
1. Introduction
Mountainous river corridors are used worldwide for drinking water production, as they represent a relatively 
safe and sustainable source of water. The valley-fill of mountainous river corridors is formed by millennia of 
fluvio-glacial erosion and deposition via braided rivers and streams, and consists primarily of poorly sorted gravel, 
cobbles and sand (Bridge & Demicco, 2008). As opposed to aquifer types in which heterogeneity originates from 
intersecting of various sediments, conduits or fractures, the heterogeneity of alluvial sand and gravel (ASG) 
aquifers arises from the consecutive layering of variably arranged streambed and floodplain sediments (Bayer 
et al., 2011; Hoehn, 2002; Huggenberger et al., 2013; Limaye & Lamb, 2014). ASG aquifers are highly conduc-
tive for groundwater (GW) flow and characterized by strong, spatially variable horizontal anisotropy, which 
results from the strong spatial correlation and extended connectivity of hydraulic properties in the downvalley 
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direction (Bridge & Demicco, 2008; Jussel et al., 1994a; Siegenthaler & Huggenberger, 1993). The principal 
discharge regime responsible for the formation of the majority of ASG aquifers in lower-sloping, mountainous 
regions is characterized by the repeated alternation of extended dynamic equilibrium (i.e., relatively stable 
flow conditions) and short disequilibrium phases (i.e., high-energy flood events with the power to change the 
course of a stream completely) (Bridge & Demicco, 2008; Limaye & Lamb, 2014; Wohl, 2021). This discharge 
regime promotes the formation of connected and highly conductive ASG structures that form when streambed 
sediments accumulate and build up over time during dynamic equilibrium phases, and are subsequently buried 
during disequilibrium phases (Bridge & Demicco, 2008; Constantz, 2016; Limaye & Lamb, 2014; Siegenthaler 
& Huggenberger, 1993). As sediment sources remain mostly the same during different flow phases, these buried 
paleo-channels consist of the same material as the surrounding sediments but differ in that the sediments are more 
strongly aligned, connected and hydraulically conductive in the direction of streamflow, causing preferential flow 
(Guin et al., 2010; Huggenberger et al., 1998; Langhoff et al., 2006; Siegenthaler & Huggenberger, 1993). Pref-
erential flow not only affects GW flow and solute transport, but also the spatial distribution of exchange fluxes 
between streams and ASG aquifers (Boano et al., 2014; Cardenas et al., 2004; Huber & Huggenberger, 2016; 
Huggenberger et al., 1998; Salehin et al., 2004; Schilling, Irvine, et al., 2017), adding to the already convoluted 
controls on exchange fluxes arising from geomorphology and hydrodynamics in mountainous regions (Larsen 
et al., 2014; Rhodes et al., 2017; Stonedahl et al., 2013).

Since ASG aquifers consist of mostly the same mix, non-intrusive geophysical techniques (e.g., transient elec-
tromagnetics (TEM), electrical resistivity tomography) are not reliable in detecting, delineating, or quantifying 
preferential flow (Brunner et al., 2017; Linde et al., 2015). Nor are the flow models commonly applied to simulate 
GW flow in ASG aquifers, as most models fail to reproduce the dynamic interactions between rivers and ASG 
aquifers, and don't address the anisotropy of ASG sediments (Brunner et al., 2017; Gianni et al., 2019; Schilling, 
Cook, & Brunner, 2019; Tang et al., 2017). If isotropic conditions are assumed in anisotropic sediments, model 
calibration leads to parameters compensating for the structural inadequacies of the underlying model, as system-
atically demonstrated by Gianni et al. (2019). Correctly identifying and reproducing river-aquifer interactions and 
preferential flow is crucial for GW protection zone delineation, particularly in the context of riverbank filtration 
(RBF), where GW is pumped right next to rivers and the risk of contamination is thus elevated (Hoehn, 2002; 
Maliva, 2020).

The few approaches that so far were successful in identifying and quantifying preferential flow through ASG aqui-
fers build on combinations of high-resolution intrusive measurements of sediment structures, complex geosta-
tistical techniques, physically-based flow simulations and computationally demanding inversion approaches 
(Brunetti et al., 2019; Brunner et al., 2017; Gianni et al., 2019; Jha et al., 2016; Jussel et al., 1994a, 1994b; Linde 
et al., 2015; Pirot et al., 2015). While such complex and advanced approaches might be successful in certain 
cases, they are not widely applicable because (a) intrusive measurements (e.g., facies analysis in gravel pits) are 
unavailable in most situations (Comunian et al., 2011), (b) due to the limits of non-intrusive geophysical tech-
niques, connected subsurface structures are not reliably identified in ASG sediments (Hauser et al., 2017; Meyer 
et al., 2018), and (c) the complexity of the employed modeling approaches is too demanding for most practical 
applications (Ramgraber et al., 2020; Zovi et al., 2017).

