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• We introduce a 2.5D approach coupling
CFD and GIS capabilities.

• We calculate Universal Thermal Climate
Index (UTCI) at multiple heights above
ground.

• Urbanwind and temperature patterns cru-
cial to examine fine-scale thermal hot
spots.

• Studies solely based on surface tempera-
ture overestimate human thermal discom-
fort.

• Computational time of CFD modelling re-
mains a drawback in environmental
modelling.
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Constant urban growth exacerbates the demand for residential, commercial and traffic areas, leading to progressive
surface sealing and urban densification. With climate change altering precipitation and temperature patterns world-
wide, cities are exposed to multiple risks, demanding holistic and anticipatory urban planning strategies and adaptive
measures that aremulti-beneficial. Sustainable urban planning requires comprehensive tools that account for different
aspects and boundary conditions and are capable ofmapping and assessing crucial processes of land-atmosphere inter-
actions and the impacts of adaptation measures on the urban climate system. Here, we combine Computational Fluid
Dynamics (CFD) and Geographic Information System (GIS) capabilities to refine an existing 2D urban micro- and bio-
climaticmodelling approach. In particular, we account for the vertical and horizontal variability in wind speed and air
temperature patterns in the urban canopy layer. Our results highlight the importance of variability of these patterns in
analysing urban heat development, intensity and thermal comfort at multiple heights from the ground surface.
Neglecting vertical and horizontal variability, non-integrated CFD modelling underestimates mean land surface tem-
perature by 7.8 °C and the Universal Thermal Climate Index by 6.9 °C compared to CFD-integrated modelling. Due
to the strong implications of wind and air temperature patterns on the relationship between surface temperature
and human thermal comfort, we urge caution when relying on studies solely based on surface temperatures for
urban heat assessment and hot spot analysis as this could lead to misinterpretations of hot and cool spots in cities
and, thus, mask the anticipated effects of adaptation measures. The integrated CFD-GIS modelling approach, which
we demonstrate, improves urban climate studies and supports more comprehensive assessments of urban heat and
human thermal comfort to sustainably develop resilient cities.
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1. Introduction

Cities around the world are under constant change. Population growth
is increasing the demand for residential, commercial and traffic areas and
thus leading to progressive surface sealing and urban densification
(Heilig, 2012; Chapman et al., 2017). Additionally, Earth's climate is under-
going dramatic changes, globally affecting cities by altering local tempera-
ture and precipitation patterns, thereby enhancing the occurrence of dry
periods and increasing the frequency of excessive heat events and tropical
nights per year (Bastin et al., 2019; Zhao et al., 2021; Fischer et al., 2021;
Büntgen et al., 2021). These effects impact the urban climate and increase
the urban-rural temperature differences, known as the urban heat island
(UHI) effect (Oke, 1982), thus, deteriorate intraurban heat and outdoor
human thermal comfort (Zhao et al., 2014;Manoli et al., 2019). An increas-
ing time of exposure to an uncomfortable amount of heat can be particu-
larly dangerous and potentially fatal for the young, unhealthy, and
elderly people as well as for those performing intense physical work
under prolonged exposure (Rydin et al., 2012; Vicedo-Cabrera et al., 2021).

The climate in the urban canopy layer (i.e., the volumebeneath building
roof level) is directly affected by land surface characteristics, urban geome-
try and building materials (Stewart and Oke, 2012), thus differing from the
urban boundary layer (i.e., the volume above the canopy layer) which is
mainly influenced by thermally modified air from advection and convec-
tion (Oke, 1976). Therefore, climatic conditions in the urban canopy
layer are most relevant for both the indoor (Sailor, 2014) and outdoor
(Pigliautile et al., 2020) thermal comfort. Within the urban canopy layer,
buildings represent the primary determinant of the urban surface rough-
ness, which, if increased, leads to a reduction in wind speed (Wever,
2012). Despite this, buildings create displacement of thewind flow, leading
to a variety of complex inner-city flow patterns such as channelling through
street canyons or cross-canyon vortices, a large variability in wind speed
patterns and thus significant modifications in microclimatic conditions
(Oke et al., 2017).

A variety of models and tools such as RayMan, SOLWEIG, ENVI-met and
Ladybug-Grasshopper (Matzarakis et al., 2010; Lindberg et al., 2008; Bruse
and Fleer, 1998; Evola et al., 2020) exist to simulate urban heat and heat
stress as well as to analyse the effects of specific parameters on urban cli-
matic conditions. To account for important variables that influence urban
climate (e.g., surface roughness, wind velocity, air temperature variations),
they resort to the capabilities of Geographic Information Systems (GIS) or
Computational Fluid Dynamics (CFD) to conduct simulations. Both contrast
each other through their strengths and limitations (e.g., including and rep-
resenting these variables) as described in Aghamolaei et al. (2021).

Applicability of GIS includes mapping of local climate zones (Quan and
Bansal, 2021), calculating land surface temperatures from remotely sensed
images (Amanollahi et al., 2016), simulating heat stress comprising the ef-
fects of radiative fluxes (Chen et al., 2016) or analysing UHI intensities
(Nakata-Osaki et al., 2018). Coupling GIS with other models and tools en-
hances the capabilities for urban heat studies (Equere et al., 2021; Liu
et al., 2017) and offers the potential to map human thermal stress based
on, e.g., the standardized Physical Equivalent Temperature (PET), as was
shown by Koopmans et al. (2020). However, with urban physics and ther-
modynamics in its repertoire, CFD is gaining popularity inmodellingmicro-
climatic conditions in urban areas (Gromke et al., 2015; Toparlar et al.,
2015; Antoniou et al., 2019; Blocken, 2015; Toparlar et al., 2017). CFD is
a numerical method to simulate and study the hydrodynamics of fluid
flows by solving the governing Navier-Stokes equations (Versteeg and
Malalasekera, 2007). Recent CFD-based studies include assessments of
wind velocity (Zhang et al., 2021), analysis of heat fluxes (Allegrini et al.,
2015), characterisation of microclimatic extremes (Javanroodi et al.,
2022) or, at a finer scale, simulations of the drag effect of urban trees
(Zeng et al., 2020) or thermal behavior of different ground surfaces (Yang
et al., 2013). Currently, limitations such as cumbersome computation
timewith increasing scale, a significant level of expert knowledge to handle
the available software, data acquisition and over-simplifications of underly-
ing physics represent apparent drawbacks that prevent realisation of CFD's
2

full potential (Mirzaei and Haghighat, 2010; Broadbent et al., 2019;
Mirzaei, 2021).

