
Ecological Modelling 472 (2022) 110076

A
0

Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

Investigating the effect of pesticides on Daphnia population dynamics by
inferring structure and parameters of a stochastic model
Gian Marco Palamara a,c,∗, Stuart R. Dennis b, Corinne Haenggi b, Nele Schuwirth a,
Peter Reichert a

a Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Systems Analysis, Integrated Assessment and Modelling, Dübendorf, Switzerland
b Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland
c Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland

A R T I C L E I N F O

Dataset link: https://github.com/Gpalam/Daph
nia

Keywords:
Bayesian inference
Demographic stochasticity
Model selection
Nested stochastic population models
Age-structured model
Ecotoxicology

A B S T R A C T

Identifying sublethal pesticide effects on aquatic organisms is a challenge for environmental risk assessment.
Long-term population experiments can help assessing chronic toxicity. However, population experiments are
subject to stochasticity (demographic, environmental, and genetic). Therefore, identifying sublethal chronic
effects from ‘‘noisy’’ data can be difficult. Model-based analysis can support this process.

We use stochastic, age-structured population models applied to data from long-term population experiments
with Daphnia galeata in 1L aquaria with and without chronic pesticide treatments (diazinon and diuron) at
sublethal concentrations. Posterior analysis following Bayesian inference of model parameters and states helped
choosing an adequate description of life-history characteristics under the specific experimental conditions (a
zero-inflated negative binomial distribution for reproduction and mortality without density dependence). For
the insecticide treatments, the inferred marginal posterior parameter distributions indicated the need for a
mortality rate that increases with time, indicating cumulative chronic toxic effects of diazinon on Daphnia
populations. With this study, we demonstrate how stochastic models can be used to infer mechanisms from
population data to help identifying sublethal pesticide effects.
1. Introduction

The environmental concentrations of pesticides from agricultural
and urban sources raise concerns about their effects on aquatic ecosys-
tems (Liess et al., 2021). Environmental risk assessment for pesticides
is challenging (Topping et al., 2020) due to the following reasons:
the intermittent nature of many pollution sources, e.g. increased trans-
port during storm events, the large number of compounds and their
transformation products, mixture toxicity effects, the large number of
potentially affected species and their poorly known biotic interactions,
partial knowledge about interacting environmental influence factors,
and intrinsic stochasticity of ecosystem dynamics. Therefore, the effects
of these pollutants in aquatic ecosystems can primarily be assessed
indirectly by statistical analyses (Beketov et al., 2013; Münze et al.,
2017; Duong et al., 2021; Belaid and Sbartai, 2021; Silva et al., 2021).
Such integrative studies are of high importance, as only investigations
of the real systems reflect the full complexity of the environment and
the biological communities (Taub, 1997a,b).

Nevertheless, laboratory experiments are important for environmen-
tal risk assessment (Taub, 1997a,b). They are essential for prospective
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hazard assessment and complementary tools to explore the effects of
specific pesticides on population or community dynamics of selected
organisms. Advantages are the better control of pollutants and en-
vironmental conditions, the limited community complexity, and the
opportunity of replicating experiments (Taub, 1997b). While short-
term bioassays for the assessment of acute (lethal) effects based on
single species are routinely used for pesticide registration, experi-
ments with higher ecological realism did not make it into the reg-
istration procedures, due to the challenges of standardization and
reproducibility (Taub, 1997a; Riedl et al., 2019). However, it is also
of particular importance to investigate chronic effects of sublethal con-
centrations, as pesticide concentrations in the environment are usually
well below acute lethal concentrations and may prevail for longer time
periods (Moschet et al., 2014; de Souza et al., 2020).

Despite the advantages of laboratory experiments (Taub, 1997a,b),
there remain significant challenges, especially for chronic effect stud-
ies (Erickson et al., 2014): Maintaining stable communities over a
longer time span (e.g. several weeks) can be difficult already in the
absence of pesticides; the effect of sublethal concentrations may be
vailable online 4 August 2022
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small (de Souza et al., 2020); perfect replication of experiments is
difficult regarding the reproduction of the initial state as well as
environmental conditions during the course of the experiment; and
demographic stochasticity may be significant for small populations
(Shoemaker et al., 2020). These challenges can make the interpretation
of the results difficult.

Integrating population modeling into environmental risk assess-
ment can help to address some of the challenges mentioned above
(Forbes et al., 2010; Raimondo et al., 2021). A population or commu-
nity model that makes it possible to consider many of these complicat-
ing factors can be a tool to support the interpretation of experimental
results. This usually requires a careful model selection process by fitting
multiple model versions to the experimental data and the analysis
of inferred posterior distributions of model parameters and states to
select the most appropriate model and to learn from the corresponding
posterior distribution.

Process-based models that can be used for this purpose include (a)
deterministic models at the population level, e.g. integral projection
models (Ellner et al., 2016) or models that follow the Dynamic Energy
Budget approach (Kooijman, 2010; Jager, 2020), that are straightfor-
ward to use for model-based inference but do not account for demo-
graphic stochasticity, (b) individual based models (IBMs) that describe
life history processes at the individual level and can naturally describe
demographic stochasticity (Grimm et al., 2005), but are challenging to
use for model-based inference (Kattwinkel and Reichert, 2017), (c) age-
or stage-structured, stochastic population models (Nisbet and Gurney,
2004; Lande et al., 2003; Chou and Greenman, 2016) that can describe
demographic stochasticity while introducing less model complexity
than individual based models.

Daphnia is a widely used model organism and many models have
been developed to describe its population dynamics. Classical stage
structured population models (De Roos et al., 1992; Mccauley et al.,
2008; Lamonica et al., 2016) have been extended to include different
forms of stochasticity (Preuss et al., 2009; Ananthasubramaniam et al.,
2011; Metz and Diekmann, 2014; Erickson et al., 2014). Stochas-
tic population models are particularly relevant when the number of
individuals is low and thus demographic stochasticity becomes impor-
tant (Nisbet and Gurney, 2004).

In this study, we evaluate the chronic effect of sublethal concentra-
tions of the insecticide diazinon and the herbicide diuron on Daphnia
galeata feeding on algae (Acutodesmus obliquus). This is a well known
model system for toxicological studies (Brede et al., 2009). We then
apply a careful model selection process and calibrate the resulting
Daphnia population model to multiple replications of experiments with
and without the application of the pesticides. The experimental data
includes five replicates of up to 100 day long time series of three
different life stages of Daphnia of a control, a treatment with diazinon,
a treatment with diuron, and a combined treatment with diazinon and
diuron.

