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step in understanding the early life trait diversity of 
Arctic charr. Here, using Greenlandic Arctic charr, 
which includes alternative life history forms (i.e. 
anadromous and resident) and spawning habitat use 
(i.e. lake and river spawner), we described egg size 
variation (i.e. clutch-mean egg diameter and within-
clutch variation) and explored the link between egg 
size variation and female body length, life history 
form, and spawning habitats. As in many other fishes, 
clutch-mean egg diameter increased with female body 
length. No significant effect of other female traits 
on clutch mean-egg diameter was detected, suggest-
ing that female body size variation could be a direct 
cause of early life history trait variation. On the other 
hand, we found that the degree of within-clutch vari-
ation of the anadromous life history form was higher 
than that of the resident life history form. The pat-
tern could be interpreted in an adaptive context. For 
instance, given that the anadromous life history form 
tends to be semelparous, anadromous females could 
decrease the likelihood of complete reproductive fail-
ure by producing variable-sized offspring within a 
clutch since at least some offspring are expected to be 
matched to the prevailing environment.

Keywords Arctic charr · Clutch-mean egg size · 
Within-clutch variation · Life history theory

Abstract Arctic charr (Salvelinus alpinus [L.] com-
plex) has been widely used as a model system for 
studies in evolutionary ecology because of its diver-
sity in feeding ecology, habitat use, life history forms, 
and associated morphologies observed in matured 
individuals. However, we still know relatively lit-
tle about traits exhibited early in life of the species, 
although the trait diversity of matured individu-
als may largely be shaped during development. Egg 
size is a key determinant of various traits exhibited 
early in life. Therefore, describing egg size varia-
tion within- and between-individuals as well as the 
link between egg size and adult traits will be a useful 
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Introduction

Arctic charr (Salvelinus alpinus [L.] complex) 
exhibit diverse feeding ecologies (e.g. planktivory 
and piscivory), spawning habitats (e.g. lake and river 
spawning), life history forms (e.g. anadromous and 
resident), with associated morphological differentia-
tion. Because of this, Arctic charr has been used as a 
model system to examine how diversity in organismal 
traits has been generated and maintained (Sigurstein-
sdóttir and Kristjánsson 2005; Byström 2006; Noakes 
2008; Kristjánsson et  al. 2012, 2018; Franklin et  al. 
2018; Kristjánsson and Leblanc 2018; Doenz et  al. 
2019), which is a central question in evolutionary 
ecology. While studies on adult trait diversity have 
been accumulated, relatively few studies have inves-
tigated traits exhibited early in life (Ahi et  al. 2014; 
Kapralova et al. 2015; Beck et al. 2019, 2020). This 
is unfortunate given the importance of traits exhibited 
early in life for later growth and survival (Jonsson and 
Jonsson 2014) and even for adult trait diversification 
(ten Brink and Seehausen 2022). This considered, 
describing traits exhibited early in life and exploring 
the links between traits exhibited early and late in life 
would be a useful step toward a better understanding 
of the underlying mechanisms of the diversity in the 
species.

Egg size is a crucial trait in shaping early life his-
tory traits, including early developmental rate, growth 
rate, actual body size, behaviour, and even morphol-
ogy (Valdimarsson et  al. 2002; Leblanc et  al. 2011, 
2016, 2019; Cogliati et  al. 2018; Self et  al. 2018; 
Beck et al. 2019, 2020). At the same time, it is a key 
component shaping females’ reproductive strategies. 
For example, while a positive correlation between 
egg size and female body size is observed in vari-
ous animals, including salmonid fishes (Rollinson 
and Rowe 2016), the pattern is expected to reflect a 
shift in female reproductive strategies along with 
female body size. Specifically, considering a trade-
off relationship between fecundity and egg size, for 
a given reproductive investment, producing larger 
eggs while proportionally reducing the number of 
eggs can improve clutch performance by simultane-
ously improving offspring quality and reducing the 
strength of competition among offspring (Parker and 
Begon 1986; Venable 1992). This strategy is expected 
especially for larger females, which generally exhibit 
higher fecundity. In addition to the clutch-mean egg 

size, the degree of egg size variation within a clutch 
(hereafter, within-clutch variation) could also affect 
clutch performance and, thus, maternal fitness. For 
example, it is expected that females can obtain higher 
geometric average offspring survival in less predict-
able environments by producing variable-sized off-
spring within a clutch since they can avoid complete 
failure in any single year (Einum and Fleming 2004; 
Marshall et  al. 2008). Therefore, it is interesting to 
explore the link between egg size variation (clutch-
mean egg size and degree of within-clutch variation) 
and maternal traits. However, to date, we know little 
about egg size variation of Arctic charr in the wild 
(but see Sandlund et  al. 1992; Smalås et  al. 2017; 
Beck 2019; Alekseyev et al. 2019).