Although GIS and CFD-based approaches are common in urban clima-
tology for analysing urban heat, thermal comfort and the UHI effect at dif-
ferent spatial scales (Mirzaei, 2021), a combination of both approaches to
conduct urban climate modelling, based on the authors' knowledge, has
rarely been pursued. Chang et al. (2018) integrated CFD and GIS to analyse
urban ventilation corridors, using the capabilities from CFD to assess wind
dynamics and from GIS for spatial analysis. Meng et al. (2017) combined
CFD and GIS capabilities to integrate a GIS-based representation of an
urban area into CFD to model microclimatic conditions. Both approaches
used GIS solely for data input into CFD or to present CFD-generated
datasets.

In this study we couple capabilities of CFD and GIS modelling, allowing
to account for the complexity of the urban structure and specific surface
characteristics on a fine spatial scale using GIS and to include the complex-
ity of flow dynamics within the built environment using CFD. We integrate
CFD-generated urban wind and air temperature patterns on a 3D basis into
a refined 2D GIS-based micro- and bioclimatic model, introducing a 2.5D
approach that combines CFD and GIS capabilities. We use the GIS-based
modelling approach introduced by Back et al. (2021) to carry out fine-
scale mapping of Land Surface Temperature (LST), Mean Radiant Temper-
ature (MRT) and Universal Thermal Climate Index (UTCI) in a 2D urban en-
vironment. The UTCI is expressed as equivalent air temperature for a given
combination of meteorological parameters (Jendritzky et al., 2012) and is
capable of representing bioclimatic conditions based on an assessment
scale of ten categories from extreme cold stress to extreme heat stress
(Bröde et al., 2012; Błazejczyk et al., 2013). In essence, we enhance the ca-
pabilities of this GIS-based approach by introducing Normalised Difference
Vegetation Index (NDVI)-based methods to improve the Bowen ratio (β),
emissivity (ε) and substrate heat flux (G) calculations, all of which contrib-
ute to deriving LST and UTCI. The approach based on Back et al. (2021)
demonstrated its potential to rapidly assess thermal comfort for different
urban forms and to identify priority areas for climate change adaptation
measures. Although multiple time stamps during the day were analysed
based on changing wind speed and air temperature, their variability within
the built environment was neglected. Results for diurnal LST and UTCI de-
velopment can thus only be assigned to a specific urban form, which limits
the full potential of the fine-scale dataset to account for the development
within the built environment.

To address this drawback, we resort to CFD enabling consideration of
the horizontal and vertical variability in wind speed and air temperature
patterns in the urban canopy layer. CFD-generated wind and air tempera-
ture datasets are integrated with the aforementioned GIS-based modelling
approach to calculate LST and UTCI at a fine spatial scale and at different
heights above the ground surface. This detailed data represents a
significant improvement from substantially approximated velocity and
temperature profiles previously used to calculate LST and UTCI.
Combining the capabilities of CFD and GIS increases model complexity.
Nevertheless, this enables enhanced fine-scale urban micro- and biocli-
matic modelling. We explore the capabilities of this approach within a
specific case study in the alpine city of Innsbruck, the capital of Tyrol
in western Austria, analysing:

(1) the effects of horizontal and vertical wind speed and air temperature
variability on LST and UTCI,

(2) the relationship between varying surface characteristics and wind
speed, air temperature, LST and UTCI, and

(3) the limitations and strengths of integrating CFD and GIS capabilities for
fine-scale urban micro- and bioclimatic modelling.

Building upon Venter et al. (2021), who pointed out difficulties in
relying on LST-based UHI assessments, our analysis confirms this statement
and demonstrates that LST overestimates intraurban heat, as they do not
properly account for the effects of changingwind speed and air temperature
patterns in built environments.
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2. Methodology

2.1. Case study description

The case study is a specific area of interest in the city of Innsbruck, the
capital of Tyrol in western Austria, situated at 47°16′ N and 11°24′ E in the
Inn-valley at an altitude of approximately 574 m above sea level. Our focal
area is located north-east of the city centre (black outline in Fig. 1). The de-
gree of surface sealing subdivides the case study roughly into two areas: the
northern area features a higher proportion of green areas, trees and single
houses, whereas the southern area contains denser built forms, a lower pro-
portion of green areas and less trees. This is illustrated using a land cover
classification approach based on Hiscock et al. (2021) applied to the case
study area. A Coloured Infrared (CIR)-image, shown in Fig. 1 for the entire
city of Innsbruck, represents vegetation health status indicating the propor-
tion of near-infrared light reflected by the vegetation surface. The image
was used to calculate the NDVI, which forms the basis for calculating the
Bowen ratio, emissivity (depicted in Fig. 1 for the area of interest) and sub-
strate heat fluxes. Urban wind flow around Innsbruck is characterised by
the channelling of the Inn valley from west to east, with the prevailing
wind direction from west (Karl et al., 2020).
Fig. 1. Location of the city of Innsbruckwithin Austria. Land cover classification is shown
area of interest.
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2.2. Data acquisition and software set up

