
Vol.: (0123456789)
1 3

Environ Monit Assess         (2022) 194:689  
https://doi.org/10.1007/s10661-022-10354-8

Citizen scientist monitoring accurately reveals nutrient 
pollution dynamics in Lake Tanganyika coastal waters

Happiness A. Moshi  · Ismael Kimirei  · Daniel Shilla  · 
Catherine O’Reilly · Bernhard Wehrli  · Benedikt Ehrenfels  · 
Steven Loiselle 

Received: 21 March 2022 / Accepted: 11 August 2022 
© The Author(s) 2022

91% and 74%, respectively. For total suspended sol-
ids measured by professional and turbidity measured 
by citizen scientists, results show that, using 14 NTU 
as a cut-off, citizen scientist measurements of Sec-
chi tube depth to identify lake TSS below 7.0 mg/L 
showed an accuracy of 88%. In both laboratory and 
citizen scientist-based studies, all measured water 
quality variables were significantly higher during the 
wet season compared to the dry season. Climate fac-
tors were discovered to have a major impact on the 
likelihood of exceeding water quality restrictions in 
the next decades (2050), which could deteriorate lake 
conditions. Upscaling citizen science to more com-
munities on the lake and other African Great Lakes 
would raise environmental awareness, inform man-
agement and mitigation activities, and aid long-term 
decision-making.

Abstract Several studies in Lake Tanganyika have 
effectively employed traditional methods to explore 
changes in water quality in open waters; however, 
coastal monitoring has been restricted and sporadic, 
relying on costly sample and analytical methods that 
require skilled technical staff. This study aims in 
validating citizen science water quality collected data 
(nitrate, phosphate and turbidity) with those collected 
and measured by professional scientists in the labora-
tory. A second objective of the study is to use citizen 
scientist data to identify the patterns of seasonal and 
spatial variations in nutrient conditions and forecast 
potential changes based on expected changes in popu-
lation and climate (to 2050). The results showed that 
the concentrations of nitrate and phosphate measured 
by citizen scientists nearly matched those established 
by professional scientists, with overall accuracy of 
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Introduction

Freshwater ecosystems provide a wide range of eco-
system services (Dube et  al., 2015) and yet are under 
increasing pressures linked to land use and demographic 
change as well as economic development (Lowe et al., 
2019; Vörösmarty et  al., 2010). Widespread human 
alterations of element cycles through improper wastewa-
ter treatment, unsustainable agriculture and insufficient 
management of storm-related pollution events have led 
to increases in nutrient pollution and a general eutrophi-
cation of a large percentage of lakes and smaller lentic 
ecosystems (Bogardi et  al., 2012). Eutrophication of 
these key water resources poses a number of potential 
risks to human and aquatic life (Houser & Richardson, 
2010; Morse & Wollheim, 2014).

The African Great Lakes are some of the world’s 
largest and deepest lakes, but are undergoing a num-
ber of challenges due to changes in their climate and 
catchments (Loiselle et al., 2014). This is compounded 
by the intermittent and limited monitoring across these 
transnational waterbodies (Chawira et al., 2013). Lake 
Tanganyika is a primary source of water for nearby vil-
lages, towns and cities, but the near-shore environment 
is also heavily used for fishing, shipping, agricultural 
activities, bathing, washing and transportation (Kelly 
et  al., 2017; Kimirei & Mgaya, 2007). According to 
Spigel and Coulter (2019), the flushing time of the lake 
is about 7000 years and deep water has an age of ~300 
years (Branchu & Bergonzini, 2004; Durisch‐Kaiser 
et  al., 2011). Therefore, Lake Tanganyika is highly 
sensitive to pollution loads from both the surround-
ing catchment and atmospheric deposition (Gao et al., 
2018; Langenberg et al., 2003; Yu et al., 2016, 2018). 
While having a comparatively low degree of land 
development, agriculture and animal husband ry are 
present in much of the catchment. Coastal areas, such 
as Kigoma, have an increasing population and partially 
treated or untreated wastewater posing major risks to 
coastal water quality where sediment and nutrient con-
centrations are significantly different than those of the 
open lake (Bergamino et al., 2007; Cózar et al., 2012). 
Coastal waters, however, present more complex optical 
conditions and require more in situ monitoring. These 

areas are also where the local population are directly 
impacted by changes in water quality (Shen et  al., 
2022).

Regular monitoring of the lake water quality is 
crucial to managing the lake environment (Plisnier 
et al., 2018, 2022).

Monitoring has successfully been done in open 
waters to explore changes in water quality (Azanga, 
2016; Bergamino et al., 2010; Cohen et al., 2005; Gao 
et  al., 2018; Kalacska et  al., 2017; Karamage et  al., 
2016; Mziray et al., 2018). However, limited monitor-
ing has been done along the shoreline, where major 
inputs occur (Moshi et  al., 2022). Although remote 
sensing and laboratory techniques offer potential, these 
approaches are expensive and require trained techni-
cal staff for sampling and analysis. Moreover, there are 
spatial and temporal variations in nutrient input and 
their incorporation into the trophic web that reduce the 
effectiveness of regulatory seasonal spot monitoring 
(Desrosiers et al., 2013; Ehrenfels et al., 2021; Karube 
et al., 2010; Vermeulen et al., 2015). Likewise, remote 
sensing requires large in  situ datasets for algorithm 
development and validation. There is, thus, a clear 
need for low-cost, locally determined methods that can 
complement data gathered by remote sensing and sea-
sonal agency monitoring.

