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Global analysis and prediction of fluoride in
groundwater
Joel Podgorski 1✉ & Michael Berg 1✉

The health of millions of people worldwide is negatively impacted by chronic exposure to

elevated concentrations of geogenic fluoride in groundwater. Due to health effects including

dental mottling and skeletal fluorosis, the World Health Organization maintains a maximum

guideline of 1.5 mg/L in drinking water. As groundwater quality is not regularly tested in

many areas, it is often unknown if the water in a given well or spring contains harmful levels

of fluoride. Here we present a state-of-the-art global fluoride hazard map based on machine

learning and over 400,000 fluoride measurements (10% of which >1.5 mg/L), which is then

used to estimate the human population at risk. Hotspots indicated by the groundwater

fluoride hazard map include parts of central Australia, western North America, eastern Brazil

and many areas of Africa and Asia. Of the approximately 180 million people potentially

affected worldwide, most reside in Asia (51–59% of total) and Africa (37–46% of total), with

the latter representing 6.5% of the continent’s population. Africa also contains 14 of the top

20 affected countries in terms of population at risk. We also illuminate and discuss the key

globally relevant hydrochemical and environmental factors related to fluoride accumulation.
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The natural occurrence of high concentrations of fluoride in
groundwater is a global health concern potentially affecting
100’s of millions of people, predominantly in the Global

South1–14. The health effects resulting from the long-term
ingestion of fluoride include dental and skeletal fluorosis, in
many cases severely impacting the lives of those affected15–21.
Abundant in Earth’s crust, the element fluorine forms fluoride
(F−) minerals found naturally in soil and aquifer sediments that
can lead to fluoride accumulation in freshwater resources, parti-
cularly groundwater15,22. As such, fluoride intake in the human
diet comes primarily through food and drinking water. Fluoride
has not been proven to be an essential element in the diet, and
although moderate concentrations of fluoride can help prevent
dental caries (and is therefore often added to toothpaste), con-
centrations >1.5 mg/L are known to cause dental fluorosis and, at
fluoride intake >6 mg/day, crippling skeletal fluorosis15. In order
to protect against these ailments, the World Health Organization
(WHO) maintains a fluoride guideline of 1.5 mg/L for drinking
water23,24 However, the WHO recommends that national stan-
dards take account of the overall exposure to fluoride and set a
lower standard if the intake from all sources reaches 6 mg/day.
For example, the desirable maximum concentration of fluoride in
drinking water (with higher enforceable limits) recommended by
India is 1.0 mg/L25, whereas that in the U.S. is 2.0 mg/L26.

High fluoride concentrations are often found naturally in
aquifers in acidic igneous basement rocks, volcanic and geo-
thermal rocks as well as derived sedimentary deposits and
metamorphic rocks with high pH and alkalinity, low calcium
concentrations, higher temperatures, and/or long groundwater
residence times9,27,28. High pH promotes the desorption of
fluoride from clay; hydroxyl anions (OH−) exchange with F− in
F-bearing minerals; and bicarbonate (HCO3

−) reacts with fluorite
(CaF2) to release fluoride, though dissolved calcium can bind with
fluoride and remove it from dissolution to again form
fluorite9,29–31. Furthermore, higher temperatures (e.g., geother-
mal waters) enhance chemical weathering31 and longer ground-
water residence times provide more time for reactions to take
place9. Arid and semi-arid regions are generally more likely to
contain high fluoride groundwaters on account of higher pH and
alkalinity as well as longer residence times2,14. In addition,
anthropogenic activities can result in further fluoride input into
groundwater, e.g., application of fertilizers, coal combustion, and
subsequent rainfall22 as well as managed aquifer recharge32.

