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Abstract1

The meta-ecosystem concept provides a theoretical framework to study the effect of local and2

regional flows of resources on ecosystem dynamics. Meta-ecosystem theory has hitherto been3

applied to highly abstract landscapes, and meta-ecosystem dynamics in real-world landscapes4

remain largely unexplored. River networks constitute a prime example of meta-ecosystems, being5

characterized by directional resource flows from upstream to downstream communities and6

between the terrestrial and the aquatic realm. These flows have been thoroughly described by the7

River Continuum Concept (RCC), a seminal concept in freshwater ecology, stating that observed8

spatial variations in the relative abundances of invertebrate functional groups reflect systematic9

shifts in types and locations of food resources, which are in turn determined by the physical10

attributes of river reaches. Hence, the RCC represents a solid conceptual basis for determining how11

changes in landscape structure and resource flows will translate into local and regional changes12

in community composition. Here, we develop and analyse a riverine meta-ecosystem model13

inspired by the RCC, which builds upon a physically-based landscape model of dendritic river14

networks. We show that the spatial distributions and regional biomass of invertebrate functional15

groups observed in stream communities are determined by the spatial structure and scaling16

attributes of dendritic river networks, as well as by specific rates of resource flows. Neglecting17

any of these aspects in modelling river meta-ecosystems would result in different community18

patterns. Moreover, we observed that high rates of resource flow, for example due to river19

anthropization, have a negative effect on the regional biomass of all functional groups studied,20

and can lead to cascading extinctions at the meta-ecosystem scale. Our work paves the way for21

the development of physically-based meta-ecosystem models to understand the structure and22

functioning of real-world ecosystems.23
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Introduction27

Ecosystems are open to flows of materials, organisms, and energy, and understanding the28

effects of these flows on ecosystem structure and functioning is a central goal of ecological29

research (Polis et al., 2004). By integrating the local production and movement of resources into30

metacommunity theory, the meta-ecosystem framework allows investigating feedback processes31

between community and resource dynamics across spatial scales (Loreau et al., 2003; Massol et al.,32

2011; Gounand et al., 2018a; Guichard and Marleau, 2021). Seminal work on meta-ecosystems33

has been developed on simplified landscapes (Loreau et al., 2003; Loreau and Holt, 2004), often34

represented by two-patch ecosystems (Gravel et al., 2010a,b; Marleau et al., 2010). This simple35

representation allowed an analytical investigation of the interplay between local and regional36

flows of matter and their implications for community dynamics (Loreau et al., 2003; Gravel et al.,37

2010a; Massol et al., 2011; Leroux and Loreau, 2012). More recent studies focusing on larger38

spatial networks outlined the importance of spatial structure and movement rates of organisms39

and materials to promote meta-ecosystem stability (Marleau et al., 2014; Gravel et al., 2016).40

However, one enduring limitation of current meta-ecosystem models is the abstract representation41

of the landscape (Gounand et al., 2018a), which is often described by random or Cartesian spatial42

networks (Marleau et al., 2014; Gravel et al., 2016). In contrast, the physical structure of real-world43

landscapes constrains organisms’ movement and resource flows and is likely to influence the44

spatial distributions of resources and the organisms that feed upon them (Leroux and Loreau,45

2008; Harvey et al., 2017a; Schmitz et al., 2018; Montagano et al., 2018; Harvey et al., 2020).46

River networks constitute a prime example of meta-ecosystems, as documented by a large47

body of literature in freshwater ecology assessing the critical influence of directional resource48

flows, both from the surrounding terrestrial environment and from upstream river reaches, on the49

composition of local stream communities (e.g., Bartels et al. (2012); Soininen et al. (2015); Abelho50

and Descals (2019)). Evidence that composition of local riverine communities is linked with the51

river ecosystem in its entirety was prominently pointed out in the River Continuum Concept52

(RCC) (Vannote et al., 1980), a cornerstone concept in freshwater ecology. The RCC proposes53

that commonly observed spatial variations in the relative abundances of major functional groups54

2



of organisms along a longitudinal river gradient reflect systematic shifts in types and locations55

of food resources, which are in turn determined by the hydrological attributes of river reaches56

(e.g., stream width, depth and velocity) and by the energetic constraints of upstream communities.57

The organismal groups considered are freshwater invertebrates that are generally clustered in58

five functional groups (grazers, shredders, collectors, filterers and predators), which are of high59

relevance with respect to the biodiversity and functioning of riverine ecosystems (Anderson and60

Sedell, 1979; Wallace et al., 2015; Harvey and Altermatt, 2019). The RCC specifically predicts61

that shredders should be the most abundant functional group in small river reaches, which are62

strongly shaded by the surrounding vegetation and receive a large input of dead organic matter63

from falling leaves. The abundance of grazers is expected to peak at mid-sized streams, where64

light penetration into the stream is highest, stimulating the development of primary producers.65