Citizen science is the involvement of non-scientist 
citizens in the gathering of scientific information and 
is based on a joint effort of professional scientists and 
members of the public, who can be involved in design-
ing the scientific research, data collection, analysis and 
reporting of results (Cappa et al., 2018; Ceccaroni et al., 
2017; Dickinson & Bonney, 2012; Eitzel et al., 2017). 
Citizen science has been widely used to monitor aquatic 
environments throughout the world (Hughes et  al., 
2014; Hyder et al., 2017; Loiselle et al., 2016; Thornhill 
et  al., 2019). Studies in the northern hemisphere have 
reported the high standard of data acquired (Lévesque 
et al., 2017; Loperfido et al., 2010; McGoff et al., 2017; 
Muenich et  al., 2016; Thornhill et  al., 2017), but few 
validation studies have been performed in Africa. Spa-
tial and temporal changes in turbidity, nitrate and water 
level in rivers and groundwater were successfully deter-
mined using citizen science (Rufino et al., 2018; Wand 
a et  al., 2017; Weeser et  al., 2018), but the feasibility 
of using this approach in African Great lakes has yet to 
be clearly demonstrated (Bishop et  al., 2020). Under-
stand ing the opportunities presented by citizen science 



Environ Monit Assess         (2022) 194:689  

1 3

Page 3 of 18   689 

Vol.: (0123456789)

to complement other monitoring approaches will also 
support locally based management strategies to miti-
gate nutrient pollution in these important waters. The 
objectives of the present study aim at supporting this 
agenda by first validating water quality data of nitrate, 
phosphate and turbidity collected by citizen scientists 
with those collected and measured in the laboratory by 
professional scientists. Second, the study aims at iden-
tifying the patterns of seasonal and spatial variations in 
nutrient conditions and forecast future scenarios based 
on expected changes in population and climate by 2050.

Material and methods

Study site and sampling design

Water quality monitoring was conducted from May 
2019 to April 2020 at 15 sites in five communi-
ties along the north-eastern coast of Lake Tang-
anyika, three sites in each of the following villages: 
Gombe, Kibirizi, Luiche Ujiji, Ilagala and Karago 
(Fig. 1). The sites were selected to cover differences 
in environmental characteristics (Table  1) including 

Fig. 1  Map of 
northeeastern Lake 
Tanganyika showing  
the study sites
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population density, land use, distance from the shore 
and from nearby rivers. Surface waters were sampled 
from a depth of 0.1–0.2 m using pre-rinsed plastic 
bottles attached to a 2-m pole to avoid the influence 
of the person and to avoid disturbing the lake sedi-
ment during sampling. A single sample was taken 
from the lake for each site and used by both citizen 
scientists and professional scientists for analysis.

Recruitment and training of citizen scientists

A total of 250 individuals from five coastal villages were 
rand omly selected and included fishers, farmers, beach 
management units (BMUs), fish processors and fish sell-
ers. Adult women and men (older than 18 y.o.a) filled 
out a structured questionnaire which was used to screen 
their willingness, environmental interest and availability 
to perform monitoring activities. A total of 150 out of 
250 individuals (30 in each village) were recruited for 
training. All participants underwent a stand ard field 
training and safety course, which included theoreti-
cal and hand s-on experience on nutrients and turbidity 
measurements. For the theoretical session, training was 
conducted for two days (16 h), while the practical ses-
sion was conducted over 5 days (40 h). During the 

theoretical classes, participants were taught about water 
quality issues, sources of nutrients pollution in the lake 
and implications on the services provided by the lake. 
During the practical session, participants, in groups of 5, 
practised sampling and analysis techniques using water 
samples provided for training (Fore et  al., 2001). The 
participants were given time to practice using stand ard 
nutrient and turbidity kits under the supervision of the 
trainer, who was able to provide feedback.

Citizen scientists used the FreshWater Watch 
method to gather nutrients, turbidity and contextual 
information about the conditions of the site (Thornhill 
et al., 2018). Nitrate and phosphate measurements were 
taken colorimetrically in closed tubes using a specified 
volume (Kyoritsu Chemical-Check Lab, Corp., Tokyo, 
Japan). Phosphate concentrations were detected using 
an enzymatic technique (4-amino-antipyrine with 
phosphatase enzyme), and nitrate concentration esti-
mation was based on the Griess method (Berti et  al., 
1988; Nelson et al., 1954). Citizen scientists compared 
the colour of the sample tube to a stand ard reference 
colour chart, assigning colour brightness to specific 
concentration intervals (Scott & Frost, 2017). Tur-
bidity measurements were taken using stand ard cali-
brated Secchi tubes with detection limits of 14 and 240 

Table 1  Location and description of study sites and associated sub-sites with their respective coordinates, distance from the shore 
(m), distance from the nearest river (m) and population

Site Sub-site Coordinates Distance 
from shore 
(m)

Distance from 
nearest river 
(m)

Population Description

Kibirizi Kibirizi 1 -4.8611S, 29.6272E 6 15000 12,225 Peri-urban site located at 3–4 km from 
Kigoma town. Municipal discharge in the 
area (Fig. 1)

Kibirizi 2 -4.8630S, 29.6286E 9 15000
Kibirizi 3 -4.8650S, 29.6233E 1200 15000

Ujiji Ujiji 1 -4.9244S, 29.6752E 7 3450 9040 Peri-urban site located 8–10 km from 
Kigoma town. The area is very close to 
Luiche river mouth and receives emissions 
from it. Farming activities near the lake 
shore take place (Fig. 1)