Since fluoride is odorless, tasteless, and transparent, its pre-
sence in a groundwater source can remain undetected until the
source is eventually tested33,34. However, the quality of ground-
water in general and the concentration of fluoride, in particular,
are often not analyzed in many areas around the world. In order
to determine where high concentrations of fluoride are likely to
be found and thereby accelerate their rate of discovery, high-
resolution geospatial prediction maps can be created35–37 that
take advantage of known fluoride concentrations and the natural
conditions related to fluoride accumulation in groundwater38–40.
This can be done using machine-learning approaches that
establish statistical relationships between environmental para-
meters and known contaminant concentrations37–39. The
resulting model is then applied to the environmental variables to
generate a prediction map.
Here we assemble an unprecedentedly large dataset of

groundwater fluoride concentrations to develop a global predic-
tion map of the occurrence of fluoride in groundwater exceeding
the WHO guideline concentration of 1.5 mg/L. For this purpose,
we apply a random-forest machine-learning algorithm and the
latest available global datasets of relevant environmental para-
meters. This model and resulting map provide the most detailed
assessment yet available of the global extent of fluoride

contamination, allowing for the identification of hotspots and less
vulnerable regions as well as the populations most affected.
Furthermore, we take advantage of the great number of
groundwater fluoride data points to evaluate the environmental
and hydrochemical factors related to the geogenic (natural)
occurrence of fluoride at a global scale.

Results
Global prediction model of fluoride in groundwater. The ran-
dom forest machine learning method41 was used to model over
400,000 fluoride measurements assembled from 77 countries
(Fig. 1b, Supplementary Figs. 1–2, and Supplementary Table 1).
This dataset has a mean, median and interquartile concentration
range (IQR) of 0.97, 0.30, and 0.10–0.70 mg/L, respectively, and a
prevalence of 10.2% of measurements above 1.5 mg/L. For the
geospatial model, the twelve statistically most important (as
measured by the Gini index) spatially continuous predictor
variables were selected using recursive feature elimination (RFE)
from an initial set of 62 variables of geology, soil properties,
climate, and topography (Supplementary Table 2). All six of the
climate variables (1 km resolution) were selected as well as three
topographic and two soil parameters (250 m resolution; Supple-
mentary Table 2). The categorical variable of acidic igneous rocks
(250 m resolution) was also included based on its clear association
with fluoride2,9,42. (The inclusion of further geology variables had
no appreciable effect on the model.) The minimum number of
samples per node was tuned to 1.
By applying the geospatial random forest model to the

predictor datasets, a global fluoride prediction map with a
pixel-size of 250 m (the higher resolution of the predictors) was
created (Fig. 1; more detailed views in Supplementary Figs. 3–8).
The map identifies Africa as being particularly exposed to a
considerably greater fluoride hazard than all other continents.
That is, in 15% of the area of Africa, there is a greater than 50%
probability that fluoride concentrations in groundwater exceed
1.5 mg/L (Supplementary Table 3). The continents with the next
highest proportions of high-fluoride areas are Australia/Oceania
and South America (each 8%), followed by 2% for Asia and North
America and less than 1% for Europe.
The final prediction model was verified by averaging 100

individual random forest models, each using random subsets of
80% of the data for training and the remaining 20% for testing.
Overall, the model performs very well, as evidenced by a balanced
accuracy of 0.82, a kappa of 0.64, and an AUC of 0.90
(Supplementary Table 4; see “Methods” for descriptions), which
is generally superior to those achieved in comparable geospatial
models of groundwater quality36,43–45. Although all of the model
predictors are parameters determined at Earth’s surface (i.e., not
over depth), the balanced accuracy stays between 82 and 84% for
test samples originating from depths of 0–600 m and drops only
to 78% for samples from greater depths (Supplementary Table 4).
Most of the available well depths (83%) associated with fluoride
measurements fall within the range of 0–600 m, with their mean,
median and interquartile range being approximately 306, 70, and
311 m, respectively (Supplementary Table 2). For further
comparison, the mean model probabilities, accuracy, and AUC
are listed by continent in Supplementary Table 5.
A random forest model was also run incorporating chemical