Light penetration, and therefore primary production, is limited by water depth and turbidity in66

large rivers, reducing the abundance of grazers. Finally, filterers and collectors should be the most67

abundant groups in large rivers where the most abundant resources is fine particulate organic68

matter, which is a by-product of leaf consumption by shredders and is delivered into the water69

column from upstream communities.70

The RCC is likely the most influencing conceptual framework in freshwater and stream ecology71

and is among the most commonly cited works in this field (totalling >6000 citations in the Scopus72

database), prompting empirical and theoretical works assessing its strengths and limitations73

(see Doretto et al. (2020) for a recent review). Although the parallel between meta-ecosystem74

theory and the mechanisms formulated in the RCC has been acknowledged in several recent75

studies (Massol et al., 2011; Gounand et al., 2018a; Doretto et al., 2020; Harvey et al., 2020), a76

formal integration of the RCC within a meta-ecosystem model is still lacking. Next to the explicit77

predictions mentioned above, the RCC further implicitly predicts that changes in the hydrological78

attributes of a river network should translate into local and regional changes in the composition79

of invertebrate communities. However, this prediction has never been investigated formally and it80

remains unclear how changes in resource input and transport will affect the spatial distribution81

of invertebrate functional groups in a river network. Furthermore, the RCC essentially describes82
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community patterns along the main stem of a river, hence disregarding the contribution of river83

dendritic structure on the spatial patterns observed in river meta-ecosystems (Doretto et al., 2020).84

In this study, we develop a spatially explicit meta-ecosystem model for river systems inspired85

by the RCC to investigate the effect of meta-ecosystem dynamics on the functional composition86

of stream communities. We specifically address the following research questions: (i) What is the87

contribution of the dendritic structure of river networks on the spatial distribution of functional88

groups described in the RCC? (ii) How do changes in resource flow rate influence the spatial89

distribution and regional biomass of functional groups in river networks? To do so, we make use of90

a physically-based model of dendritic river networks, which expresses how stream characteristics91

(e.g., water discharge, stream width) vary across a river system as a function of drainage area (i.e.,92

the portion of land over which precipitation is drained towards a given river cross-section).93

We compare the spatial distributions of functional groups between a complex dendritic94

river network (see Carraro and Altermatt, 2022) and three alternative landscapes based on95

different assumptions with respect to dendritic structure and scaling of hydrological variables.96

We demonstrate that the spatial patterns described in the RCC can only emerge from a meta-97

ecosystem model that accounts for the dendritic structure of river networks, as well as for changes98

of its hydrological attributes in the downstream direction. We then analyse different scenarios of99

resource spatial dynamics and show that increased rates of resource flows have a negative impact100

on the regional biomass of all the functional groups studied and can lead to extinctions at the101

meta-ecosystem scale.102

Methods103

Meta-ecosystem structure and dynamics104

We considered a riverine meta-ecosystem composed of a set of local ecosystems, each of them105

defined by a river reach and its surrounding terrestrial area, which are spatially connected via106

resource flow across the river network. A river reach corresponds to an uninterrupted stretch107

of river in which abiotic conditions can be assumed as constant, and hence constitutes the108
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fundamental unit of a river network. In our model, each local ecosystem is composed of four109

non-living resources, a group of primary producers and five groups of consumers, corresponding110

to the trophic groups and resource types commonly found in freshwater ecosystems (Vannote111

et al., 1980; Wallace and Webster, 1996; Doretto et al., 2020; Larsen et al., 2019).112

First, grazers G feed on primary producers P (algae or aquatic rooted vascular plants), which113

are supported by nutrients N (e.g., nitrogen) and light (Fig. 1). Second, three independent114

functional groups feed on different forms of particulate organic matter derived from decomposed115

terrestrial leaf litter: shredders S, collectors C, and filterers F feed on coarse (CPOM, > 1 mm in116

size), fine (FPOM, 50 µm–1 mm), and ultra-fine (UPOM, < 50 µm) particulate organic matter,117

respectively. Finally, predators R feed on other groups of consumers, that is G, S, C and F (Fig. 1).118

The resources present in a local ecosystem originate both from local terrestrial inputs of N, CPOM119

and UPOM and from upstream reaches via hydrological transport of N, CPOM, FPOM and120

UPOM. Consequently, local ecosystems are connected through hydrological transport of resources,121

and the composition of functional groups in upstream ecosystems determines not only the local122

resource consumption, but also the amount of resources available for the ecosystems situated123

downstream. Note that Vannote et al. (1980) originally included both filterers and collectors in the124

same functional group (i.e., collectors), while a distinction between collectors (feeding on FPOM)125

and filterers (feeding on UPOM) has been operated in more recent literature (see e.g. Larsen et al.,126