Ujiji 2 -4.9180S, 29.6622E 15 4940
Ujiji 3 -4.9244S, 29.7063E 6 300

Ilagala Ilagala 1 -5.2119S, 29.8422E 4 160 21,246 Peri-urban site. This site is very close to 
Malagarasi river mouth and is impacted 
by its emissions. Farming activities take 
place (Fig. 1)

Ilagala 2 -5.2116S, 29.8436E 13 78
Ilagala 3 -5.1552S, 29.8261E 6 6560

Karago Karago 1 -5.2813S, 29.7969E 12 9320 5456 Rural site in a closed bay and receives 
effluents from Malagarasi river (Fig. 1)Karago 2 -5.2877S, 29.7988E 22 9810

Karago 3 -5.2855S, 29.7894E 1700 10180
Gombe Gombe 1 -4.6269S, 29.5183E 4 15000 5270 Located within protected national park and 

surrounded by forest (Fig. 1)Gombe 2 -4.6344S, 29.6316E 5 15000
Gombe 3 -4.6411S, 29.6297E 10 15000
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Nephelometric Turbidity Units (NTU) (Preisendorfer, 
1986).

Samples were taken at each site every month and 
divided into samples to be measured by both citizen 
scientists and those to be taken to the laboratory by 
professional scientists. Citizen scientists recorded 
measurements directly onto the FreshWater Watch app 
(iOS and And roid) or using the paper version. Results 
in hardcopy were transcribed onto the smartphone 
app by fellow citizen scientists to upload to the global 
database (https:// fresh water watch. thewa terhub. org/).

Datasets were quality-controlled for consistency, 
internal and contextual, by professional scientists from 
Tanzania Fisheries Research Institute (TAFIRI) and 
Earthwatch directly from the online database. Internal 
consistency between data fields (water colour and tur-
bidity) and comparisons between sampling locations 
and sampling events were used to identify transcrip-
tion and methodological errors. Citizen scientists were 
contacted to correct or repeat any identified errors. A 
subset (1%) of reagent tubes (nitrate and phosphate) 
from each lot were checked in the laboratory using 
stand ard solutions.

Laboratory measurements by professional scientists

Each sample was divided into three discrete water 
samples by professional scientists at the Tanzania 
Fisheries Research Institute (TAFIRI) for valida-
tion in the laboratory. The water samples were kept 
in small glass bottles (1 L) stored in cool boxes with 
ice and transported to TAFIRI Laboratory for analysis 
of nutrients, chlorophyll-a and total suspended solids 
(TSS) on the same day as the sampling.

In the laboratory, 50 ml of unfiltered water from 
the collected samples was used to analyse total nitro-
gen (TN) and total phosphorus (TP). The remaining 
water samples were filtered through glass microfiber 
filters (GF/C) for analysis of dissolved nitrates  (NO3-N) 
and dissolved phosphate  (PO4-P). TN, TP,  NO3-N, 
and  PO4-P concentrations were then analysed using a 
UV–Vis spectrometer (UV-2450PC, Shimadzu), follow-
ing procedures described by (APHA, 1998). Laboratory 
nitrate and phosphate measurements were assigned to 
the same concentration intervals as used by the citizen 
scientist to allow for comparisons.

The GFC filters (0.45 µm diameter) for determina-
tion of total suspended solids were previously oven-
dried at 103–105° C for one hour and weighed and 

recorded as initial weight (A, mg). After filtering each 
water sample, filters were dried again at 103–105° C 
and reweighed, recording their final weight (B, mg). 
The change in weight of the filter paper before filtra-
tion and after filtration of water sample was used to 
determine the amount of total suspended solids in 
mg/L, as

where C denotes the volume of water filtered in litres 
(APHA, 1998).

The total suspended solids amount was used for 
validating citizen science turbidity measurements 
(Scott & Frost, 2017; Swift et al., 2006).

Chlorophyll-a was extracted with 90% (v/v) ace-
tone after first disrupting the cells for 15 min by soni-
cation. The samples were refrigerated (4 °C) over-
night and re-sonicated the next day for 15 min before 
analysis using spectrophotometer.

Data sources

Lake Tanganyika lies within the East African rift val-
ley and is characterized by a four- to five-month cool 
(∼25 °C) dry season from May to September and a 
warm (∼28 °C) wet season from October to April 
(Savijärvi & Järvenoja, 2000; Verburga & Hecky, 
2009). Kigoma receives a mean annual rainfall 
of about 935 mm and a monthly mean of 36.5 mm 
(Hunink et al., 2015). Strong south-easterly winds are 
prominent during the dry season, while the weaker 
winds from the northeast blows during the wet sea-
son (Docquier et  al., 2016). Monthly precipitation, 
air temperature, wind speed and wind direction data 
for the whole study period (May 2019 to April 2020) 
were obtained from the Tanzania Meteorological 
Agency (Kigoma station), which is located approxi-
mately 7.2 km from the lakeshore.

To assess the influence of the anthropogenic land 
use on the nutrient load to Lake Tanganyika, basic 
land -use factors, i.e., the level of urbanization and 
agriculture, were qualitatively inferred from direct 
observations and Google maps. The population data 
for each study site were acquired from Tanzania 
National Bureau of Statistics 2012 population and 
housing census (NBS, 2013). According to the 2012 
national census, the regional population of Kigoma 
is 2.1 million persons over an area of 45,000  km2. 

