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Abstract
Renewable energy is the key to reducing greenhouse gas emissions, and is one of the most
concerning issues worldwide. China has the largest hydropower potential in the world. Yet, how
China’s hydropower potential will change under 1.5 ◦C and 2.0 ◦C global warming and beyond
remains unknown. Here, we find that China’s hydropower will increase greatly because of global
warming. Gross hydropower potential (GHP) will increase by about one-half compared to the
baseline period (1986–2015) under 1.5 ◦C and 2.0 ◦C warming, and about two-thirds under 4.5 ◦C
warming. The spatial and temporal changes in GHP will vary largely. GHP will increase relatively
more in summer than in winter, and more in Southwest China than in other regions. Compared to
GHP, increases in per-capita GHP will be relatively less under 1.5 ◦C (5%) and 2.0 ◦C (7%)
warming, but of a similar magnitude under 4.5 ◦C warming (71%). This study provides important
information on China’s hydropower potential changes under global warming.

1. Introduction

Adverse impacts of climate change have been
found globally, such as extreme floods/droughts,
heat extremes and wildfires (Alizadeh et al 2020,
Dethier et al 2020, Sherwood 2020, Ball et al 2021,
Gudmundsson et al 2021, Peterson et al 2021). Cli-
mate change impacts on renewable energy (energy
from renewable resources that are naturally replen-
ished) are one of the most concerning issues world-
wide because of its important influence on the reduc-
tion of greenhouse gas emissions (Gernaat et al 2017,
2021, Farinotti et al 2019). Among all the renew-
able energy resources, hydropower is one of the most
important energy resources. Hydropower generates
about 78% of global renewable electricity and largely
depends on water resources that are vulnerable to
climate change (Berga 2016).

Studies on renewable energy changes under the
1.5 ◦C and 2.0 ◦C global warming levels set by
the Paris Agreement have been carried out in sev-
eral regions (Donk et al 2018, Meng et al 2020).

In Europe, Tobin et al (2018) found that global
warming has limited impacts on solar photovoltaic
systems. They reported that wind power potential will
decrease slightly (<5% for 1.5 ◦C and 2.0 ◦C warm-
ing), and that changes in hydropower potential will be
within 10% (1.5 ◦C), 15% (2 ◦C) and 30% (3.0 ◦C).
Several studies have investigated hydropower changes
in river basins in China (Liu et al 2016, Li et al 2020,
Guo et al 2021, Zhang et al 2021). However, how
China’s hydropower will change under the 1.5 ◦C and
2.0 ◦C global warming levels remains unknown.

China has the largest hydropower potential in the
world, accounting for 13.8% of the world total (Hoes
et al 2017), and hydropower electricity accounts for
about 20% of China’s total electricity currently (Feng
et al 2019). China is the most populous country and
is one of the fastest-growing economies on the globe.
With the increasing population and enlarging eco-
nomic volume, the country’s electricity demand will
be boosted dramatically in the future (Duan et al
2021). China has announced that the country’s car-
bon emissions have to peak before 2030 and that
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China has to become carbon neutral before 2060
(Mallapaty 2020). To achieve these ambitious carbon
emission reduction goals, China has to take advant-
age of the large hydropower potential to meet future
electricity demand (Mallapaty 2020), which requires
an understanding of the hydropower variations in the
future.

Here, we investigated the spatial and temporal
changes of China’s hydropower potential under
1.5 ◦C and 2.0 ◦C global warming and beyond for
the first time. We examined seven large rivers/re-
gions (figure 1(a)) where China’s hydropower bases
are located (Feng et al 2019). Examinations of hydro-
power potential changes were performed at both
river-basin and provincial levels. In addition, per-
capita hydropower potential changes were investig-
ated under the Representative Concentration Path-
way (RCP) 2.6—Shared Socio-Economic Pathway
(SSP) 1, RCP6.0—SSP3, and RCP8.5—SSP5 scen-
arios. Our study has important implications for
future hydropower exploration in China.