We used a Digital Elevation Model (DEM) with an accuracy of 0.5 m, a
CIR-image raster with an accuracy of 0.2 m (captured in late August 2016)
as well as a building vector layer. DEM and CIR-imagery were provided by
the local government “Land Tirol”. The building vector layer of Tyrol (ESRI
Shapefile format) was freely accessible (data.gv.at). We utilised the com-
mercial software packages ESRI ArcMap v10.8.1 (ESRI, 2019) and
Ansys® Fluent - Release 2020 R1, a finite volume method (FVM) solver,
to conduct our analyses and evaluate simulation results. In Ansys®,we sim-
ulated wind speed and air temperatures, whereas in ArcMap, we calculated
LST, MRT and UTCI based on the approach of Back et al. (2021). We mea-
sured essential meteorological parameters, such as air temperature (Ta),
wind speed (UWind) and direction, relative humidity (RH), cloudiness
(N) and vapour pressure (Vp), at a meteorological station within the case
study area at a height of 6.0 m above ground (Fig. 2). LST measurements
of various surface types were conducted on the 15th of July 2020 at around
15:00 using a thermal infrared camera and the associated software to post-
process the generated datasets (INFRATEC, 2015). These images were used
for validation between modelled and measured LST. Fig. 2 shows the
fields of view (1–4) for LST measurements on-site. Additionally, we
for the case study area. Distribution of emissivity and Bowen ratios is shown for the

http://data.gv.at


Fig. 2. Dataset from the meteorological station within the case study area (Ta - air temperature, Vp - vapour pressure, Uwind - wind speed, N - cloudiness and RH - relative
humidity) and fields of view (1–4) for LST measurements using a thermal infrared camera.
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approximated temperature around the building envelope bymeasuring LST
of building walls from the four cardinal directions of selected buildings in
the case study area using a thermal infrared camera (Fig. 3 b). The latter
served as input to the CFD-based wind speed and air temperature
simulations. Global (GR), direct and diffuse radiation were calculated
using the ArcMap's Area Solar Radiation tool including slope and aspect
information from the DEM as well as radiation parameters according to
atmospheric conditions on the selected time of day. Wind speed within
the case study area was generally low during the measurement cam-
paign, arriving from the west. As this is the prevailing wind direction
in Innsbruck, we chose this wind direction and an initial wind speed
of 4 m/s for the simulations using CFD to generate detailed air
velocity-temperature contours approximating the conditions at the
specified time of day.

2.3. Integrating CFD and GIS capabilities

Our approach follows several key steps (Fig. 3 A-G) representing a flow
of data between GIS and CFD. To support modelling efforts, on-site mea-
surements to obtain surface temperatures of the building envelope and a
simplified 3D building model of the site were required. All steps are ex-
plained in the following sections in detail.

2.3.1. Step A: mean surface temperature calculation
We used the GIS-based modelling approach from Back et al. (2021) to

calculate mean LST for specific surface types; trees, ground and buildings
(Fig. 3 A), relevant for CFD modelling, as well as to calculate the UTCI.
The modelling approach combines a fine-scale surface classification, com-
prised of eight different surface classes, thermal characteristics (global radi-
ation, direct radiation and diffuse radiation), surface characteristics
(emissivity and Bowen ratio) and meteorological input data. Based on this
data and well-established physical relationships in the model setup, the ap-
proach used an adaptation from Matzarakis et al. (2010) and Bröde et al.
(2010) to first evaluate LST, followed by the MRT and finally the UTCI.
LST calculation depends on atmospheric radiation, long-wave radiation
flux density emitted by the surface and net all-wave radiation flux density,
4

whichwere calculated (Eqs. (1)–(5)), based onMatzarakis et al. (2010) and
previously described in Back et al. (2021):

LST ¼ Ta þ Qþ B

6:2þ 4:26 ∙UWindð Þ ∙ 1þ 1
β

� � ; ð1Þ

where Ta is air temperature [°C] and B represents an approximation to the
substrate heat flux [W/m2]. The latter depends on net all-wave radiation
flux density (Q) using the relationship:

B ¼ −0:19 ∙Q Q > 0
−0:32 ∙Q Q < 0

:

�
ð2Þ

Q is a function of atmospheric radiation (A) and long-wave radiation flux
density emitted by the surface (E) and is calculated using Eq. (3):

Q ¼ ɛ ∙GR þ A−E; ð3Þ

where GR represents global radiation. Q incorporates E, which, in turn, in-
corporates LST (Eq. (4)). E is thus calculated using:

E ¼ ε ∙ σ ∙ LST4 þ 1−εð Þ ∙ A; ð4Þ

where σ is the Stefan-Boltzmann constant (5.67∙10−8 [W/m2K4]). To calcu-
late Q and solve Eq. (4), A is calculated using Eq. (5):

A ¼ σ ∙ T4
a ∙ 0:82−0:25 ∙ 10−0:0945∙Vp
� �

∙ 1þ 0:21 ∙
N
8

� �2:5
 !

; ð5Þ

where Vp is vapour pressure [hPa] andN is cloudiness [Okta]. LST and E are
the two unknown variables, which are solved for using the system of
Eqs. (1) and (4). The output is a map depicting LST, with the system of
Eqs. (1) to (5) solved for each cell across this map (Fig. 3 A). After solving
this system and determining the mean values of different surface types,
we use the following temperatures as input values to model wind velocity
and air temperature distribution in the CFD simulations (Fig. 3 E): ground



Fig. 3. Key steps in the combined CFD-GIS modelling approach and additional requirements to support the process (A-G).

Table 1
Mesh cell properties.

Parameter Value

Minimum edge size 6.028e−4 m
Maximum edge size 15.187 m
Average orthogonal quality 0.76
Average element quality 0.83
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temperature (39.4 °C), building roof temperature (47.1 °C) and tree temper-
ature (27.0 °C).