(1)TSS(mg∕L) = (B − A) ∗ 1000]∕C

https://freshwaterwatch.thewaterhub.org/
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Higher population density characterises the lake 
shore areas (Fig. 1).

Statistical analysis

Data were analysed using stand ard statistical methods, 
including paired t-Test (two paired sample for means), 
two-way analysis of variance (ANOVA), Pearson and 
Spearman correlations, to compare frequencies of con-
centrations and potential time-dependent drivers (R pack-
age × 64 4.0.2 and Realstats 2016). All data were tested 
with an alpha level of significance of 0.05 and using a 
Bonferroni correction for multiple correlations. Logistic 
regression models were used to calculate the probability 
of water quality variables to go over the limit across all the 
study sites and seasons (for the 2019/2020 and the predic-
tion of the scenario in 2050). Training datasets (120) for 
the models were determined rand omly. The test datasets 
(60) were used to check for model accuracy. Water qual-
ity variables were assigned the binary value of 1 for con-
centrations above national limits, while 0 were assigned 
to measurements below the limit value. Limits were 0.10 
mg/L  NO3-N, 0.01 mg/L for  PO4-P, 1.0 mg/L for TN, 0.1 
mg/L for TP, 1 mg/L for TSS and 14NTU for turbidity. 
For comparisons between laboratory measurement of 
concentrations (continuous values) and citizen scientist 
recorded values (concentration categories), the central 
value of the concentration categories of the citizen scien-
tist measurements was compared to laboratory concentra-
tions converted into the same categories, using Cohen’s 
kappa. The projected change in monthly precipitation and 
populations for the time horizon 2050 followed estimates 
for an A2 scenario (Gebrechorkos et al., 2019) and a lin-
ear population increased based on past Tanzania census 
data (NBS, 2013). The estimated change in probability for 
concentration to supersede limits in 2050 was estimated 
using tested models and variables that were significant 
(p < 0.05) for the 2019/20 logistic regression models for 
each parameter  (NO3-N,  PO4-P, TN, TP, TSS, NTU).

Results

Validation of citizen science results

Nitrate concentrations measured by citizen scientists 
closely followed those determined by professional 
scientists with an overall accuracy of 91% (Fig.  2). 

There was an elevated and significant interrater agree-
ment, with a Cohen’s kappa of 0.85 (p < 0.001). Of 
those measurements (9%) that did not agree, 7% were 
overestimates by the citizen scientists and 2% were 
underestimates. The majority (76%) of the incorrect 
estimates were within 1 concentration interval of the 
concentrations determined by the professional sci-
entists. Differences between villages were observed, 
with Gombe having the highest accuracy (97%) and 
Karago with the lowest 81%, and the other three com-
munities all with accuracy of 92% (Fig. 4). There was 
no significant difference between the accuracy in wet 
(91%) and dry seasons (89%).

Phosphate concentrations measured by citizen sci-
entists also closely followed those determined by pro-
fessional scientists but with a lower overall accuracy 
of 74% (Fig. 3). There was an elevated and significant 
interrater agreement, with a Cohen’s kappa of 0.61 (p 
< 0.001). Of those measurements that did not agree 
(i.e., 26%), 18% were overestimates by the citizen sci-
entists and 8% were underestimates. Nearly all (96%) 
of the incorrect estimates were within 1 concentra-
tion interval of the concentrations determined by the 
professional scientists. Differences between villages 
were observed, with Gombe having the highest accu-
racy (81%) and Ujiji with the lowest 69%, while the 
other three communities ranged between 72 and 75% 
(Fig. 4). There was large difference between the accu-
racy in wet (66%) and dry seasons (87%).

The amount of particulate matter present in the lake 
was determined by multiple methods. A calibrated 
Secchi tube was used by citizen scientists to determine 
turbidity (NTU), while total suspended solids were 
determined in a laboratory by professional scientists. 
The Secchi tube has a minimum detection limit of 14 
NTU and maximum detection limit of 240 NTU. From 
an initial analysis, the relationship between NTU and 
TSS was approximately 0.5 NTU for 1 mg/L. Using 
14 NTU as a cut-off, citizen scientist measurements 
of Secchi tube depth to identify lake TSS below 7.0 
mg/L showed an accuracy of 88%. Between sites, the 
highest accuracy was associated to Gombe (100%) 
and the lowest to Ilagala (70%), with the other villages 
between 86 and 96%. For measurements above 7.0, a 
strong linear relationship between NTU and TSS mg/L 
showed a correlation of 0.79 (n = 51, p < 0.001) and 
confirmed the relationship of 0.5 (0.51 ± 0.06) mg/L/
NTU. The linear relationship contained measurements 
(n = 51) all five communities.
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Spatio-temporal dynamics of water quality variables

For all parameters measured, there was a significant 
difference in concentration between wet and dry 
seasons (Tables  2 and 3). All measured water qual-
ity variables were significantly higher during the 
wet season compared to the dry season (Table 3), in 
both professional and citizen scientist-based meas-
urements. Concentrations increased steadily at the 
beginning of the wet season (November and Decem-
ber) and reached their maximum in the second rainy 
season from March to April (Fig. 5). These seasonal 
dynamics were consistent in all villages except for 
Gombe, where concentrations of nutrients and par-
ticulates were generally lowest in both dry and wet 
seasons.