We used a stochastic, age-structured, discrete individuals population
model to account for demographic stochasticity that was large due to
the very small (initial) population size. Our model is similar to the
stage-structured model by Erickson et al. (2014) but uses age classes
to more easily account for the delays between the transitions to the
next life stages. Moreover, we used a different parameterization for
(potential) time and density dependence of survival. In the absence of
empirical data at different pesticide concentrations, we do not describe
the toxic effect explicitly in the model. Instead we calibrate the model
to the control and the pesticide treatments separately, and infer the
toxic effect from a comparison of the posterior parameter distributions.
This helps us to identify empirically the mechanism that best describes
the observed toxic effect with the model without the need to decide
beforehand, which model parameters may be affected by the pesticides.

The goals of the study are to learn if we can infer chronic effects of
diazinon and diuron on the crustacean Daphnia galeata from long-term
population data with a stochastic model and to gain experience with the
model selection and calibration process that could be useful for future
2

studies. i
2. Material and methods

A model design and selection process consists of an a priori phase
in which reasonable model structures are suggested based on ecological
knowledge, the modeling objective, the available data, and on consid-
erations regarding the description of the most important mechanisms in
the system (Schuwirth et al., 2019) and an a posteriori phase in which
the final model structure is selected by the predictive performance of
the model (Roberts et al., 2017; Houlahan et al., 2017), a trade-off be-
tween the quality of fit to the data and model complexity (Spiegelhalter
et al., 2002; Plummer, 2008; Spiegelhalter et al., 2014; Hooten and
Hobbs, 2015), or inference of parameters that characterize potentially
relevant processes or that mix different model structures (Robert, 2016;
Kamary et al., 2018).

In the following subsections, we therefore first discuss the objec-
tives of the experiment and of the accompanying modeling study, we
describe the experimental setup and the resulting data, then we discuss
the a priori model design process for this case study, and finally the
techniques chosen for a posteriori model structure selection.

2.1. Objectives

The objective of the experiments was to investigate chronic effects
of sublethal concentrations of a herbicide and an insecticide on a
model community of algae and Daphnia. The model-based analysis
should support the identification and quantification of effects on fer-
tility and mortality of Daphnia in the presence of high stochasticity
that limits the reproducibility of the experiments. Note that we do not
model explicitly the effects of pesticides as only one concentration per
treatment was tested. Instead, we calibrate the model separately for
each treatment and detect the effects of pesticides by observing the
differences in the posterior parameter distributions between the four
treatments. Our approach therefore does not require to impose any
toxic effect relationship for selected model parameters, but it allows
us to identify a posteriori, which parameters may be affected by the
pesticides. Experiments at different pesticide concentrations would be
needed to infer the response as a function of pesticide concentration.

2.2. Microcosm experiments

We established laboratory communities of the crustacean Daphnia
aleata and the green alga Acutodesmus obliquus in 1 liter microcosms.
Daphnia genotypes were selected from a living library of Daphnia
aleata genotypes previously collected from lakes throughout Europe,
nd maintained in animal care facilities at Eawag, Switzerland. For
he experiment presented here, microcosms were innoculated with
hree Daphnia neonates of a single clone from Lake Garlata (IT :
45◦49′03′′N 9◦24′30′′E) and with green algae Acutodesmus obliquus
3.193mg Carbon - measured by Spectrophotometry @800 nm). We
xposed five microcosms to each of four different treatments: control,
ublethal concentration of an insecticide (diazinon nominal concen-
ration of 0.6 nM [186 ng/L]), sublethal concentration of a herbicide
diuron nominal concentration of 3.05 nM [711 ng/L]), and the com-
ination of the two pesticides. The microcosms were maintained at 21◦
ith a 16:8 light cycle. Each microcosm was filled with 1 liter of surface
ater collected from Lake Greifensee (CH : 47◦21′16′′N 8◦40′30′′E).
rior to use, media were filtered (pore size 0.45 μm) then autoclaved.
fter autoclaving media were re-gassed overnight using sterile filtered
ompressed air. Where appropriate, diazinon and/or diuron was intro-
uced in ethanol (final concentration < 0.0004% - 4 μL ethanol per
). Water was aged prior to use to limit effect of volatile organics
e.g. kairomones) and laboratory conditions maintained at steady state.
he microcosms were sampled weekly between June and August, or un-
il the Daphnia population declined to extinction. If extinction occurred

n the first 2 weeks of the experiment we established new microcosms
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to replace them. We followed a protocol from similar population exper-
iments (Beckerman et al., 2010; Dennis et al., 2011). Because the goal
was to assess long-term population effects, we chose a natural medium
– lake water from a lake close to the lab – and a Daphnia species that
naturally occurs in this lake (Keller et al., 2008). The specific clone was
originally from another lake but acclimated to the same medium and
did well in pre-experiments under similar conditions. The pesticides
were chosen based on the following selection criteria: They should
be stable under experimental conditions to maintain constant concen-
trations during the experiments, some knowledge about their effects
on Daphnia and algae was already available, and they show measur-
able sub-lethal effects at environmentally relevant concentrations. The
acetylcholinesterase inhibitor diazinon (Kretschmann et al., 2011a,b,
2012) and the photosystem II inhibitor diuron (Nestler et al., 2012a,b)
were identified as the most promising candidates (Wittmer et al., 2014).
The test concentrations were chosen based on pre-experiments aiming
at a roughly 20% reduction of the reproduction rate.

At each sampling event, we filtered (30 μm) populations to cen-
sus the entire population. Daphnia were classified by size (<0.7 mm
neonate, juvenile, >1.2 mm adult), and adult reproductive output was
assessed by counting the number of eggs in the brood pouch. During
each population census a subsample of algae (500 μL) was preserved
or algal density assessment. Next, 500 mL of media was transferred to
centrifuge bottle and centrifuged at 5000 rpm and 18◦ for 5 min. The

upernatant was discarded (a subset retained for nutrient analysis) and
he algal pellet was resuspended in fresh media before being returned
o the microcosm.

Fig. 1 provides an overview of the time series of adult and juvenile
aphnia, of eggs and of the fraction of adults without eggs for all
icrocosms. Note the high level of demographic noise shown in the

ime series. In Figure S.9 in the supplementary material we show
ualitative time series of relative fluorescence measurements related to
lgal densities.