2. Methodology

2.1. The datasets
Asian Precipitation - Highly-Resolved Observational
Data Integration Towards Evaluation (APHRODITE)
precipitation and air temperature were used for the
historical period (Yatagai et al 2012). Because the
data ended in 2015, data from 1986 to 2015 were
used as the 30 year baseline period. Other meteor-
ological data for the baseline period were from the
China Meteorological Forcing Dataset (CMFD) (He
et al 2020), including air pressure, specific humid-
ity, wind speed, downward shortwave radiation and
downward longwave radiation. Both APHRODITE
and the CMFD are based on China’s precipitation
and meteorological gauge data. Future climate data
were from the Inter-Sectoral ImpactModel Intercom-
parison Project (ISIMIP2b) (Frieler et al 2017). The
bias corrections for ISIMIP2b data were carried out
by the ISIMIP team (www.isimip.org/gettingstarted/
isimip2b-bias-correction/), and we used the correc-
ted data in this study. ISIMIP2b data have been
commonly used in hydrology related studies glob-
ally (e.g. Gernaat et al (2021), Gudmundsson et al
(2021), Woolway et al (2021)). Therefore, we also
used ISIMIP2b in our study. The general circula-
tionmodels (GCMs) in ISIMIP2b are equally import-
ant because no information shows which GCM is
superior to others, and equal weight was assigned to
them when calculating averages of the modeled data
(Gudmundsson et al 2021). All the climate data were
on a daily basis and the GCM data were re-gridded
into 0.1◦ cells to match the spatial resolution of the
baseline period climate data.More information about
the datasets used and the time periods correspond-
ing to different global warming levels can be found in

the supporting information. In this study, the 4.5 ◦C
warming scenario corresponds to RCP8.5, which is
the business-as-usual extreme climate scenario, and
was therefore used here.

2.2. The model simulation
The Water and Energy Budget-based Distributed
Hydrological Model with improved Snow physics for
Global simulation (WEB-DHM-SG) (Qi et al 2022b)
was used in this study to simulate discharge in China.
Schematic descriptions of the WEB-DHM-SG model
are shown in figure S1 in the supporting inform-
ation. The WEB-DHM-SG combines the advant-
ages of WEB-DHM-S (Wang et al 2017) and CaMa-
Flood (Yamazaki et al 2013). The WEB-DHM-S
integrates the simple biosphere scheme (SiB2) land
surface model, a hydrological model based on
geomorphology developed by Yang (1998 and a phys-
ically based snowmelt model (Shrestha et al 2010).
CaMa-Flood is a hydraulic model for large-scale
studies, and can simulate discharge, flood inunda-
tion, water level, etc. The discharge simulation was
performed on a daily scale based on the daily scale cli-
mate data. TheWEB-DHM-SGmodel was calibrated
and validated on a monthly scale, considering that
human activities (such as reservoir operations) have
influenced the daily scale discharge in many regions
in China (Yang et al 2021, Qi et al 2022b). The hydro-
logical gauges used are shown in figure S2 in the
supporting information. Calibrated parameters are
shown in table S1 in the supporting information. The
regions outside the seven large river basins/regions
in figure 1(a) use default model parameters (www.
futurewater.eu/), but this has a minor influence on
our results because all the large hydropower bases
are located within the seven large river basins/re-
gions where the model was calibrated and validated.
The model used is a distributed hydrological model,
and the input climate data are also spatially distrib-
uted. The spatially distributed climate data are used
as the input of the hydrological model to simulate
discharge and hydropower changes. Therefore, the
unevenly distributed warming and the effects on dis-
charge and hydropower potential are considered in
our study. More details about the model calibra-
tion and validation can be found in the supporting
information.

2.3. The gross hydropower potential (GHP)
calculation
The GHP (unit: W) is calculated using equation (1)

GHP= Q · h · g · ρ (1)

whereQ is discharge (m3 s−1); h is the hydraulic head
(m); g is the acceleration of gravity (9.81 m s−2);
and ρ is the density of water (1000 kg m−3). GHP
was simulated based on the daily discharge, and its
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Figure 1.Main river basins and regions (a), gross hydropower potential (GHP) (b), (d), discharge (c) and precipitation
(e) in China under the 1.5 ◦C, 2.0 ◦C and 4.5 ◦C global warming levels. The percentage values in (b) and (c) represent the relative
changes compared to the baseline period. His= baseline period (1986–2015). The error bars represent the standard deviation.