Comparing villages, dissolved nitrates measured by 
both professional and citizen scientists were signifi-
cantly different between sites (Table  2). The highest 

concentration of dissolved nitrate (mean ± SD = 0.46 
± 0.27 mg/L) was observed in Ilagala, whereas the 
lowest values were recorded in Gombe (mean ± SD 
= 0.10 ± 0.04 mg/L). Phosphate showed a similar 
spatial pattern, with concentrations as high as 0.03 ± 
0.02 mg/L (mean ± S. D) in Ilagala and as low as 0.02 
± 0.01 (mean ± S.D) in Gombe, but the differences 
were not significant across sites. Total suspended sol-
ids and turbidity showed significance difference across 
sites (Table 2). Gombe reported the lowest concentra-
tions of total suspended solids (mean ± SD = 1.9 ± 
2.0 mg/L) and turbidity (less than 14 NTU), which 
both reached the maximum values in Ujiji with total 
suspended solids, mean ± SD = 20 ± 21 mg/L and 
turbidity = 42 ± 23 NTU (mean ± SD).

Putting these measurements into context, turbid-
ity data measured by citizen scientists exceeded both 
Tanzania Bureau of Stand ards (TBS) (5–25 NTU) 
and World Health Organization (WHO) (5 NTU) 

Fig. 2  Correlation of  nitrate concentrations measured by professional scientists versus those measured concurrently by citizen scientists with 
percent accuracy for each of the five concentration categories. Data points are randomly scattered around the category bins for better visibility
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permissible limits during the wet months in Ilagala 
and Ujiji and for Ujiji also during the dry months 
(Table  3). Total nitrogen was above TBS limits (1 
mg/L excluding nitrate) in Ilagala, Kibirizi and Ujiji 
(Table 3). Nitrates, phosphates, total phosphorus and 
total suspended solids were below the permissible 
limits for drinking water in both seasons (Table 3).

Drivers influencing nutrients and turbidity 
concentrations and future scenarios

For identifying the main influencing factors on the nutri-
ent and turbidity concentrations, we applied logistic 
regression models with future climate forecast, hydro-
logical and land -use drivers as explanatory variables. 

Fig. 3  Correlation of phosphate concentration measured by professional and citizen scientists with percent accuracy for each  
concentration category. Data are randomly scattered in the concentration categories to improve visibility

Fig. 4  Percentage accuracy 
of nitrate and phosphate 
concentrations comparing 
professional and citizen 
scientists’ results across the 
study sites
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We furthermore used the models to estimate the proba-
bility for the water quality parameters to exceed the TBS 
and WHO concentration limits for two scenarios–the 
study period (2019/2020) and 2050. All the models were 
significant and provided similar accuracies with both the 
training and test datasets, from 73 to 95% area under the 
curve (AUC).

Climate factors were found to significantly influ-
ence the probability of exceeding water quality lim-
its. Among those, precipitation explained most of the 
variations and was associated with an increased prob-
ability of elevated concentrations of dissolved nitrate, 
phosphate, total nitrogen, total phosphorus, and total 
suspended solids. Wind direction was strongly associ-
ated with elevated concentrations of phosphate, total 
nitrogen and total phosphorus (Table  4). Increasing 
wind speed had a negative impact on the probability 
of exceeding limits for phosphate, total nitrogen, total 
phosphorus and total suspended solids. Increased dis-
tance from local rivers was associated with lower tur-
bidity in the lake, while increasing population was 

related to concentrations of total nitrogen above the 
accepted limits.

In line with precipitation being the major driver, 
there was an elevated probability that nutrient and par-
ticulate conditions would exceed accepted limits in the 
rainy season. During the study period (2019–2020), 
the probability for nitrate, phosphate, turbidity, TSS, 
TN and TP ranged from 0.94 to 099, 0.85 to 0.99, 
0.028 to 0.38, 0.25 to 0.90, 0.028 to 0.99 and 0.11 to 
0.47, respectively, across sites in the rainy season and 
from 0.38 to 0.99, 0.16 to 0.99, 0.028 to 0.38, 0.028 to 
0.38, < 0.01 to 0.99, and 0.6 to 0.35 for nitrate, phos-
phate, turbidity, TSS, TN and TP, respectively, in the 
dry season (Fig. 6). The analysis furthermore reveals 
that the probability of exceeding acceptable limits was 
highest for the dissolved nutrients, with 0.91 and 0.78 
for nitrate and phosphate, respectively.

Compared to our study period, the probability for 
exceeding WHO and TBS limits was higher in the 
future 2050 scenario. TSS, nitrate and phosphate 
were most affected in the future scenario with higher 

Table 2  Two-way analysis 
of variance of water 
quality values between 
sites and seasons and their 
interactions

Degrees of freedom (DF), 
F-values and p-values 
reported, significant p 
values are bolded

Variable Independent factor DF F P

Dissolved nitrate Sites 4,11 10.9 < 0.001
Season 1,11 30.5 < 0.001
Sites*Season 4, 11 1.9 0.131

Nitrate (citizen scientists) Sites 4,11 5.3 0.001
Season 1,11 9.1 0.003
Sites*Season 4, 11 1.8 0.13541

Phosphates Sites 4,11 1.6 0.188
Season 1,11 90.6 < 0.001
Sites*Season 4,11 0.9 0.44

Phosphate (citizen scientists) Sites 4,11 1.2 0.313
Season 1,11 18.5 < 0.001
Sites*Season 4,11 1.0 0.399

Total nitrogen Sites 4,11 1.5 0.218
Season 1,11 57.3 < 0.001
Sites*Season 4,11 0.7 0.616

Total phosphorus Sites 4,11 0.2 0.955
Season 1,11 30.8 < 0.001
Sites*Season 4,11 0.1 0.969

Total suspended solids Sites 4,11 4.8 0.002
Season 1,11 6.0 0.017
Sites*Season 4,11 2.6 0.04

Turbidity Sites 4,11 5.6 < 0.001
Season 1,11 7.3 0.009
Sites*Season 4,11 2.4 0.057
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probability of 0.97, 0.91 and 0.84, respectively, of 
surpassing the limits (Fig. 6).