2.3.2. Step B: approximation of temperature data of the building envelope
TheGIS-basedmodelling approach is only capable of calculating surface

temperatures visible from a bird's eye view, thus, excluding temperatures of
the building walls. To address this drawback, we conducted on-site mea-
surements of surface temperatures of specific buildings in the area, using
a thermal infrared camera (Fig. 3 B). Mean surface temperatures of the
four cardinal directions of the building envelope were used as input values
in the CFD simulations tomodelwind velocity and air temperature distribu-
tion across the case study area (Fig. 3 E). Following temperatures were
assigned: north (23.0 °C), east (29.0 °C), south (42.0 °C) and west (27.0 °C).

2.3.3. Step C: urban form approximation
To simulate the case study, we prepared a simplified 3D model of the

urban infrastructure (Fig. 3 C). We have retained most of the infrastructure
features including accurate dimensions and placement of the majority of
the buildings (based on surveyed city maps), approximate number and
height of trees using a digital elevationmodel of the region and size and ex-
tent of open areas. However, we do assume rooftops to be flat as opposed to
the sloped rooftops (e.g., shed, gable or hipped roof) as generally seen in
Innsbruck's architecture. This reduces the complexity of the model as well
as simplifies and ensures that a consistent and manageable mesh can be
5

generated for CFD simulations. Another simplification made is the removal
of hedges and smaller vegetation as their minimal occurrence. Trees were
also generalised as simple cuboids. The model of the area is padded with
empty volume to allow for the flow to develop before interacting with the
urban structure and to minimise the development of the non-physical re-
verse flow resulting in erroneous results.

2.3.4. Step D: mesh generation
Generating an adequatemesh entails dividing the complete volume into

smaller, more simplified units. For each of these units, the Navier-Stokes
equations are iteratively solved by the Ansys® FLUENT solver. By control-
ling the size of edge and length we can control the granularity (number of
elements) and thereby the quality of the mesh, as shown in Table 1.

A vital aspect of meshing is to select an optimum degree of regiment
such that the errors fall within an acceptable range while maintaining
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low computational requirements. To this end, we conducted a grid conver-
gence study based on the guidelines providedbyCelik et al. (2008). Accord-
ing to the used meshes, the velocity at approximately the centre of the area
of interest was chosen as a parameter for this study. Details of each of the
tested meshes are summarised in Table 2.

The average cell size (h), is computed based on the number of cells N
used to discretise the space according to the formula in Eq. (6),

h ¼ 1
N

∑
N

i¼1
ΔVið Þ

� �1=3

, (6)

where V is the volume of each cell. The grid refinement ratio (r2,1) between
the fine and medium grid sizes is calculated as the ratio between h1 and h2
representing the average cell size of the two meshes respectively:

r2,1 ¼ h2
h1

: (7)

The order of convergence (p) of about 9.789 is computed using Eq. (8):

p ¼ 1
ln r21ð Þ ln ε32=ε21j j þ ln

rp21 � 1
rp32 � 1

� �				
				, (8)

where ε32 = ϕ3 − ϕ2 and ε21 = ϕ2 − ϕ1 with ϕn being the solution of the
nth mesh. The approximate relative error can thus be calculated as:

e21a ¼ ϕ2 � ϕ1

ϕ1

				
				: (9)

The error was found to be 6.32 %. With this information, we can then
calculate the Grid Convergence Index (GCI) using Eq. (10),

1:25e21a
rp21 � 1

¼ 3:96%: (10)

This solidifies the numerical accuracy for the fine mesh as within ac-
ceptable limits for a CFD simulation.

2.3.5. Step E: CFD simulations
With Ansys®FLUENT, we generate a steady-state simulation of the case

study area and created a detailed air velocity-temperature contour for our
area. The contours generated are dependent on the urban infrastructure
along with tree canopy within the vicinity, and the temperature of various
surfaces (i.e., ground, trees, rooftops, and walls in different directions), pre-
viously described in Sections 2.3.1 and 2.3.2. Such a fluid-structure simula-
tion allows us to incorporate the vertical and horizontal variability in wind
speed and air temperature patterns in the calculations of the LST and UTCI,
described next.

2.3.6. Step F: translation of CFD data into GIS
We transferred CFD data into GIS using a six-step approach in ArcMap

10.8.1, comprising the tools: (1) point to raster, (2) geo-reference, (3) raster
to point, (4) clip, (5) natural neighbour and (6) extract by mask. Wind ve-
locity and air temperature datasets were converted from the CFD software
into text format (.csv file) with assigned x and y coordinates. In ArcMap
8.1.3 we added the x and y datasets with attached wind speed and air tem-
perature values and converted our point dataset into a spatial raster. This
enabled georeferencing accordingly to the coordinates of the case study
area. Subsequently, the datawere reconverted into a point dataset to enable
Table 2
Grid convergence study.

Mesh Elements for the city Average Cell Size (h) [m] Re

#1 Fine 9,098,557 2.174 –
#2 Medium 6,501,679 2.432 1.1
#3 Coarse 3,945,112 2.873 1.1
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interpolation using the natural neighbour technique. This operation created
a raster dataset, fromwhich buildings were extracted using a definedmask.

2.3.7. Step G: refined micro- and bioclimatic modelling
To enhance speed, accuracy and capabilities of the GIS-basedmodel, we

included NDVI-based methods to improve the Bowen ratio (β), emissivity
(ε) and substrate heat flux (G) calculations, all of which were used to calcu-
late LST and UTCI. Using the NDVI to calculate these parameters enhances
capabilities tomore profoundly account for variability in surface character-
istics. Additionally, the surface classification used to assign emissivity and
Bowen ratios in the original model is no longer necessary, leading to a re-
duction of the data sets required to run the model. Finally, we introduced
a sky view factor (SVF)-based approach to refine the calculations for down-
wards orientated long-wave radiation in urban areas within the GIS-based
modelling approach. In addition to the atmospheric radiation, we included
long-wave radiation emitted by the urban structure and, thus, approxi-
mated total downwards orientated long-wave radiation in urban areas.
We used the CFD-generated wind and air temperature datasets translated
into the enhanced GIS-based modelling approach to calculate LST and
UTCI at a fine spatial scale and at different heights above the ground sur-
face. To calculate LST, we used wind velocity and air temperature datasets
at the height of 0.2 m. To calculate MRT and UTCI we used the datasets at
the heights of 0.2 m and 1.75m. Howwe calculate these metrics in the GIS-
based approach is explained in subsequent paragraphs.

