
1. Introduction
Authigenic chromium (Cr) enrichments and Cr stable isotope (δ 53Cr) composition in sedimentary deposits 
are widely used to trace redox conditions throughout Earth's history (Frei et al., 2009; Planavsky et al., 2014; 
Reinhard et al., 2013; Wei et al., 2020). These applications, which interpret high δ 53Cr to signal elevated oxida-
tive weathering of the continents, are based on the redox control of Cr solubility and stable isotope fractionation 
in aqueous environments. Reduced Cr (Cr(III)) is particle reactive and can be readily removed from the water 
column (Richard & Bourg, 1991), while oxidized Cr(VI) is soluble, with isotope fractionation resulting in enrich-
ments of isotopically light Cr in Cr(III) (Ellis et al., 2002; Wanner & Sonnenthal, 2013). As a consequence of 
Cr reduction and removal, natural systems with strong O2 deficiency are associated with dissolved Cr deple-
tions as well as elevated dissolved δ 53Cr (Huang et al., 2021; Moos et al., 2020; Murray et al., 1983; Nasemann 
et al., 2020; Rue et al., 1997).

Paleo-reconstructions using sedimentary δ 53Cr records apply the assumption that Cr is efficiently sequestered 
into sediment phases under reducing conditions (anoxia or euxinia). Thus, complete (i.e., quantitative) Cr redox 
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conversion prevents isotopic fractionation, resulting in sediment-hosted authigenic δ 53Cr equivalent to the over-
lying water column (Frei et al., 2009, 2020; Reinhard et al., 2013, 2014; Wei et al., 2020). However, the few 
studies of euxinic waters so far indicate the opposite, that is, enrichment rather than removal of dissolved Cr(III) 
(Achterberg et al., 1997; Davidson et al., 2020; Emerson et al., 1979), and no data from co-localized euxinic 
waters and sediments are available. Due to the lack of data on Cr partitioning across redox interfaces and into 
underlying sediments, isotopic offsets resulting from partial (i.e., non-quantitative) Cr(VI) reduction during 
removal to sediments have been neglected in δ 53Cr paleoproxy interpretations.

Redox-stratified basins are valuable settings to build the geochemical understandings necessary for develop-
ing and interpreting paleoproxies for the early stratified oceans. One such system, the meromictic alpine Lake 
Cadagno (Switzerland) (Figures 1a and 1b), has been used extensively as an analog for the Phanerozoic and 
Proterozoic oceans (Canfield et al., 2010; Dahl et al., 2010; Ellwood et al., 2019; Xiong et al., 2019) due to 
the intermediate sulfate levels and sulfidic bottom waters supporting anoxygenic phototrophs in the chemocline 
(Tonolla et  al.,  2003). To mechanistically constrain Cr cycling across redox gradients and incorporate these 
into the Cr-based paleoproxy framework, we present [Cr] and δ 53Cr in the water column (total dissolved) and 
sediments (near-total digests and leachates), along with sinking particulates. These observations question funda-
mental assumptions inherent to the δ 53Cr paleoproxy applications and will help to inform future δ 53Cr-based 
paleo-reconstructions.

2. Study Area and Methods
2.1. Study Area

Lake Cadagno, at 1921 m elevation, is a 21  m deep meromictic alpine lake in Switzerland characterized by 
a permanent chemocline near 13  m depth. The initially oxic lake formed ∼13,500 YBP.  A transition phase 
persisted between 10,00 and 9,000 YBP, followed by euxinic monimolimnion conditions, which have been 
generally stable until present (Berg et al., 2022). The lake's distinct geochemistry and microbial communities 
have been well-characterized. Waters below the chemocline are fed by groundwater input from a karstic system 
composed of dolomite and gypsum, and are therefore rich in Ca 2+, Mg 2+, SO4 2− and HCO3 − relative to overlying 
waters (Del Don et al., 2001, Figure 1). In anoxic deep waters, dissolved concentrations reach 10 2 μmol kg −1 
sulfide, ∼3.5 mmol kg −1 sulfate, and ∼1 μmol kg −1 Fe (e.g., Ellwood et al., 2019, see supplement). High densi-
ties of anoxygenic photoautotrophic green and purple sulfur bacteria are found at the chemocline in summer 
(Tonolla et al., 2003). These bacteria exert control on geochemical gradients in this zone (e.g., S, Fe; Del Don 
et al., 2001; Berg et al., 2016) and can form a 0.3–1.2 m thick mixed layer through bioconvection during summer 
(Sepúlveda Steiner et al., 2019, 2021; Sommer et al., 2017).