2019; Doretto et al., 2020). Hence, the densities of collectors described in Vannote et al. (1980)127

should be compared with the sum of collector and filterer densities in our model.128

We focused our analysis on an equilibrium state for the meta-ecosystem, and did not consider129

the temporal fluctuation of resource inputs, such as seasonality in resource availability or stream130

flow. We further hypothesized that living organisms only move within river reaches and do not131

disperse across local ecosystems. Our meta-ecosystem model is expressed by the following set of132

ordinary differential equations:133

dRi
dt

= εRαRRi (Gi + Si + Ci + Fi)− µRRi − βRR2
i ; (1a)134

dGi
dt

= εGαGGiPi − αRRiGi − µGGi − βGG2
i ; (1b)135

dSi
dt

= εSαSSiCPOMi − αRRiSi − µSSi − βSS2
i ; (1c)136
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dCi
dt

= εCαCCiFPOMi − αRRiCi − µCCi − βCC2
i ; (1d)137

dFi
dt

= εFαFFiUPOMi − αRRiFi − µFFi − βFF2
i ; (1e)138

dPi
dt

= εPαPliPi Ni − αGGiPi − µPPi − βPP2
i ; (1f)139

dNi
dt

=
δN
Vi

(
n

∑
j=1

wji NjQj − NiQi

)
+

φN,i

Vi
− αPliPi Ni − λN Ni ; (1g)140

dCPOMi
dt

=
δCPOM

Vi

(
n

∑
j=1

wjiCPOMjQj − CPOMiQi

)
+

φCPOM,i

Vi
− αSSiCPOMi − λCPOMCPOMi ; (1h)141

dFPOMi
dt

=
δFPOM

Vi

(
n

∑
j=1

wjiFPOMjQj − FPOMiQi

)
+ (1− εS)αSSiCPOMi − αCCiFPOMi+

− λFPOMFPOMi ;

(1i)142

dUPOMi
dt

=
δUPOM

Vi

(
n

∑
j=1

wjiUPOMjQj −UPOMiQi

)
+

φUPOM,i

Vi
− αFFiUPOMi − λUPOMUPOMi , (1j)143

144

where subscript i identifies a river reach. System Eq. (1) is based on a Lotka-Volterra formulation145

of trophic interactions (including self regulation terms, following Barbier and Loreau (2019)), and146

on mass balance equations (Eqs. (1g)–(1j)) for the dynamics of resources in river networks. For the147

living compartments X = {R, G, S, C, F, P} (Eqs. (1a)–(1f)), the rate of change in biomass density148

X depends on biomass gain owing to feeding (assuming direct dependence of feeding rate on149

biomass production) and biomass loss due to metabolism, predation and intra-group competition150

for resources (density dependence). The parameters related to the living compartments X are151

feeding rate αX, efficiency of resource assimilation εX, strength of intra-group competition βX,152

and mortality rate µX.153

To include the effect of light availability on nutrient uptake of producers, we expressed the154

realized assimilation rate of producers as αPli, where li is a site-specific light limitation factor155

derived from physical principles and by following the downwelling irradiance concept (Fasham156

et al., 1990; Davies-Colley and Nagels, 2008). To derive li, we assumed that the irradiance of157

photosynthetically active radiation above the canopy is constant across the river system, while158

spatial variations in li are solely determined by variations in river geometry (i.e., width and159

depth–see Supporting Information for details). Where available, parameters were chosen in160

agreement with established evidence on feeding behaviour for the various functional groups.161
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Detailed information on parameter values is available in Table S1.162

For the resource compartments Y = {N, CPOM, FPOM, UPOM} (Eqs. Eqs. (1g)–(1j)), the163

rate of change of resource density Y depends on mass gain from local terrestrial inputs and164

inputs from upstream reaches via hydrological transport; and mass loss due to consumption by165

living organisms, downstream hydrological transport, and resource degradation and deposition.166

The parameters related to resources Y are the flux of local terrestrial inputs φY,i, the relative167

downstream velocity of resource Y with respect to water δY (i.e., if δY = 0.5, resource Y travels168

downstream half as fast as water), and the rate of resource loss due to processes other than169

consumption λY (i.e., degradation or deposition). Qi and Vi represent the water discharge and the170

water volume of reach i, respectively; wji is the generic entry of the adjacency matrix (wji = 1 if171

river reach j drains into i and 0 otherwise); n is the total number of reaches constituting the river172

network.173

Following Vannote et al. (1980); Marks (2019), we assumed that FPOM is a by-product of174