2.4. Downwards orientated long-wave radiation

Back et al. (2021) used Eq. (5) based on Matzarakis et al. (2010) to cal-
culate downwards orientated long-wave atmospheric radiation (A). This
represents a good approximation for A, when studying large areas on a re-
gional scale or flat rural areas on a regional to microscale. However, when
the focus is set on specific urban areas, urban structure needs to be consid-
ered, as A changes with the amount of visible sky for every considerable lo-
cation on the surface indicated by the Sky View Factor (SVF). The SVF
describes the proportion of visible sky above one particular observation
point. Accurate determination of the SVF is crucial to account for the effects
of the built structure (e.g., building height and geometry) on net radiation
in urban areas and is therefore essential in describing urban climatology
at the microscale (Dirksen et al., 2019). Additionally, long-wave radiation
is emitted by the urban structure and contributes to total downwards orien-
tated long-wave radiation in urban areas (RL). Other components such as
the reflectance of long-wave radiation at the façades are neglected here.
Therefore, RL is approximated using Eq. (11),

RL ¼ A ∙ SVFþ E ∙ 1−SVFð Þ
2

: ð11Þ

The proportion of long-wave radiation emitted by the urban structure,
E∙(1-SVF), is divided equally representing a simplification of a vertical fa-
çade. Furthermore, for simplicity, we assume that surface temperature of
the façades are equal to that of the ground. Therefore, E in Eqs. (11) and
(12) is defined as long-wave radiation flux density emitted by the surface
and is equal for both ground surfaces and façades.

E ¼ ε ∙ σ ∙ LST4 þ 1−εð Þ ∙ RL: ð12Þ

In contrast to Eq. (4), here in Eq. (12) we replaced A with RL in Eq. (12)
to calculate E. Long-wave radiative fluxes from the surfaces and the
finement Ratio (r) Velocity (φ) [m/s] Difference in velocity (ε) [m/s]

0.125 –
18 0.133 0.007
81 0.182 0.048
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atmosphere are weighted based on the SVF, which is calculated using the
freely available software System for Automated Geoscientific Analysis -
SAGA (Conrad et al., 2015).

2.5. Fine-scale Bowen ratio calculation

Rigo (2006) introduced a second-degree polynomial regression func-
tion to calculate the Bowen ratio from NDVI band values based on in-situ
data conducted during the Basel Urban Boundary Layer Experiment (BUB-
BLE) in 2002. However, this function does not cover the entire NDVI range,
only accounting for NDVI band values between −0.2 and 0.4. To account
for a wider range of NDVI band values, including nonvegetated surfaces
and therefore consider the intraurban variability, we established an expo-
nential regression between the Bowen ratio (β) and the NDVI based on
the existing second-degree polynomial regression function after Rigo
(2006) and on literature-based boundaries, denoted by Eq. (13):

β ¼ 1:534 ∙ e−3:205∙NDVI: ð13Þ

To obtain Bowen ratios for NDVI band values between−0.5 and−0.2
and between 0.4 and 1.0, we fitted a curve to the existing second-degree
polynomial regression function based on scientific literature-based bound-
aries for Bowen ratio values in urban areas (Grimmond and Oke, 2002;
Christen and Vogt, 2004; Oke et al., 2017) (Fig. 4). NDVI band values closer
to−1 indicate water body surfaces, which are not addressed in this study.
Bowen ratios range from 0.1 to 8 (Fig. 4), which agreewith those occurring
in urban areas (including cropland) (Grimmond and Oke, 2002, Christen
and Vogt, 2004, Oke et al., 2017). Within NDVI band values of −0.2 and
0.4, the second-degree polynomial regression function from Rigo (2006)
(blue dots in Fig. 4) coincides well with our exponential function (R2 =
0.998).

2.6. Substrate heat fluxes

Substrate heat fluxes (G) (Eq. (14)) was calculated based on a relation-
ship with NDVI for urban areas (Kustas and Daughtry, 1990; Parlow, 2003;
Rigo and Parlow, 2007). This approach assumes that substrate heat fluxes
decrease with an increase in biomass, as indicated by the NDVI (Rigo and
Parlow, 2007).

G ¼ − 0:3673−0:3914 ∙NDVIð Þ ∙Q; ð14Þ

where Q represents net all-wave radiation and is calculated using Eq. (15).

Q ¼ ɛ ∙GR þ RL−E; ð15Þ

which differs slightly to Eq. (3) in that we substitute Awith RL in Eq. (15) to
calculate Q, now including a SVF-based approach to calculate A and,
Fig. 4. The introduced exponential regression function (black dashed line) based on
values using a second-degree polynomial regression function (Rigo, 2006) for NDVI
band values between −0.2 and 0.4 (blue dots) and the corresponding equation to
calculate the Bowen ratio from NDVI values. The vertical axis depicts the Bowen
ratios, and the horizontal axis depicts the NDVI range used in this study.
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additionally, the proportion of long-wave radiation emitted by the urban
structure.