2.2. Sampling, Sample Purification and Analysis

Dissolved Lake Cadagno water samples were collected on 28–29 August 2017 from a floating platform at the 
deepest part of the lake. Sediment traps were deployed on 10 July 2017 and recovered on 6 September 2017. 
Sediments were sampled in summer 2019 and summer 2020 (Berg et al., 2022), freeze dried, and hand milled 
with an agate mortar and pestle. Baltic Sea samples were collected in the central Landsort Deep (site LD1; 435 m 
water depth, Häusler et al., 2018) onboard RV Poseidon (POS507, 29 October 2016).

Water column sampling and spiking (with a  50Cr- 54Cr double spike) followed standard procedures, and are 
discussed in Section S.1 in Supporting Information S1. Samples were processed through three stages of column 
chromatography: (i) Fe removal using AG1-X8 resin in 6.4 M HCl (Scheiderich et al., 2015), followed by (ii) 
anion and (iii) cation chromatography as described elsewhere (Janssen et al., 2020; Nasemann et al., 2020; Rickli 
et al., 2019). Sediment near-total digests were prepared using inverse aqua regia with H2O2. Authigenic sedi-
ment phases (primarily organic matter, potentially also sulfides, Figure 2a) were targeted with a 30% v/v H2O2 
leach at pH = 2 following Rauret et al. (1999) (see Section S.1 in Supporting Information S1). Leach and digest 
subsam ples were spiked with a  50Cr- 54Cr double spike, dried and processed through steps (i) and (iii). Reagents 
were either sub-boiling distilled (acids) or Romil UpA and Fisher Optima grade (H2O2). Ancillary data are 
described in the supplement.
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Sediment trap fluxes are calculated with and without corrections for lithogenic contributions (Figures 1 and 2, 
Table  1). Uncertainties on corrected data (pCrAuth) follow standard error propagation using lithogenic Cr/Al 
(Rudnick & Gao, 2014) and δ 53Cr = −0.12 ± 0.1 ‰ (Schoenberg et al., 2008). Such corrections, which rely 
on normalizations to major crustal elements considered minimally mobile (e.g., Al), are complicated by the 
authigenic components of these elements in Lake Cadagno (Figures S6 and S7 in Supporting Information S1). 
Therefore, these corrections underestimate pCrAuth and overestimate δ 53CrAuth, with true authigenic values lying 
between the corrected and uncorrected data (See Section S.5 in Supporting Information S1). Detrital corrections 

Figure 1. Water column data. (a): [O2], [Ca] and [Mg]. (b): map showing the location of Lake Cadagno. (c): dissolved [Cr], [Fe] and [Mn]. (d): dissolved and sediment 
trap δ 53Cr (uncorrected and corrected for detrital chromium (Cr), see Section S.5 in Supporting Information S1). (e): Sediment trap Cr, Fe and Mn fluxes (note different 
depth range). The orange box in (a and c–e) indicates the chemocline. The gray box in (d) indicates average detrital δ 53Cr (Schoenberg et al., 2008).
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were not applied to sediment leach data as chemical leaches were more gentle than sediment trap digests (See 
Section S.1.2 in Supporting Information  S1) enhancing the impact of authigenic phases of the normalizing 
element and exacerbating artifacts from improper corrections (Figures S6 and S7 in Supporting Information S1).

Purified δ 53Cr samples were dissolved in 0.7–1 mL 0.5 M HNO3 and analyzed with a Neptune Plus MC-ICP-MS 
(ThermoFisher) (Rickli et al., 2019). Internal sample uncertainty (2 SEM) and session reproducibility from NIST 
standards (n ≈ 10, 2 SD) is typically around 0.02–0.03 ‰. External uncertainty has previously been estimated 
at ±0.033 ‰ for full sample replicates (Janssen et al., 2020). Pure standard reference materials (Merck Cr(III) 

Figure 2. Near-surface sediment data. (a): bulk sediment parameters (TOC, TS). (b): near-total digest (CrBulk) and leach 
(CrAuth) concentrations, and CrAuth as % CrBulk. (c): δ 53CrBulk and δ 53CrAuth with average surface and deep water dissolved δ 53Cr 
and sediment trap δ 53Cr (total and detrital-corrected), along with average detrital δ 53Cr (gray box).