Arctic charr in Greenland provides a great opportu-
nity to examine the link between egg size variation and 
various maternal traits, such as body length, life history 
forms, and spawning habitat use. Both lake and river 
spawners exist, and there are anadromous and resident 
life history forms within the lake and river spawners 
(Doenz et al. 2019; Davidsen et al. 2020). Importantly, 
in contrast to the other salmonid fishes, they have not 
been exposed to nearly the same amount of anthropo-
genic effects, which in other species and areas have led 
to the collapse of the links between organismal traits 
and the environment (McGinnity et  al. 2003; Hutch-
ings 2014). While the information on Greenlandic Arc-
tic charr has gradually accumulated (Riget et al. 2000; 
Doenz et al. 2019; Davidsen et al. 2020), there are no 
studies describing egg size variation and exploring the 
link between egg size and maternal traits of the charr. 
In this study, we explored the links between egg size 
diversity (clutch-mean egg diameter and within-clutch 
egg size variation) and female body length, life history 
form (anadromous vs. resident), and spawning habitat 
(lake vs. river) in Arctic charr in southern Greenland 
(Fig. 1a).

Methods

In September 2021, we sampled Arctic charr in vari-
ous lakes and rivers in southern Greenland (Fig. 1a-d 
and Table 1). We sampled charr in lakes using ben-
thic multi-mesh gillnets set at various depths from the 
shallow littoral to the maximum depth of each lake. 
In rivers, fish were caught using electrofishing and 
hand nets. After collection, we euthanized the fish 
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with clove oil, photographed their left lateral side, 
and measured standard body length (mm). Then, we 
visually assessed life history forms (i.e. anadromous 
or resident life history forms) based on their colour 
and morphology. Specifically, we focused on the fol-
lowing four traits (Loewen et  al. 2009; Doenz et  al. 
2019;  Grenier and Tallman 2021): (1) body col-
ouration, where the resident morph has tones of yel-
low–brown colouration relative to the more silvery 
anadromous morph; (2) fin shape, where the resident 
morph has a more rounded caudal fin relative to ana-
dromous counterparts; (3) fin length, where the resi-
dent morph has proportionally longer pectoral fins 
relative to the anadromous morph; and (4) relative 
head size, where the resident morph typically has a 
relatively larger head than the anadromous morph.

We pressed the abdomen of the females, collect-
ing eggs from 54 clutches in total (Table 1). We put 

the first approximately hundred eggs into a petri dish 
and took pictures (Fig. 2a). Following the egg collec-
tion, the sex of each fish was confirmed by dissection. 
When we found females with developed but unre-
leased eggs, which were likely to spawn in the same 
year, we collected the eggs from the ovary close to 
the genital opening, put them into the petri dish, and 
took pictures (34 clutches in total [Table 1]). There-
fore, we collected eggs from the ovary close to the 
genital opening regardless of the egg collection meth-
ods, except for females that had initiated and almost 
completed their spawning activity before the time of 
egg collection. This allowed us to remove the possi-
ble confounding effects of egg position in the ovary 
on the clutch-mean egg diameter and within-clutch 
variation. In total, we took pictures of eggs of 88 
clutches from eight lakes and ten watershed drain-
ages (Fig.  1a-d and Table  1). The proportions of 
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Fig. 1  Overview of sampling. a Map of collection sites. Pictures of b river and c lake habitats in Greenland, where we sampled Arc-
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eggs collected by pressing females’ abdomen from 
anadromous river spawner, resident river spawner, 
anadromous lake spawner, and resident lake spawner 
were 77%, 59%, 78%, and 7%, respectively (Table 1). 
Using the pictures (Fig.  2a), we digitally measured 
the projective area  (mm2) of randomly selected 50 
eggs (i.e. about half to one-quarter of the collected 
eggs in the petri dish) for 61 clutches. We digitally 
measured the projective area of all collected eggs 
for 27 clutches in which we collected only five to 48 
eggs because females had released almost all eggs 
before the date of egg collection or we failed to col-
lect enough eggs from the ovary close to the genital 
opening. The measurements were taken by tracing the 
outline of the eggs using line and area measurement 
tools in Image J (National Institute of Health, USA). 
Then, we calculated the egg diameter of each meas-
ured egg using the following equation: egg diameter 
(mm) = 2 × √(projective egg area  [mm2]/π). Using 
the egg diameter, we estimated clutch mean egg 
diameter and within-clutch variation (egg diameter 
CV).