2.7. Surface emissivity

The surface emissivity (ε) is essential in urban surface temperature cal-
culations (Mitraka et al., 2012; Kikon et al., 2016). To improve emissivity
values for different surface characteristicswe used a combination of two ap-
proaches: (1) we associate emissivity values from scientific literature
(Coutts and Harris, 2012; Kotthaus et al., 2014; Song and Park, 2014;
Mandanici et al., 2016) to specific surface classes based on a modified clas-
sification approach from Hiscock et al. (2021) for NDVI band values be-
tween −0.50 and 0.135 and (2) we used an approach based on Van De
Griend and Owe (1993), also described by Zhang et al. (2006) and Liu
and Zhang (2011), to estimate emissivity values for NDVI band values be-
tween 0.135 and 0.65 using Eq. (16),

ɛ 0:135 to 0:65ð Þ ¼ 1:0094þ 0:047 ∙ ln NDVIð Þ: ð16Þ

Conversely to Zhang et al. (2006) and Liu and Zhang (2011) who pro-
posed a range between 0.157 and 0.65, we found vegetation signals be-
tween NDVI band values 0.135 and 0.157 in this specific case study.
Based on the Bowen ratio we found latent heat to exceed sensible heat
(Bowen ratio below 1) with NDVI band values above 0.135. We used this
threshold to distinguish between vegetated and nonvegetated surfaces.
Eq. (16) therefore calculates the emissivity for NDVI band values between
0.135 and 0.65. Table 3 represents emissivity values according to the
NDVI band values−0.5 to 0.65.

2.8. Adapted LST and UTCI calculations

After adapting the system of equations including enhanced input values
for the Bowen ratio, emissivity and substrate heat fluxes, we integrated the
CFD-generated wind and air temperature datasets into the enhanced GIS-
based modelling approach and calculated LST and UTCI at a fine spatial
scale using the datasets at the heights of 0.2 m and 1.75 m. We adapted
LST and UTCI calculations by providing enhanced input values as described
in the previous sections. LST was calculated using Eq. (17):

LST ¼ Ta þ Qþ G

6:2þ 4:26 ∙UWindð Þ ∙ 1þ 1
β

� � : ð17Þ

We replaced the approximation of substrate heat fluxes (B) (used in
Eq. (1)) with the NDVI-based method to calculate substrate heat fluxes
(G). Enhanced emissivity and downwards orientated long-wave radiation
values come to bear in calculating E (Eq. (12)), as well as Q (Eq. (15)).
Again, both values E and LST are the two unknowns evaluated iteratively
by using the system of Eqs. (12) and (17). MRT was calculated based on
Back et al. (2021) using Eq. (18):

MRT ¼ 1
σ ∙ Eþ ak ∙

Ds

εp

� �
∙ 1−

SVF
2

� �
þ Aþ ak∙

Dd

εp

� �
∙
SVF
2

� �
þ fp ∙ak ∙I�

εp ∙σ

� �0;25

; ð18Þ

where I⁎ is the radiation intensity of the sun on a surface perpendicular to
the incident radiation direction, ak is the absorption coefficient of the
Table 3
Emissivity values according to NDVI band values and associated land surface classi-
fication.

Land surface classification Emissivity NDVI band values

Sealed surfaces 0.960 [−0.50, −0.09]
0.850 [−0.09, −0.06]
0.900 [−0.06, 0.135]

Vegetated surfaces 1.0094 + 0.047∙ln(NDVI) [0.135, 0.65]
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irradiated body surface area of short-wave radiation (standard value for the
human body of 0.7), ɛp is the emission coefficient of the human body (stan-
dard value of 0.97) and fP is the surface projection factor. Finally, we calcu-
lated UTCI using Eq. (19):

UTCI ¼ Ta þOffset Ta,MRT � Ta, UWind, PVapour
� �

, (19)

where PVapour is the water vapour pressure [kPa].

3. Results and discussion

3.1. Effects of wind and air temperature variability on LST and UTCI

The horizontal and vertical variability in wind speed and air tempera-
ture has substantial effects on LST and UTCI. Wind channelling is visible
in the open spaces and street canyons with west-east orientation, leading
to an increase in wind speed and consequently to a decrease in air temper-
atures (Fig. 5). For street canyons with north-south orientation, both
Fig. 5. Spatial distribution of wind speed at a height of 0.2m (a) and the difference (Δ) be
m (c) and the difference (Δ) between 0.2 m and 1.75 m (d).
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variables show an inverse relationship. Especially courtyards and leeward
areas where the wind is blocked and deflected by buildings, wind speed de-
creases and leads to an increase in air temperatures (Fig. 5). Such areas
show higher LST and UTCI values and can be considered as thermal hot
spots (Fig. 7). Similar to buildings, trees lead to a deceleration in wind
speed, however, decrease air temperatures in leeward areas. This effect in-
tensifieswith increasing tree cover, leading to a decrease inUTCI values (ef-
fect is less pronounced for LST values), and indicating thermal cool spots
with enhanced human thermal comfort (Fig. 7). With an increase in height,
wind speed increases, while air temperatures decrease (Fig. 6). This is illus-
trated in Fig. 6 for a location in an open street canyon. This specific location
in the case study area is characterised by an NDVI of−0.08, a Bowen-ratio
of 1.98, a SVF of 0.68 and a surface temperature of 47.01 °C. The decrease
in wind speed near ground due to an increase in the surface roughness is
highlighted. However, visible in our analyses, built environments have
more complex wind and air temperature patterns especially in the lowest
2 m above the ground surface of the urban canopy layer (Fig. 5). Whilst
values at a height of 1.75m are particularly relevant for the human thermal
tween 0.2m and 1.75m (b). Spatial distribution of air temperatures at a height of 0.2



Fig. 6. Wind speed, air temperature and Universal Thermal Climate Index (UTCI) with changing height above ground at one location in an open street canyon in the case
study area. The vertical axis depicts the height above the ground surface, and the horizontal axes depict wind speed, air temperature and the UTCI respectively.
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comfort, values at lower heights, e.g., 0.2 m in this case study, can be more
relevant for animals. Differing in wind and air temperature patterns, both
heights show slightly different areas of maximum UTCI values (Fig. 7),
with UTCI values at lower height more influenced by the surface tempera-
tures due to lower wind speed.