CPOM consumption by shredders (Fig. 1), therefore, as a first approximation, inputs of FPOM175

originate from the aquatic environment only. Importantly, Eqs. (1g-j) outline how the hydrological176

attributes of river networks, that is water discharge Qi and volume Vi, influence the density of177

resources available locally for the functional groups. In particular, both water discharge and178

volume determine the velocity at which resources are transported across a given reach, while179

water volume also influences the concentration of local terrestrial inputs.180

Resource spatial dynamics in river networks181

We generated a large, virtual river network (so-called optimal channel network, OCN) with the182

R-package OCNet (Carraro et al., 2020, 2021) in order to study changes in the abundance density183

of functional groups along a gradient of physical conditions specific to river networks. OCNs are184

structures that reproduce the topological connectivity and scaling features of real river networks185

(Rinaldo et al., 2014) and are well suited to study riverine ecological processes (Carraro et al.,186

2020; Carraro and Altermatt, 2022). We built the OCN (Fig. 2a) on a square lattice spanning an187

area of 5625 km2 partitioned into 3688 reaches in order to obtain a gradient of physical conditions188
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sufficiently large to reproduce the predictions of the RCC, which apply to river systems spanning189

a wide range of stream sizes. For instance, this roughly corresponds to the size of river Rhone190

before entering Lake Geneva (5238 km2) or river Rhine before entering Lake Constance (6299 km2).191

By using a threshold area of 1 km2, the resulting total river length is 3854 km (see details in the192

Supporting Information).193

We made several assumptions regarding the rate of hydrological transport of resources in order194

to incorporate the verbal arguments of the RCC into our meta-ecosystem model. In particular,195

we assumed CPOM to be transported downstream at a low rate (δCPOM = 0.01) compared to196

water because of the large size of its constituents, which likely induces clogging (Vannote et al.,197

1980; Wallace and Webster, 1996). Conversely, we assumed FPOM to travel downstream at an198

intermediate rate (δFPOM = 0.5), while UPOM and N are transported at a high rate (i.e., same199

velocity as water: δUPOM = 1 and δN = 1) (Cushing et al., 1993; Wallace and Webster, 1996).200

We derived water discharge Qi and water volume Vi (Fig. 2c) across all river reaches of the201

network based on drainage area values (Fig. 2b) via the scaling relationships of Leopold and202

Maddock (1953). Drainage area corresponds to the portion of land over which precipitation is203

drained towards a given location (Fig. 2a). As a universal geomorphological feature, drainage204

area is the master variable controlling the physical and hydrological characteristics of a given205

reach (Leopold et al., 1964; Rodriguez-Iturbe and Rinaldo, 2001). We therefore used drainage206

area to describe the positioning of a reach within the river network and illustrated how water207

volume (Fig. 2c), concentration of terrestrial inputs (Fig. 2d), and light availability (Fig. 2e) change208

along a gradient of drainage area (details on how these variables are calculated are reported in209

the Supporting Information). Specifically, the input concentration of all resources decreases as210

drainage area increases (Fig. 2d) because of the corresponding increase in water volume along the211

downstream direction (Fig. 2c). Note that local inputs of CPOM depend on river width and not on212

drainage area, therefore CPOM follows a slightly different pattern than other resources in Fig. 2d213

(see Supporting Information for more details). Light availability li peaks at intermediate values of214

drainage area (Fig. 2e) and is lower both in upstream (due to increased shading effect of canopy in215

narrower reaches) and downstream reaches (due to increased water depth and subsequent limited216
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light penetration).217

We determined the equilibrium densities of each compartment of the meta-ecosystem in all218

reaches of the river network by finding a feasible equilibrium state (i.e., non-negative densities for219

all state variables (including resources) at all reaches) for system Eq. (1) by using a linearization220

method (see Supporting Information for details). In a default simulation, we investigated how the221

densities of functional groups change along a gradient of drainage area and compared the model222

predictions with the empirical patterns described in the River Continuum Concept (Vannote et al.,223

1980). Here, we did not aim at testing and validating the predictions of the RCC. Rather, we aimed224

at building a mechanistic framework that accurately reproduces the spatial patterns described in225

the RCC, which we then used to explore alternative scenarios of landscape structure and resource226

dynamics. We also performed a sensitivity analysis (methodology and results are reported in227

the Supporting Information), where we varied two key hyper-parameters shaping food chains,228

namely predator feedback and pyramid top-heaviness (following Barbier and Loreau (2019)).229

Predator feedback expresses the ratio between consumption rates and self-regulation terms, while230

top-heaviness expresses the ratio between assimilation efficiency and metabolic costs.231

Alternative scenarios of landscape structure and resource dynamics232

We assessed the influence of assuming a complex, dendritic landscape on the spatial distribution of233

functional groups by running the meta-ecosystem model (Eq. (1)) on three alternative landscapes234

based on different assumptions with respect to dendritic structure and scaling of hydrological235

variables. In particular, we introduced a linear river channel (without branches) where hydrological236

variables do not scale with drainage area; a linear channel where hydrological variables scale237

with drainage area; and a dendritic river network where hydrological variables do not scale with238

drainage area. We maintained the following quantities equal in the four landscapes: number239

of reaches, total drainage area, water discharge at the outlet, total river length, total water240

volume, and total resource inputs from the terrestrial realm. Details on the construction of the241

alternative landscapes are provided in the Supporting Information. We then compared the spatial242

distributions of functional groups between the default dendritic network and the three alternative243
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landscapes.244