As shown by Chow et al.  (2019), however, it's possible to reproduce the complex surface water-groundwater 
(SW-GW) dynamics of ASG sites without an overly complex modeling framework or precise prior knowledge of 
the location of connected subsurface structures. Comparing approaches of varying complexity, they showed that 
calibrating an integrated surface-subsurface hydrological flow model (ISSHM) (Paniconi & Putti, 2015; Sebben 
et al., 2013) of a real-world ASG site via regularized pilot point (PP) inversion (Doherty, 2003) against hydraulic 
head (H) and SW-GW exchange flux observations marks the best trade-off between modeling approaches that are 
too simple (i.e., too much intrinsic error) or too complex (i.e., too much epistemic error). Complex geostatistical 
models employing multiple point statistics (MPS) were only more accurate if the image used to train the MPS 
algorithm was a robust representation of the true subsurface structure and if the flow model calibration data set 
consisted of large amount of H and SW-GW exchange flux observations, which is rarely the case. Zovi et al. (2017) 
came to similar conclusions and showed that the uncertainty in buried ASG paleo-channel delineation derived 
from geophysical data and MPS simulations is too large to produce more accurate simulations compared to 
much simpler, multi-Gaussian simulations that don't fully respect the connectivity of ASG sediments. Also Tang 
et  al.  (2017) concluded that, for simulations of ASG river corridors, multi-Gaussian and non-multi-Gaussian 
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hydraulic conductivity (K)-fields produce similar results for hydraulically connected stream-aquifer systems. 
This confirms the findings of Siirila-Woodburn and Maxwell (2015), who investigated how different geostatisti-
cal models affect the simulation of GW flow and solute transport through connected heterogeneous media. They 
found that solute transport was well captured if the underlying geostatistical model was able to create preferential 
flow structures, no matter whether the underlying model was multi-Gaussian or non-multi-Gaussian.

Aiming to balance methodological complexity and practical simplicity for the identification and quantification of 
preferential flow in ASG aquifers, we here present a new modeling framework based on three pillars:

1.  Integrated surface-subsurface hydrological flow modeling with flow tracking
2.  Calibration tailored to reproduce spatially connected, heterogeneous K-fields via spatially varying, preferred 

anisotropy PP inversion
3.  A diverse observation data set containing hydraulic and tracer-based observations

Specifically, we use tracer-based observations of SW-GW exchange fluxes and the fraction of locally infiltrated 
stream water in the aquifer (fstream) to identify preferential flow paths and combine these observations with H and 
stream discharge (QSW) observations into an automated, multivariate calibration of an ISSHM. Calibration is 
based on PP inversion of aquifer and streambed K-fields, employing a novel approach that introduces spatially 
varying, preferential directions of anisotropy into the interpolation variograms used for K-field generation. This 
approach facilitates the calibration of anisotropic K-fields with increased connections in the downvalley and 
downstream directions and reduces the potential for parameters to compensate for structural inadequacies in the 
model. We demonstrate the robustness and performance of the framework on a well-studied ASG RBF site in 
Switzerland and quantify the information content of different observations for the identification of connected 
subsurface structures.