3.2. The role of varying surface characteristics

The diversity of surface characteristics is expressed using NDVI band
values ranging from −0.5 (sealed surfaces) to 0.65 (vegetated surfaces).
LST is highest with lowest wind speed and lower NDVI values (Fig. 8). De-
creasing NDVI band values lead to increasing differences between LST and
air temperatures. Additionally, with decreasingwind speed LST increases at
a lower rate for NDVI band values 0.3 and 0.5 (vegetated surfaces) com-
pared to NDVI band values−0.5 to 0.1 (sealed surfaces). This effect is vis-
ible in Fig. 8 in the contrast between trends of air temperature and LST
respectively. Comparing all four variables shows a clear dependence of
air temperature to wind speed, the strong interaction of both variables
with LST and their variability with different surface characteristics.

We observe similar interactions and dependencies between wind speed,
air temperature, NDVI and UTCI as we did for LST, however less pro-
nounced (Fig. 9). The variations in NDVI band values strongly correlate
with LST and UTCI. High UTCI values indicate hazardous locations of ex-
treme heat, posing potential health risks. Such conditions can develop in
areaswith an increased degree of surface sealing (lower NDVI band values),
lower wind speeds and higher air temperatures. In contrast, lower UTCI
Fig. 7.Refinedmicro- and bioclimaticmodelling. a, spatial distribution of Land Surface T
a height of 0.2 m (b) and 1.75 m (c).
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values can be found in shaded and densely vegetated areas (higher NDVI
band values), indicating thermal cool spots.

3.3. LST-based studies overestimate thermal discomfort

Our results highlight the effects of varying wind speed and air tempera-
tures at different heights in built environments and, thus, coincide with the
findings from Venter et al. (2021). They found LST-based UHI to overesti-
mate heat stress and the contribution of urbanization to the local tempera-
ture, when compared to crowdsourced air temperatures. The complexity of
built environments leads to both increasing and decreasing wind speeds
vertically as well as horizontally and on small time scales. Consequently,
this variability leads to changes in air temperatures and subsequently in
LST and UTCI values. Our results show that the human thermal comfort
(UTCI) can vary substantially within the first 2 m above the ground surface
in the urban canopy layer. UTCI values at elevated heights (1.75 m) are
more influenced by changing wind speed and consequently air tempera-
tures. With wind speed generally lower close to the ground surface, UTCI
values at lower heights (0.2 m) are more influenced by rising air tempera-
tures which in turn are stronger interacting with LST. As we have demon-
strated the strong correlation between surface characteristics, wind speed,
air temperature, UTCI and LST (Figs. 8 and 9), we conclude that LST repre-
sents the thermal conditions near ground level rather than those elevated
from the ground (1.75 m), which are, however, more representative of
the human thermal comfort. We confirm that studies solely based on LST
overestimate heat stress and, thus, neither contribute to a holistic view of
emperature (LST). Spatial distribution of Universal Thermal Climate Index (UTCI) at



Fig. 8. Correlation between wind speed, air temperature, Land Surface Temperature (LST) and varying surface characteristics represented by specific NDVI band values (0.5
to −0.5). The vertical axis depicts the temperatures (LST and air temperature), and the horizontal axis depicts the wind speed.
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urban heat development nor towards comprehensive heat assessments and
hot spot analysis.

3.4. Limitations and strengths of the integrated approach

Due to the disadvantage in computational time in CFD modelling, we
calculated micro- and bioclimatic conditions only for one specific time
step of the day considering the associated meteorological conditions.
Fig. 9. Correlation between wind speed, air temperature, Universal Thermal Climate In
values (0.5 to−0.5). The vertical axis depicts the temperatures (UTCI and air temperat
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Future work should include modelling over a diurnal cycle to include the
effects of changing surface and building wall temperatures on the air
velocity-temperature contour and the effects of changing initial wind
speeds and air temperatures on their distribution across the case study
area. We compared modelled and measured LST and found a good agree-
ment between the measured datasets and the modelled datasets using the
integrated CFD-GIS modelling approach (see Section 3.4.2). To validate
other variables, such as wind speed or air temperature distribution across
dex (UTCI) and varying surface characteristics represented by specific NDVI band
ure), and the horizontal axis depicts the wind speed.
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different heights, would, however, require a very extensive measurement
campaign in order to compare measured variables with modelled variables
at such a high resolution predefined by the CFD simulations. Furthermore,
given that most variables are used in the model setup to calculate LST, we
believe that this comparison is a good proxy for the other variables. Never-
theless, with this study, we demonstrated the added benefit of combining
CFD and GIS and explored the implications of the variability in wind
speed and air temperature on urban heat and thermal comfort assessments.

3.4.1. Comparing CFD-integrated and non-integrated modelling
CFD-integrated (Fig. 10 b) and non-integrated (Fig. 10 a) modelling

shows stark differences in magnitude and spatial variability of LST. Non-
integrated CFD modelling implies that wind speed and air temperature
are set to constant 4.0 m/s and 23.7 °C respectively for every single raster
cell defined in our study area. CFD-integrated modelling, however, ac-
counts for the additional horizontal and vertical variability in both wind
Fig. 10. Comparison of non-integrated (a, c) and C
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speed and air temperature, leading to a wider range of and, perhaps,
more realistic LST patterns (Fig. 10 b). With an initial moderate air temper-
ature (23.7 °C) and wind speed (4.0 m/s) the distribution of both variables
throughout the case study leads to substantial variations, resulting in air
temperatures and LST as high as 38.5 °C and 60.0 °C respectively. Non-
integrated CFD modelling prevents LST temperatures from exceeding
37 °C, underestimating measured surface temperatures. This is clearly visi-
ble when comparing modelled and measured datasets (Fig. 12), with CFD-
integrated LST modelling showing good agreement with measured LST
from thermographic surveys.