.3. A priori model structure selection

.3.1. Selection of model class
With ‘‘model class’’ we denote the concept underlying the descrip-

ion of the population or the community, how to deal with stochasticity,
nd the temporal and spatial resolution of the model. The model
lass does not describe the detailed equations of the model structure.
e select the model class for our specific problem according to the

ollowing considerations:

• Community/populations: As we only have qualitative data from the
algae population (see Figure S.9 in the supplementary material)
and do not have indications for food limitation, we focus on the
description of the Daphnia population.

• Individuals: The small number of individuals (three juveniles) at
the beginning of the experiment and the lack of information to
distinguish the individuals during the time course of the experi-
ment, suggest using a discrete individuals model that accounts for
the discrete nature of the population, but does not distinguish the
individuals.

• Traits: The resolution of life stages by the model makes it possible
to profit from the full information content of the data. Increasing
the resolution of the model to age classes allows us to better de-
scribe the different residence times in different life stages without
additional effort. Life stages are then associated with sets of age
classes. As the data does not distinguish other traits, neither does
the model.

• Stochasticity : Due to the small number of individuals, demo-
graphic stochasticity has a large effect on the population. Envi-
ronmental stochasticity was minimized in the experimental setup.
Genetic stochasticity is not relevant, because the populations
consist of asexually reproducing clones. We thus consider demo-
graphic stochasticity by going for probabilistic descriptions of
3

birth and death processes.
Fig. 1. Overview of experimental data: Time series of eggs (A), juveniles (B), adults
(C), and fraction of adults without eggs (D) of Daphnia galeata for all treatments
(represented by different colors) and all five replicates for each treatment (identical
colors). Observations (dots) are connected by lines to clarify the correspondence within
each replicate.

• Space: The experiments were carried out in homogeneous micro-
cosms without spatial resolution in observations. We thus choose
not to resolve the spatial dimension by the model.

• Time: A discrete-time model with the same (daily) resolution for
both time and age simplifies the model description, as proceeding
one time step increases age by one age class.

The choice of a stochastic, age-structured, discrete population model
in discrete time allows us to formulate a mechanistically correct model
structure with the processes of reproduction, aging and mortality that
naturally contains demographic stochasticity. Using an age- rather than
a stage-structured model allows us to consider different retention times
in different life stages, avoids numerical diffusion in the aging process,
and provides a more detailed description of the population at minor
additional costs. On the other hand, this model uses empirical param-
eterizations of growth, reproduction and mortality processes. Going
beyond such an empirical description could not extract more infor-
mation from the data. Nevertheless, this model allows us to formulate
ecological hypotheses by different parameterizations of these processes
and to test these with the data.

2.3.2. Formulation of model structure
Model structure formulation within the model class selected in

the previous section requires the specification of the number of age
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Fig. 2. Schematic representation of a general age-structured model. Transitions between age classes are represented by horizontal arrows and egg production by curved arrows.
The observation process is represented in red where individual age classes are divided into the three developmental stages, Eggs (𝐸), Juveniles (𝐽 ) and Adults (𝐴). 𝜽𝐅,𝐢 are the
parameters of the distribution of egg production by a single adult in age class 𝑖 (see expression (1)) and 𝑠𝐴∕𝐽𝑖 are the average surviving fractions of adults, 𝐴, or juveniles, 𝐽 , of
age class 𝑖 within one day (see Eqs. (3)–(4)).
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classes and how the numbers of individuals in these classes are related
through mathematical relations for reproduction (here egg production),
aging and mortality (survival). In addition, to relate model output
to observations, a description of the observation process is needed.
Individuals are distributed into (𝑛E+𝑛J+𝑛A) age classes of length 𝛥𝑡 = 1
day each, where 𝑛E = 3, 𝑛J = 5 and 𝑛A = 45 are the numbers of egg,
juvenile and adult age classes respectively, leading to an instar time
of 𝑛E𝛥𝑡 = 3 days, a maturation age of 𝑛J𝛥𝑡 = 5 days and a maximum
age of (𝑛J + 𝑛A)𝛥𝑡 = 50 days (see Fig. 2). Note that 𝛥𝑡 defines both
the time step for the temporal evolution of the model and age class
length. We assume every adult produces eggs according to a general
fertility distribution 𝐹 . As each adult only gives birth every 𝑛E days,
the distribution of eggs in their different age classes and at time 𝑡 + 1d
are given by

𝐸1(𝑡 + 1d) ∼
𝑛A
∑

𝑖=1

[ 𝐴𝑖 (𝑡)
𝑛E

]

∑

𝑗=1
𝐹 (𝜽𝐹 ,𝑖) , (1)

𝐸𝑖(𝑡 + 1d) = 𝐸𝑖−1(𝑡) , 𝑖 = 2,… , 𝑛E . (2)

ere, 𝐸𝑖(𝑡) is the number of eggs in egg age class 𝑖 at time 𝑡, 𝐴𝑖(𝑡) is
he number of adults in adult age class 𝑖 at time 𝑡, and 𝜽𝐹 ,𝑖 are the
arameters of the fertility distribution for adults in age class 𝑖. The
quare brackets

[

𝐴𝑖(𝑡)
𝑛E

]

at the top of the sum represent the number of

dults that give birth at this time step, if necessary rounded down to
n integer. Note that we ignore mortality of eggs in Eq. (2).

Aging and mortality of individuals across age classes is defined by

𝐽𝑖(𝑡 + 1d) ∼ B
[

𝐽𝑖−1(𝑡); 𝑠J𝑖 (𝑡, 𝐽1,… , 𝐽𝑛J , 𝐴1,… , 𝐴𝑛A )
]

, 𝑖 = 1,… , 𝑛J ; (3)

𝑖(𝑡 + 1d) ∼ B
[

𝐴𝑖−1(𝑡); 𝑠A𝑖 (𝑡, 𝐽1,… , 𝐽𝑛J , 𝐴1,… , 𝐴𝑛A )
]

, 𝑖 = 1,… , 𝑛A ; (4)

here 𝐽𝑖 is the number of juvenile individuals in juvenile age class
, 𝐴𝑖 is the number of adult individuals in adult age class 𝑖 and B is
binomial distribution, whose second argument, 𝑠𝐽𝑖 or 𝑠𝐴𝑖 , define the

verage surviving fractions of adults, 𝐴, or juveniles, 𝐽 , of age class 𝑖
ithin one day, respectively. Note that the number of juveniles in age

lass 0 is the number of eggs in age class 𝑛E (𝐽0 = 𝐸𝑛E ), and that the
umber of adults in age class 0 is the number of juveniles in age class
J (𝐴0 = 𝐽𝑛J ). The observation process is then defined using the sum of
ndividuals among age classes within stages, given by