Discussion

Citizen science for monitoring African Great Lakes

Coastal communities in many Great Lake countries 
have been involved in monitoring local fisheries, 
through beach management units (Bulengela et  al., 
2021; Kanyange et al., 2014). This demonstrates the 
clear potential for these communities to contribute 
to regulatory monitoring efforts, thereby reducing 
associated monitoring costs and improving spatial 
coverage.

In the present study, we show that trained local 
community citizen scientists can accurately monitor 
the concentrations of dissolved nutrients and particu-
lates in the coastal waters of Lake Tanganyika. Nitrate 
measurements showed an accuracy of 91% (Cohen’s 
κ = 0.85) with a limited tendency for overestimation 
relative to the data produced by professional scien-
tists. This limited overestimate may be related to the 

Griess method used by citizen scientists that include 
the concentration of nitrite within that measured for 
nitrate. While the ratio of nitrate to nitrate usually 
favours the former by orders of magnitude, modi-
fications to the dissolved organic matter and oxy-
gen concentrations can allow nitrite concentrations 
to become significant with respect to nitrate. Nearly 
all (98%) nitrate measurements reference measure-
ments in the laboratory were either within the exact 
same or off by one concentration range category of 
the citizen scientist test kits. These values show that 
the distribution and accuracy of nitrate concentrations 
compared to professional values are in line with those 
reported by other citizen science programs that have 
analysed nitrate (Hadj-Hammou et al., 2017; McGoff 
et  al., 2017; Scott & Frost, 2017). Importantly, the 
accuracy of citizen scientist nitrate measurements 
was not influenced by the increased precipitation and 
associated particulate loads typical of the wet season 
(with overall dry and wet accuracy of 89% and 91%, 
respectively). Phosphate measurements made by the 
citizen scientists had lower accuracy (74%; Cohen’s 
κ = 0.61) compared to accuracy of 81% reported by 
Lévesque et al. (2017); difference in trophic levels of 

Table 3  Average water quality parameters measured by professionals in the laboratory and citizen scientists (CS, using central val-
ues of measured concentration ranges) during dry and wet season across the study sites, with ± standard deviations

The bolded values present measurements exceeding the TBS and WHO threshold values for drinking water
a Tanzania Bureau of Stand ards (TBS) (TBS, 2003)
b World Health Organization (WHO) (WHO, 2004)

Dry Season

Site Nitrate 
(mg N/L)
Lab

Nitrate 
(mg N/L)
CS

Phosphate 
(mg P/L)
Lab

Phosphate 
(mg P/L)
CS

Total 
nitrogen
(mg N/L)

Total 
phosphorus
(mg P/L)

Total 
suspended 
solids (mg/L)

Turbidity
(NTU)

Karago 0.14 ± 0.02 0.25 ± 0.06 0.01 ± 0.006 0.02 ± 0.01 0.44 ± 0.17 0.03 ± 0.01 7.8 ± 12.2 14 ± 1.1
Ilagala 0.33 ± 0.09 0.53 ± 0.3 0.01 ± 0.004 0.02 ± 0.02 0.58 ± 0.17 0.03 ± 0.01 10.1 ± 6.8 14 ± 0.85
Kibirizi 0.11 ± 0.03 0.17 ± 0.09 0.009 ± 0.004 0.02 ± 0.008 0.54 ± 0.26 0.03 ± 0.01 4.9 ± 2.3 14 ± 0.8
Ujiji 0.19 ± 0.06 0.2 ± 0.1 0.01 ± 0.006 0.02 ± 0.02 0.48 ± 0.14 0.03 ± 0.01 4.8 ± 2.6 28 ± 7.4
Gombe 0.07 ± 0.02 0.1 ± 0.03 0.01 ± 0.008 0.03 ± 0.01 0.29 ± 0.1 0.03 ± 0.01 2.3 ± 2.6 14 ± 0

Wet season

Karago 0.3 ± 0.11 0.27 ± 0.08 0.04 ± 0.009 0.067 ± 0.01 1.3 ± 0.52 0.14 ± 0.09 6.5 ± 7.1 19 ± 17
Ilagala 0.74 ± 0.21 0.89 ± 0.45 0.04 ± 0.02 0.07 ± 0.04 2.21 ± 0.78 0.17 ± 0.11 24 ± 21 58 ± 47
Kibirizi 0.43 ± 0.27 0.64 ± 0.57 0.04 ± 0.01 0.04 ± 0.03 2.1 ± 0.9 0.1 ± 0.08 7.1 ± 3.6 15 ± 4.2
Ujiji 0.58 ± 0.32 0.93 ± 0.67 0.05 ± 0.008 0.06 ± 0.04 2.21 ± 0.84 0.12 ± 0.06 31 ± 22 52 ± 26
Gombe 0.14 ± 0.02 0.1 ± 0 0.03 ± 0.009 0.03 ± 0.008 1.77 ± 1.11 0.14 ± 0.08 1.7 ± 1.5 14 ± 0
TBS a 10–25 0.1–2.2 1.0 excluding nitrate 6 100 5–25
WHO b 10 0.1 NA 1–4 25 5
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two studied waterbodies can explain for this dissimi-
larity. However, nearly all (96%) of the measurements 
were either exact or within one category of the labo-
ratory measurements. Similarly, there was a higher 
probability of overestimation of phosphate concentra-
tions by citizen scientists. There was a clear reduction 
in accuracy during the wet season (66%) compared to 
the dry season (87%). These two observations (over-
estimates and reduced accuracy in the wet season) 
could be associated with either a lower accuracy of 
the phosphate method at higher concentrations or a 