Furthermore, non-integrated CFD modelling (Fig. 10 d) consequently
neglects the effects of horizontal and vertical wind speed and air tempera-
ture variations on the human thermal comfort (UTCI). With wind speed
and air temperatures unchanged for every raster cell (Fig. 10 c), maximum
UTCI only reaches a value of 29.6 °C. The homogeneous distribution of
UTCI values across the different surface characteristics shows that too
FD-integrated (b, d) LST and UTCI modelling.
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much emphasis has been placed on surface temperatures alone, neglecting
how varying air temperatures, wind speed and surface characteristics influ-
ences thermal comfort. Using the CFD-integrated approach, these effects
become more pronounced (Fig. 10 b, d), thereby highlighting the impor-
tance of horizontal and vertical wind speed and air temperature variability
for studies on human thermal comfort.

3.4.2. Comparing modelled and measured LST
Comparingmodelledwithmeasured LST shows overall good agreement

in terms of temperature range, extreme values and distribution (Fig. 11).
Unfortunately, as calculations of modelled LST are based on a dataset
from 2016 and measurements were conducted in 2020, vegetation health
status is not directly comparable. Notwithstanding, no visible changes can
be observed in the placement of vegetated areas and trees, buildings and
mobility infrastructure. We see vegetated areas appearing cooler than
sealed surfaces in the modelled dataset, however not with the same magni-
tude observed during the measurement campaign (Fig. 11). Comparing
measured LST of dry grass with modelled LST of vegetated surfaces shows
similar temperatures (Fig. 11). Similar to measured LST on very bright sur-
faces (road markings), we see lower LST values in the modelled dataset,
however, again a mismatch in magnitudes (Fig. 11 Detailed Section from
field of view1). This is explained by the fact that the lowest surface emissiv-
ity in our modelling approach has a value of 0.85. To represent the effect of
white paint on the roads, lower emissivity values will need to be specified
for these surface types. Modelled LSTs for sealed surfaces, especially
roads, are in good agreement with measured data showing temperatures
around 50 °C.

3.4.3. Improving downward orientated long-wave radiation
We calculated total downward orientated long-wave radiation in urban

areas as explained in Section 2.3.7. Comparing spatial distribution and
magnitudes of this variable with downwards orientated long-wave atmo-
spheric radiation defined by Eq. (5) shows significant differences
(Fig. 12). Neglecting the SVF (Fig. 12 a) leads to higher emphasis on the
air temperature within the initial equation calculating atmospheric radia-
tion (see Eq. (5)). This results in a spatially distributed atmospheric radia-
tion that is similar to air temperature patterns across the study area of
interest (Fig. 12 a). Including the SVF more strongly emphasises the
Fig. 11. Measured (1–4) and CFD-integrated modelled LST for
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urban structure and influence of building and vegetation heights on total
downwards orientated long-wave radiation (Fig. 12 b). Air temperature
still affects atmospheric radiation (with Eq. (5) incorporated in Eq. (12))
but these patterns are less pronounced (Fig. 12 b). When comparing both
approaches to calculate LST and UTCI, we observe differences in both
spatial distribution and magnitude. LST mean values decrease from
36.8 °C to 35.1 °C, while UTCI mean values decrease from 31.0 °C to
30.5 °C across the study area of interest when using the SVF-based ap-
proach. Both LST and UTCI values decrease with decreasing SVF, leading
to larger differences in LST and UTCI values within tree alleys and street
canyons between both approaches. These differences are less pronounced
in open spaces. Additionally, using the SVF-based approach refines the
determination of net all-wave radiation, which, in turn, is fundamental
for further calculations.

4. Conclusions

We have introduced a 2.5D approach coupling the capabilities of CFD
and GIS modelling for fine-scale urban environmental studies. The ap-
proach enables comprehensive analysis of the effects of wind speed and
air temperature variability on the surface temperatures (LST) and the
human thermal comfort (UTCI - Universal Thermal Climate Index) in the
urban canopy layer. Using the approach in a specific case study area in Inns-
bruck, Austria, we demonstrated the relationships between wind speed, air
temperature, surface characteristics (based on the NDVI), LST and UTCI
and highlighted the importance of the variability in wind and air tempera-
ture patterns and the consideration of different heights to locate thermal
hot spots in urban environments.

Results show that UTCI values can vary substantially within thefirst 2m
above the ground surface in the urban canopy layer. With wind speed gen-
erally lower near the ground surface, the strength of the correlation be-
tween air temperature, UTCI and LST decreases with increasing height.
As such, LST correlates with thermal conditions near the ground surface
rather than with those at elevated heights (1.75 m), which are, however,
more representative of the human thermal comfort. Our evidence supports
the hypothesis that studies solely based on LST overestimate human ther-
mal discomfort and, thus, neither contribute to a holistic view of urban
heat development nor towards comprehensive heat assessments and hot
the specific location within the case study area of interest.



Fig. 12.Difference between downwards orientated long-wave atmospheric radiation (a) and Sky View Factor (SVF)-based total downwards orientated long-wave radiation in
urban areas (b) as introduced in this study.
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spot analysis. Considering these findings, we urge caution when relying on
LST-based studies alone for urban heat studies, as this could lead to misin-
terpretations of hot and cool spots in cities and thus provide misleading in-
sights into the anticipated effects of adaptation measures.

In this study we have successfully demonstrated the capabilities of com-
bining CFD and GIS and introduced an integrated approach capable to im-
prove intraurban studies towards comprehensive assessments of urban heat
at a very fine scale. The results of this study and further applications of the
integrated approach can provide a better understanding of the interactions
between wind velocity, air temperature distribution, varying surface char-
acteristics and micro- and bioclimatic conditions in the urban canopy
layer and can contribute to sustainable urban planning fostering resilient
cities.
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