groundwater parameters measured in situ along with fluoride.
Although this cannot be used to generate a map, it helps to
illuminate the geochemical conditions that are favorable for the
occurrence of high fluoride concentrations in groundwater. The
importance of the predictor variables in the random forest model
in terms of decrease in the Gini index indicates the relative
strength of each variable (Fig. 2a). The green columns in the
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figure show the relative importance of the model using only
spatially continuous variables, whereas the blue columns indicate
the importance of the variables used in the random forest with a
combination of both geospatial and in-situ groundwater para-
meters. The same geospatial variables were used along with nine
in-situ chemical parameters with the greatest frequency in the
dataset and highest importance as determined by RFE. The
inclusion of in-situ groundwater parameters did improve the
performance of the model, as demonstrated by a balanced
accuracy of 0.89, a kappa of 0.77, and an AUC is 0.95 (versus 0.82,
0.64, and 0.90, respectively, for the spatially continuous model).
Although the variable of acidic igneous rocks was added due to its
documented association with fluoride concentrations in ground-
water, the inclusion of further lithological categories had a
negligible effect on the model results and were therefore not
incorporated.

Conditions affecting fluoride accumulation. While predictor
importance is dominated by climate-related parameters, some of
the in-situ groundwater parameters also point to climate-related
signals, such as evaporative concentration of Na and EC in arid

regions7,28,29 (Fig. 2a). To better assess these relationships with the
large compiled dataset, plots were made of the proportion of high
fluoride measurements against bins of each parameter (Supple-
mentary Figs. 9 and 10). Selected key results are shown in Fig. 2b.
The climate variables (Fig. 2b) clearly indicate a strong

correlation between high fluoride concentrations and a dry
climate. This is, for example, illustrated by the strong positive
linear relationship between high fluoride and aridity (potential
evapotranspiration (PET)/precipitation). Conversely, actual eva-
potranspiration (AET) is negatively correlated with high fluoride
due to greater AET implying a greater availability of water and
hence more humid conditions. The relationship with a dry
climate is consistent with the salinity of the groundwater samples,
with chloride (Cl), electrical conductivity (EC), and total
dissolved solids (TDS) as well as boron (B) and sodium (Na)
showing strongly positive correlations with high fluoride. These
all appear to plateau at very high levels, for example at 3000 µS/
cm for electrical conductivity (Fig. 2b), where fluoride concentra-
tions are likely controlled by sorption equilibria and saturation in
water. Furthermore, both subsoil pH and groundwater pH show
strong positive trends with high fluoride concentrations that
steepen at higher pH levels. As with pH, the prevalence of high

Probability of fluoride
in groundwater >1.5 mg/L

Fig. 1 Fluoride in groundwater. a Probability of naturally occurring fluoride in groundwater exceeding the WHO drinking water guideline of 1.5 mg/L. The
map was developed by applying the final random forest model to the 12 most statistically important predictor variables. Panel b shows the fluoride data
points (n= 402,452) used in analysis and modeling. Closer views of the global map are given for the western U.S. and Mexico (c), eastern South America
(d), the southern half of Africa (e), and western South Asia (f). The data sources are listed in Supplementary Table 1 and a large-scale map of the fluoride
points is shown in Supplementary Fig. 1 along with large-scale versions of the prediction map focused on each continent in Supplementary Figs. 3–8.
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fluoride increases with alkalinity (HCO3)7,46–48, though with a
distinct plateau between about 100–500mg/L where the propor-
tion of F > 1.5 mg/L stays near 0.1. This shows that low fluoride
concentrations are maintained in some 90% of the cases, whereas
alkalinity >500 mg/L is associated with increasing incidences of
high fluoride waters (Fig. 2b).

High pH is consistent not only with aridity but also with hard
water. At lower concentrations, the occurrence of high fluoride is
strongly negatively correlated with calcium (Ca2+) and magne-
sium (Mg2+), which confirms previous results7,9,14,49,50. How-
ever, the trend then shifts abruptly and becomes strongly positive
before showing no incremental effect at further increasing
concentrations. For example, the prevalence of fluoride drops
precipitously for calcium concentrations up to about 80 mg/L and
then rises sharply again to about 400 mg/L, where it levels off at
higher concentrations (Fig. 2b). Similar trends are observed with
aluminum (Al), magnesium (Mg) and, to a lesser extent, barium
(Ba) (Supplementary Fig. 9). The increase of fluoride with high
levels of Ca and Mg is likely caused by evaporative conditions and
increasing salinity7 as expressed by several related parameters, for
example, high EC, TDS, Na, and Cl. Strong positive relationships
are also found between high fluoride and bromide (Br), lithium
(Li), molybdenum (Mo), potassium (K), sulfate (SO4), strontium
(Sr), and uranium (U) (Supplementary Fig. 9). Finally, ground-
water with higher temperatures is observed to contain higher
fluoride concentrations, which is likely due to fluoride association
with geothermal waters9,42.