possible influence of increased particulate concentra-
tions. Similar findings were also reported by Muenich 
et  al., 2016. Regarding the accuracy at higher con-
centrations, this seems unlikely as the accuracy in the 
highest category (0.10–0.20 mg/L P-PO4) was higher 
(75%) than the overall accuracy of all concentra-
tion categories. This points to the possible influence 
of particulate matter on phosphate estimates made 
by citizen scientists. It should be noted that samples 
obtained for laboratory analysis were filtered using a 
0.45-micron glass fibre filter, while the sample tubes 

Fig. 5  Temporal change in water quality at the five sampling 
sites in Lake Tanganyika. Professional refers to variable meas-
ured by professional scientists as displayed in (a), (c), (e), (g) 

and (h) and CS refers to variable measured by citizen scientists 
as shown in (b), (d) and (f)
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of the citizen scientists used unfiltered samples. Given 
the high affinity of phosphorus to adsorb on soil par-
ticles (Zhou et al., 2005), the overestimation by citi-
zen scientists and the lower accuracy in conditions 
of high particulate matter during the wet season sug-
gests that phosphate-loaded particulate matter may 
have increased phosphate concentrations detected by 
citizen scientists. The relative ratio of phosphate to 
TSS did not change between seasons, pointing to the 
increased concentrations of particulate matter, both 
TSS and turbidity, in the wet season.

Our results were comparable to similar studies using 
the same nutrient and particulate concentration meth-
ods (McGoff et  al., 2017; Scott & Frost, 2017) and 
showed a higher accuracy than stand ard test strips 
(Muenich et al., 2016). It should be noted that colori-
metric test methods have limitations due to assigning 
a colour impression to a concentration category, rather 
than a continuous scale and with the typical errors 
associated to judgement and colour interpretation 
(Burggraaff et al., 2021; Quinlivan et al., 2020; Storer 
et al., 2016).

In the same manner, citizen scientists were able 
to provide useful information on the concentration 
of suspended matter using low-cost turbidity tubes. 
Measuring turbidity using Secchi disks has been often 
used as a proxy of total suspended solids in lakes and 

marine waters (Davies‐Colley & Close, 1990; Hughes 
et  al., 2015). Secchi tube allows for similar results 
in shallower coastal waters and rivers (Cunha et  al., 
2017; Miguel-Chinchilla et al., 2019).

Detecting regional differences

The success of these methods suggests that they could 
be used to identify conditions where coastal water qual-
ity has been compromised, allowing for more focused 
mitigation actions. In the wet season, coastal lake condi-
tions showed an elevated nutrient and particulate condi-
tions, with higher total nitrogen and phosphorus, phos-
phates, nitrates, total suspended solids, and turbidity. 
There was a moderate-to-strong relationship between 
average monthly rainfall and nitrate concentrations (r = 
0.61, n = 12), which was much higher than the low cor-
relation of phosphate (r = 0.31, n = 12) (Cohen et  al., 
2005). Increased nutrient concentrations may result from 
atmospheric deposition (Gao et al., 2018) as well as run-
off from agriculture and local village wastewater. Runoff 
from agricultural activities including animal keeping has 
been shown to provide nutrients inputs to Lake Tang-
anyika (Azanga, 2016). Likewise, wet atmospheric depo-
sition has been shown to provide up to 83% of dissolved 
inorganic nitrogen, more than 30% of total phosphorus, 
63% of dissolved phosphorus and 65% of soluble reactive 

Table 4  Climate and geographic variables influencing the probability that water quality concentrations exceeded TBS and WHO 
concentration limits

The p-values are bolded for significant variables relative to each concentration limit with N.S representing non-significance. Model 
coefficients shown in parenthesis below each significant p-value

Logistic model p-values for different water quality variables with respect to climatic, geographical and 
population drivers

Explanatory Factors Nitrate Phosphate Total nitrogen Total phosphorus Total suspended 
solids

Turbidity

Wind direction N.S 0.0007 0.009 0.012 N. S N. S
(0.2) (0.27) (0.15)

Wind speed N.S 0.008 0.001 0.0001 0.003 N. S
(-2.45) (-4.21) (-2.42) (-1.19)

Rain 0.0002 1.3E-06 0.002 0.009 0.003 N. S
(0.03) (0.04) (0.1) (0.04) (0.01)

Distance from the river 0.002 0.002 N. S N. S 0.003 1.29E-05
(-0.0002) (-0.0002) (-0.0001) (-0.0002)

Population N. S N. S 0.007 N. S N. S N. S
(0.0006)

Intercept 2.96 -8.24 -26.58 -10.42 7.12 0.08
Model Accuracy 0.95 0.94 0.92 0.74 0.92 0.87
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Fig. 6  Probability of water quality parameters to go over the 
defined limit throughout the year across study sites during the 
study period of May 2019 to April 2020 (green line) and 2050 
(red line). a probability of nitrate to go over 0.1 mg/L (P[NO3-
N > 0.1], b probability of phosphate to go over the limit of 

