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Abstract
1. Early warning signals (EWS) are phenomenological tools that have been pro-

posed as predictors of the collapse of biological systems. Although a growing 
body of work has shown the utility of EWS based on either statistics derived 
from abundance data or shifts in phenotypic traits such as body size, so far this 
work has largely focused on single species populations.

2. However, to predict reliably the future state of ecological systems, which inher-
ently could consist of multiple species, understanding how reliable such signals 
are in a community context is critical.

3. Here, reconciling quantitative trait evolution and Lotka– Volterra equations, 
which allow us to track both abundance and mean traits, we simulate the col-
lapse of populations embedded in mutualistic and multi- trophic predator– prey 
communities. Using these simulations and warning signals derived from both 
population-  and community- level data, we showed the utility of abundance- 
based EWS, as well as metrics derived from stability- landscape theory (e.g. 
width and depth of the basin of attraction), were fundamentally linked. Thus, 
the depth and width of such stability- landscape curves could be used to identify 
which species should exhibit the strongest EWS of collapse.

4. The probability a species displays both trait and abundance- based EWS was de-
pendent on its position in a community, with some species able to act as indica-
tor species. In addition, our results also demonstrated that in general trait- based 
EWS were less reliable in comparison with abundance- based EWS in forecasting 
species collapses in our simulated communities. Furthermore, community- level 
abundance- based EWS were fairly reliable in comparison with their species- 
level counterparts in forecasting species- level collapses.

5. Our study suggests a holistic framework that combines abundance- based EWS 
and metrics derived from stability- landscape theory that may help in forecasting 
species loss in a community context.
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1  |  INTRODUC TION

There has been growing interest in predicting critical transitions 
using statistical indicators, commonly known as ‘early warning sig-
nals’ (EWS) detected in time- series data (Baruah et al., 2020; Dakos 
et al., 2014; Drake & Griffen, 2010; Scheffer et al., 2009). These are 
phenomenological signals that are derived from the theory of alter-
native stable states and can be easily estimated from abundance or 
biomass time- series data (Dakos et al., 2012). As an ecological sys-
tem gets increasingly sensitive to external perturbation— and thus 
is at increasing risk of shifting to an alternative stable state (such 
as population extinction)— metrics such as autocorrelation and vari-
ance of a time series are predicted to steadily increase (Clements & 
Ozgul, 2018; Drake & Griffen, 2010; Lade & Gross, 2012; Scheffer 
et al., 2009). Although much work has sought to detect such sig-
nals, the efficacy of such abundance- based signals has been called 
into question (Arkilanian et al., 2020; Baruah et al., 2021; Boerlijst 
et al., 2013; Clements et al., 2015; Dutta et al., 2018). Consequently, 
to improve forecasts of population collapse, warning signals that 
incorporate information from fitness- related traits (known as 
trait- based EWS), such as body size, have been proposed (Baruah 
et al., 2019, 2021; Clements et al., 2017; Clements & Ozgul, 2016). 
Although such EWS have been shown to forecast rapid shifts in a 
variety of ecological systems in response to continuous (Drake & 
Griffen, 2010; Suweis & D'Odorico, 2014) or seasonal environmen-
tal perturbation (Burant et al., 2019, 2021), relatively few studies 
have evaluated the performance of EWS in predicting population- 
level collapses in a multispecies context (Boerlijst et al., 2013; 
Dakos, 2017; Dakos & Bascompte, 2014). Although it is known that 
EWS could be useful in forecasting community- level transitions 
(Carpenter et al., 2011; Spanbauer et al., 2016), the impact of com-
munity structure and species interaction on the utility of EWS is rel-
atively still unknown.

There is ample evidence to suggest that different species in-
teractions and interaction types could be a key determinant of the 
stability of a system (Hastings et al., 2018; Mougi & Kondoh, 2012), 
and understanding how the structure of ecological communities 
might alter the detectability of their collapse has obvious conser-
vation and management implications. Species are embedded in a 
network of different interactions spanning mutualism, competition, 
and/or predator– prey. In addition to these interactions, network 
architecture defined by connectance, nestedness, or link density 
further impacts how species interact and maintain diversity (Dunne 
& Williams, 2009; Landi et al., 2018). For instance, nestedness has 
been suggested to lead to abrupt community collapses in mutualistic 
networks (Baruah, 2022a; Lever et al., 2020). Before one can evalu-
ate the impact of network architecture on the predictability of spe-
cies or community collapses, one has to understand how the type 

of interaction within a community could impact the detectability of 
biodiversity collapses.