2. Materials and Methods
2.1. Study Site and Observations

The study site at the outlet of the upper Emme valley, a 194 km 2 alluvial headwater catchment in the Swiss 
Pre-Alps (Figure 1a), has already served for multiple hydrogeological studies and is equipped with an extensive 
monitoring network (Figura et al., 2011, 2013; Käser & Hunkeler, 2015; Kropf et al., 2014; Lapin et al., 2014; 
Moeck et al., 2022; Peel et al., 2022; Popp et al., 2021; Schilling, Gerber, et al., 2017; Tang et al., 2018). GW is 
abstracted on a floodplain from 8 wells located 150–250 m away from the Emme river (Figure 1a). The valley is 
200–500 m wide and the topographic gradient low (<1%). The aquifer extends 20 km upstream of the RBF well-
field and covers 6 km 2. On average, 0.4 m 3/s are abstracted, compared to an average of 4.4 m 3/s QSW and 0.8 m 3/s 
of GW outflow (Käser & Hunkeler, 2015; Würsten, 1991). At the wellfield, the ASG aquifer has an average 
thickness of 25 m (max: 46 m) and consists of Quaternary alluvial gravel (80%) and sand (20%) (classification: 
brown gravel (G1) and gray gravel (G2) with some open framework gravel (OF)) (Blau & Muchenberger, 1997; 
Siegenthaler & Huggenberger, 1993). The aquifer is constrained underneath by impermeable Freshwater Molas-
ses and on the sides by moraines (Blau & Muchenberger, 1997; swisstopo, 2019). Porosity and K of the aquifer 
(Kaq) range from 0.1 to 0.3 (Arbenz et al., 1925; Blau & Muchenberger, 1997; Würsten, 1991) and 200–1,350 m/d 
(Würsten, 1991), respectively. Porosity and K of the streambed (Ksb) range from 0.05 to 0.15 and 1–10 m/d, respec-
tively (Schilling, Gerber, et al., 2017; Tang et al., 2018). QSW and SW-GW exchange fluxes are highly dynamic, 
with alternating losing and gaining river sections (Käser & Hunkeler, 2015; Schilling, Gerber, et al., 2017; Tang 
et al., 2018). The site is a typical example of a low gradient, dynamic equilibrium-disequilibrium system ubiqui-
tous in peri-alpine regions. Extended periods of stable flow (Q50 = 2.19 m 3/s) and frequent periods of low flow 
(Q95 = 0.32 m 3/s) are interrupted by infrequent and short periods of massive overbank flow (Q0.5 = 104 m 3/s) 
(FOEN, 2020; Smakhtin, 2001). During low flow, sections of the Emme can run dry and abstraction account for 
50% of total outflow from the catchment (Käser & Hunkeler, 2015), whereas peak flood events can rearrange and 
rebuild the streambed morphology and properties completely (Tang et al., 2018).

100 years ago, the RBF wells were constructed inside a buried paleo-channel that was found at a depth of 13–33 m 
(Arbenz et al., 1925; Gubelmann, 1930). Unfortunately, historic borelogs are not available. The national geologi-
cal map provides historical stream locations both upstream and downstream of the wellfield, but such information 
is missing for the wellfield (swisstopo, 2019). The likely reason for this information gap are terrace-forming 



Geophysical Research Letters

SCHILLING ET AL.

10.1029/2022GL098944

4 of 14

Figure 1. (a) Map of the experimental RBF wellfield and its location inside Switzerland at the Upper Emmental catchment 
outlet. The Emme River is indicated by thick black outlines (blue infill) and the alluvial sand and gravel aquifer by fine black 
outlines (semi-transparent, light blue infill). Step weirs in the stream are illustrated by thick black lines perpendicular to 
the stream. (b) Map of the pilot points (PP) and sections of constant, preferred spatial correlation directions. (c) Calibrated 
Kaq- and Ksb-fields. (d) Slice-view of fstream. (e) Preferential flow paths via the buried and connected high-Kaq paleochannel 
structure, illustrated by backwards tracking flowlines from the 8 pumping wells, plotted against a continuously colored 
Kaq-field and a Kaq = 550 m/d iso-surface highlight. (f) Outline of a plume of 85% or more locally infiltrated stream water 
(i.e., fstream = 85% iso-surface). fstream in both (d) and (f) correspond to the state at the end of the transient simulation period 
(i.e., 06-Feb-2015 23:59).



Geophysical Research Letters

SCHILLING ET AL.

10.1029/2022GL098944

5 of 14

sediments that overlay the floodplain and stem from a historically active, now insignificant high-gradient creek 
on the wellfield edge. The site is now interspersed by wellfield infrastructure, powerlines, and sewers, preventing 
reliable geo-electrical assessment of ASG sediments. Recent tow TEM analyses (Christiansen et al., 2009) hinted 
at a buried high-K structure, but for >75% of the wellfield the signals were perturbed (Figure S1 in Supporting 
Information S1). Available borelogs confirm the existence of a buried paleo-channel (classification: G2 and OF) 
at the reported depth (AWA, 2021), but they are too sparse for reliable paleo-channel delineation. Recent tracer 
analyses revealed that upstream and downstream wells receive significantly larger fstream compared to mid-section 
wells, hinting at a meandering, high-K paleo-channel (Popp et al., 2021; Schilling, Gerber, et al., 2017).