0.01 mg/L (P[PO4-P > 0.01], c probability of TN to go over 
the limit of 1 mg/L (P[TN > 1]), d probability of TP to go over 
the limit of 0.1 mg/L (P[TP > 0.1]), e probability of TSS to 
exceed 1 mg/L (P[ TSS > 1]) and f probability of turbidity to 
surpass 14 NTU (P[ Turb > 14])
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phosphorus (Gao et al., 2018; Langenberg et al., 2003). 
Atmospheric deposition in other African Great lakes 
(Lake Victoria and Malawi/Nyasa/Niasa) has also been 
shown to be significant (Kishe, 2004; Tamatamah et al., 
2005). However, nutrient conditions in coastal waters of 
nearshore villages are more likely to be impacted by local 
wastewater and agricultural land management (Kelly 
et  al., 2017). This was evidenced by the differences 
between villages investigated in the present study and the 
importance of distance from the nearest river.

Among the five studied sites, Ilagala and Ujiji showed 
elevated nitrate, total nitrogen, total phosphorus, total 
suspended solids, and turbidity, while the lowest concen-
trations were found in Gombe (Table 3). Ilagala lies in 
the lake area influenced by the Malagarasi River, while 
Ujiji receives effluents from the much smaller Luiche-
Ujiji River (Shen et  al., 2022). Both rivers have been 
identified as important sources of particulates to Lake 
Tanganyika (Langenberg et al., 2003; Shen et al., 2022). 
Turbidity is expected to decrease exponentially with 
distance from the river mouth in deep lakes (Giovanoli, 
1990). The catchments of rivers are characterised by a 
range of anthropogenic activities (Moshi et  al., 2022). 
Conversely, Gombe is located in a protected area and is 
surrounded by forest with only limited agricultural activ-
ities. The protected forest acts both as a buffer to nutrient 
and sediment transport to the lake, and a blocker to more 
extensive activities in the surrounding catchment (Cózar 
et al., 2007; Msaky et al., 2005).

Estimating water quality effects of environmental 
change

Climate plays a major role in the circulation and dynam-
ics of the African Great Lakes, and Lake Tanganyika, 
with its north–south extension of nearly 700 km, is 
highly sensitive to changing temperature and wind 
regimes (Kraemer et  al., 2015; Loiselle et  al., 2014; 
Mziray et al., 2018). Given the expected changes in the 
coming decades, combined with expected increase in 
the population of coastal areas, a logistic model, based 
on monthly measurements in 15 sites, indicates that the 
nutrient conditions in the coastal waters of the lake are 
expected to worsen, in particular in the wet season and 
regarding total phosphorus and nitrogen. Particulate 
conditions are expected to show an increase in both 
seasons, where the probability of TSS remaining above 
national limits continuing throughout the year is vivid. 
It should be noted that the climate scenario applied 

(A2) was at the high end of the emission scenarios con-
sidered in the IPCC’s Special Report on Emissions Sce-
narios (Nakicenovic & Swart, 2000).

The expected probabilities of increasing nutrient 
and particulate conditions result from expected changes 
in precipitation, population and wind regimes. Wind 
intensity and direction effects both atmospheric nutrient 
transport and vertical and horizontal mixing of dissolved 
and particulate matter in lakes (Mziray et al., 2018).

Increasing wind speed will likely decrease the con-
centration of phosphate, total nitrogen, and total phos-
phorus. Wind speed has an important role in transport-
ing and activating the sediment layer to trigger particles 
entrainment into the overlying water and release nutri-
ents. The same explanation was given by Deng et  al. 
(2018) and Tang et al. (2020), who observed that the 
eutrophication of Lake Taihu where wind speed played 
a significance role of releasing particulate nutrients 
resulting into increased concentrations of total nitro-
gen, total phosphorus and total suspended solids.

Population was significant in the modelling of 
total nitrogen concentration probabilities. Kigoma is 
among the fast-growing towns in Tanzania, and due 
to increase in human population (NBS, 2013), for-
est has been cleared out for settlement and farming 
activities. Increases in the use of artificial fertilizers 
are likely to increase nutrient transport to the lake 
basin easily. Rapid increase in population and eco-
nomic activities has driven increases in nitrogen in 
other large lakes (Chen et al., 2022; Gao et al., 2015).

Conclusion

We demonstrated that citizen scientists produce reli-
able water quality data in the complex coastal con-
ditions of Lake Tanganyika. Their measurements 
indicate that water quality is strongly influenced by cli-
mate conditions and local factors, creating conditions 
where many national and international guidelines on 
nutrient and particulate concentrations are surpassed 
for most of the year, particularly in the rainy season. 
Extrapolating these relationships to expected changes 
in climate (precipitation) and population, there is a 
clear risk of worsening conditions in the coming dec-
ades. This calls for increased local and transnational 
efforts to better regulate land -use activities such as 
agriculture, improve wastewater management and 
engage coastal communities to reduce nutrients and 



Environ Monit Assess         (2022) 194:689  

1 3

Page 15 of 18   689 

Vol.: (0123456789)

particulate matter loads to the lake, especially with 
respect to nutrient and sediment input pathways that 
are associated with rainfall. To achieve such goals, 
upscaling citizen science to more communities around 
Lake Tanganyika, and to other African Great lakes, 
would increase awareness of environmental problems 
and could bring together citizens, regulators, research 
institutions, and Non-Governmental Organizations 
(NGOs) in order to conserve the lake ecosystem ser-
vices, inform management and mitigation actions, and 
support long-term decision-making.
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