Depth pCr pCrAuth

Downward fluxes m ng Cr ng Cr m −2 day −1 δ 53Cr 2SEM ng Cr
ng Cr 

m −2 day −1 δ 53Cr 2SEM

Sediment Trap 10 3.2 × 10 3 4.2 × 10 3 −0.07 0.03 1.8 × 10 3 2.4 × 10 3 −0.03 0.09

Sediment Trap 14 7.0 × 10 3 9.2 × 10 3 −0.05 0.03 5.1 × 10 3 6.7 × 10 3 −0.02 0.05

Sediment Trap 20 5.4 × 10 3 7.2 × 10 3 −0.02 0.03 2.8 × 10 3 3.6 × 10 3 0.09 0.11

Euxinic zone [Cr] Chemocline base [Cr] Δ[Cr] ΔZ K Flux Flux

Upward Fluxes nmol kg⁻ 1 nmol kg⁻ 1 nmol cm⁻³ cm cm 2 s ‒1 nmol cm⁻ 2 s⁻ 1 ng m⁻ 2 d⁻ 1

Turbulent Diffusion 0.67 0.47 0.0002 150 1.1 × 10 ‒1 1.4 × 10 −7 6.4 × 10 3

Molecular Diffusion 0.67 0.47 0.0002 150 3.4 × 10 ‒6 4.6 × 10 −12 2.7 × 10 −1

Sediment Acc. Rate 1 Wet Sed. Density (ρ) Porosity (β) CrAuth FBurial FBurial FBurial

Cr burial mm yr −1 g cm −3 g H2O g wet sed. −1 ppm nmol cm ‒2 y ‒1 ng cm −2 y −1 ng m −2 d −1

Authigenic Cr Burial 4–6 2.30 0.33 8 0.9–1.4 49–74 1.3–2.0 × 10 3

Note. Fluxes to and from the chemocline are in bold. Sediment trap data include both total (pCr) and detrital-corrected (pCrAuth) fluxes (See Section S.5 in Supporting 
Information S1). Upward turbulent diffusive fluxes of dissolved [Cr] are based on [Cr] gradients from the chemocline to 1.5 m below the chemocline.  1Birch et al., 1996. 
See Section S.3.3 in Supporting Information S1 for further details on authigenic burial estimates.

Table 1 
Sediment Trap, Diffusive and Burial Fluxes
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standard, this study: δ 53Cr = −0.45 ± 0.03 ‰, n = 10; δ 53Cr = −0.44 ± 0.02 ‰, Schoenberg et al., 2008) and 
USGS reference materials (Table S3 in Supporting Information S1) agree with published values.

3. Lake Cadagno Results and Discussion
3.1. Water Column

Dissolved [Cr] is stable in the surface mixed layer ([Cr] = 0.5 nmol kg −1, Figure 1c). A broad [Cr] minimum is 
found at 8–11 m depth, above the chemocline (∼12–13 m in summer 2017, Figure S1 in Supporting Informa-
tion S1; Sepúlveda Steiner et al., 2021). Particulate Fe and Mn oxides form within and above the chemocline in 
Lake Cadagno, driven by upward transport of dissolved Fe(II)—a known Cr reductant (Richard & Bourg, 1991; 
Wanner & Sonnenthal, 2013)—and Mn(II) from the anoxic zone (Ellwood et al., 2019). As these oxides sink 
below the chemocline, they are reductively dissolved within the anoxic zone, and particulate Fe sulfides are 
formed (Ellwood et al., 2019). The [Cr] minimum lies within the most stratified portion of the water column 
(Figure S2 in Supporting Information S1) and corresponds to depths with enhanced formation and sinking of Fe 
and Mn oxides (see figure 5 in Ellwood et al., 2019). Therefore the [Cr] minimum is mechanistically consistent 
with Cr reduction coupled to Fe oxidation followed by Cr scavenging onto metal oxides.