The hydraulic dynamics between stream, GW and wells were analyzed in detail during a controlled pumping 
experiment (Schilling, Gerber, et  al.  (2017): Following a period of constant maximum pumping at 0.4 m 3/s, 
pumping was halved to 0.23 m 3/s for 7 days (26-Jan-2015–02-Feb-2015) before setting it back to 0.4 m 3/s, induc-
ing a transient adaption of the hydraulic state to a systematic change of pumping rates. The following observa-
tions were recorded:

•  H: Hydraulic heads in 13 piezometers
•  Qout: SW discharge at the outlet of the catchment
•  QEX: SW discharge upstream and downstream of a gaining section based on dye dilution
•  TR: GW residence times based on  222Rn,  37Ar, and  3H/ 3He radioisotope analyses
•  fstream: Fractions of locally infiltrated stream water based on (atmospheric) noble gases

Details and a full list of observations are available from Schilling, Gerber, et al. (2017) and in Text S1 and Table 
S1 of in Supporting Information S1.

2.2. Flow Model

2.2.1. Conceptual Model and Previous Studies

Herein, we adapted an existing SW-GW flow model of the wellfield by Schilling, Gerber, et  al.  (2017). The 
available numerical model was built in the ISSHM HydroGeoSphere (HGS) (Aquanty, 2020). The original model 
conceptualized the system as a homogeneous aquifer and a distinct, homogeneous streambed covering the top 
0.5 m of stream sediments. Exchange fluxes were explicitly simulated and fstream, regional GW and precipitation 
tracked throughout the wellfield. Model calibration was sequential against GW level, residence time and fstream 
observations, revealing Kaq = 550 m/d, Ksb = 2.4 m/d and porosity = 0.1 as optimal homogeneous parameters. 
The homogeneous model robustly predicted fstream of an independent pumping and tracer experiment conducted 
4 years later (Popp et al., 2021). While Tang et al. (2018) already enhanced the original model by multi-Gaussian, 
heterogeneous K-fields with Ensemble Kalman filter-based data assimilation (Kurtz et al., 2017), we here also 
adapt and extend the original model by heterogeneous K-fields, but in contrast to Tang et al. (2018), via a novel, 
spatially varying, preferred anisotropy PP inversion approach that facilitates the emergence of directional and 
connected high-K structures.

2.2.2. Numerical Simulator and Model Setup

Numerical simulator: The ISSHM HGS simulates variably-saturated GW flow with Richards' equation utilizing 
the van Genuchten parameterization, and SW flow with the 2-D diffusion wave approximation to the Saint-Venant 
equations (Brunner & Simmons, 2011; Therrien & Sudicky, 1996). SW and GW is fully-coupled via the dual-node 
approach (de Rooij, 2017; Ebel et al., 2009). Water from different origins is tracked throughout the model using 
a mixing-cell implementation (Partington et al., 2011), enabling direct comparison between observed and simu-
lated fstream. HGS was chosen as it’s suited for the simulation of complex SW-GW exchange dynamics (Banks 
et al., 2011; Irvine et al., 2012; Munz et al., 2017; Schilling et al., 2020; Schomburg et al., 2018), flow over stre-
ambed microtopography (Ameli & Creed, 2017; Frei et al., 2010), and winter hydrological processes as prevalent 
in mountainous river corridors (Ala-Aho et al., 2017; Cochand et al., 2019; Schilling, Park, et al., 2019).

Numerical setup: Floodplain topography is based on the Swiss digital elevation model (DEM) (horizontal reso-
lution: 2 m; vertical resolution: 0.5 m; swisstopo (2021)), streambed topography on an airborne through-water 
photogrammetry-based DEM (horizontal resolution: 0.25 m; vertical resolution: 0.05 m; Tang et al. (2018)). The 
top of the aquitard, defined by the DEM of the Freshwater Molasse (AWA, 2021), represents the lower boundary 
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of the model. The horizontal mesh consists of approximately equilateral triangular elements (side length on 
floodplain: 17.5 m; within the channel: 8.5 m; elements per layer: 10,983). Vertically, the model is divided into 
15 proportional sublayers, with the top 5 layers each covering 0.61%, the next 4 layers 6.1%, and the bottom 6 
layers 12% of the vertical model extent. For the average thickness of 25 m, this translates to 0.15 m, 1.5 and 15 m 
layers, respectively, satisfying the criteria for accurate simulation of variably saturated flow (e.g., Downer and 
Ogden (2004)). The soil water retention functions and the surface flow properties of the ASG river corridor sedi-
ments were parameterized after Dann et al. (2009) and Li et al. (2008). As the small amount of precipitation that 
fell during the pumping experiment was first stored on the floodplain as snow and then melted gradually, causing 
only a small amount of local infiltration, overland flow on the floodplain was restricted for faster computation 
via implementation of a large surface roughness (Schilling, Gerber, et al., 2017). All hydraulic parameters are 
provided as Table S2 in Supporting Information S1.