Population at risk of exposure. The population consuming
groundwater that is potentially exposed to fluoride was calculated
by combining the predictions of the fluoride hazard model
(Fig. 1) with the best available estimates for each country for the
domestic use of unfiltered groundwater in both rural and urban

settings51. After taking groundwater usage into account with
global population data from 202052, a range of population counts
was calculated (Fig. 3) by multiplying the population everywhere
by the probability of high fluoride (Supplementary Table 3, high
estimate), as well as by counting the population only in those cells
exceeding a probability cutoff of 0.5 but not multiplying by the
probability (Supplementary Table 3, low estimate). A hybrid,
intermediate approach of multiplying the population in cells by
the modeled probability for cells with a probability greater than
25% was also carried out (see Supplementary Table 3 and
Methods for details). The calculated total population at risk of
exposure to fluoride in drinking water at concentrations greater
than 1.5 mg/L is in the range of 63–330 million people, with 179
million people being estimated by the hybrid approach (Fig. 3a).
This corresponds to 0.8–4.4% of the global population (2.4% with
hybrid approach), with Africa being most heavily impacted with
2.2–9.6% of the population (6.5% with hybrid approach) (Fig. 3b).

Discussion
The geospatial prediction model is dominated by climate para-
meters. In the combined model, these same variables are com-
parably important to the in-situ chemical parameters, which
themselves also have a climate signature (related to aridity). This
is not surprising given the relative abundance of fluorine in
Earth’s crust and that climatic conditions control the water cycle,
relate directly to the evaporative concentration of fluoride, and
affect soil pH, and thereby fluoride retention. In addition, climate
can be influenced by topography (e.g., orographic controls on
cloud formation and wind patterns), which is also represented in
the model through three topographic variables.
Despite geochemistry playing an integral part in the dissolution

of fluoride in groundwater, only one geochemistry variable (acidic
igneous rocks) was included in the final geospatial model, along

Fig. 2 Environmental and hydrochemical conditions related to high fluoride concentrations in groundwater. a Importance of the predictor variables in
modeling in terms of mean standardized decrease of the Gini index, which measures classification impurity such that a reduction represents improved
classification. The importance of the 12 variables of the final (geospatial) model (Fig. 1) is shown in green. For comparison, the importance of the combined
geospatial/in-situ groundwater variables in the mixed (non-geospatial) model is shown in blue, for which it is not possible to generate a prediction map.
b Correlation between selected variables and the proportion of groundwater fluoride measurements greater than 1.5 mg/L as histograms (see “Methods”).
The plots of actual evapotranspiration, aridity, and subsoil pH are taken from the model using only geospatial parameters. The number of data points,
number of bins (points), Kendall rank correlation (τ), and associated p-value (p) are indicated. The vertical box plots indicate the distribution of each
parameter associated with fluoride concentrations ≤1.5 mg/L and >1.5 mg/L, with the central line representing the median, the hinges showing the 25th
and 75th percentiles, and the whiskers extending up to 1.5 times the inter-quartile range. For ease of presentation, outliers are not displayed.
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with the two indirectly related variables of subsoil pH and silt.
The muted influence of lithology on the model can be ascribed to
the relatively low degree of detail in the available standardized
global lithological map. If creating a prediction map at a smaller
scale, the incorporation of country-scale lithological maps can
indeed play an important role43,53. It is also worth noting that
with regard to the calculation of variable importance, a catego-
rical variable (such as lithology) is less likely than a continuous
variable to have an effect on the model when its values are ran-
domly sorted, due to having far fewer possible values. Although
the inclusion of in-situ groundwater parameters in the combined
model improved the model’s accuracy, they cannot be used in
creating a prediction map due to these measurements repre-
senting data points rather than spatially continuous variables.
However, if a sufficient density of measured hydrochemical
parameters (e.g., Na, TDS, and EC) would exist in a given area, it
could be possible to create gridded maps of these parameters to
then use in statistical modeling and the creation of a prediction
map of the area. This could be expected to improve the model’s
accuracy, as with the non-geospatial model described above,
though the extent of the prediction map would necessarily be
limited by that of the gridded in-situ parameters. For this reason,
it is not possible to create a global prediction map of fluoride
based on gridded in-situ parameters.
Despite generalizing across the entire globe, the geospatial