Chromium concentrations begin increasing just above the chemocline, exceeding surface concentrations imme-
diately below the chemocline. Dissolved [Fe] and [Mn] also increase over this range, with the [Cr] increase more 
closely mirroring [Fe] (Figure 1c). Matching [Cr], δ 53Cr is stable in the surface mixed layer (δ 53Cr = +0.86 
‰) (Figure 1d), with the isotopically heavy dissolved Cr signal likely reflecting surface water input to the lake, 
consistent with expectations from oxidative terrestrial weathering and global observations of riverine δ 53Cr (Wei 
et  al.,  2020). δ 53Cr decreases with depth, indicating the accumulation of isotopically light Cr in deep waters 
following Cr release during metal oxide reduction.

Sinking fluxes of authigenic particulate Cr (pCrAuth) increase near the chemocline, with maximum fluxes 
observed in the 14 m trap. Exported pCr is isotopically lighter than dissolved Cr, with Δ 53Crpatriculate-dissolved ≈ −0. 
6 ± 0.1 ‰ near the chemocline. This is comparable to net fractionations observed in other natural systems, but 
is much lower than theoretical values observed in lab studies (e.g., Wanner & Sonnenthal, 2013), which likely 
reflects incomplete removal of reduced Cr resulting in lower apparent fractionation factors for Cr reduction and 
removal (Huang et al., 2021; Nasemann et al., 2020; Wang, 2021). Isotopically, pCrAuth is indistinguishable from 
the lithogenic background (δ 53Cr = −0.12 ± 0.10 ‰, Schoenberg et al., 2008). Export fluxes of pCrAuth and pMn 
decrease with depth in the euxinic zone (Figures 1e and Table 1; Table S2 in Supporting Information S1), while 
pFe species shift from oxide-dominated above the chemocline to sulfides below (Berg et  al.,  2022; Ellwood 
et al., 2019), suggesting an Fe-Mn-oxyhydroxide shuttle and resulting in much of the Cr exported across the 
chemocline being released before the deepest sediment trap (20 m). The behavior of pCr is thus consistent with 
dissolved data indicating Cr release and accumulation in the euxinic zone following reduction of Fe and Mn 
oxides. Despite depth-dependent variability in pCrAuth, exported δ 53Cr is uniform within analytical uncertainty, 
indicating no fractionation during Cr release.

Deep layers of euxinic water bodies are assumed to remain quiescent given the strong stratification, and there-
fore the vertical gradient of [Cr] should be smoothed by an upward molecular diffusive flux. However, the 
pCrAuth export (∼6.7 𝐴𝐴 × 10 3 ng Cr m −2 day −1) is orders of magnitude larger than the molecular flux of dissolved 
Cr (Table 1, Section S.3 in Supporting Information S1) while the observed [Cr] depletion is subtle. Despite the 
apparent quiescence of the deep interiors of lakes, various physical processes maintain a moderate and intermit-
tent energetic structure (Saggio & Imberger, 2001), including in Lake Cadagno (Wüest, 1994). Here our concur-
rent microstructure observations indicate that vertical fluxes are sustained by turbulent diffusivity (Koc, Osborn & 
Cox, 1972), with a mean Koc in the layer of interest of 10 −1 cm 2 s⁻ 1 (Figure S2 in Supporting Information S1; four 
orders of magnitude larger than molecular diffusivity). This results in upward turbulent flux estimates compa-
rable to sinking pCr fluxes, while the authigenic burial flux is comparatively smaller (∼25% of turbulent and 
particulate fluxes, Table 1). The background turbulence thereby explains Cr profiles and, particularly, the lack 
of a pronounced [Cr] minimum and local δ 53Cr maximum above the chemocline, due to the substantial upward 
turbulent transport of isotopically light Cr. The result is similar to “cryptic” cycles, where rapid and localized 
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redox cycling masks the expected biogeochemical signals (e.g., Berg et al., 2016), though rather as a larger-scale 
physical-geochemical transport cycle.

Observed deep water [Cr] enrichments likely reflect the integrated accumulation of Cr released from sinking 
particles and near-surface sediments as well as the potential contribution from groundwater (Del Don et al., 2001), 
with concentrations further modified by turbulent mixing. As there is no modification of particulate δ 53Cr with 
depth, released Cr must be of similar isotope composition as the particulates (δ 53Cr ≈ 0 ‰). Therefore, any 
groundwater Cr must be isotopically heavier than 0 ‰ (see Section S.4 in Supporting Information S1). However, 
while subaquatic springs likely influence specific aspects of Lake Cadagno deep water [Cr] and δ 53Cr, other 
euxinic basins exhibit similar large-scale [Cr] and δ 53Cr depth-trends (see below). Therefore, a shared set of 
geochemical and physical controls likely shape the common large-scale [Cr] and δ 53Cr trends across diverse 
euxinic basins.