monthly and annual changes were studied. Per-capita
GHP (p-GHP) was calculated as GHP divided by the
number of the population. The p-GHP is an indicator
that considers both the supply and demand sides
(van Ruijven et al 2019), and therefore is investigated

in this study. The MERIT digital elevation model
data were used in the hydraulic head calculation
(Yamazaki et al 2019). More information about GHP
simulation, validation and the population data used
can be found in the supporting information.
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3. Results

3.1. Gross hydropower potential changes in the
whole of China
China’s hydropower potential will increase as a result
of global warming. Under 1.5 ◦C warming, GHP
will increase by about one-half compared to the
baseline period (figure 1(b)). GHP under 2.0 ◦C
warming levels will be slightly higher than that of
the 1.5 ◦C warming scenario. Generally, GHP will
increase steadily under the global warming levels
from 1.5 ◦C to 4.5 ◦C with a 0.5 ◦C step (see
figures S3(a) and (b) in the supporting information).
GHP will be up to 848.7 GW under 4.5 ◦C warm-
ing, which is about two-thirds higher than that in
the baseline period. The increase in GHP is because
of the larger discharges (figure 1(c)). Projected dis-
charges will increase by 26.0%, 24.4% and 34.3%
under 1.5 ◦C, 2.0 ◦C and 4.5 ◦C warming levels,
respectively, which is due to the increases in precip-
itation (figure 1(e)). The disproportional changes in
GHP, discharge and precipitation are due to their
spatial distribution differences and hydraulic head.
The increased GHP equals 1.83, 1.85 and 2.42 giga-
tonnes of CO2 emission reduction per year under
the 1.5 ◦C, 2.0 ◦C and 4.5 ◦C warming levels,
respectively. In 2019, China’s total carbon emis-
sions were 10.17 gigatonnes (https://ourworldindata.
org/co2/country/china). If the increased GHP in the
future warming climate is used to generate electricity,
the CO2 emissions will be reduced by at least 18%.

The seasonal variations of GHP will also change
largely (figure 1(d)). GHP will peak in July under
the global warming scenarios, which differs from that
in the baseline period (i.e. August). The peak GHP
will be 1831.5 GW and 1867.6 GW under 1.5 ◦C
and 2.0 ◦C warming, respectively, which are more
than 50% (56.8% for 1.5 ◦C and 59.8% for 2.0 ◦C)
higher than that in the baseline period (1168.4 GW).
Under 4.5 ◦C warming, the peak GHP (2083.8 GW)
will be more than 75% (78.4%) higher. During the
winter period (mainly in December and January),
GHP increases will be relatively less on average (6.9%
for 1.5 ◦C, 6.4% for 2.0 ◦C and 20.8% for 4.5 ◦C)
compared to other months. GHP increases are the
largest on average in the summer (mainly in June,
July and August): 70.9% (1.5 ◦C), 73.3% (2.0 ◦C) and
98.8% (4.5 ◦C).

3.2. Gross hydropower potential changes in
sub-regions of China
GHP changes vary greatly among rivers/regions in
China. Of the seven river basins/regions, the Yangtze
River has the largest GHP in both the baseline
and future warming periods (figure 2(a)), primar-
ily due to the largest discharge (figure 2(b)) among
all the regions. Under 1.5 ◦C and 2.0 ◦C warming,

GHP in the Yangtze River will increase by about
30% (figure 2(c)) compared to the baseline period
(197.6 GW); under 4.5 ◦C warming, it is expected
to increase by about 40% (figure 2(c)). GHP in the
Yangtze River accounts for about one-third of the
total in China under 1.5 ◦C (33.3%), 2.0 ◦C (32.9%),
and 4.5 ◦C (32.4%) warming periods, and they are
a little lower than its share in the baseline period
(38.9%), which is due to the increase in the total
GHP in the whole of China. The Yarlung Tsangpo
River has the second largest GHP, and the largest
increase among the regions in the future (figure 2(c)).
Under 1.5 ◦C, 2.0 ◦C and 4.5 ◦C warming levels,
GHP in the Yarlung Tsangpo River will increase by
68.7%, 71.7% and 91.2%, respectively, compared to
the baseline period (88.6 GW). GHP in the Yarlung
Tsangpo accounts for about one-fifth of the total in
China under the 1.5 ◦C (19.4%), 2.0 ◦C (19.7%) and
4.5 ◦C (19.8%) warming periods, and they are higher
than its share in the baseline period (17.4%). Among
all the river basins/regions, discharge increases in the
Yarlung Tsangpo River are the highest under 1.5 ◦C,
2.0 ◦C and 4.5 ◦Cwarming levels (figure 2(d)), which
result in the largest increases in GHP.