model (Fig. 1) is largely consistent with previous studies that
created random forest models focused on India38, Ghana53 and
parts of the American Southwest40 and similar, though less
detailed, to another fluoride prediction model created for
China54. In addition to areas well constrained by fluoride mea-
surements, such as much of Australia and the Americas, it is
noteworthy that the model identifies many regions with high
fluoride hazard where no measurements were available, for
example, in many parts of Africa and Central Asia. This is pos-
sible due to similar environmental conditions to those where
many fluoride samples exist, such as North Africa (few mea-
surements) versus central Australia (many measurements).
Indeed, this highlights the utility of a prediction model in iden-
tifying areas of concern where more groundwater testing should
be conducted to mitigate human health risks.
In spite of an uneven geographical distribution of fluoride data

points, the model predictions and performance are reasonably
similar across all continents (Supplementary Table 5). For
example, the mean model probabilities by continent range
between 0.11 (North America) and 0.32 (Africa) and do not
appear related to the proportion of high measurements. The

mean AUC calculated separately with the test data points from
each continent ranges between 0.83 and 0.91, with the low end of
this range (Europe) still being on par with or better than results
from comparable country-wide studies38,43,55,56. Although the
highest AUC and balanced accuracy are found in the continents
containing the largest proportion of the dataset (i.e., North
America with 60%, Australia with 15%, and Africa with 12%), the
next-best performing continent is South America, which happens
to contribute the least amount of data (1%) to the dataset.
Due to varying patterns of population density and groundwater

usage, the implications of groundwater fluoride hazard (Fig. 1) for
human health risk differ considerably. The hybrid approach to
calculating the affected population produces the estimate of 179
million people (2.4% of the global population) and, as such, lies
between the counts of the other two methods, which can be
considered end-member extremes that are most probably under
or overestimates. Furthermore, with 179 million being congruent
with the previously published estimate of 200 million1 and the
hybrid approach itself making intuitive sense (see “Methods”), we
consider the hybrid calculations to offer the best estimates of
affected populations, albeit with the broad ranges of population
counts offered by the other two approaches.
Regardless of the considerable ranges of affected populations,

the relative distribution remains fairly constant. Nearly all of the
affected population resides either in Asia (51–59% of total) or
Africa (37–46% of total), with all other continents in all cases
making up about 1% or less (Fig. 3a and Supplementary Table 3).
Indeed, among the top 20 countries in terms of at-risk population
(hybrid approach), 14 are found in Africa and six in Asia
(Table 1), with both of these continents being the most strongly
affected with ~6% of the African population and ~2% of the
Asian population potentially exposed to high fluoride con-
centrations in drinking water (Fig. 3b).
Two regions with large potentially affected populations for

which only relatively few direct measurements of groundwater
quality were available to constrain the model are China and
Central Africa (Fig. 1b and Supplementary Fig. 1). The model also
indicates a particularly elevated fluoride risk across much or most
of Angola, Cameroon, Chad, Democratic Republic of the Congo
(DRC), Ethiopia, Eritrea, Kenya, Madagascar, Malawi, Mozam-
bique, Nigeria, Somalia, Tanzania, Zambia, and Zimbabwe as well
as Yemen (Table 1). The at-risk population figures provide only a
rough estimate of the actual number of people affected, which can
only be verified by epidemiological studies on the ground.
Nevertheless, Fig. 4 provides a meaningful broad-scale indication
of where such investigations are most needed.