3.2. Sediments

Authigenic Cr (CrAuth) in near-surface sediments is isotopically lighter than deep water, with similar δ 53Cr as sink-
ing particles (Figure 2). We do not observe strong [CrAuth] enrichments relative to [CrBulk], despite stably euxinic 
deep waters and large Cr fluxes from the chemocline, and CrAuth burial fluxes are small relative to chemocline 
particulate fluxes, reflecting significant Cr release from sinking particles (Table 1, Section S.3.3 in Support-
ing Information S1). Sediment Mn and Fe(III) content is low relative to sinking particles (Figure 1, Ellwood 
et al., 2019; Berg et al., 2022), supporting a Fe-Mn-oxyhydroxide shuttle for Cr, with Cr release following oxide 
dissolution. Bulk sediment δ 53Cr (δ 53CrBulk) is indistinguishable from average continental crust (−0.12 ± 0.10 ‰, 
Schoenberg et al., 2008) at all depths. δ 53CrAuth is slightly higher than crustal signatures in the uppermost sedi-
ments; however, δ 53CrAuth decreases with sediment depth and is indistinguishable from this inventory below 5 cm. 
δ 53CrBulk and δ 53CrAuth converge in the upper 10 cm of the sediment, suggesting modification of δ 53Cr through 
early diagenesis (sedimentation rates ∼4–6 mm yr −1, Birch et al., 1996), similar to reports of Cr homogenization 
in black shales (Frank, et al., 2020).

While surface sediment δ 53CrAuth equals sinking particulate δ 53Cr, non-quantitative water column Cr removal 
results in isotope fractionation and an offset between sediments and dissolved δ 53Cr. This fractionation, along 
with potential early diagenetic modification, leads coincidentally to a δ 53CrAuth equivalent to detrital reservoirs 
(Figure 2). δ 53CrAuth is approximately 0.6 ‰ lower than dissolved δ 53Cr in Lake Cadagno at the [Cr] minimum; 
however, variable dissolved δ 53Cr results in inconsistent offsets between δ 53CrAuth and surface, deep and chemo-
cline dissolved δ 53Cr. [CrBulk] and δ 53CrBulk in sapropel samples, obtained from a sediment core spanning the 
last ∼12 ka (Berg et al., 2022) remain relatively stable with depth. δ 53CrBulk is indistinguishable from lithogenic 
background and δ 53CrAuth is indistinguishable from or only slightly heavier than lithogenic background (Figure 
S5 in Supporting Information S1). Thus, despite deposition in an anoxic basin below an oxidizing atmosphere, 
sediment δ 53CrBulk and δ 53CrAuth provide no isotopically heavy Cr record (reflecting oxidative weathering and 
high dissolved δ 53Cr). These data imply that in other redox-stratified settings, an isotopically heavy dissolved 
δ 53Cr pool does not necessarily result in isotopically heavy δ 53CrAuth or δ 53CrBulk records, and that constraints on 
water column fractionation are needed to reconstruct dissolved δ 53Cr of overlying waters and oxidative weather-
ing processes from sedimentary δ 53Cr records.

4. Synthesis of Redox-Stratified Systems
δ 53Cr has received significant attention as a paleoproxy for O2 availability, especially in the Proterozoic. While 
Lake Cadagno is a promising analogue for biogeochemical cycling in the Proterozoic ocean, it remains a small 
Alpine lake with unique physical and biogeochemical cycling. To assess the relevance of these data to other 
modern redox-stratified systems and to oceanic systems throughout geologic time, we compiled new dissolved 
[Cr] and δ 53Cr data from the weakly euxinic Landsort Deep site in the Baltic Sea (Häusler et al., 2018), together 
with published [Cr] data from other redox-stratified basins (Figure 3).