Changes in the external environment could not only trigger 
changes in abundance but also could directly or indirectly influence 
changes in mean traits over time (Baruah et al., 2019). Such changes 
in mean traits could be through rapid evolution thereby either de-
laying a transition to collapse (Dakos et al., 2019) or could also lead 
to an earlier collapse, such as those observed in the case of ‘evolu-
tionary suicide’ (Rankin & López- Sepulcre, 2005). Whenever transi-
tions to alternative stable states have been investigated in ecological 
systems, the evolutionary aspect of trait change has usually been 
overlooked. For instance, in a mutualistic community such as a plant– 
pollinator system, trait matching with other species can have posi-
tive consequences for the community stability as well as for species 
persistence in response to a perturbation (Guimarães et al., 2007). 
As a result of trait matching, evolutionary shifts in traits of both the 
plant and the pollinator could occur in a similar direction when, for 
instance, only one of the two species engaging in mutualistic inter-
action was forced to collapse. In a predator– prey community, how-
ever, shifts in resource abundance could lead to shifts in predator 
traits that might concurrently impact the whole community (Haney 
& Siepielski, 2018). These environmentally driven but interspecifi-
cally mediated trait shifts might feedback and alter abundances of 
other species within the network, with the type of interaction (mu-
tualistic, or predator– prey) determining the strength and direction of 
shifts in both traits and abundances.

Thus, the strength and type of interspecific interactions might 
drive the direction and magnitude of trait and abundance shifts in 
the face of environmental change (Haney & Siepielski, 2018), leading 
to potentially non- intuitive trends in both the traits and abundances 
of species interacting in a community where components (species) 
collapse due to external perturbation. This raises a key question 
in predicting the fate of biological communities: what should we 
monitor to allow us to best predict the future state of this system— 
individual species (Dai et al., 2012; Kéfi et al., 2013) or the entire 
community (Dakos & Bascompte, 2014)? Previous EWS research has 
typically focused on the species of interest (Clements et al., 2019), 
however alternative approaches include combining all species- 
level data together and analysing for EWS (Carpenter et al., 2011), 
or potentially seeking ‘indicator species’ (e.g. keystone species) 
(Doncaster et al., 2016) which may, due to their location within a 
food web, provide reliable warning signals of approaching collapse.

Here, we explore these key issues by combining generalized 
Lotka– Volterra equations with quantitative trait evolution. Using 
two common ecological communities (mutualism and predator– 
prey) we investigate how the interaction type of a community 
can alter the stability and predictability of collapse. Using data 
at both the species and community level, we first evaluate how 
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stability- resilience metrics derived from stability- landscape 
curves (see Section 2.5) link with the suite of classical EWS meth-
ods, and shifts in mean trait values, as well as another warning 
signal designed to accommodate the high- dimensional nature of 
biological communities based on a shift in the dominant eigen-
value of the system. Forcing each species in a network to collapse 
independently of the others, we show that some species are more 
likely to display both trait and abundance- based EWS, and thus 
act as indicator species for the collapse of a community. In addi-
tion, our results show that the identity of such indicator species 
depends on the strength of interaction and overall fitness benefits 
gained in a community which consequently depends on the com-
munity type they are embedded in.

2  |  MATERIAL S AND METHODS

2.1  |  General modelling framework

We used quantitative traits and generalized Lotka- Volterra equations to 
model trait- mediated ecological interactions for two community motifs, 
each including six species and comprising predator– prey interactions or 
mutualistic interactions (Figure 1). Eco- evolutionary dynamics and eco-
logical interactions were assumed to depend solely on a species' trait 
in the trait axis and the distance of the species trait value from other 
species in the community. Population dynamics can be then written as:

where r
(

z,ui
)

 is the per capita growth rate of species i which is de-
pendent on the type of interaction that is being modelled and pi

(

z,ui
)

 
is the distribution of trait z with mean ui and variance �2

i
. fi(t) is the 

fold harvesting function given as fi(t) =
Ni (t)

2

1+Ni (t)
2 + �fNidW (Dakos 

et al., 2012), where dW is a white noise process with mean 0 and 
variance, �2

f
 of 0.1. Eco- evolutionary dynamics of the mean trait ui 

in response to selection due to inter-  and intraspecific interactions 
with other species can be defined as:

where,

and h2
i
 is the broad- sense heritability of the mean trait, and �2

i
 is the 

genetic variance of the mean trait. r�(t) will differ with the type of com-
munity. All community motifs included competition among the species. 
We specifically ensure that competitive interactions are fixed (trait- 
independent), with intraspecific competition (�ii) being substantially 
higher than interspecific interactions (�ij). This specific parameterization 
ensures first, the stability of the community (Barabás et al., 2016, 2017), 

and second, that eco- evolutionary dynamics are primarily dependent 
on trait- mediated interactions in the two community motifs. It should 
be noted that in our modelling framework we chose two different com-
munity motifs that are dominated by either mutualistic trait- based in-
teraction or predator– prey trait- based interaction. In reality, ecological 
communities are complex and typically consist of a variety of interac-
tions which may promote stability (Mougi & Kondoh, 2012). However, 
rather than using a continuum of potential network types, we assess 
how two types of interspecific interactions (mutualism and prey– 
predation) affect the presence of warning signals by simulating commu-
nities whose dynamics are predominantly shaped by these interactions.