𝐸obs(𝑡) = N

( 𝑛E
∑

𝐸𝑖(𝑡), 𝜎obs

)

(5)
4

𝑖=1
𝐽obs(𝑡) = N

( 𝑛J
∑

𝑖=1
𝐽𝑖(𝑡), 𝜎obs

)

(6)

obs(𝑡) = N

( 𝑛A
∑

𝑖=1
𝐴𝑖(𝑡), 𝜎obs

)

(7)

here N is a normal distribution with standard deviation 𝜎obs = 1,
escribing complete counting of all individuals in the three develop-
ental stages (Fig. 2). Although this distribution does not represent

he results of a count process, it will only be evaluated at non-negative,
nteger values that represent the observations. This observation model
erves primarily the purpose of supporting convergence of the inference
lgorithm allowing only for small deviations from actual counts that
an be assumed to have only minor errors. If the populations would
ecome large in the course of the experiment, we would have to replace
his observation model with a model that accounts for larger errors for
arger populations. Introducing such an observation process, we make
ur model hierarchical, in the context of what are typically described
s a State Space Models in the ecological literature (Auger-Méthé et al.,
021; Newman et al., 2022).

.3.3. Formulation of hypotheses and associated model versions
We can now formulate different ecological hypotheses to be tested

gainst data, leading to different model versions within the overarching
odel structure. Note that this has been an iterative process, where

dentified deficits of models from earlier iterations provided inspiration
egarding hypotheses to be tested. During this iterative process, we
ested hypotheses regarding the fertility distribution as well as density-
nd time-dependence of mortality.

Assuming fertility is independent of age in Eq. (1) leads to an egg
istribution given by

1(𝑡) ∼

[

1
𝑛E

∑𝑛A
𝑖=1 𝐴𝑖(𝑡)

]

∑

𝑗=1
𝐹 (𝜽𝐹 ) , (8)

where the square brackets
[

1
𝑛E

∑𝑛A
𝑖=1 𝐴𝑖(𝑡)

]

at the top of the sum rep-

resent the total number of adults that give birth at this time step, if
necessary rounded down to an integer. Different assumptions can be
made for the choice of the distribution 𝐹 , leading to different model
versions. We used four hypotheses for fertility (the labels P, N, PZ and

NZ are used to label the model versions):
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P: Poisson distribution 𝐹 (𝜽𝐹 ) = P(𝑓 ): to describe the number of new
eggs as a single distribution with the mean equal to the fecundity,
𝑓 (mean number of eggs per individual).

N: Negative binomial distribution 𝐹 (𝜽𝐹 ) = NB(𝑓, 𝑟): often used
as an empirical distribution of overdispersed discrete observa-
tions (Lindén and Mäntyniemi, 2011), here parameterized with
the mean equal to the fecundity, 𝑓 , and the individual dispersion
parameter 𝑟.

PZ: Zero-inflated Poisson distribution 𝐹 (𝜽𝐹 ) = PZ(𝑐, 𝜋): where we
assume that there is an excess fraction of adults, 𝜋, that does
not produce eggs and the other fraction, (1 − 𝜋), produces eggs
according to a Poisson distribution with a mean clutch size of
𝑐 = 𝑓∕(1−𝜋) (where 𝑓 = 𝑐(1−𝜋) remains the effective fecundity as
above). Note that 𝜋 is the excess fraction of adults without eggs in
addition to the probability for zero eggs described by the Poisson
distribution.

NZ: Zero-inflated negative binomial distribution 𝐹 (𝜽𝐹 ) = NBZ(𝑐, 𝑟, 𝜋):
where we combine the negative binomial distribution NB with
zero-inflation. As for the Poisson distribution, 𝜋 characterizes
the excess fraction of adults without eggs in addition to the
probability of zero eggs of the negative binomial distribution.

A large value of the dispersion parameter (𝑟 → ∞) reduces the fertility
distribution of model version N to that of model version P and analo-
gously for model version NZ to PZ. Setting 𝜋 = 0 (leading to 𝑐 = 𝑓 )
reduces model version PZ to P and version NZ to N, respectively. The
more complex models thus reduce to the simpler models in a nested
design (Fig. 3). See supplementary section S.1 for a detailed description
of fertility distributions and their numerical implementation. Note that,
despite not being mechanistic, these distributional assumptions are
typically used for describing count data, e.g. egg distributions (Lindén
and Mäntyniemi, 2011; Brooks et al., 2019).

We then select hypotheses for mortality by parameterizing the mean
survival fractions 𝑠J∕A in Eqs. (3) and (4), assuming mean survival
fractions to be equal among age classes and stages and described by
a general, time- and density-dependent expression given by

𝑠(𝑡, 𝐽1,… , 𝐽𝑛𝐽 , 𝐴1,… , 𝐴𝑛𝐴 )

= exp

[

−
(

𝑘0 + 𝑘1𝑡
)

𝛥𝑡 − 𝑘c

( 𝑛J
∑

𝑖=1
𝐽𝑖(𝑡) +

𝑛A
∑

𝑖=1
𝐴𝑖(𝑡)

)

𝛥𝑡

]

, (9)

where 𝑘0 is the base mortality rate, 𝑘1 is a time-dependent mortality
rate coefficient, associated to variation in environmental conditions,
while 𝑘c is a coefficient of density-dependent mortality, or crowding
(Table 1). Technical details of the implementation of the mortality rate
can be found in the supplementary section S.2. Varying the parameters
of Eq. (9) leads to a total of four nested hypotheses on the different
processes affecting mortality:

Base model: No time and density-dependence (𝑘1 = 0, 𝑘c = 0).
Model extensions:

T: Only time-dependent mortality (𝑘1 ≠ 0, 𝑘c = 0).
C: Only density-dependent mortality (𝑘1 = 0, 𝑘c ≠ 0).

TC: Time and density-dependent mortality (𝑘1 ≠ 0, 𝑘c ≠ 0).

Again, the simpler model structures can be obtained by setting pa-
rameters to specific values (in this case zero). Note that explicit time-
dependence of mortality seems to be a strange assumption for an
ecological model. This hypothesis entered the model selection process
at a later iteration, as the initial increase and fast decline of the popula-
tions for some treatments could not be described otherwise. Combining
the four hypotheses for fertility and the four hypotheses for mortality,
we obtain 16 different nested model versions (Fig. 3) to be fitted to
the data with up to six model parameters (Table 1). The priors of the
parameters have been chosen to be quite wide and generally for most of
the model versions the parameters are identifiable (see Section 3.1.3).
These nested model versions will allow us to infer the need for model
extensions by the marginal posterior of the corresponding parameters.
5

2.3.4. Model application strategy
Given 𝑅 = 5 replicated population time series data per treatment

and a model version with 𝑛𝜃 parameters, each model version can be
fitted to the data, separately for every treatment, using at least two
strategies:

J: Joint fit: the model is fitted jointly to the data of all replicas,
leading to a total of 𝑛𝜃 parameters.