Fig. 3 Population potentially exposed to fluoride >1.5 mg/L in groundwater. Calculations are made according to the hybrid approach, with a the number
of people potentially affected by continent and b the percentage of the total population that this represents. The error bars represent the low and high
estimates of affected population (see text).
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Table 1 Top 20 countries in population potentially affected by fluoride concentrations in groundwater greater than 1.5 mg/L.

Rank Country Population at risk (range) Rank Country Population at risk (range)

(million) (million)

1 India 49 (26–89) 11 Malawi 4.0 (3.5–4.8)
2 China 22 (1–50) 12 Zambia 3.4 (1.4–3.6)
3 Dem. Rep. Congo 15 (2–16) 13 Mozambique 2.6 (1.7–3.4)
4 Ethiopia 9.6 (4.0–13.8) 14 Angola 2.2 (0.7–2.4)
5 Pakistan 7.6 (2.3–14.5) 15 Afghanistan 1.7 (0.5–4.8)
6 Kenya 7.5 (4.2–8.3) 16 Cameroon 1.6 (0.3–2.5)
7 Nigeria 7.4 (1–17) 17 Madagascar 1.4 (0.7–2.3)
8 Tanzania 6.9 (3.7–7.9) 18 Chad 1.2 (0.1–2.2)
9 Uganda 4.8 (0.9–8) 19 Niger 1.2 (0.2–2.6)
10 Yemen 4.3 (2.6–4.4) 20 Myanmar 1.1 (0.07–3.3)

The first number was calculated by multiplying the groundwater-consuming population of each cell by the probability of groundwater exceeding 1.5 mg/L for cells with a probability >0.25 (hybrid
approach). The range in parentheses is produced by the approaches of taking the full groundwater-consuming population of cells with a probability >0.50 (low estimate), as well as applying the
probability to all map cells (high estimate).
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Fig. 4 Estimated population potentially exposed to fluoride concentrations in drinking water greater than 1.5 mg/L. a Global map and break-down by
continent. Detailed views of b sub-Saharan Africa and southern Arabian peninsula and c south and east Asia with the most strongly affected countries
indicated. The population was calculated with the hybrid approach (see text) for areas with a greater than 25% probability of incurring high fluoride in
groundwater (Fig. 1) by multiplying the total population by the hazard percentage and the proportion of domestic water usage coming from untreated
groundwater51.
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In warmer regions, a lower limit of fluoride in drinking water
(e.g., 1.0 mg/L) may be advisable due to increased water con-
sumption needs57, which suggests that the health risk in affected
tropical and sub-tropical zones (e.g., Central Africa or South
Asia) may be even greater. As such, future temperature increases
would likely exacerbate the situation. Furthermore, where climate
change leads to increased aridity, fluoride concentrations in
groundwater could experience a long-term increase (assuming the
adequate presence of fluoride-bearing minerals), as indicated
above with aridity being closely linked to high fluoride con-
centrations and associated increases in pH, alkalinity, and aquifer
residence times. This effect could also lead to an increased reli-
ance on groundwater to compensate for less reliable surface-water
supplies.
The key solutions to coping with these present and future

challenges include testing wells and springs in fluoride-prone
areas and implementing corrective measures, where necessary.
Solutions could include, for example, switching/blending water
sources or engaging various defluoridation methods3,20,27,34,58.
The hazard and risk maps presented above offer an important
first step on this path.

Methods
Fluoride dataset and additional water parameters measured in situ. Geo-
located fluoride measurements from 402,452 unique wells and springs from 77
countries were compiled from 80 published or otherwise publicly available sources
(Supplementary Table 1). If more than one measurement was available from a
given well/spring, the average of the measurements was taken. Well depth and 41
other measured physicochemical water parameters, where reported, were also
assembled (Supplementary Fig. 9 and Supplementary Table 6).