2.2  |  Community 1— Mutualistic interactions

For a six species community with mutualistic interactions (e.g. a 
plant- pollinator), we define r�(t) as rm

i
(t), where growth rate of a spe-

cies i depends on co- evolutionary interactions between the species 
in the community, and superscript m denotes mutualistic community. 
Specifically, we model mutualistic interactions using trait- matching 
functions with a linear functional response. The growth equation for 
a species engaging in mutualistic interactions can be written as (see 
supporting information section 1 for derivation):

In this model, bm
i

(

ui ,t
)

 is the growth rate in the absence of competition 
and mutualism; Nj(t) is the density of competitors; AK(t) is the density 
of the other group of species that provides the mutualistic benefits. 
We specifically ensure that eco- evolutionary dynamics are primarily 
dependent on trait- mediated mutualistic interactions, � ik(t). fmi (t) is the 
environmental forcing function that forces a population through a fold 
bifurcation. � ik(t) can be written as (for details of the model and param-
eters used see supplementary 1):

2.3  |  Community 2— Predator– prey interactions

We used a tri- trophic predator– prey model, with one top preda-
tor (species 6 in the predator– prey motif, Figure 1), two consumers 
(species 4 and 5) and three basal species (species 1, 2 and 3; see 
Figure 1). Predation on species 4 and 5 by the top predator (species 
6) was possible through a Gaussian trait- matching function. Similarly, 
species 4 and 5 were able to predate on the basal species if their trait 
means were similar to the basal species (Haney & Siepielski, 2018). 
Specifically, the growth rate of a basal species, rP

b
 (superscript P de-

notes predator– prey community), in the predator– prey food web 
model depends on the inter-  and interspecific competition, and trait- 
mediated predation from consumers (species 4 and 5) given as:

(1)dNi
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Here, bb
(

ub ,t
)

 is the per capita growth rate of a basal species in the ab-
sence of competition and predation, and dependent on the mean trait 
(

ub
)

. Note that the subscript b denotes the basal species. Intra-  (aP
jj
) and 

interspecific (ap
bj
) competition for the basal species are fixed (i.e. trait- 

independent) with intraspecific competition being substantially larger 
than interspecific competition. �bk(t) is the trait- mediated predation on 
a basal species b by the consumer species k which are species 4 and 5.

For the consumer species 4 and 5, the growth rate, rP
k
, is defined 

as:

And for the top predator, growth rate, rP
P
, is defined as:

Here, aP
kj
(t) in Equation 6 is the intra-  and interspecific trait- independent 

competition among the consumer species (species 4 and species 5). 
Intraspecific competition in basal species was fixed at 0.5, whereas for 
the consumers and top predators were fixed at 0.1 and 0.005 respec-
tively (Petchey et al., 2008). Interspecific competition for basal species 
was drawn randomly from a uniform distribution [0, 0.05]; for the con-
sumer species interspecific interactions were randomly drawn from a 
uniform distribution ranging from [0, 0.005], signifying weak interspe-
cific competition at higher trophic levels (Petchey et al., 2008); dp , dk 
is the per capita mortality of top predator and the consumers respec-
tively. We specifically followed (Petchey et al., 2008) to parameterize 
the mortality rate of the consumers (dk ) and the top predators 

(

dp
)

. 

(5)

rP
b
(t) = bb

(

ub ,t
)

−

n
∑

j � basal sp.

Nj(t)a
P
bj
(t) −

n
∑

k � consumers

�bk(t)Ck(t) − fb(t)

(6)

rP
k
(t) = dk −

n
∑

j � consumers

Cj(t)a
P
kj
(t) +

n
∑

b � basal sp.

�bk(t)Nb(t) − Elk(t)Pl(t) − fk(t)

(7)rP
p
= dp +

n
∑

l � consumers

Epl(t)Cl(t) − fp(t)

F I G U R E  1  We investigate the presence of early warning signals prior to the collapse of populations embedded in two distinct community 
motifs: predator– prey food web and mutualistic community. (A) Before perturbing the target species, we quantified the effective potential 
curve of a focal species in a community, and three other metrics that measure resilience and stability directly from these curves. Although 
related, resilience and stability characterize different aspects of dynamical systems. Resilience is defined as the distance between two 
alternative states. Stability is defined as how quickly a dynamical system can return to its stable equilibrium after a perturbation. (B). The 
stability- resilience metrics quantified from effective potential curves are: a) potential width, b) potential depth, and c) potential slope. 
Potential width (a) directly quantifies the extent of perturbation a species could withstand before transitioning to another state (shown by 
the black ball in the effective potential curves), (b) potential depth, quantifies the resilience in the broad sense and higher value relates to 
higher resilience, and (c) potential slope in the figure quantifies stability of the population or how fast a system could bounce back following 
a perturbation. Dashed black lines in the community motifs represent predator– prey interactions, solid maroon lines represent mutualistic 
interactions, and solid blue lines represent competitive interactions. Vertical dashed blue line at t = 200 denotes the timepoint at which 
environmental perturbation starts
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Because top predators or consumers at higher trophic levels have lower 
mortality rates than basal species (Cohen et al., 2003), we drew mor-
tality rates from a uniform distribution [−0.02, −0.001] and sorted the 
mortality rates in a way that the top predator had the lowest mortality 
and the consumer species had a slightly higher mortality rate. �bk(t) in 
Equation 6 is the trait- mediated predation on basal species which was 
a Gaussian interaction kernel (Haney & Siepielski, 2018); Elk(t) is trait- 
mediated predation by the top predator on the consumer species 4 and 
5, also a Gaussian function (see supporting information section 2 for 
details of parameters used in the model). Finally, fp(t), fb(t), fc(t) are the 
environmental forcing function for the top predator, the basal species 
and for the intermediate consumers respectively that forces a species 
though a fold bifurcation (Clements & Ozgul, 2016).