R: Replica by replica fit: Inference is split into 𝑅 independent fits of
𝑛𝜃 parameters, leading to a total of 𝑅 ⋅ 𝑛𝜃 parameters .

Given replicated time series data for the three stages, 𝐲obs, combining
model versions and application strategies, we end up with 32 mod-
els to make inference with for every treatment. Each model can be
represented by the joint probability distribution

𝑝(𝐲obs, 𝐲,𝜽) = 𝑝(𝐲obs ∣ 𝐲,𝜽) ⋅ 𝑝(𝐲 ∣ 𝜽) ⋅ 𝑝(𝜽) (10)

where 𝐲 are the internal model states (numbers of individuals of each
age class at each time step), 𝑝(𝐲obs ∣ 𝐲,𝜽) is the observation model,
𝑝(𝐲 ∣ 𝜽) is the age-structured population model, 𝑝(𝜽) is the prior of
the model parameters 𝜽 = (𝑓, 𝑟, 𝜋, 𝑘0, 𝑘1, 𝑘𝑐 ) (Table 1) for the model
application strategies J and R.

2.4. A posteriori model structure selection

In this study, we do not have sufficient data to split the time series
into a calibration and a validation period for using cross-validation
for model selection (Roberts et al., 2017; Houlahan et al., 2017).
This would require stable or multiple increase and decline patterns
in both of these time periods to have all relevant patterns available
for calibration as well as for validation. However, as explained in
Section 2.2, our time series typically show an increase in population
size followed by a decline with some superimposed fluctuations (see
Fig. 1). This does not allow for a sufficiently good model calibration
with using only the first part of the time series. In addition, the
variation among replicated experiments indicate strong stochasticity,
so that the predictive performance of even the best model can only be
quite poor (see also Section 4).

The use of information criteria that are based on a trade-off be-
tween model fit and model complexity is the most widely applied
alternative to cross validation (Spiegelhalter et al., 2002; Johnson and
Omland, 2004; Plummer, 2008; Spiegelhalter et al., 2014; Hooten and
Hobbs, 2015). However, these criteria have some conceptual prob-
lems (O’Hagan, 1995; Tenan et al., 2014; Robert, 2016; Tendeiro and
Kiers, 2019), and they do not help to improve the ecological under-
standing. For this reason, we prefer to primarily base our considerations
on a technique that provides more ecological insight. Nevertheless, we
include one of these criteria, the deviance information criterion (DIC)
in our analysis for comparative purposes (see section S.3 and Figure S.1
in the supplementary material).

As we only have a relatively small number of hypotheses to test,
analyzing marginal posterior distributions of model parameters in a
nested model structure as outlined in Section 2.3.3, seems to be an
adequate model structure selection technique for this study. In this
approach, comparing the marginal posteriors of model parameters with
their specific values for a simpler structure allows us to assess the
need for additional structural elements. If we would have to decide
between structurally different models that cannot easily be formulated
in a nested structure, mixture model estimation would have been a
suitable alternative (Kamary et al., 2018).

In addition to the identification of relevant processes by marginal
posterior distributions of individual parameters, we analyze the typical
behavior of the model by performing simulations propagating the
marginal posterior of all model parameters (marginalizing over the
states, but still joint for all parameters). This can be seen as a substitute
of cross-validation as it does not consider state information explicitly
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Fig. 3. Schematic representation of eight different model versions. Each box corresponds to a model version and is labeled by the version acronym and the corresponding model
parameters. Each arrow shows a transition from a version to another, corresponding also to a decrease in the number of parameters. Each of the eight model versions presented
has a negative binomial fertility distribution (N). The corresponding eight model versions with Poisson fertility distributions (P) are obtained in the limit 𝑟 → ∞. The red box
nderlines the model version that will turn out the best to fit the experimental data (see Table 2).
Table 1
Six parameters of the model with their corresponding units and prior distributions.

Symbol Description Unit Prior distribution Prior mean Prior sd

𝑓 Fecundity – Lognormal trunc. at 30 1.5 1.5
𝜋 Excess fract. of adults without eggs – Normal trunc. to [0, 1] 0.5 0.15
𝑟 Dispersion parameter – Lognormal 1 0.25
𝑘0 Base death rate day−1 Lognormal 0.1 0.1
𝑘1 Coefficient of time-dep. mortality day−2 Normal 0 1
𝑘c Coefficient of density-dep. mort. day−1 Lognormal 0.0001 0.0001
(only implicitly through the posterior of the parameters). Due to the
high variability of the replicates that indicates a high stochasticity in
the actual microcosms, we expect a high prediction uncertainty for
these simulations.

2.5. Numerical methods and implementation

Bayesian inference for each of the model versions was done, sep-
arately for each of the four treatments, by Gibbs sampling from the
joint posterior of model parameters and states (Gelman et al., 2003).
The implementation was based on the software JAGS (Plummer, 2003)
that was called from R (R. Core Team, 2021) via its interface rjags
http://cran.r-project.org/package=rjags). Five Markov chains with 106

terations were run and for each of them the first half was cut to
liminate burn-in (see also Figure S.2 in the supplementary material).
he data considered in Section 3, as well as code to reproduce the
esults are publicly accessible at https://github.com/Gpalam/Daphnia.

. Results

To explore the required and identifiable model structure for the data
rom our experiments, we start the analysis with an a posteriori model
election process for the treatment with diazinon (dz) as this affects
aphnia most directly (Section 3.1). Despite the small amount of data,

he model parameters turn out to be identifiable even for the most
omplex of the investigated model structures. We then proceed with
comparison of all treatments based on the full model to test whether

he conclusions regarding the relevance of processes and the need for
xtended process parameterizations are valid for the other treatments
6

s well (Section 3.2).
3.1. A posteriori model selection

We performed a model selection process as described in Section 2.4
for the experiments with diazinon treatment, testing the 16 model
versions described in Fig. 3 and both application strategies J and R
(Section 2.3.4).