The total GHP of the Yangtze and the Yarlung
Tsangpo Rivers will account for 52.7% (1.5 ◦C),
52.6% (2.0 ◦C) and 52.1% (4.5 ◦C) of China’s
total, about 4% less than that in the baseline period
(56.3%). The decrease in the share is due to GHP
increases in other rivers/regions. Comparatively, the
discharge in the Pearl River is larger than that in the
Yarlung Tsangpo River, but the elevation drop in the
Pearl River is lower than that in the Yarlung Tsangpo
River (see figure S4 in the supporting information).
Northeast China has the lowest GHP and the least
changes among all the rivers/regions studied due to
the relatively low discharge and hydraulic head.

3.3. Spatial variations of gross hydropower
potential
GHP varies largely in space. The southwest river
source region (including the Yarlung Tsangpo River,
Nu River, Lancang River, and Upper Yangtze River)
has larger GHP than other regions (figure 3(a)),
which is the combined results of hydraulic head
and discharge (figure 4(a)). Under 1.5 ◦C warming
(figure 3(c)), GHP will become larger in the southw-
est river source region, the middle reach of the Yellow
River, the central part of Northeast China, etc. Under
2.0 ◦C (figure 3(d)) and 4.5 ◦C (figure 3(e)) warming
levels, the spatial distribution of GHP changes is sim-
ilar to the results of 1.5 ◦C warming levels. Generally,
the spatial distribution of GHP changes is similar to
discharge changes under 1.5 ◦C (figure 4(c)), 2.0 ◦C
(figure 4(d)) and 4.5 ◦C (figure 4(e)) warming levels.

Provincial GHP is larger in the southwest
provinces (figure 3(b)), such as Tibet (147.3 GW),
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Figure 2. GHP (a), (c) and discharge in the large river basins/regions (b), (d) in China during the baseline, 1.5 ◦C, 2.0 ◦C and
4.5 ◦C global warming periods. (c) and (d) The relative changes compared to the baseline period. His= baseline period
(1986–2015). The error bars represent the standard deviation.

Sichuan (95.6 GW) and Yunnan (83.0 GW). GHP
in the southwest provinces accounts for 64.1% of
the total in China. GHP in the Qinghai province is
19.8 GW, which is larger than in other provinces,

except for the southwest provinces. Under 1.5 ◦C
(figure 3(f)), 2.0 ◦C (figure 3(g)) and 4.5 ◦C
(figure 3(h)) warming levels, the Tibet province will
benefit the most, and GHP in Tibet will increase by
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Figure 3. Spatial variations of GHP in China. (c)–(h) The relative changes in GHP compared to the baseline period under the
1.5 ◦C, 2.0 ◦C and 4.5 ◦C global warming levels. The names of the provinces are shown in the supporting information.

96.9%, 100.4% and 124.8%, respectively. In Sichuan
province, GHP will increase by 32.0%, 31.5% and
43.4% under 1.5 ◦C (figure 3(f)), 2.0 ◦C (figure 3(g))
and 4.5 ◦C (figure 3(h)) warming levels, respectively.
In the Yunnan province, the increases are 36.3%,
37.5% and 52.8%. In the Qinghai province, the
increases are 46.3%, 49.6% and 79.6%.