2.4  |  Simulating population collapses

Before simulating species collapse experiments, we first assem-
bled the communities. The starting point for assembling stable six- 
species communities was initial mean trait values for the six species 
for each of the community type. For both predator– prey commu-
nity and the mutualistic community, we sampled and assigned mean 
trait values randomly from a uniform distribution in the range [−1, 
1]. Based on these mean trait values, trait- based interactions either 
resulted in feasible communities or unfeasible communities. In addi-
tion, in all of our simulations for both the community types, we sam-
pled competition coefficients in a way that intraspecific competition 
was always greater than interspecific competition. This specific rule 
ensured that trait- independent competitive interactions did not be-
come the reason for unfeasible communities both in mutualism and 
predator– prey communities. Whenever simulations with certain ran-
dom mean trait values, competitive coefficients, growth rates and 
death rates led to feasible communities we used those mean trait 
values and other parameters as a starting point for our next collapse 
experiments.

Once we had the parameter values that resulted in feasible com-
munities, we used these parameters to then simulate population col-
lapses. Instead of perturbing the whole community over time (Dakos 
& Bascompte, 2014), only one of the six species was perturbed until 
it collapsed, a scenario mirroring, for example, the overharvesting of 
a particular fish stock (Link & Watson, 2019) or species specific dis-
ease (Castro & Bolker, 2005). Forcing of each species in each of the 
community was done by fold stochastic harvesting after a period of 
time which allowed for transitory dynamics in the system (t = 200). 
Each species' collapse experiment had 100 replicates, producing a 
total of 600 collapses for a community type (see Figures S2– S4 for 
example timeseries).

2.5  |  Effective potential curves

The resilience and stability for alternative stable states in complex 
systems can be visualized with the help of a ‘ball and cup’ diagram 

(also known as stability- landscape or effective potential curves), 
where the ball represents the state of the dynamical system and 
the cup would represent the effective potential energy (Beisner 
et al., 2003, Nolting & Abbott, 2015) (see Figure 1). Here, we es-
timate the effective potential of a one- dimensional system, that is, 
for a focal species being perturbed within a six- species ecological 
network, as one of the motivation for this work was not to assess 
the potential of the entire six- species community the but to estimate 
the potential of a focal species that would be under perturbation. 
Given this aim, we quantified the effective potential of a focal spe-
cies under perturbation. This was done by assuming that of all other 
species that were not being perturbed were at their positive equi-
libria. This assumption was possible as we estimated the effective 
potential equation of the focal species only before the start of the 
perturbation. Once the perturbation of the focal species starts, the 
perturbation could impact other species in the community thereby 
altering their fixed points. However, all these assumptions can be 
relaxed and one can calculate numerically the quasi- potentials of 
both the six- species community (known as the Wentzell– Friedlin 
quasi- potential) and then estimate stability- resilience metrics. Here, 
we focus on the first approach and compare our results with the 
Wentzell– Friedlin quasi- potential that is typically used for multi- 
dimensional dynamical systems under perturbation.

A species embedded in either of the community modules can be 
represented in the form of dNi

dt
= ri

(

Ni

)

, with the effective potential of 
the one- dynamical system then being:

Equation 8 is inherently1- dimensional in nature because of the as-
sumption that all other species in the community were at their fixed 
stable points. We relax this assumption when we estimate the poten-
tial for the entire six- species community modules (see further below 
and supporting information section 3). For both the different commu-
nity types we can estimate V

(

Ni

)

 at any particular time t before the 
perturbation. For instance, for a mutualistic community, V

(

Ni

)

 at a time 
t could be written as (see supplementary 3 for V

(

Ni

)

 for the other com-
munity type):

Here Nj , Ak , are assumed to be at their positive equilibria at time 
t, �m

ij
 is interspecific effect of species j on species i at time t, and 

superscript m stands for mutualistic community; �ii is the intraspe-
cific effect at time t and bm

i
 is the growth rate at time t. We can 

then quantify V
(

Ni

)

 for different values of Ni and plot the potential 
curve at a particular time point t. Specifically, we estimate V

(

Ni

)

 
just before environmental forcing starts, that is, at t = 200 time 
point (see Figure 1). At that time point, we estimated three quan-
tities that accurately characterize the potential curves: (a) scaled 
potential width, which is the distance between the alternative 

(8)V
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= − ∫ ri
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Ni
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dNi .
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state and the lowest point of the potential. Scaled potential width 
can be quantified as population density at the lowest effective 
potential value subtracted by population density at the highest 
effective potential value which then was scaled by maximum pop-
ulation density (Nolting & Abbott, 2015); (b) depth of the potential 
curve given as: min(V

(

Ni

)

) − max(V
(

Ni

)

), which quantifies how resil-
ient the system is, and (c) the slope of the potential curve which 
quantifies how stable the one- dimensional system is. We quantify 
these three metrics prior to the start of environmental forcing for 
each replicate simulation of population collapses (n = 100) and 
for each of the community motifs, and evaluate whether differ-
ent interaction types modify these stability- resilience metrics 
and in turn influence the utility of EWS of population collapses 
(Baruah, 2022b).