3.1.1. Convergence
We fitted all the model versions to the time series data and checked

for convergence of the Markov chains. The models with Poisson fertility
and zero-inflation (PZ) clearly did not converge (see log posterior
chains in Figure S.2 in the supplementary material). The fraction of
zero-inflation, 𝜋, tended to approach unity whereas the clutch size, 𝑐,
became large to keep a reasonable fecundity, 𝑓 = 𝑐(1−𝜋). The inference
algorithm appeared to widen the fertility distribution by increasing
zero-inflation, indicating that the negative binomial distribution with
its dispersion parameter is better suited to describe fertility. The PZ
model versions were thus discarded from further analysis for poor
convergence due to structural deficits. None of the other model versions
showed severe convergence problems.

3.1.2. Model output and predictions
Next, we qualitatively discuss the posterior model predictions and

rely on the posterior marginals of the parameters for model selection
(see Section 3.1.3 below). The predictions based on the posterior
marginal of the parameters (still joint for all parameters, but marginal-
ized over the states), are used as a replacement for cross-validation
(see Section 2.4). In principle, this is a sensitive test for stochastic
models because in contrast to the inferred time-series of the states,
the parameters do not contain detailed information about the time
series of the data and thus represent typical model behavior. However,
as already mentioned in Section 2.4, replication of the data is very

poor, indicating high stochasticity. As the supplementary Figures S.3

http://cran.r-project.org/package=rjags
https://github.com/Gpalam/Daphnia
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Fig. 4. Box plot of fertility (blue) and mortality (green) parameters for models in the joint fit (J: gray) and replica by replica fit (R: colored), priors are displayed in light gray.
In the upper panels we show the marginal posterior distribution of the overdispersion parameter (𝛼 = 1 + 𝑓∕𝑟) for model versions N and NZ (panel A) and of the zero-inflation
arameter (𝜋) for model versions PZ and NZ (panel B). In the lower panels we show marginal posterior of coefficients of density-dependent mortality (𝑘𝑐 ) for model versions PC
nd NC (panel C) and of coefficients of time-dependent mortality (𝑘1) for model versions PT and NT (panel D). The red horizontal lines show the mean of the priors.
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nd S.5 and to a lesser extent the supplementary Figures S.4 and S.6
emonstrate, this leads to a high uncertainty in predictions, induced
y the high stochasticity of the model. Model versions N, NZ, NZT
how a general improvement of model predictions, compared to the
orresponding Poisson model versions, allowing more variability in the
gg time series. However, predictions obtained using models N and
Z show unrealistic population growth. In fact, all models without

ime-dependent mortality do not show the typical extinction of the
opulations in the experiments. This can be corrected using models
ith time-dependent mortality (e.g. NZT), which are able to capture
opulation decline and lead to a better fit of the states.

.1.3. Marginal posterior model parameter distributions
All marginal parameter distributions except the one for 𝑘𝑐 are

ither shifted from or narrower than their priors indicating good iden-
ifiability despite the small number of data points (see Fig. 4 and
upplementary Figures S.7–S.8). This also indicates a minor dependence
f the results on the prior parameter distributions. Over-dispersion and
ero-inflation are important for a realistic description of the empirical
gg distributions. All model fits, especially for replicas three and four,
how a significant over-dispersion quantified by the parameter 𝛼 equal
o the variance divided by the mean (𝛼 > 1), compared to Poisson
𝛼 = 1) (Fig. 4 A). All models with zero-inflation led to zero-inflation
f 60 to 90% (Fig. 4 B; note that results for model PZ are not reliable
or convergence reasons, see Section 3.1.1).

Marginal posterior analysis shows no significant effect of crowding,
s the posterior coefficient of density-dependent mortality (𝑘𝑐) remains
ith the prior and leads to a very small contribution to the mortality

ate when multiplied with typical population sizes (Fig. 4 C). On the
7

ther hand, we observe a significant effect of time-dependent mortality
on population dynamics as the marginal posteriors of the coefficients
of time-dependent mortality, 𝑘1, are always significantly larger than
zero (Fig. 4 D). This effect can be an indication of cumulative effects
of diazinon unless the other treatments would show this effect also.
To stress the importance of the single mechanisms associated to the
relevant parameters, in Fig. 4 we show a subset of the (simplest)
model versions. See supplementary Figures S.7 and S.8 for a complete
comparison of all the parameters for all the model versions.

The two-dimensional marginals plots of the posterior parameter
distribution (see Fig. 5) show strong negative correlation between
the mortality parameters 𝑘0 and 𝑘1 and positive correlation between
the parameters 𝑐, 𝜋 and 𝑟. All these results have a clear ecological
interpretation: 𝑘0 and 𝑘1 both affect mortality positively, which results
in a negative posterior correlation. The clutch size, 𝑐, and the fraction
of adults without eggs, 𝜋, lead to a mean fecundity of 𝑓 = 𝑐(1 − 𝜋). As
the model results are sensitive to the mean fecundity, this leads to a
positive correlation of 𝑐 and 𝜋. Overdispersion can either be increased
y decreasing values of 𝑟 or increasing values of 𝜋 which leads to a
ositive correlation of these parameters. Finally, 𝑐 and 𝑟 are positively
orrelated because of their positive correlation with 𝜋.

.1.4. Model selection
The results outlined in the previous section are the basis for our

easoning for model selection for nested stochastic ecological model
ersions (Table 2). The Poisson fertility distribution P clearly demon-
trates the difficulty of model structure selection for stochastic models.
espite the small variance of this distribution, a model fit is always
ossible with low probability due to the stochastic nature of the model.
nly the extensions to negative binomial fertility distributions and
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Fig. 5. Plot of two-dimensional marginals of the posterior parameter distribution for the model NZTJ. The color scale encodes the density of the points in the scatter plot. See
Table 1 for the units of measure of the parameters.
to zero-inflation demonstrate the weakness of the Poisson assump-
tion (Lindén and Mäntyniemi, 2011; Brooks et al., 2019), with strong
evidence for the need of these extensions with the models N and NZ.
This need is clearly seen by the marginal posteriors of the parameters
𝛼 and 𝜋 in Fig. 4, which indicate values significantly different from 1
and 0 respectively. The result that the joint fit for the model N requires
a higher overdispersion than any of the replica fits for this model may
be an indication of a structural weakness of this model. Numerically,
the need of overdispersion and zero-inflation is quantified by the means
and standard deviations of the associated parameters given in Table 2
(second column) which demonstrate a significant deviation from the
values associated to a Poisson fertility distribution. Note that in this
case lack of convergence reveals a structural deficit of the model PZ:
it does not converge as zero-inflation tends towards unity, and clutch
size tends to very large values (to keep effective fecundity 𝑓 = 𝑐(1 − 𝜋)
at a reasonable level). Finally, both marginal posterior analysis and
predictions with posterior parameters clearly indicate the need for an
increase in mortality over time in the microcosms with diazinon treat-
ment. In fact, total mortality in models with time-dependent mortality
(𝑘0 + 20𝑘1 = 0.23 ± 0.02𝑑−1) becomes three times higher at the end
of the experiment (𝑘0 + 60𝑘1 = 0.34 ± 0.05𝑑−1), compared to the total
mortality of models without time-dependent mortality (𝑘0 = 0.11 ±
0.008𝑑−1). Similarly, we found that density-dependence seems not to be
relevant for these microcosms. In fact, the mortality due to crowding
(𝑘c