For the dendritic landscape, we further compared the spatial distributions and regional biomass245

of each functional group between the default case and two alternative scenarios of resource spatial246

dynamics: a “no flow” scenario, where hydrological transport of resources is neglected, and a247

“fast” scenario where all resources are transported at a high rate (i.e., same velocity as water). All248

the scenarios were based on the same set of parameters specified in Table S1.249

Results250

The meta-ecosystem model for dendritic river networks accurately reproduces the distributions of251

functional groups described in the River Continuum Concept (Fig. 3). Specifically, the density252

of grazers peaks at intermediate values of drainage area (Fig. 3a,f), which is mirrored by the253

analogous pattern for primary producers (Fig. 3g). Both of these patterns essentially follow254

the spatial distribution of light availability (Fig. 2e). The density of shredders is maximum255

in headwaters and decreases as drainage area increases (Fig. 3b,f), while filterers tend to be256

more homogeneously distributed across the river network (Fig. 3d,f). Conversely, the density257

of collectors monotonically increases with drainage area (Fig. 3c,f). Consequently, collectors258

and filterers are the most abundant groups in largest river reaches. In 468 reaches (12.7% of259

all reaches), all located at the headwaters, collectors are predicted to go extinct. Finally, the260

density of predators (Fig. 3e), which is proportional to the sum of their preys’ densities (Fig. 3f),261

is relatively constant along a gradient of drainage area. The corresponding spatial patterns of262

resource densities predicted by the model are shown in Fig. S1. Our sensitivity analysis (see263

Supporting Information, Fig. S2) shows that the spatial patterns of consumers’ density present the264

same shape with respect to the default case, while regional abundances vary substantially.265

We found that all of the alternative landscapes that neglected either the dendritic structure of266

the river network or the scaling of hydrological variables with drainage area yielded patterns of267

consumer and resource densities that differ substantially with respect to the default OCN case268

(Fig. 4, Fig. S3). Remarkably, the linear setting without scaling of hydrological variables leads to269

constant patterns of consumer and resource density (a formal proof for this fact is provided in the270
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Supporting Information). In the case of the linear channel with scaling of hydrological variables,271

densities of all functional groups (excluding filter feeders) tend to be much lower than in the272

default case. In particular, shredders’ density (Fig. 4c) tends to peak for intermediate values of273

drainage area, and moderately decline further downstream. Collectors’ density (Fig. 4d) is null in274

the 2% most upstream reaches, and increases downstream (with values much lower than those275

predicted for the default case, except towards the outlet, where values tend to be more similar).276

Peak densities of grazers (Fig. 4b) and producers (Fig. 4f) are localized closer to the outlet than277

it was the case for the default setting. As a result, in this setting predators’ density (Fig. 4a) is278

predicted to increase in the downstream direction. The dendritic landscape without scaling of279

hydrological variables leads to patterns of consumers that, in most cases, tend to decrease in280

the downstream direction (especially for predators, shredders, grazers and producers), while281

collectors’ density appears highly variable in the upstream part of the network and tends to282

the density observed in the default case towards the outlet. In all three settings, filter feeders’283

density (Fig. 4e) is spatially constant and very similar to that of the default case; indeed, both the284

input of UPOM in the river and the consumption process by this functional group were assumed285

to be independent of any reach-specific variable (such as river width, which is key for CPOM286

input and thus shredder density, and depth, which influences producers’ assimilation rate via287

the light limitation factor). Additional comments on these results are reported in the Supporting288

Information.289

Concerning the effect of variations in resource flow dynamics on riverine community patterns,290

the absence of hydrological transport of resources has a major effect on the spatial distribution of291

all functional groups in the “no flow” scenario (Fig. 5). Indeed, in this scenario, the densities of292

all groups decrease in the downstream direction. Given that all organisms need to rely on local293

terrestrial inputs in this scenario, the resulting consumer patterns essentially mirror those of input294

resource concentration (Fig. 2d), which tend to decrease downstream due to the dilution effect295