Next, we relax the assumption of species being at their positive 
equilibria and estimate the quasi- potential function for the entire 
community module. Communities such as the predator– prey food 
web, or the mutualistic networks comprises of multiple species with 
more than just two stable states. Such a high- dimensional system 
is therefore non- gradient (Pawlowski, 2006; Zhou et al., 2012). 
However, one can numerical estimate the quasi- potential with the 
help of Friedlin– Wentzell theorem from stochastic deviation theory 
(Friedlin & Wentzell, 1998; Zhou et al., 2012) (see supporting infor-
mation section 3 for details). If a high- dimensional ecological system 
is under stochastic perturbation, the quasi- potential function can be 
written as:

Here, V is the potential, ∥ ∥ is the norm and evaluated for all the spe-
cies i. Equation 10 is complicated to be found analytically but could be 
numerically approximated in a discrete form (see supplementary 3). 
This quasi- potential function is for the entire six- species community, 
and not for a focal species under perturbation as given in Equation 8. 
This quasi- potential is multi- dimensional when plotted across the 
state- space of all the species in the community. We can evaluate the 
same metrics described in Figure 1, for each of the species in the 
community. This means that the potential function is being evaluated 
or viewed at the vicinity of the state space of the focal species that is 
being perturbed (refer supplementary 3 for more details).

In addition to quantifying resilience- stability metrics, we also esti-
mated gains in growth for all the species based on mutualistic interac-
tions for the mutualistic community. For the predator– prey food web 
community, we estimated increases in growth rate for the basal spe-
cies; increases in growth rate for the intermediate consumers from 
predation and increases in growth rate for the top predator from pre-
dation on intermediate consumers. This was possible as we tracked 
abundance, trait, and trait- mediated interactions. We, thus, evaluated 
whether increases in growth rate through mutualistic interactions, or 
predation before the start of environmental perturbation relate to 
the performance of EWS in forecasting population collapse.

2.6  |  Population- level signals

2.6.1  |  Abundance- based early warning signals

We evaluate whether abundance- based EWS estimated from the 
abundance of single species could be affected by interactions 
with other species. We estimated standard deviation (SD) and 
autocorrelation (AR1) (using the ‘earlywarnings’ package; Dakos 
et al., 2012) from the abundance of each of the six species for 
each of the communities from the start of the perturbation 
till the time point of 45% decline of the species from its initial 
starting density. The rest of the time series was discarded. The 
challenge is to detect EWS before a significant species decline 
(>50%), which was why we used 45% decline in focal species as a 
cut- off for our analysis. One could also use the entire timeseries 
(100% decline in focal species), but doing so negates the effec-
tiveness of predicting future collapses with EWS as a negative 
trend in abundance would be good enough to predict collapses. 
We used 50% of the time series as the rolling window size. The 
expectation was, thus, that abundance- based EWS such as SD or 
AR1 should increase and predict population collapse before a sig-
nificant decline. To estimate the increase in SD or AR1 over time 
before population collapse, we quantified Kendall's tau correla-
tion coefficient over time. Kendall's tau rank correlation coef-
ficient has values ranging from −1 to 1, where 1 indicate perfect 
positive correlation and −1 indicate perfect negative correlation. 
High positive Kendall's tau value would indicate strong signals 
of population collapse and negative values would indicate false 
negatives, that is, a species collapsed but EWS failed to predict 
it, that is, instead of increasing, EWS decreased as a population 
collapsed.

2.6.2  |  Trait- based early warning signals

Trait- based EWS were estimated from the mean trait dynamics of 
the focal species being forced to collapse. The length of the trait 
time series used for trait- based EWS was equal to that of its cor-
responding abundance time series. Shifts in the mean trait of the 
species before 45% population decline were considered to be an 
indicator of population collapse. As a species was forced to col-
lapse through harvesting, mean trait of the focal species could ei-
ther remain unaffected or shift in response to increases in harvest 
pressure. Such a trait shift could be in any direction, that is, mean 
trait value could either increase or decrease. We, thus, considered 
shift in mean trait value in any direction as a potential warning 
signal. However, for the sake of easier analysis, whenever a shift 
in mean trait value was negative, we multiplied the mean trait 
of a species by −1 such that shift in mean trait value was always 
positive. Doing so ensured that an increase in the mean trait value 
would mean a positive Kendall's tau value, which we used to quan-
tify strength of EWS in general.
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2.7  |  Community- level signals

2.7.1  |  Abundance-  and trait- based warning signals

In addition to the population- level analyses described above, we 
also assessed whether measures of stability were detectable in 
community- level data that comprised of two time series: (a) the sum 
of all of the abundances of all the species in the community at each 
time step, and (b) the mean trait value of all the species in the commu-
nity at each time step. Thus, community- based indicators comprised 
of trends in community SD, community AR1 (Strahan et al., 2016), and 
community trait. All community- level measures were calculated and 
their change measured in the same way as the species- level signals 
(see above). As with the species- level analyses, community- level sig-
nals were analysed from the start of the environmental perturbation 
to the time point of 45% decline of the focal species that was being 
continuously perturbed. Trends in these EWS were measured using 
Kendall's tau correlation coefficient, where positive values indicate 
positive strength in forecasting collapse.