Boundary conditions (BC): The model is forced by hourly observations of (a) streamflow measured at a gauging 
station a few kilometers upstream of the site (second-type BC), (b) regional GW inflow measured at the model's 
upstream boundary (first-type BC), (c) local precipitation (minus potential evapotranspiration; second-type BC), 
and (d) pumping (second-type BC). Initial conditions represent the state immediately before the pumping exper-
iment. For more details see Schilling, Gerber, et al. (2017).

2.3. Inverse Model

Calibration: Heterogeneous K-fields were calibrated via PP inversion. In basic PP inversion, values are cali-
brated only at PP, values of model cells in-between the PP are interpolated from the calibrated PP, for exam-
ple, with ordinary kriging (Cui et al., 2021; Doherty, 2003; Moeck et al., 2015). Basic PP inversion produces 
heterogene ous structures without having to calibrate all model cells individually, thereby radically reducing the 
number of parameters subject to calibration. By employing regularization and subspace methods, inversion can 
be further stabilized numerically, prior information on the subsurface included in the calibration procedure, and 
the number of parameters requiring calibration reduced (Alcolea et  al.,  2006,  2008; Doherty,  2003; Doherty 
et al., 2010; Moore et al., 2010). By treating aquifer and streambed as two separate hydrofacies with individual PP 
and interpolation variograms, their structures can be inversely identified independently of one another but based 
on the same observation data set.

While versatile, basic PP inversion assumes multi-Gaussian distributions for (log-transformed) K-fields, which 
is not valid for ASG aquifers with non-multi-Gaussian, connected structures such as buried paleo-channels 
(Gómez-Hernández & Wen, 1995; Kerrou et al., 2008; Khambhammettu et al., 2020). As outlined in the intro-
duction, an often chosen path to tackle this limitation lies in adding more complex geostatistical simulations to 
the inversion framework (Pirot et al., 2015; Zovi et al., 2017), but this approach is computationally very demand-
ing and only warranted where sufficient detail on the heterogeneity of the subsurface is available – which is 
rarely the case. Here we present an alternative and more efficient path based on a novel PP inversion approach 
(Doherty, 2020b; Gallagher & Doherty, 2020): At the heart of the proposed approach lies the use of anisotropic 
ordinary kriging with the introduction of spatially varying, preferred directions of anisotropy to the interpola-
tion variogram. By using anisotropic ordinary kriging with spatially varying, preferred directions of anisotropy, 
the emergence of connected structures that follow preferential directions is encouraged, while the underlying 
approach remains multi-Gaussian. Moreover, rather than defining just one preferred direction of anisotropy for 
the entire model or larger model zones, spatially varying, preferred directions of anisotropy are automatically 
calculated for each model element individually based on a quantification of the downstream bearings of each 
individual model element, with the downstream bearings, for example as in this study, defined by the outlines 
and downvalley direction of an alluvial valley and the outlines and downstream direction of an alluvial river. 
Ultimately, for every model element an individual variogram for the interpolation of K from the PP is used.

To limit the potential for unphysical parameter combinations during calibration, which can quickly degrade the 
numerical stability of ISSHMs, it's strongly recommended to employ regularization (Alcolea et al., 2006, 2008; 
Doherty, 2003; Doherty & Hunt, 2010; Herrera et al., 2021). Here, stable and highly efficient hybrid subspace 
regularization (Tikhonov regularization combined with truncated singular value decomposition (SVD; Doherty 
et al., 2010; Tikhonov & Arsenin, 1977; Tonkin & Doherty, 2005)) was employed. The procedure not only enables 
stable inversion but further reduces the number of parameters that need to be calibrated, focusing calibration on 
only the most important principal components (PC) of parameters rather than the base parameters themselves 
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(Aster et al., 2013; Doherty, 2015). Model inversion was carried out with PEST_HP (Doherty, 2020a). Extended 
methodological details are described in Text S1 of Supporting Information S1.