(
∑𝑛J

𝑖=1 𝐽𝑖(𝑡) +
∑𝑛A

𝑖=1 𝐴𝑖(𝑡)
)

), computed when the population reaches its
maximum size, is at least one order of magnitude smaller than the
average total mortality.

These arguments were formulated in an iterative process of testing
and discarding model versions leading to the selection of the model
NZTJ with a zero-inflated negative binomial distribution for fertility
and an increasing mortality rate with time for the treatments with
diazinon. Model NZTJ clearly has the correct behavior with finally
8

leading to extinction of the population. In this model version, all
parameters are identifiable, and 𝜋 and 𝑘1 are clearly different from zero
(indicating strong evidence for zero-inflation and increasing mortality
with time) and 𝑟 indicating strong overdispersion of the negative bi-
nomial fertility distribution compared to the Poisson distribution. This
choice is confirmed by classical model selection metrics (see Figure
S.1 in supplementary section S.3). The nested model structures made
it possible to assess the importance of model extensions by Bayesian
inference and analysis of marginal posterior parameter distributions,
giving results that are much easier to explain and communicate than
abstract numbers that represent information criteria or Bayes factors.

3.2. Comparison of treatments

The careful model structure selection process for the diazinon treat-
ments summarized in Table 2 prepares us for the comparative analysis
of the different treatments. For this analysis, we have to consider the
zero-inflated negative binomial distribution for fertility, a potential
increase in mortality during the experiment, and we will focus on
the joint evaluation of all replica for each treatment, keeping the
replica-specific treatments to visualize the variability among replicated
experiments. Although this model, NZT, is the most parsimonious
model for the diazinon treatment, as all parameters are identifiable, we
choose the model NZTC, that considers a potential density-dependence
of Daphnia mortality, for the comparison to check whether density-
dependence could be an issue for one of the other treatments. Fig. 6
shows the marginal posterior densities of some combinations of the six
model parameters for all four treatments.

These results show a clear separation of average mortality between
the treatments with and without the insecticide diazinon (Fig. 6, panel
I). As the marginals for the parameter of time-dependence of the mor-
tality rate demonstrates (parameter 𝑘 in Fig. 6, panel E), the increase
1
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Table 2
Reasoning for selecting the model NZTJ. See Sections 2.3.3 and 2.3.4 for explanation of abbreviations. Gray rows indicate the best choices for
fertility, mortality and application strategy.

Version Statistics Conclusion
Fertility P Fit seems ok; but see below for improvements.

PZ 𝜋 ∼ 1 No convergence; overdispersion seems to be mapped
to zero-inflation.

N 𝛼 = 6.7 ± 1.2 Dispersion parameter clearly indicates overdispersion
compared to P.

NZ 𝛼 = 10.9 ± 2.7 Strong evidence for overdispersion and zero-inflation.
𝜋 = 0.9 ± 0.03

Mortality (const.) Posterior predictions indicate incorrect predictions
(low probability of extinction).

C Small posterior value indicates irrelevance
of density-dependence in this case.

T 𝑘1 = 0.003 Strong evidence for positive value of the parameter 𝑘1.
±0.0007𝑑−2

CT Small posterior value indicates irrelevance
of density-dependence in this case.

Application R Good fit (except PZ); small deviations between replicas
Strategy indicates low systematic variability between replicas.

J Good fit (except PZ); good summary of information from
data, as there is no evidence for different conditions among
replica.
Fig. 6. Plots of marginal posterior densities of parameters for treatments control (green), herbicide (blue), insecticide (red), and both pesticides (orange) for model NZTC for the
oint fit (J: continuous lines) and replica by replica fit (R: dashed lines); priors are displayed in black. In the upper panels we show clutch size (𝑐) (panel A), Zero-inflation (𝜋)
(panel B), dispersion parameter (𝑟) (panel C), in the middle plots we show base mortality (𝑘0) (panel D), slope of time-dependent mortality (𝑘1) (panel E), crowding parameter
(𝑘𝑐 ) (panel F) and in the lower panel we show the composed parameters: effective fecundity 𝑐(1 − 𝜋) (panel G), overdispersion (𝛼 = 1 + 𝑓∕𝑟) (panel H) and average mortality
< 𝑘 >= 𝑘0 + 𝑇𝑘1∕2 (panel I) (where 𝑇 is the duration of the experiment averaged across the five replicates).
t
d
t
c
t

n mortality over time identified in Section 3.1.3 for the diazinon
reatment seems to be a consequence of diazinon and not of generally
eteriorating conditions in the microcosms. For the treatments that
o not contain diazinon, the values of this parameter are compatible
ith zero. Effective fecundity seems also to increase for the diazinon

reatments (Fig. 6, panel I), although this increase is less significant
han the one we observe for mortality and mortality slope. This differ-
nce is mostly caused by an increase in the fraction of adults without
ggs, i.e. by a decrease in zero-inflation parameter 𝜋 (Fig. 6, panel B),
9

and not by the average clutch size, that remains around 3 eggs per o
individual in all treatments (Fig. 6, panel A). The differences in the
density-dependence parameter, 𝑘𝑐 (Fig. 6, panel F) may be caused by
he better identifiability of this parameter for the treatments without
iazinon due to the larger numbers of individuals reached for some
reatments (see Fig. 1). In all cases, the order of magnitude of the
rowding parameter makes its effect negligible for all treatments, so
hat these differences are not relevant for the model outcomes.