(i.e., increasing water volume downstream (Fig. 2c)). This effect is particularly strong for grazers,296

filterers and producers (Fig. 5b,e,f), while shredders are the least impacted. Hence, functional297

groups feeding on fast-flowing resources (i.e., nutrients and UPOM) are more impacted than298
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the ones feeding on slow-flowing resources (i.e., CPOM) in this scenario. For the parameter set299

chosen, the regional biomasses of grazers, producers and filterers are 4.8%, 6.7% and 89.1% higher300

in the “no flow” scenario, respectively. For these groups, the increase in density observed in301

upstream reaches exceeds the decrease observed downstream. Note that this result is sensitive302

to the type of functional response (i.e., the relationship between a consumer’s intake rate and303

resource density (Holling, 1959)) used in the model (see Supporting Information for additional304

analyses with a type II functional response). Conversely, the regional biomass of shredders is 9.4%305

lower, suggesting that the decrease in CPOM in the most downstream reaches has a significant306

effect on the regional biomass of this group. The group of collectors exhibits a totally different307

spatial distribution in the “no flow” scenario, with very high densities in headwaters and a308

decreasing density in the downstream direction (Fig. 5d). The regional biomass of collectors is309

more than doubled, which mirrors the amount of FPOM available in this scenario (Fig. S4). As310

a result of changes in prey patterns, the spatial distribution of predator density changes as well311

(Fig. 5a), with higher densities in upstream reaches and a regional biomass that is 54.5% higher312

without hydrological transport of resources.313

In the “fast” scenario, increasing the rates of hydrological transport of CPOM and FPOM has314

major effects on the spatial distributions and overall quantity of resources available for shredders315

and collectors at the regional scale (Fig. 6). The amounts of CPOM and FPOM available in the316

whole river network are 90.8% and 99.9% lower in this scenario, respectively (Fig. S5). These317

changes have dramatic negative effects on the density of shredders, which is 93.6% lower at the318

regional scale, but shows an increasing trend in the downstream direction (Fig. 6c). We also find319

that shredders go extinct in 28.7% of the reaches (1058 reaches). Because FPOM is a by-product of320

shredders activity (Fig. 1), the sharp decrease in shredder density cascades to collectors, which go321

extinct in all reaches in this scenario (Fig. 6d). Consequently, the regional biomass of predators322

shrinks by more than half (Fig. 6a), with a spatial distribution following those of grazers (Fig. 6b)323

and filterers (Fig. 6e), which are unaffected by increases in the rates of hydrological transport of324

CPOM and FPOM.325
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Discussion326

By performing the first formal integration of the verbal arguments of the River Continuum327

Concept – a milestone that has been shaping the scientific thinking in freshwater ecology over the328

last four decades (Vannote et al., 1980; Doretto et al., 2020) – within a meta-ecosystem model, we329

showed that spatial distributions and regional biomasses of major functional groups observed in330

stream communities are jointly shaped by the dendritic structure and scaling attributes of river331

networks as well as specific rates of resource flows. Neglecting any of these aspects in modelling332

riverine meta-ecosystems would result in very different community patterns. More generally, we333

showed that spatially explicit meta-ecosystem models allow understanding the interactive effects334

of landscape structure and resource spatial dynamics on the composition of local communities.335

Model predictions did not reproduce the spatial distribution of functional groups observed336

in stream communities when only local ecosystem dynamics were implemented (i.e., the “no337

flow” scenario), which highlights the central role exerted by hydrological transport of resources in338

riverine ecosystems. Furthermore, the spatial distributions of functional groups were obtained339

without making specific assumptions on the spatial distribution of terrestrial resources (e.g.,340

forests being more abundant at higher or intermediate elevation). For instance, in our model341

the spatial variation of CPOM concentration only results from the scaling of river width and342

water volume with drainage area in the absence of shredders, while it is modulated by shredders’343

assimilation and downstream transportation rates when shredders are present. Hence, we found344

that dendritic connectivity, hydrology-mediated resource flow and scaling of physical variables345

along a river network are sufficient to explain the widely observed community patterns postulated346

by the RCC. Moreover, a sensitivity analysis showed that the overall shape of these patterns is347

independent of the predator feedback and top-heaviness levels implemented in the food-web (see348

Supporting Information). Note that our work focuses on the spatial variations of functional group349

densities, not on the comparison of densities between functional groups in a given river reach,350

which would require a precise estimation of group-specific food-web parameters from empirical351

data, which is beyond the scope of our work.352

We showed how the spatial distribution of functional groups crucially depends on the ratio353

13



between the feeding rate of each group and the rate at which their resources are transported across354

the river network. In particular, shredders are adapted to feed on CPOM, which is a slow-flowing355

resource. During their feeding activity, shredders produce FPOM, which is the resource on which356

collectors feed. We showed that, when the transport of CPOM is accelerated, which could be357

for instance due to the anthropogenic elimination of low-current areas or regularization of the358

river bed, populations of shredders are heavily depleted and this, in turn, leads to the extinction359

of collectors across the whole river network via a massive decrease in FPOM concentration.360