Parameters: Aquifer and streambed are considered as separate hydrofacies with individual PP and K-fields. To 
enable enough spatial detail in the reproduction of the buried paleo-channel and to capture all gaining and losing 
stream sections, for Kaq 73 PP were separated by approximately 125 m and distributed evenly across the model 
domain, and for Ksb 29 PP were spaced at approximately 75 m intervals along the stream centerline (Figure 1b). 
For the calibration of the Kaq-field, horizontal anisotropy in the downvalley direction was defined as the prefered 
direction (using the Emme valley outlines to define the spatially varying bearings), and for the Ksb-field in the 
direction of streamflow (using the Emme streambanks to define the spatially varying bearings). To enable not 
only spatially varying directions but also spatially varying scales of anisotropy, the aquifer was divided into 12 
sections and the streambed into 30 sections (Figure  1b), with separate anisotropy factors calibrated for each 
section. As the predominant flow direction in the aquifer is horizontal (Popp et  al.,  2021; Schilling, Gerber, 
et al., 2017; Tang et al., 2018), only one vertical anisotropy factor was calibrated for the entire model. By cali-
brating anisotropy factors, interpolation variograms could vary throughout calibration, thereby ensuring that the 
maximum amount of information available from the observations is captured during inversion (Doherty, 2015).

Observation weighting scheme: While different observation types (OT) represent processes of different spatial 
and temporal scales, here they are in their sum equally important for the predictive purpose of the model. To 
accommodate this, an OT-balanced weighting scheme was employed (Doherty & Welter,  2010; McCallum 
et al., 2012; Schilling, Cook, & Brunner, 2019). Base weights were defined as the inverse of OT-specific meas-
urement uncertainties and final weights obtained by adjusting these base weights such that each OT contributed 
on a similar order to the objective function. Since GW level observations were the most numerous, they were used 
as a reference, and weights of other observations adjusted accordingly. The number of observations, the base and 
the final weights are provided in Table S2 of in Supporting Information S1 (full observation data set provided in 
Data set DS1 of in Supporting Information S1).

2.4. Predictive Uncertainty and Data Worth Analyses

Flow of information: How individual observations and OT inform the different parameters subject to calibration 
was investigated via SVD-based PC analysis of the Jacobi matrix of sensitivities between parameters and model 
outputs (Doherty, 2015; Hill & Tiedeman, 2007; Schilling et al., 2014).

Predictive uncertainty reduction: Predictive uncertainty reduction achieved through calibration was quantified 
for selected predictions via Schur's complement-based first order, second moment analysis (Christensen & 
Doherty, 2008; Dausman et al., 2010; Doherty, 2015; Fienen et al., 2010). By adding different OT to the data set 
one at a time, all possible OT pairings were evaluated.

Parameter uncertainty reduction: The reduction of parameter uncertainty achieved through calibration was also 
quantified via Schur's complement and used as a measure of parameter identifiability (Doherty, 2015; Fienen 
et al., 2010; Guillaume et al., 2019; White et al., 2016). For all data worth uncertainty analyses, the toolbox 
pyEMU was used (White et al., 2016).

3. Results
3.1. Calibrated Flow Model

Calibration produced a parameter set that reproduced all OT in a balanced manner and according to the weights 
set for calibration. Detailed root-mean-square-errors (RMSE) between the different observations and correspond-
ing model outputs are provided in Table S2 of Supporting Information S1. While residuals for GW levels and 
fstream are equally distributed (Figure S2 and S3 in Supporting Information S1), the model is biased towards low 
discharge (Figure S4 and S5 in Supporting Information S1). However, the bias is small (less than 0.5 m 3/s on 
average) and attributable to being forced to use discharge measurements from a gauging station a few kilometers 
upstream of the model (see extended discussion in Schilling, Gerber, et al. (2017)).