2.7.2  |  Magnitude and direction of 
community variance

In addition to the community- level warning signals analyses de-
scribed above, we also consider an alternative metric of community 
stability. Multispecies communities are high- dimensional in nature 
with many state variables (e.g. species abundances). As such, when 
a high- dimensional system is perturbed continuously, fluctuations of 
certain state variables become much larger and slower than others as 
it approaches a transition, which can be captured by calculating the 
variance– covariance matrix. One of the main properties of such a co-
variance matrix is that its dominant eigenvector would represent the 
direction of the largest variance in the community and the dominant 
eigenvalue would represent the magnitude of this variance. As a con-
sequence, changes in the dominant eigenvalue estimated from the co-
variance matrix would, thus, indicate a system's sensitivity to external 
perturbation (Dakos, 2017). We, thus, propose the ‘dominant eigen-
value’ as another class of warning signal of a community's sensitivity to 
external perturbation. A similar class of warning signals were defined 
for spatially heterogenous systems (Chen et al., 2019) and for a compet-
itive community via loadings derived from eigenvector decomposition 
(Dakos, 2017). Such a class of indicator derived from the covariance 
matrix could only be applicable to systems that are high- dimensional in 
nature. The variance– covariance matrix C can be estimated from multi-
species abundance time series with a rolling window of size n as:

where Nit is the abundance for species i for the t time point, n is the 
size of the rolling window, Ni is the mean abundance over the rolling 
window time, Nkt is the abundance of species k for the t time point. 

Dominant eigenvalue of this covariance matrix calculated at each time 
point of the rolling window, is the final class of warning signal used in 
this study. A shift in this dominant eigenvalue would, thus, infer in-
creasing instability of the community. As with the other metrics the 
trend in the dominant eigenvalue through time was measured using 
Kendall's tau correlation, facilitating direct comparison between all of 
the measures of stability.

3  |  RESULTS

3.1  |  Mutualistic community

Measures of stability and resilience metrics from effective potential 
curves indicated that species 5 and 6 had higher potential slope and 
depth indicating higher stability and resilience among all the other 
species (Figure 3A– C; Figure S7). Similar results were observed when 
the metrics were derived from the Friedlin- Wenzell quasi- potential 
(Figure S7). In addition, species 5 and species 6 had the strongest 
mutualistic benefits (Figure 4A). Consequently, species- level AR1 
and SD was able to forecast collapse of species 5 and species 6 bet-
ter than all the other species (Figure 2A).

Mean trait- based EWS measured at the species level was an un-
reliable predictor of species collapse indicating that shifts in mean 
traits were not observed despite drastic declines in population sizes 
(Figure 2A). In addition, community- level trait- based indicators were 
also not significantly better in forecasting species- level collapse 
compared with the abundance- based EWS. Dominant eigenvalue 
performed relatively well in forecasting species- level collapse.

3.2  |  Predator– prey community

The effective potential curves estimated prior to the onset of envi-
ronmental perturbation indicated that species in the lowest trophic 
level (species 1– 3) had the steepest slopes and highest depths and 
potential widths, in comparison with intermediate consumers (spe-
cies 4 and 5) and top predator (species 6; Figure 3D– F, Figure S6). 
Similar results were observed when the metrics were derived from 
the Friedlin– Wenzell quasi- potential (Figure S6). This in turn led to 
a similar pattern in the strength of abundance- based EWS, with 
species- level AR1 and species- level SD displaying strong temporal 
trends in the basal species and weaker trends in the predatory spe-
cies (Figure 2B).

Community- level abundance- based EWS such as community 
AR1 and community SD performed relatively better in forecasting 
the collapse of basal species (species 1, 2, and species 3) than they 
did in forecasting collapse of predators (Figure 2B). Dominant eigen-
value also performed similarly to abundance- based EWS in terms of 
forecasting species collapses (Figure 2B).

In contrast, trait- based EWS whether it was measured at the 
community level or at the species level, were unreliable and per-
formed poorly in forecasting species collapse (Figure 2B).
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4  |  DISCUSSION

Although much work has been done in seeking EWS in simulated, 
experimental, and wild population data, thus far the potential of 
species interactions to influence the presence and reliability of 
these signals has been largely overlooked (Dakos, 2017). We model 
eco- evolutionary dynamics of species in two simple but com-
monly considered community motifs. In our models, interactions 
between species are dynamic and trait- mediated, such that feed-
back loops can occur between changes in the ecological dynamics 
and the mean trait values of each species. Such feedbacks in our 
models allowed us to explore signals of collapse at different levels 
of biological organization, from trends in species traits to variance 
in community- level abundance data. Here, we evaluate the util-
ity of phenomenological warning signals in forecasting impending 
collapses of species residing in different community motifs and 
demonstrate that the role of a species in a community can have 
significant impacts on our ability to forecast its loss. Although our 
network motifs are clearly simplifications of potential community 
structure observed in nature, we use these motifs to demonstrate 
the potential importance of interaction type in determining our 
ability to forecast species loss.