In the Landsort Deep, Cr is removed near the chemocline (Figure 3b, Table S7 in Supporting Information S1), 
coincident with a maximum in particulate Fe and Mn oxides. High dissolved [Cr] and low δ 53Cr are found in 
underlying waters where dissolved [Fe] and [Mn] reach μM levels, indicating an accumulation of isotopically 
light Cr in euxinic waters as in Lake Cadagno. These data support isotope fractionation during non-quantitative 
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Cr reduction and removal via scavenging onto metal oxides slightly above the chemocline, with Cr release follow-
ing oxide reduction in euxinic waters and/or surface sediments.

Data from other redox-stratified basins are similar, despite wide ranges in dissolved H2S (10°–10 2 μmol kg −1) 
and Fe (10 −2–10 2 μmol kg −1) concentrations and Fe/H2S (10 −4–10 3) (Table S9 in Supporting Information S1). 
This includes Lake Cadagno and the Landsort Deep, Saanich Inlet (Emerson et al., 1979, BC Canada, see also 
Davidson et al., 2020), the Black Sea (Mugo, 1997), Esthwaite Water (UK, Achterberg et al., 1997) and Hall Lake 
(Wa USA; Balistrieri et al., 1994) (Figures 3a–3e). These can be more directly compared by normalizing profiles 
to [Cr]surface and relative depth above and below the chemocline, creating four quadrants: (I) [Cr] < [Cr]surface in 
oxic waters, (II) [Cr] > [Cr]surface in oxic waters, (III) [Cr] < [Cr]surface in anoxic waters, and (IV) [Cr] > [Cr]
surface in anoxic waters (Figure  3e). All environments lie within (I) slightly above the chemocline, indicating 
non-quantitative Cr removal. Anoxic deep waters fall into quadrant (IV) in most settings, indicating Cr accumu-
lation rather than removal. Basins with only seasonal anoxia (Saanich Inlet, Esthwaite Water) differ, showing a 

Figure 3. Compilation of anoxic basin data with conceptual mechanistic diagram. Chromium, Fe (orange) and Mn (red) concentrations in the dissolved (open circles, 
dFe and dMn) and particulate (filled circles, pFe and pMn) phases from Lake Cadagno ((a), black, this study, pFe and pMn: Ellwood et al., 2019), Landsort Deep ((b), 
dark gray, this study), the Black Sea ((c), blue, Cr: Mugo, 1997, Fe and Mn: Lewis & Landing, 1991), and Saanich Inlet ((d), Emerson et al., 1979, light gray, only 
dissolved data). (e) combines (a–d) with Esthwaite Water (green, Achterberg et al., 1997) and Hall Lake (white, Balistrieri et al., 1994). In (a)–(f), the y-axis ranges 
from the surface to sediments, with the chemocline at the center. In (a–e), [Cr] is normalized to surface concentrations. The orange shading in (a–d) indicates the 
zone of enhanced Fe and Mn redox cycling above the chemocline. (f–g) show a schematic of metal cycling in this zone, using Landsort Deep data (f) (see Table S8 in 
Supporting Information S1).
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slight increase in [Cr]Normalized just above the chemocline but remaining in zone (III) at depth. This may indicate 
insufficient time to allow Cr accumulation through the Fe-Mn shuttle, due to their only seasonally anoxic nature.

This compilation from diverse permanently and seasonally anoxic systems confirms the general trends observed 
in Lake Cadagno—(i) non-quantitative Cr removal above the chemocline (∼20–60% of [Cr]surface), suggesting 
isotope fractionation and the transport of low δ 53Cr to anoxic waters, and (ii) Cr accumulation in anoxic deep 
waters indicating poor sequestration of Cr into sediments. Therefore, reconstructions of water column or weath-
ering δ 53Cr signals from sediments deposited in these environments require accounting for fractionation during 
Cr removal as well as internal cycling resulting in variable water column δ 53Cr.

Chromium depletions consistently occur above the chemocline, coincident with elevated dissolved and particulate 
[Fe] and [Mn] (orange box in Figures 3a–3d). The sharpness of the Cr depletion above and subsequent increase 
below the chemocline can be explained by natural variability in the systems (see also Dellwig et  al.,  2012), 
including absolute depth ranges (10–10 3 m), the relative width of the Fe-Mn redox zone (orange box height, 
Figures 3a–3d) and upward diffusive transport. Shallower systems (e.g., Hall and Cadagno Lakes), thicker Fe-Mn 
redox zones, and elevated diffusivity correspond with broader Cr minima and more gradual Cr increases below 
the chemocline.

