall properties and temperature computed using CPM data is con-
sistent with that of weather radar data. We calculated the scaling
relationship between �̂� − 𝑇 and 𝑅𝑎 − 𝑇 using the following equation:

𝑙𝑜𝑔(𝑅) = 𝛼 + 𝛽𝑇 , (8)

where 𝛽 is the regression coefficient (the scale) and 𝑇 is the air
temperature, bounded between 5 and 25 𝑜𝐶 to avoid solid precipitation
and the expected breaking point due to humidity limitations (Peleg
et al., 2018). A 2 𝑜𝐶 interval was used to bin the rainfall variables �̂� and
𝑅𝑎 (further details on the binning method are given by Ali et al., 2021).
Note that other methods can be employed to extract the CC-scale (e.g.
Visser et al., 2021). The results of this examination show a high
level of agreement between the radar and CPM rainfall–temperature
scaling (Table 1), as both show a strengthening of the storm (�̂�) and
a decreasing area (𝑅𝑎) with increasing temperature. All trends were
found significant by the Mann–Kendall test (p-values≪0.05); the fitting
statistics are presented in Table S1.

3.4. Design storm modifications

The storm profiles of the 1% most intense rainfall fields for the
present and future climates were obtained from the CPM for the four
different domains (Fig. 7). These profiles were used as the basis for
the SQM adjustment, along with the information of the change in the
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Fig. 7. Rainfall spatial profiles for the 1% most intense rainfall as simulated by the CPM for the present (blue lines) and future (red lines) climates for the four cities.
storm area (𝛥𝑅𝑎) in each of the locations. The example of the present
and future storm composites and the changes to the storm profile in
Fig. 2 was generated using the CPM information for Bern. In Fig. 8, four
additional examples of simulated present and future storm composites
for the Bern area are presented to illustrate the spatial stochasticity
of the rainfall generator model and its potential to simulate multiple
realizations of the same design storm. It is noteworthy that the area of
the storm chosen in our case study to demonstrate the storm adjustment
process is relatively small compared to the grid spacing of the CPM;
we only have 256 grid cells for calculating the spatial composite of
CPM’s storms, which can lead to under-representation of the storm
profile. CPM domains should be matched up with the storm extent to
be adjusted and a sufficient number of grid cells should be available to
accurately represent the storm spatial structure.

A change in 2-m air temperature during the occurrence of the
1% most intense rainfall simulated by the CPM for the present and
future climates was computed (𝛥𝑇1%) to modify the ‘‘Lausanne storm’’
according to the CC relation (Table 2). To apply the UQM method,
the rainfall intensity quantiles for the present and future climates were
extracted from the CPM for each location (see example in Fig. S2).

3.5. Inundation model

The outputs of the rainfall generator model, i.e. the ensemble of sim-
ulated design storms both for present and future climates, were input
into the CADDIES/CAFlood 2D cellular automata flood model (Guidolin
7

Table 2
Change in temperature during the
occurrence of the 1% most intense
rainfall.

𝛥𝑇1%
Bern 1.8
Geneva 1
Zurich 2
Bellinzona 1.1

et al., 2016). CADDIES provides data structures to store rasters and au-
tomata spaces, methods to retrieve and assign automaton cell neighbor-
hoods, abstract methods to implement transition functions and more.
CAFlood is an application for rapid flood modeling that has been widely
used both in academic research (recent publications include Webber
et al., 2020; Vamvakeridou-Lyroudia et al., 2020; Padulano et al.,
2021, among many others) and in the private sector (see case studies
in: https://www.cafloodpro.com/). The required inputs include terrain
elevation, roughness, rainfall and water levels at domain boundaries.
At each time step, CAFlood applies the Manning’s equation in each
automaton cell to compute the velocity of water flowing from/to each
of its neighbors, to ultimately calculate the resulting water level in each
cell. To this end, the edge between a cell and its neighbor is treated
as a channel of width equal to cell side length. The version of the
CADDIES/CAFlood model used in this study includes the possibility to
take spatially distributed rainfall into account. Fig. 9 shows an example
Fig. 8. An example of four storm composites, depicting the present and future ‘‘Lausanne storm’’ in Bern, simulated by the stochastic rainfall generator model and the SQM method
using information from the CPM.

https://www.cafloodpro.com/
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Fig. 9. An example of an inundation map generated by the CADDIES/CAFlood 2D cellular automata flood model, based on the STREAP model rainfall simulations. The map shows
the average maximum water depths of 30 realizations of the ‘‘Lausanne storm’’ in the city of Bern representing the present climate.
of an inundation map produced by the model, showing the average
maximum water depths of 30 realizations of the ‘‘Lausanne storm’’
(simulated for the present climate conditions) in the city of Bern.