In the simulated mutualistic communities, species which had 
the strongest mutualistic interactions (i.e. species 5 and species 6) 
that led to overall high gains in growth (Figure 4A), had the deepest 

potential curve and the steepest slope among all the other species, 
and were, thus, the most stable. This strong mutualistic interaction 
and deeper potential curves meant that abundance- based EWS 
measured at the species level, that is, SD and AR1, performed sig-
nificantly better in forecasting the collapse in these two species 
compared with others in the mutualistic network.

In our simulated predator– prey communities, the strength of 
species- level abundance- based EWS (AR1 and SD) in forecasting 
population collapse was most prominent in the basal species in com-
parison with when intermediate consumers or the top predator were 
forced to collapse (Figure 2B). Specifically, the basal species had a 
steeper and a deeper potential curve indicating higher stability and 
resilience in comparison with the intermediate and top predators 
(Figure 3D– F; Figure S6). Interestingly, these basal species also had 
higher growth rate in comparison with the consumers and top pred-
ators (Figure 4B), which in turn reflected both in the metrics esti-
mated from the potential- well curves and on the performance of the 
abundance- based EWS (Figures 2B and 3D– F; Figure S6). AR1 and 
SD, measured at the species level and at the community level, were 
not reliable in forecasting species collapse when species 4, 5 (which 
predated on the basal species), and species 6 (which was the top 
predator) were forced to collapse. This was also due to the fact that 
these three species had the shallowest potential curve among all the 
species before environmental perturbation started and had the least 
fitness benefits from predation (Figures 3D and 4B; Figure S6).

F I G U R E  2  Mean Kendall's tau value with standard error bars of community- based and trait- based EWS of 100 replicate simulations of 
population collapse for mutualism only community (A), and predator– prey community (B). The colour blocks highlight different trophic levels. 
From (A): For SD and ARI, measured at both species and community levels, Kendall's tau was highest when species 5 or 6 (trophic level 2) 
were the target of forcing. From (B): Kendall's tau values for AR1, measured at the community and species level, were highest when the basal 
species (1, 2, and 3) were the target of forcing.
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Community- level SD and community AR1 were reliable in fore-
casting species- level collapses when species 5 and 6 were forced to 
collapse in the mutualistic network. Such a result strongly indicated 
that stronger mutualistic interactions that positively influences 
growth rate (Figure 4A) could contribute more to community- level 
dynamics and stability as opposed to weaker mutualistic interac-
tions that could lead to weaker gains in growth as observed in spe-
cies 1, 3 and 4. In our mutualistic network, species 5 and 6 were 
benefitting from four mutualistic interactions with the four other 
species thereby leading to higher gains in growth in comparison with 
species 1, 2, 3 and 4, which only gained mutualistic benefits from 
the two species (species 5 and 6). When any of the four species (1, 2, 
3 or 4, see Figure 1 mutualism- only motif) were forced to collapse, 
the loss in mutualistic benefits for species 5 and 6 were not large 
enough to impact community wide stability. Thus, when any of the 

species 1, 2, 3, or 4 was forced to collapse, decline in their numbers 
did not impact community dynamics and community- wide signals 
were not strong enough to indicate community- wide instability. On 
the contrary, when species 5 or 6 were forced to collapse, the losses 
in fitness for the other four species (species 1,2,3, and 4) were much 
larger as they had fitness benefits only from mutualistic interactions 
with species 5 and 6, and loss of one of these two species had a 
significant impact on community dynamics. This also indirectly indi-
cated that the degree distribution of the mutualistic network could 
impact community stability. Previous studies have suggested that 
properties of network architecture such as connectance, degree 
distribution, or nestedness could impact stability and robustness of 
communities to species loss (Baruah, 2022a; Bastolla et al., 2009; 
Lever et al., 2020). Similarly, higher food web connectance has been 
linked with community instability (Landi et al., 2018). Thus, it is 

F I G U R E  3  Metrics estimated from effective potential curves for mutualism- only community (A– C) and predator– prey community (D– F). 
Note that different shading areas represent different trophic levels (two for mutualism community and three for predator– prey community). 
From A– C: Species 5 and 6 had the highest potential depth and steepest potential slope in comparison with all the other species for the 
mutualism- only community. Species 5 and 6 also had higher potential width compared with others. As a consequence, species 5 and 6 
showed the strongest community and abundance- based EWS (Figure 2A). From D– F: all the basal species (species 1, 2, and 3) had higher 
potential width in comparison with the consumer (species 4 and 5) and the top predator species (species 6). In terms of potential slope 
(D) and depth (E) basal species had the highest among all the species indicating high stability, which resulted in stronger EWS than others 
(Figure 2B).
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possible that such network properties could influence which species 
exhibit stronger signals than others. However, a detailed further in-
vestigation is required.