Note that, in nature, part of the in-stream FPOM is likely to enter the river network directly361

from the terrestrial environment (through soil erosion for instance). In this case, the resulting362

pattern of collectors would appear as a combination of the patterns of collectors and filter feeders.363

Overall, these results support the use of metacommunity and meta-ecosystem theory for ecosystem364

management and restoration, as suggested by Harvey et al. (2017b), by outlining the negative365

effect of high rates of resource transportation in river networks on several functional groups366

of macroinvertebrates. The meta-ecosystem approach also formalizes the relationship between367

the size of the particles constituting a given resource and the rate at which it is transported via368

hydrological flow. This relationship is based on general physical laws and could be applied to369

other types of resources and other freshwater organisms, such as fishes or microbes.370

Our meta-ecosystem model for river networks depends on a number of technical assumptions371

inherited from the RCC. First, the model does not include the dispersal of living organisms, hence372

making the implicit assumptions that the time scale of resource transport (which is controlled373

by water velocity) is much shorter than that of organismal movement across reaches, and that374

dispersal is unbiased, with mean distances travelled that are much smaller than the extent of375

the river network. In particular, these assumptions allowed us to highlight the crucial effect of376

resource flows on the spatial patterns of riverine communities. All these hypotheses are reasonable377

first approximations, yet we acknowledge that more complex dispersal dynamics can have an378

important role in shaping riverine metacommunities (Altermatt, 2013; Lowe and McPeek, 2014;379

Tonkin et al., 2018) and that other freshwater organisms, such as fish, can constitute important380

flows of energy and nutrients, both within a river network (e.g., stream-resident fishes) and across381
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ecosystems (e.g., potamodromous or diadromous fishes).382

Second, the RCC is inspired from natural, temperate-climate rivers and the predictions of the383

model thus apply to natural river networks that are not subject to disconnections between river384

reaches due to physical barriers (e.g., dams and reservoirs) or major drying events. However, a385

significant fraction of river networks worldwide are fragmented (Grill et al., 2019; Belletti et al.,386

2020) and/or experience flow intermittence (Allen et al., 2020; Messager et al., 2021), which is387

likely to disrupt the longitudinal transport of resources through the network. The effect of network388

fragmentation on the predictions of the RCC will depend on the location of the physical barriers389

or dry streams; in this respect, the use of a physically-based river landscape model as done here390

would enable an adequate assessment of the effects of physical barriers (González-Ferreras et al.,391

2019) and expansions/contractions of the river network (Giezendanner et al., 2021) on stream392

communities.393

Recent studies outlined the need for meta-ecosystem ecology to move from a very simplified394

and abstract representation of ecosystems to a more realistic one (Gounand et al., 2018a; Guichard,395

2019). Previous theoretical studies on meta-ecosystems demonstrated that high rates of resource396

flow destabilize simple producer-consumer dynamics (Marleau et al., 2014). However, most studies397

on meta-ecosystem dynamics have focused on the effect of recycling or organism movement on398

ecosystem stability and productivity in small spatial networks. Here, we demonstrated that399

meta-ecosystem dynamics and community composition are strongly influenced by the nonrandom400

structure of real-world landscapes. Indeed, the spatial variation of functional groups observed401

in river systems only emerged from the dendritic structure and scaling of physical variables402

characteristic of river networks, while none of the alternative landscapes neglecting either of these403

aspects yielded correct predictions.404

While our meta-ecosystem model was designed for river networks, the general approach405

proposed can be adapted to other ecological systems where meta-ecosystems dynamics are406

important structuring processes, such as marine shorelines, coral reef systems or estuaries (Menge407

et al., 2015; Spiecker et al., 2016; Gounand et al., 2018a). The application of meta-ecosystem theory408

to real-world landscapes crucially depends on an informed knowledge of the specific physical409
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attributes of a landscape that constrain the direction and rates of resource flows among localities410

(Polis et al., 2004). Hence, the development of theoretical models, such as the one described in411

the present study, further outlines the need for empirical quantifications of cross-ecosystem flows412

of resources (e.g. Gounand et al. (2018b)). Such empirical effort is central for fostering future413

developments of spatially explicit meta-ecosystem approaches and predicting the large-scale414

effects of human-induced changes in meta-ecosystem dynamics on biodiversity and ecosystem415