These measurements (along with spatially continuous parameters used in
modeling mentioned below) were analyzed with respect to their associated fluoride
concentrations meeting or exceeding the WHO guideline concentration of fluoride
in drinking water of 1.5 mg/L in order to identify possible relationships with the
occurrence of high fluoride. Each parameter was first ordered and placed into
histograms of equally sized bins (of variable width), for each of which the
prevalence of high fluoride measurements (>1.5 mg/L) was calculated. The number
of bins used with each parameter was determined according to the Rice rule, which
is twice the cubed root of the number of observations (

ffiffiffi

n3
p

´ 2). For the number of
data dealt with here, this generally results in a much larger number of bins than
that determined according to the more commonly used Sturges’ rule (log2ðnÞ þ 1)
and thereby potentially avoids problems of over-smoothing59. Kendall rank
correlations were then calculated between the prevalence of high fluoride
concentrations and the median parameter value in each bin. This correlation type
is not sensitive to the distribution, which for the data at hand is often skewed rather
than normal. Boxplots were also created for each parameter in the two categories of
low (≤1.5 mg/L) and high (>1.5 mg/L) fluoride.

Spatially continuous parameters. Initially, 62 spatially continuous environmental
parameters that may relate either directly or indirectly to the processes of the
geogenic accumulation of fluoride in groundwater38 were assembled as potential
predictor variables (Supplementary Table 2). These generally fall into the categories
of climate, geology, soil, or topography. Any broad anthropogenic impacts related
to agriculture or urbanization could be considered through land use. The resolution
of the spatial datasets ranges between 7.5” (~250 m) and 30” (~1 km). A subset of
these parameters was later selected for modeling (see Random forest modeling
below). Although most of these parameters are available as continuous values,
several categorical datasets of geology, land use, and soil classification were also
considered. A primary goal in conducting machine learning modeling here is to
create a prediction map of high fluoride concentrations in groundwater. As such,
only spatially continuous data, i.e., not the 42 in-situ point data mentioned in the
previous section, could be used as predictor variables for this purpose. The values
of the predictor variables were taken according to the geographic coordinates of the
fluoride concentrations.

Random forest modeling. Among the various available machine-learning algo-
rithms, the random forest method41 was chosen due to our experience in its ability
to efficiently produce highly accurate models37,38,44. The computational efficiency
of random forest is also particularly relevant here due to the large number of data
being utilized. Classification modeling was conducted in order to focus on the
health risk of consuming drinking water with fluoride concentrations greater than
1.5 mg/L. Therefore, the fluoride data were converted into binary format based on
meeting or exceeding this guideline. Furthermore, by not modeling continuous
values, the unknown and potentially highly variable measurement errors from the

great diversity of data sources, as well as any temporal changes in concentrations,
become irrelevant when the measurements are clearly greater or less than 1.5 mg/L.

A random forest averages together many decision trees to form a single
composite model. Randomness is introduced in the growing of each tree by
bootstrap aggregating, also known as bagging or sampling with replacement, the
data rows with which to form a tree as well as by considering only a limited
number of randomly selected predictor variables, in this case, the square root of the
total number of predictors, at each node. The modeling was implemented with the
R programming language60 and the ranger package61.

In order to identify particularly relevant parameters as well as reduce model
complexity, the most important predictor variables were identified through
recursive feature elimination with the varSelRF package62, whereby the 20% least
important variables are removed in successive iterations. The final selected
combination is that with the smallest number of features and an error rate that is
within one standard deviation of the minimum error rate of all forests. Once the
final predictor variables were selected, the minimum number of samples to require
at a node were then tuned using the caret package63 (values from 1 to 5).