Fig. 7 shows the time series of posterior knowledge of the number

f adult individuals for all the treatments and replicates as obtained by
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Fig. 7. Time series of adults of Daphnia galeata obtained from fitting models NZTC to all 5 replicas (rows) for the four different treatments (Control: cont; diazinon: dz; diuron: dr;
Both Pesticides: dr_dz), using application strategies R and J (columns). The black line and the gray shaded area refers to the mean and 95% quantiles of the predictions obtained
by forward simulating the model with the inferred parameters, while the red lines and red shaded area refers to the mean and 95% quantiles of the posterior of the states. The
red dotted line shows the maximum posterior trajectory. The blue dots represent the observations.
the model (red areas) as well as the posterior predictions for potential
future experiments (gray areas).

An apparent feature of the unconditioned predictions are the large
uncertainties resulting from the high demographic stochasticity of the
model, which reflects the high stochasticity in the data. As already
the poor replicability of the data demonstrates (see Fig. 1), we cannot
expect small prediction uncertainties by the model. See also supplemen-
tary Figures S.10–S.11 for the time series of posterior knowledge of the
number of individuals in all developmental stages, for all the treatments
and replicates, and supplementary Figures S.12–S.15 for all plots of
two-dimensional marginals of the posterior parameter distribution for
the four treatments.

4. Discussion

To analyze the Daphnia population dynamics in our experiments,
we chose to use an age-structured, discrete individuals model to con-
sider the observed life stages and to account for demographic stochas-
ticity of the (initially) small populations. The model structure was
formulated as a discrete-time model with the processes of reproduction,
aging and mortality. This structure was extended to different model
versions based on different distributional assumptions for fertility and
different parameterizations of the mortality rate. Bayesian inference
was performed for a joint description of replicated experiments and
for a replica-specific description for each treatment separately. With
this population-based approach we expect to be able to extract as
much information as possible from the data (Forbes et al., 2009, 2011),
as it allows us to investigate shifts in inferred parameter values that
characterize different processes across different treatments. The high
variability between replicated experiments with the same treatment
was a strong indication for the need of using a stochastic model. Our
approach is similar to the one by Erickson et al. (2014), except that
we use an age- instead of a stage-structured model and a different
parameterization for potential density dependence of survival. Also, as
we only have experimental data for one concentration of each pesticide
(and their combination) we do not formulate a model for the toxic
effect (Erickson et al., 2014). By fitting all parameters for each treat-
ment separately and interpreting the resulting shifts in the marginal
posterior parameter distribution relative to the control, we do not have
10
to make any assumptions about the shape of the response-curve nor
on the processes that are affected by the pesticide. This gives more
flexibility in identifying potential treatment effects, but also implies
that we cannot use the model to make predictions for other pesticide
concentrations. For this purpose a different experimental design that
covers the range of relevant concentrations (Kreyling et al., 2018)
would be necessary.

The high variability among the observations for different replica
of the same treatment led to corresponding differences in posterior
parameter distributions for replica-specific inference. As all daphnid
individuals were of the same clone and the environmental conditions
were kept identical to the degree possible, these results can best be
explained by remaining, mainly demographic stochasticity. For this
reason, joint calibration of all data from replicated experiments using
a model that accounts for demographic stochasticity seemed to be the
most adequate model application strategy. Model selection based on
the marginal posterior parameter distributions that characterize the
different model versions and based on the joint calibration approach
led to the conclusions that (i) modeling fertility with a zero-inflated
negative binomial distribution leads to a better fit than without zero-
inflation or with a Poisson distribution; (ii) there was no significant
effect of density-dependence on mortality; (iii) variability resulted
primarily from stochasticity in fertility and mortality; (iv) treatments
with sublethal concentrations of the insecticide diazinon showed a sig-
nificant increase in mortality over time as well as in average mortality
over the duration of the experiment. The same experiments also showed
a less significant increase in effective fecundity caused by an increase
of the number of adults without eggs.

The need to account for overdispersion compared to a Poisson
distribution to appropriately describe variability of the number of eggs
across individuals in Daphnia populations has been found in many
other studies also, and in many of those it was also described by a
negative binomial distribution (Delignette-Muller et al., 2014). The
increase in mortality is very clear and is an expected result for insecti-
cide treatments that has been reported in other studies also (Erickson
et al., 2014). Increased fertility has been reported as a possible stress
response of Daphnia, for example in response to kairomones (Liu and
Steiner, 2014), or presence of fish (Boersma et al., 1999). But also
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reduced fertility has been observed in response to diazinon (Fernandez-
Casalderrey et al., 1995). As our results regarding fertility are less
significant than the effects in mortality, it remains unclear whether
this result is a true response of the individuals or just an artifact of
the high stochasticity in the experiments that would decrease with a
larger sample size. This would need further investigation.

Our results indicate both the potential of model-based analysis
of data that are difficult to interpret directly due to high (in this
case primarily demographic) stochasticity as well as the difficulties
of drawing final conclusions from such data even with the use of a
model that considers the dominant cause of stochasticity. The lim-
ited amount of replicates, given the high demographic stochasticity,
constrains the complexity of the model structures that still leads to iden-
tifiable parameters. Interesting extensions to be further investigated
include adding variability in residence times in different life stages
(instar period and maturation age are assumed to be constant) and
adding age-dependence to fertility and mortality parameters (although
we observed little difference in the results when using different survival
rates for adults and juveniles).

A further advantage of the model-based analysis of the results is the
potential to learn for the design of future experiments. The potential
gain of information by increasing the number of individuals at the start
of the experiment to reduce demographic stochasticity or to increase
the number of replications could be investigated to find an optimal
compromise between experimental effort and gain of information.

5. Conclusion

In this paper, we formulate a set of stochastic age-structured discrete
population models to analyze experimental data with clonal popula-
tions of Daphnia galeata that were exposed to sub-lethal concentrations
f two different pesticides. We use a nested multi-model approach to
ake inference with, and select among model versions, in a way that

implifies model comparison. The development of model versions has
een performed in an iterative way, combining quantitative ecological
ypothesis formulation and Bayesian inference, to provide improved
nsights into the effects of pesticides on Daphnia population dynamics.

The developed pipeline enables us to identify the main processes
affecting population dynamics of Daphnia despite the high level of
demographic stochasticity observed in the experiments. A zero-inflated
negative binomial distribution provides the best description of fertility
for all pesticide treatments, while, in the treatments with the insecticide
diazinon, the marginal posterior of the slope of time dependent mor-
tality is significantly greater than zero showing a significant chronic
effects of the insecticide on the populations. In sum, our approach
turned out to be adequate for identifying relevant ecological processes
affecting reproduction and mortality of Daphnia, using computationally
heap techniques that complement classical model selection metrics.
oreover, the models we presented can be easily generalized to de-

cribe different ecological systems and extended to include different
cological processes.
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