From the results obtained using the inundation model, water depth
maps at each time step were used for analyzing the impact of the
different storm adjustment methods on the flood characteristics, which
were summarized in two statistical measures. We first computed the
ratio of change in peak water depths between the future scenarios and
the rainfall-runoff simulations of the present:

𝛥ℎ =
∑𝑁

𝑖=1 ℎ
𝐹
𝑖 −

∑𝑁
𝑖=1 ℎ

𝑃
𝑖

∑𝑁
𝑖=1 ℎ

𝑃
𝑖

, (9)

where ℎ𝑖 is the water depth at any grid cell 𝑖, 𝑁 is the total number
of grid cells in the domain and 𝑃 and 𝐹 are the present and future
(corrected method) simulations, respectively.

In addition, we calculated the ratio of change in the flooded area
(𝛥𝜃) between the present and future simulations. Grid cells 𝑖 with a
peak water depth above 10 cm were considered flooded and assigned
a value of 1 (or 0 otherwise). Then, we used Eq. (9) to sum the flooded
area, replacing ℎ𝑖 with 𝜃𝑖.

3.6. The hydrological response to the rainfall adjustment

Different hydrological responses result from the three different
storm adjustment methods, as expected. The SQM method is associated
with higher water depths (Fig. 10) and larger inundated areas (Fig. S3)
in Bern, Geneva, and Zurich. This can be explained by the increasing
area of the storm and the increasing intensity of the rainfall in these
locations (Fig. 7). However, in Bellinzona, the storm area is expected
only to increase slightly, and the peak rainfall intensity is expected to
8

weaken (Fig. 7), resulting in reduced hydrological impacts (Fig. 10
and S3). We note that in comparison to the other locations, CPM
data for Bellinzona are less in agreement with radar data (Table 1).
Another possibility could be that the limited data from future climate
simulations (10 years) do not show extremely heavy rainfall storms in
this region. The two homogeneous rain adjustment methods (UQM and
CC relation) agree well in two locations, Bern and Zurich; contrary
to this, the UQM has a much greater impact on flood assessments in
Geneva and Bellinzona (Fig. 10 and S3).

3.7. Implications

It is evident from the results that it is essential to apply rainfall ad-
justment to both rainfall intensities and the spatial structure of storms
as the impact on the flood can be significant. Spatial rainfall adjustment
is more likely to be important in catchments with fast hydrological
responses, such as small- to medium-sized rural catchments or urban
areas, and less important in large catchments where the temporal struc-
ture of rainfall should be more influential; however, further research is
needed to examine the impact of changes in convection organization
on catchment response at large scales.

For this case study, the purpose of applying rainfall adjustments
was not to identify the ‘‘true’’ signal of change in flood assessments
for the four locations, but rather to demonstrate the SQM method.
The assessment of climate change impacts on flood statistics and their
uncertainties requires using additional climate scenarios and rainfall
adjustment methods, and performing a detailed validation of the CPM’s
ability to represent rainfall for these locations, which is beyond the
scope of this paper.
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Fig. 10. The ratio of the change in the water depths between the present and future simulations (SQM — blue, CC relation — yellow, UQM — red). Each boxplot represents 30
realizations of the design storm, showing the median change (solid line), the 25th–75th percentile range (boxed area), and the minimum–maximum range (bounded with lines).
Furthermore, we demonstrated the SQM on a single convective
storm, but it should be noted that the method can be applied to any
type of storm, for example, stratiform storms. Research is still needed
on how to identify the storm types in CPM and extract the adjustment
factors, a task that remains challenging.

4. Perspectives on SQM’s future development

Under the assumption that the rainfall structure and intensity will
change the same throughout the storm duration, we demonstrated the
spatial adjustment of design storms. Changes in rainfall structure, how-
ever, are likely to be non-stationary, hence we plan to further develop
the SQM scheme to adjust design storms both spatially and temporally.
Additionally, changes in the spatial structure of the storm are likely
influenced by the type of rainfall (e.g. convective vs. stratiform), its
source, and orientation. It is possible to address this issue if the changes
to the spatial structure obtained from the CPM are analyzed based on
rainfall types. In addition, the SQM properties (i.e. the change in storm
area and the change in spatial quantile of rainfall intensity) can be
scaled with the return period of extreme storms. The result will be a
more flexible form of correction to design storms of varying severity.

5. Conclusions

We presented the SQM, a simple method for spatially adjusting the
structure of design storms. Using data from a CPM, we applied the
SQM to a design storm and presented a case study. Results indicate
that modifying the spatial structure of the storm can yield considerable
differences in flood impacts in comparison to other adjustment methods
that apply uniform adjustment to rainfall intensities. We plan to extend
SQM to adjust rainfall also in its temporal component in the future, in
addition to the spatial component of the adjustment described in this
paper.

Code availability

An example of the Spatial Quantile Mapping (SQM) method can
be found in the Zenodo archive at https://doi.org/10.5281/zenodo.
6563635. This script (Peleg, 2022) reproduces Fig. 3 from the
manuscript.
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