Model performance was evaluated through 100-fold cross validation using an
80%-training/20%-testing split, which was stratified by the prevalence of high
fluoride. That is, the proportion of high fluoride cases of 0.102 was always
maintained in the randomly selected training and testing datasets. Each random
forest was grown with 1001 trees. (Doubling the iterations made no improvement
in accuracy.) Bagging was made preferentially from high fluoride cases at a rate of
1-prevalence (0.898) such that each tree was grown with equal numbers of both low
and high fluoride classes. The prediction results from the 100 cross validations were
averaged. Measures of performance included sensitivity (proportion of high
fluoride cases correctly classified), specificity (proportion of low fluoride cases
correctly classified), balanced accuracy (average of sensitivity and specificity), area
under the ROC (receiver operator characteristic) curve (AUC), which considers
combined sensitivity and specificity over all probability cutoffs and ranges from 0.5
to 1 and kappa, which adjusts the accuracy (acc) of the model by the no
information rate (NIR; proportion of majority class) (Eq. 1):

κ � acc�NIR
1� NIR

ð1Þ
In order to improve the interpretability of kappa, the testing dataset was

balanced by randomly down-sampling the majority class (low fluoride) to equal the
size of the minority class (high fluoride) before the confusion matrix was
calculated, which includes kappa, sensitivity, and specificity. This was repeated ten
times and the results averaged for the cross validation of each random forest.

The final random forest model was grown with the full dataset. The effect of the
predictor variables on the model was evaluated through importance as measured in
the random forest and Kendall rank correlations between binned values of each
predictor and the prevalence of high fluoride, as described above under Fluoride
dataset and additional water parameters measured in situ. Importance was
determined as the mean decrease of the Gini index (classification impurity),
corrected for bias in number of categories, when the values of a variable are
randomly re-sorted. A global probability map of the occurrence of fluoride
concentrations greater than 1.5 mg/L was then created by applying the final model
to the predictor datasets. Predictors with 1 km resolution were first reformatted to a
250 pixel size, which did not affect their values as none were based on an area
measurement.

Population risk estimation. A population risk map was developed by applying the
hazard probability map to global rural and urban population estimates for 202052

along with the latest available country-level rural and urban use rates of untreated
groundwater51. Two fundamentally different approaches were considered in run-
ning the calculation. In the first approach, the population was multiplied by the
probability of high fluoride. For example, for a 250 m × 250 m cell with a model
prediction of 0.47, 47% of the population in that cell would be counted. Despite
counting fewer people in direct accordance with the modeled probability, densely
populated areas with non-trivial groundwater usage would still add considerably to
the overall count despite only a minimal chance of having high fluoride con-
centrations in groundwater. In the other approach, a probability cutoff is used to
determine the areas with a sufficiently high modeled probability and take only
those cells into account. A reasonable cutoff to use is the probability at which the
sensitivity (true positive rate) and specificity (true negative rate) of the model in
predicting the test data are equal. This was approximately 0.5, which reflects the
balanced training data that were used in growing each random forest. While this
method accounts for only the best-determined cells, it neglects those cells that fall
just below the probability threshold and may still be at least somewhat affected by
high fluoride concentrations.

In order to take advantage of the benefits of both approaches while avoiding
their shortcomings, a hybrid approach was also taken by considering only areas
with a probability of half of the sensitivity-specificity crossover (0.25) and
multiplying the groundwater-consuming populations in these areas by the model
probabilities. Compared to the first approach of multiplying the population of each
cell by its probability, areas with a very low probability of high fluoride (≤0.25) are
not counted. With respect to the cutoff-at-0.5 approach, the hybrid approach
accounts for areas somewhat below the optimal cutoff while applying a decreasing
weight as the probability decreases to 0.25, as well as, of course, an increasing
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weight for higher probability cells. As such, this method seems to be the most
reasonable, realistic, and unbiased.

Data availability
The global fluoride prediction map and population risk map (Figs. 1, 4) have been
deposited as GeoTIFF rasters in the ERIC/open database64 (https://doi.org/10.25678/
0006GQ) and can also be viewed on the Groundwater Assessment Platform
(www.gapmaps.org). The raw data used to generate these maps are in general protected
and are not available due to data privacy laws. Interested readers are instead referred to
the data sources listed in Supplementary Tables 1 and 2.

Code availability
The code used in generating this paper’s results along with a sample dataset are available
at the ERIC/open database64 (https://doi.org/10.25678/0006GQ).
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