In agreement with previous studies (e.g., Balistrieri et al., 1994; Mugo, 1997), the consistent Cr minimum in the 
zone of intense Fe-Mn redox cycling supports the widespread control of these metals on Cr removal in anoxic 
systems, whereby Cr reduction coupled to Fe oxidation and subsequent Cr(III) scavenging on particulate metal 
oxides drives Cr removal (Figures 3f and 3g), followed by oxide reduction and Cr release in the anoxic zone or 
near the sediment surface. The broadly similar Cr trends across these diverse freshwater and marine systems 
indicates that our data from Cadagno are generally relevant to other systems and can be used to revise the inter-
pretational framework of δ 53Cr paleoproxy applications. Specifically, these data indicate that:

1.  Cr is partially removed above the chemocline, but is not efficiently removed from the water column in anoxic 
systems, both at and below the chemocline

2.  Dissolved Cr generally accumulates in anoxic deep water
3.  Sediments from redox-stratified basins may not always show high [CrAuth] enrichments
4.  Reconstructing water column δ 53Cr from δ 53CrAuth within these settings requires accounting for variable water 

column δ 53Cr, fractionation during Cr removal and early diagenesis
5.  δ 53CrAuth within these settings may therefore not directly reflect Cr fractionation originating from oxidative 

subaerial weathering

5. Conclusions and Implications
Available data across a range of redox-stratified marine and lacustrine settings share fundamental features—
namely, local [Cr] minima with non-quantitative Cr removal slightly above the chemocline, and increasing [Cr] 
below—with permanently anoxic basins showing deep water dissolved Cr accumulation rather than efficient 
removal. Given the isotope fractionation associated with Cr reduction, non-quantitative removal suggests that 
sedimentary authigenic δ 53Cr should not match the water column, contrasting previous assumptions (e.g., Frei 
et al., 2009, 2020; Reinhard et al., 2013, 2014; Wei et al., 2020). Instead, sediment δ 53CrAuth is isotopically offset 
from the water column, a factor that must be considered for paleoreconstructions. Furthermore, variable water 
column δ 53Cr, as well as potential early diagenetic modification of δ 53CrAuth, suggests there is no consistent offset 
between δ 53CrAuth and water column δ 53Cr. Indeed, our Lake Cadagno data show that sinking particulate δ 53Cr 
is isotopically comparable to sediment δ 53CrAuth, while dissolved δ 53Cr decreases from surface waters to euxinic 
deep waters, and therefore dissolved δ 53Cr differs from δ 53CrAuth by variable extents.

Despite a strongly oxidizing atmosphere throughout the entire history of Lake Cadagno, we find no significantly 
fractionated sediment δ 53CrAuth. Evidently, oxidative weathering does not necessarily result in high δ 53CrAuth. To 
the contrary, the relatively small ranges of dissolved δ 53Cr throughout modern systems (surface waters ≈ +0.2 to 
+1.2 ‰, Wei et al., 2020; Horner et al., 2021) coupled with effective fractionation for the reduction and removal 
of Cr (Δ 53Cr ≈ −0.4 to −1.3 ‰; this study; Janssen et al., 2020, 2021; Moos et al., 2020; Nasemann et al., 2020; 
Huang et al., 2021; Wang, 2021) indicate that authigenic sedimentary δ 53Cr records could easily be comparable to 
unfractionated continental crust (δ 53Cr = −0.12 ± 0.10 ‰, Schoenberg et al., 2008). In other words, Cr removal 
from a water column inventory of +0.2 to +1.2 ‰, with a Δ 53Crparticle-dissolved of −0.4 to −1.3 ‰ is expected 
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to yield an authigenic sedimentary δ 53Cr that is, at times, within the range of −0.2 to 0.0 ‰. Consequently, 
caution should be used in the interpretation of δ 53Cr records from redox-stratified basins, which reflect local 
redox-related fractionation processes superimposed on oxidative subaerial weathering signals.

Data Availability Statement
Data are presented in the Supporting Information  S1 and Table  1. Vertical microstructure data for turbulent 
diffusion estimations is available at https://doi.org/10.5281/zenodo.3507638. Chemical and CTD data are also 
available in the following open access datasets in the Zenodo repository: http://doi.org/10.5281/zenodo.7125831 
and http://doi.org/10.5281/zenodo.7127882, respectively.
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