Calibrated Kaq- and Ksb-fields and selected model outputs are illustrated in Figures 1c–1f. Overall, the upstream 
section of the site is more conductive compared to the downstream section. As suspected, a distinct, connected 
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high-K paleo-channel could be identified for the upstream section of the floodplain (Figures 1c and 1d). Wells 
1–4 sit within the paleo-channel, which subsequently meanders around wells 5–7, ends upstream of well 8 and 
appears again on the downstream end of the floodplain. The paleo-channel causes strong preferential flow in 
the wellfield, highlighted by backwards-tracking flowlines from the wells against (a) the calibrated Kaq-field 
with a Kaq = 550 m/d iso-surface (Fig. 1e), and (b) a plume of locally infiltrated stream water represented by 
an fstream  =  85% iso-surface (Figure  1f)). In agreement with the observations and the independent measure-
ments of Popp et al. (2021), the upstream wells 1–3 and downstream wells 6–8 receive water primarily via the 
paleo-channel, whereas the mid-section wells 4 and 5 receive more regional GW (illustrated by flowlines in 
Figures 1e and 1f). Rather than K, the dominant control on exchange fluxes are the weirs, with the most complex 
patterns arising where the aquifer is thinnest (Figures 1c, 1d, and 1f).

3.2. Predictive Uncertainty and Data Worth Analyses

Flow of information: Altogether, the 14 parameter PC that were calibrated explain more than 99.5% of the total 
variance encapsulated in the observation data set, with the most important two explaining more than 84% (PC1: 
71.7%; PC2: 12.6%). The loadings of PC1 and PC2 are dominated by Kaq, Ksb and horizontal anisotropy factors at 
PP in the upstream two thirds of the wellfield, as well as the single vertical anisotropy value (Figure 2b). The two 
corresponding, most important observation PC are dominated in their loadings by observations of fstream (triangles 
in Figure 2a) and, to a lesser degree, Qout (diamonds in Figure 2a). This reveals the large importance of fstream 
observations for informing Kaq and Ksb. Despite their large number and considerable spatial and temporal cover-
age, the information content of classic H observations for the calibration of the heterogeneous Kaq- and Ksb-fields 
is thus small, while the information content of even just a few tracer-based OT is very large.

Parameter uncertainty reduction: The largest reduction of parameter uncertainty was achieved in the upstream 
section of the model domain (Figures 2c and 2d). Mirroring the flow of information analysis (Figures 2a and 2b), 
the largest reduction in uncertainty for Kaq was achieved at PP upstream of the fstream measurement locations, and 
for Ksb upstream of the QEX measurement locations (Figure 1; Figures 2c and 2d). The location of the buried 
paleo-channel coincides with the zone where most data are available and where the largest reductions in parame-
ter uncertainty were achieved. This highlights the information content of a combined hydraulic and tracer-based 
data set for the detection of preferential flow-causing connected subsurface structures.

Predictive uncertainty reduction: The predictive uncertainty reduction was evaluated for predictions of (a) fstream 
in selected abstraction wells and (b) QEX at the two Emme measurement locations. Predictions were made 1 week 
into the future, measured from the end of the transient pumping experiment. A summary for every possible 
combination of OT is provided in Figure 2e. Comparing the post-to the pre-calibration predictive uncertainty 
standard deviation demonstrates that, for any combination of OT and at any location, calibration reduces the 
predictive uncertainty significantly. However, clear differences in the predictive uncertainty reduction potential 
of different OT exist. The uncertainty of predictions of QEX would be reduced more by calibration against a 
flux-based OT (i.e., Qout, QEX and fstream) compared to calibration against H observations. However, if two or 
more OT were combined, predictive uncertainty reductions for QEX predictions converge. For predictions of 
fstream, calibration against direct observations of fstream achieves an uncertainty reduction by a factor of 200, while 
calibration against observations of H, QEX and Qout, or combinations thereof, achieves a reduction by factors of 
2–10 only. Interestingly, predictive uncertainty reduction for fstream is larger in wells 5 and 7 compared to well 
1, indicating how an increasing number of tracer-based observations upstream of a location used for predictions 
provides cumulative information.