In the predator– prey communities, abundance- based 
community- level indicators (community AR1, community SD) were 
also reliable in forecasting species- level collapse, particularly for 
the basal species (Figure 2B). Such a result indicated that the basal 
species had the strongest influence on community stability. Decline 
in the basal species numbers had to have an impact on the overall 
community dynamics for the occurrence of any observable increase 
in community- level indicators. In addition, the predator species 
were predominantly dependent on the basal species for growth, and 
as the basal species numbers declined due to environmental forc-
ing, the predator species, consequently, were negatively impacted 
(Petchey et al., 2008). When the predator species were forced to 
collapse, community- level indicators were unreliable in forecasting 
species- level collapses, exhibiting a high number of false negatives 
(the error bars being large and crossing the zero line in Figure 2B). 
Thus, our simulation results clearly indicate that predatory species 
were the most vulnerable to environmental perturbation and were 
liable to collapse without exhibiting strong signals of collapse.

Contrary to previous studies where it was consistently shown 
that trait- based signals outperformed abundance- based EWS 
(Arkilanian et al., 2020; Baruah et al., 2019, 2020; Clements & 
Ozgul, 2016), our study on multispecies communities consistently 
suggested that trait- based indicators were less reliable irrespec-
tive of whether a species was in a mutualistic or in a prey– predator 
community. This unexpected result may be derived from the way 
in which mean phenotypic traits influenced population dynamics. 
Our modelling approach forced populations to collapse through a 
harvesting regime that then goes through a fold bifurcation. This 
directly impacted population dynamics, but influenced mean phe-
notypic dynamics indirectly. Thus, unless there was a drastic change 
in population size, the impacts on mean phenotypic dynamic would 

be relatively small. Additionally, if, an environmental perturbation 
impacted phenotypic traits directly, than the potential for traits to 
be used as an indicator increases significantly (Baruah et al., 2019). 
Such instances could be when there was a decline in food availability 
that could impact traits such as body size, or a size- based harvesting 
regime that could also lead to a shift in body size (Burant et al., 2021; 
Clements & Ozgul, 2016). Similar to species- level trait- based EWS, 
community- level trait- based EWS were unreliable in forecasting 
species- level collapse regardless of which community type the spe-
cies belonged.

Our study also evaluated another indicator (the dominant ei-
genvalue), that took into account the variance and covariances of 
abundance of multiple species over time similar to the one derived 
from eigenvector decomposition of a high- dimensional competitive 
system (Dakos, 2017). A similar approach has recently been tested 
in predicting transitions in spatially connected populations (Chen 
et al., 2019). Rise in dominant eigenvalue was most prominent in col-
lapse of species which had the steepest and the deepest potential 
curve, and was particularly effective in forecasting collapse of spe-
cies in the predator– prey food web community. It is to be noted that 
the dominant eigenvalue estimated from the variance– covariance 
matrix is not an indicator measured at the species level. In compar-
ison with all the other indicators, dominant eigenvalue performed 
fairly well in forecasting species- level collapse. Particularly, in some 
cases when community- level and species- level indicators were 
underperforming, for instance for species 4 and 5 (intermediate 
predators) in the predator– prey community, dominant eigenvalue 
outperformed community- level (community Ar1, community SD) 
and species- level indicators (species Ar1 and SD) (Figure 2B).

Our modelling exercise ignored the spatial extent of ecological 
systems. A recent study found that self- organization or spatial pat-
tern formation could be linked to evasion of tipping points instead 
of signalling instability of spatial ecosystems (Rietkerk et al., 2021). 
One avenue of future research would be to extend our framework 

F I G U R E  4  (A) Gains in growth through mutualistic interactions, (B) predation for consumers and top predators, or density- independent 
growth of basal species. Shaded regions highlight the trophic levels in mutualism- only (A) and predator– prey community (B). In (A) species 
5 and 6 had the highest mutualistic growth benefits. In (B) the basal species had the highest benefits in growth in comparison with the 
consumers and the top predator.
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to include spatialy explicit system and understand how spatial in-
stability could be linked to local community structure.

In conclusion, our results demonstrate that the structure of 
the community in which a species resides can fundamentally 
change how predictable the collapse of that species' population 
is. Although community- level abundance- based warning signals 
often provided the most reliable predictions of population col-
lapse; in reality such time series are difficult to collect and rarely 
available. However, for systems such as fisheries where the 
strength of interactions is known and community- level time- series 
data are often collected, our results suggest dominant eigenvalue 
estimated from the variance– covariance matrix could potentially 
be useful in forecasting species collapses. However, in the ab-
sence of such community- level data, we highlight the potential of 
using indicator species as reliable forecasters of the collapse of 
species and communities. Such indicator species may be identi-
fiable by identifying where the strongest interaction strengths in 
a community are, and then measuring these species for signals of 
instability. Critically, that the type of community a species resides 
in may influence how predictable collapse is raises concerns about 
the generality of EWS frameworks, and their utility in predicting 
real- world collapse.
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