functioning.416
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Figure 1: Conceptual illustration of the meta-ecosystem model for river networks. A local stream
community (grey box) is composed of a primary producer P and five functional groups of
consumers (predators R, grazers G, shredders S, collectors C, and filter feeders F). The black
arrows illustrate the feeding links between consumers and resources (blue box). The resources
available for a given local community originate both from local terrestrial inputs (yellow ellipse
on the left) and from the ecosystems situated upstream via hydrological transport (blue arrow).
Dissolved nutrients (N) and light are the basal resources for primary producers P, while coarse
(CPOM), fine (FPOM) and ultra-fine (UPOM) particulate organic matter are the basal resources
for S, C and F, respectively. Predators can feed on all primary consumers, that is G, S, C and F.
By feeding on CPOM, shredders produce FPOM that constitutes the main resource for collectors.
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Figure 2: a) The dendritic river network used in the model simulation, spanning a square of
area 5625 km2. The river network is partitioned into 3688 reaches. Three example reaches are
highlighted in black, and their corresponding drainage areas (i.e., the portion of land over which
water drains into a given reach) are shown in orange; a zoom-in for the smallest of these reaches
is provided at the bottom-right corner. b) Distribution of drainage area values across the 3688
reaches constituting the river network, ranging from 1 to 5625 km2 (grouped into 16 bins). Orange
solid lines display the drainage area values corresponding to the three orange areas illustrated in
panel a. c–e) Variation of physical attributes of the river network variables along a gradient of
drainage area: c) water volume increases with drainage area, d) concentration of terrestrial inputs
decreases with drainage area, and e) light availability is maximum for intermediate values of
drainage area (around 100 km2). In panels c–e, solid lines represent median values calculated over
reaches corresponding to each bin of panel b, while shaded areas correspond to the 2.5th–97.5th

percentile intervals evaluated across the bins of panel b.
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Figure 3: Spatial distributions of functional groups emerging from the meta-ecosystem model.
a–d) Map representations of the distributions of the four main functional groups discussed in
the RCC. e–g) Variation in density of functional group densities over drainage area. Solid lines
represent median values calculated over reaches corresponding to each bin of Fig. 2b, while
shaded areas correspond to the 2.5th–97.5th percentile intervals evaluated across the bins of Fig. 2b.
The numbers within boxes correspond to the regional biomasses of the respective functional
groups (total biomass density across the whole river catchment). Note that trends in panel f
correspond to the patterns shown in panels a–d.
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Figure 4: Effect of network structure on the spatial distribution and regional biomass of functional
groups in stream communities. Comparison between the spatial distribution of functional groups
in a dendritic river network where river width and depth scale with drainage area (black, same
as in Fig. 3) and three alternative landscapes (linear without scaling, orange; linear with scaling,
violet; network without scaling, green). Solid lines represent median values calculated over
reaches corresponding to each bin of Fig. 2b, while shaded areas correspond to the 2.5th–97.5th

percentile intervals evaluated across the bins of Fig. 2b. The numbers within boxes correspond to
the regional biomasses of the respective groups; percentage values within the boxes indicate the
variation in total biomass relative to the default simulation. Corresponding resource patterns are
shown in Fig. S3.

25



10-7

10-6

D
en

si
ty

 [m
-3
]

Predators

0.36
0.56 (154.5%)

default
no resource flow

Producers

38.0
40.6 (106.7%)

10-8

10-9

D
en

si
ty

 [m
-3
]

10-7

10-6

10-5

10-4

Drainage area [m2]
106 108 1010

Drainage area [m2] Drainage area [m2]

a b c

d e f

Scenario:

Filter feeders

8.2
15.5 (189.1%)

10-4

10-5

10-6

10-7

10-8

Collectors

11.7
24.6 (209.9%)

10-4

10-5

10-6

10-7

10-8

107 109 106 108 1010107 109 106 108 1010107 109

Shredders

8.58
7.77 (90.6%)

10-7

10-6

10-8

10-5

10-4
Grazers

9.03
9.46 (104.8%)

10-7

10-6

10-5

10-4

10-8

Figure 5: Effect of hydrological transport of resources on the spatial distribution and regional
biomass of functional groups in stream communities. Comparison between the spatial distributions
of functional groups with (black, same as in Fig. 3) and without (purple) hydrological transport
of resources in the river network. Solid lines represent median values calculated over reaches
corresponding to each bin of Fig. 2b, while shaded areas correspond to the 2.5th–97.5th percentile
intervals evaluated across the bins of Fig. 2b. The numbers within boxes correspond to the regional
biomasses of the respective groups; percentage values within the boxes indicate the variation in
total biomass relative to the default simulation. The corresponding resource patterns are shown in
Fig. S4.
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Figure 6: Effect of high rates of hydrological transport of resources on the spatial distribution and
regional biomass of functional groups. Comparison between the spatial distributions of functional
groups for the default scenario (black, same as in Fig. 3), and the scenario with high rates of
hydrological transport for all resources (blue). Solid lines represent median values calculated over
reaches corresponding to each bin of Fig. 2b, while shaded areas correspond to the 2.5th–97.5th

percentile intervals evaluated across the bins of Fig. 2b. The numbers within boxes correspond to
the regional biomass of the respective groups; percentage values within the boxes indicate the
variation in total biomass for the relative resource as compared with the default simulation. The
corresponding resource patterns are shown in Fig. S5.
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