4. Discussion
Multi-Gaussian, anisotropy-constrained inversion of an ISSHM against a multivariate set of hydraulic and 
tracer-based observations allowed a connected paleo-channel, hinted at in historic reports, geological maps, and 
geophysical data, to be reproduced. This highly permeable paleo-channel was reproduced even though regulari-
zation employed a homogeneous aquifer and streambed and no direct information on the shape or location of the 
paleo-channel was provided to the inversion. The clearest outlines of a paleo-channel emerged in the upstream 
section of the wellfield, for which cumulatively the largest amount of tracer-based information was available. 
In contrast, for areas where only hydraulic head and stream discharge observations were available, connected 
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Figure 2. Flow of information and parameter identifiability. (a) first and second principal components (PC) of the observations data set. (b) first and second PC of 
the calibrated model parameters. (c) Reduction of parameter uncertainty in percent for Kaq at PP. (d) Reduction of parameter uncertainty in percent for Ksb at PP. PP 
numbers (pp #) in (a) and (b) correspond to the numbers indicated in (c) and (d). (e) Predictive uncertainty standard deviation of different predictions pre- (prior) and 
post-calibration (posterior) for the actual (i.e., H + Qout + QEX + fstream) and all hypothetically possible observation type combinations. Color bars represent normalized 
predictive uncertainty, with the pre-calibration uncertainty being defined as 100%.
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subsurface structures couldn't be robustly identified. This limitation, however, also applies to more complex 
modeling approaches (Chow et al., 2019; Zovi et al., 2017). For reliable identification of connected subsurface 
structures, observations able to capture preferential flow, that is, exchange fluxes and the fraction of locally 
infiltrated stream water, are necessary, confirming previous findings (Delottier et al., 2016; Hunt et al., 2006; 
Partington et al., 2020; Sanford, 2011; Schilling, Cook, & Brunner, 2019; Thiros et al., 2021).

Although based on an ISSHM and sophisticated multivariate model calibration, the new modeling framework is 
simpler than previous approaches to model flow through complex, anisotropic ASG aquifers, as it doesn't require 
advanced geostatistical modeling or precise knowledge on the location of connected subsurface structures. The 
crucial geological constraints that need to be imposed onto the inversion procedure – spatially-varying, preferred 
anisotropy directions – are readily observable from the outlines of streams and river corridors. As opposed to the 
calibration employed for the vast majority of models simulating alluvial SW-GW systems (Gianni et al., 2019), 
our approach provides a receptacle for the systematic anisotropies in ASG sediments, thereby avoiding a system-
atic shortcoming and bias in existing approaches. While the modeling framework can reproduce principal prefer-
ential flow paths and associated paleo-channels, reproducing multi-layered and intersecting subsurface channel 
networks encountered in wide braided river systems likely necessitates more complex geostatistical approaches 
(Brunetti et al., 2019; Pirot et al., 2015; Renard & Allard, 2013; Siirila-Woodburn & Maxwell, 2015). A prom-
ising way forward for the detection of paleo-channels are machine learning-based approaches, which may allow 
including additional information into the modeling framework while simultaneously reducing the computational 
burden of ISSHM inversion (Sun, 2018; Wang et al., 2021; Zhan et al., 2022; Zhu & Zabaras, 2018).

5. Conclusions
A critical challenge for groundwater wellhead protection in ASG aquifers are the identification and quantification 
of the impact of highly permeable, connected subsurface structures such as buried paleo-channels that facili-
tate and accelerate water and solute transport. Aiming to reduce methodological complexity and to provide a 
robust and practical modeling approach for identifying and quantifying preferential transport in ASG aquifers, we 
demonstrated a new framework that builds on (a) integrated surface-subsurface hydrological modeling, (b) inver-
sion which explicitly takes spatially varying, preferred directions of anisotropy into account, and (c) a calibration 
data set consisting of hydraulic and tracer-based observations. The successful delineation of a real-world buried 
paleo-channel and unraveled information content of the different OT highlights the importance of taking the 
anisotropy of sediments into account in river corridor simulations. This challenges the notion that only complex 
geostatistical approaches can reproduce preferential flow and has implications for alluvial wellfield management, 
as it demonstrates that tracer-based observations in combination with anisotropy-constrained inversion of a flow 
model are necessary to efficiently protect our drinking water resources. With the recent advances in analytical 
on-site and computational techniques (Brunner et al., 2017; Hartmann et al., 2021; Sahraei et al., 2020; Schilling 
et al., 2021), however, tracer-aided ISSHM modeling is now widely applicable, affordable and reliable.

Data Availability Statement
All observation data used in this study were published in Schilling, Gerber, et al. (2017). All model input files 
required to run the calibrated model for the duration of the pumping experiment are supplied alongside the 
full list of observations and associated weights as Data set DS1 in Supporting Information  S1, available for 
download from HydroShare, under https://doi.org/10.4211/hs.61bb11e383034bc194f85a57a1d251eb (Schilling 
et al., 2022).
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