3.4. Variations of per-capita gross hydropower
potential
The p-GHP will increase slightly under 1.5 ◦C
(5.4%) and 2.0 ◦C (6.7%) warming (figure 5(a)),
and will increase substantially (71.3%) under the
4.5 ◦C warming levels due to the combined results of

the increasing GHP and decreasing population. The
increased p-GHP equals 0.19, 0.24 and 2.57 million
tonnes CO2 emission reduction per year, respectively.
Generally, p-GHP will increase consistently from
1.5 ◦C to 4.5 ◦C global warming with a 0.5 ◦C step
(see figures S3(c) and (d) in the supporting informa-
tion). The southwest river source region has a larger
p-GHP than other regions (figure 5(b)), except for the
northern part of Northeast China and some regions
in the Xinjiang province, where the population is
sparse. The p-GHP in the Tibet province is the largest
(7.9 GW) among all provinces (figure 5(c)), followed
by the Xinjiang (0.8 GW) and Qinghai provinces
(0.8 GW). The p-GHP in the Sichuan province is
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Figure 4. Discharge and water volume in China. (c)–(h) The relative changes compared to the baseline period under the 1.5 ◦C,
2.0 ◦C and 4.5 ◦C global warming levels.

0.2 GW, and it is 0.09 GW in the Yunnan province
(figure 5(c)).

Under 1.5 ◦C warming, p-GHP will increase in
most of the regions (figures 5(d) and (g)). Similar pat-
terns will occur for 2.0 ◦C (figures 5(e) and (h)) and
4.5 ◦C (figures 5(f) and (i)) warming levels. Under
1.5 ◦Cand 2.0 ◦Cwarming levels, p-GHPwill become
lower in several provinces in South and East China
(such as Hubei, Hunan, Anhui, Jiangsu, Jiangxi,
Guangdong, Guangxi, Guizhou) and the Liaoning
province in Northeast China; under 4.5 ◦C warming,
only the Hainan province will become lower in terms
of p-GHP.

4. Discussion

The United Nations’ sustainable development goals
have advocated building a low-carbon and sustain-
able future. China is the largest carbon emissions
country in the world (Sun et al 2021). To achieve sus-
tainable development goals and reduce carbon emis-
sions, China is planning to generate electricity largely
from clean sources (Mallapaty 2020). Hydropower
is one of the choices for China since China has the
largest hydropower potential among all the coun-
tries worldwide. At present, the installed capacity of
hydropower accounts for about 49% of China’s total
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Figure 5. The p-GHP in China during the baseline period, 1.5 ◦C, 2.0 ◦C and 4.5 ◦C global warming periods. The percentage
values in (a) represent the relative changes in p-GHP compared to the baseline period. (d)–(i) The spatial distribution of relative
changes. His= baseline period (1986–2015). The error bars represent the standard deviation.

hydropower potential (Sun et al 2019), and hydro-
power accounts for 20%of China’s electricity produc-
tion. Therefore, there is still large potential for China
to explore hydropower. The increasing hydropower
potential we found in this study will favor China’s
clean energy development policy and the 2030 and
2060 carbon emissions reduction ambitions to fight
climate change. Under the 2.0 ◦C warming scenario,
the hydropower potential in China would be about
6782 terawatt hours a year, which is equivalent to 4.9
gigatonne carbon emissions reduction and 317 bil-
lion US dollars in economic value a year if it is fully
explored. According to Mallapaty (2020), to reduce
the use of fossil fuels and achieve net zero carbon
emissions, China’s electricity production will reach
at least 14 800 terawatt hours a year before 2060.

The baseline period hydropower potential could con-
tribute 30% of the electricity production; under the
2.0 ◦C warming scenario, it would contribute 46%.
The increased 16%hydropower potential would be an
important energy source that could be used to replace
other energy sources, such as fossil fuels. China’s
growing hydropower potential that we found in this
study could motivate more hydropower exploration
in the future due to the large potential in electricity
production and carbon emission reduction. The con-
sistently increasing hydropower potential we found
in this study assures the sustainability of hydropower
development, which could be an important sup-
port to China’s long-term and persistent hydropower
investment. Similar studies and results have not been
carried out and reported before.
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To achieve the 1.5 ◦C global warming goal, China
has developed many policies to reduce carbon emis-
sions. Duan et al (2021) suggested that China’s car-
bon emission peak time would be between 2035 and
2040 for the 1.5 ◦C global warming target if there
were no extra carbon emission reduction policies.
The suggested time period is obviously later than
the announced 2030 carbon emission peak time by
the Chinese government. Therefore, extra policies
have to be developed. The largely increasing GHP
projected under the 1.5 ◦C global warming scenario
would provide such an opportunity to create new
approaches to reach the peak carbon emissions on
time.

To raise the share of hydropower in the electricity
system, the Yangtze River and the Yarlung Tsangpo
River are two hotspots for hydropower development.
The Yangtze River is the largest hydropower base
in historical and future periods. The hydropower
increase in the Yarlung Tsangpo River will be the
largest among all the river basins in the future. Cur-
rently, there are several large hydropower plants in
the Yangtze River, but large hydropower plants in the
YarlungTsangpoRiver are rare. At the end of 2020, the
Chinese government changed the hydropower dam
construction plan for the Yarlung Tsangpo River, and
announced that China would construct a large hydro-
power dam in the downstream region. Our results
could be a strong support for the dam construction
plan in the Yarlung Tsangpo River, and suggest that
more efforts should be devoted to the development
of hydropower in the Yarlung Tsangpo River, which
could largely increase the share of hydropower elec-
tricity in China’s energy system and reduce carbon
emissions. For example, under the 2.0 ◦C warming
scenario, the hydropower potential in the Yarlung
Tsangpo River would be about 1333 terawatt hours a
year, accounting for up to 20% of China’s total, which
is equivalent to 1 gigatonne carbon emissions reduc-
tion in a year. The Yarlung Tsangpo River flows down-
streamof India, Bangladesh andBhutan.Hydropower
development in the Yarlung Tsangpo River should
consider the upstream and downstream appeals and
minimize the regional disputes (Freeman 2017). In
addition, the YarlungTsangpoRiver is one of themost
ecologically vulnerable areas in the Tibetan Plateau,
and hydropower development in this river should
solve the ecological conservation issue first (Xu and
Pittock 2020).

Tibet, Sichuan and Yunnan provinces have the
largest hydropower among all the provinces in China
and, therefore, there should be more focus on them
for the exploration of the increasing hydropower.
The three provinces are located in southwest China,
but power demand in East and South China is the
largest because of the large population and high gross
domestic product. Under 1.5 ◦C and 2.0 ◦C warming
scenarios, per-capita hydropower will become lower
in many South and East China provinces. Therefore,

further development of the west-to-east electricity
transmission project is important for the transport
of the growing hydropower from southwest China to
South and East China.

Although hydropower will benefit from the over-
all increase in discharge under the warming climate,
the perverse impacts should also be paid attention
to. For example, the increasing discharge and melting
glaciers and snow will lead to compound glacier lake
outburst floods in the Tibetan Plateau (Li et al 2022,
Qi et al 2022a). In addition, the increasing discharge
will cause landslides in mountainous regions and will
result in rising dam failure risk because of overtop-
ping and erosion (Li et al 2022).

Increasing population will raise water assump-
tions in irrigation, industrial and domesticwater uses,
etc. However, we studied the hydropower potential,
whichwas based onnaturalized discharge. The poten-
tially increasing water assumptions will not influence
our results. In this study, we used the bias-corrected
climate projections from ISIMIP2b. The ISIMIP2b
climate data can be considered reliable, as the studies
by Gernaat et al (2021), Gudmundsson et al (2021),
and Woolway et al (2021) suggested. Therefore, the
use of the ISIMIP2b climate data is acceptable in this
study.

5. Conclusion

Here, we studied the changes in China’s hydropower
potential under the different global warming levels.
This study could provide important information on
China’s hydropower development amid the trend of
shifting to renewable energy. The following conclu-
sions are presented based on this study.

First, China’s hydropower potential will increase
greatly because of global warming. GHP will increase
by about one-half compared to the baseline period
(1986–2015) under 1.5 ◦C and 2.0 ◦C warming
levels, and about two-thirds under 4.5 ◦C warming
levels.

Second, GHP will increase more in summer than
winter and more in Southwest China than in other
regions. GHP in Tibet (the Yarlung Tsangpo River)
will increase themost among all provinces (among all
the river basins). The total GHPof the Yangtze and the
Yarlung Tsangpo Rivers will account for more than
half of China’s total.

Third, compared to GHP, increases in per-capita
GHP will be relatively less under 1.5 ◦C (5%) and
2.0 ◦C (7%) warming levels, but of a similar mag-
nitude under 4.5 ◦C warming (71%) levels.
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