To examine the links of female life history forms 
(anadromous or resident), spawning environment 

(lake or river), and female body length to clutch-
mean egg diameter and within-clutch variation, 
we performed linear models. Prior to the analysis, 
female body length, clutch-mean egg diameter, and 
within-clutch variation were log-transformed to 
meet the assumptions of normality and homogene-
ity of variance. We also considered the egg collec-
tion methods (i.e. pressing females’ abdomen or 
dissection) as an additional explanatory variable 
since the size of unreleased eggs collected from 
the ovary seemed to be marginally smaller than 
that of eggs collected by pressing females’ abdo-
men based on visual observation, generally con-
sistent with studies on oocyte development (Tyler 
and Sumpter 1996). The number of measured eggs 
(i.e. five to 50) was also considered as an additional 
covariate to account for possible artefacts due to 
measurement processes. Then, the initial mod-
els were simplified using the following two model 
selection approaches to explore the links between 
focal variables and clutch-mean egg diameter and 
within-clutch variation. First, we used a backwards 
model selection approach using the step function 
in the lmerTest package (Kuznetsova et  al. 2017), 

Table 1  The number of 
clutches collected from 
each site. See Fig. 1a for 
site ID. The number in 
the parentheses indicates 
the number of clutches 
collected by dissecting 
females

Site ID Coordinate Lake/river Total 
number of 
clutches

Resident Anadromous

1 61°15′33.56″N/ 45°30′23.11″W River 15 3 (2) 12 (3)
2 61°14′35.66″N/ 45°31′11.40″W River 8 0 8 (3)
3 61°12′17.00″N/ 45°30′58.37″W River 5 0 5 (2)
4 61°9′16.60″N/ 45°31′0.78″W River 9 3 (1) 6 (2)
5 61°8′48.30″N/ 45°37′5.56″W River 5 0 5 (1)
6 61°7′12.81″N/ 45°36′43.58″W River 15 6 (0) 9 (0)
7 61° 0′49.54″N/ 45°26′56.27″W River 1 1 (1) 0
8 60°57′8.45″N/ 46°1′1.17″W River 2 0 2 (0)
9 60°54′37.64″N/ 46°12′0.45″W River 2 2 (2) 0
10 60°50′53.21″N/ 46°23′27.89″W River 2 2 (1) 0
11 61°15′33.32″N/ 45°32′3.00″W Lake 3 3 (3) 0
12 61°6′49.44″N/ 45°35′54.42″W Lake 6 6 (6) 0
13 61°0′28.63″N/ 45°26′38.13″W Lake 2 2 (2) 0
14 60°58′19.75″N/ 45°46′51.90″W Lake 3 0 3 (0)
15 60°53′51.12″N/ 46°13′22.58″W Lake 1 1 (1) 0
16 60°52′51.67″N/ 46°14′25.95″W Lake 3 2 (1) 1 (0)
17 60°51′45.22″N/ 46°21′17.72″W Lake 1 1 (1) 0
18 60°56′34.35″N/ 46°40′33.60″W Lake 5 0 5 (2)
Total number of clutches 88 32 (21) 56 (13)



927Environ Biol Fish (2023) 106:923–932 

1 3
Vol.: (0123456789)

Fig. 2  a An exemplary egg 
picture used to measure the 
projective area of eggs. b 
The relationship between 
female body length and 
clutch-mean egg diameter. 
The regression line of 
clutch-mean egg diameter 
(Y) on female body length 
(X), Y = 0.14 × X + 0.34 
(see also Table 2). c The 
relationship between female 
body length, life history 
forms, and within-clutch 
variation. The regression 
lines of within-clutch 
variation (Y) on female 
body length (X), anadro-
mous (filled blue circles): 
Y =  − 0.17 × X − 0.94, 
resident (filled red circles): 
Y =  − 0.17 × X − 1.02 (see 
also Table 2). Note that 
X-axes and Y-axes are log-
scaled in Fig. 2b, c
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to select for the factors that best explain the vari-
ables of interest. Secondly, we used an AIC-based 
approach to compare which models are best predic-
tors, i.e. more plausible, using the dredge function 
in the MuMIn package (Barton 2020). Here, we 
considered models with a delta AICc less than two 
as plausible models.

Results

The mean clutch-mean egg diameter was 
4.92 ± 0.45  mm (mean ± SD) and ranged from 3.90 
to 5.90 mm. Mean within-clutch variation (CV) was 
0.04 ± 0.01 and ranged from 0.03 to 0.08.

For clutch-mean egg diameter, in both the final 
model of backwards model selection and the best 
plausible model of the AIC-based approach, only 
female body length was included as an explana-
tory variable (Fig.  2b, Table  2). Specifically, 

Table 2  Summary of the final models explaining variation in the clutch-mean egg diameter and degree of within-clutch variation. 
Results of analysis of variance test statistics are described in the main text

Explanatory variables Estimate SE df t P

Clutch-mean egg diameter Final model of backwards model selection and lowest AICc model of AIC-based approach 
(ΔAICc = 0, ω = 0.23)
  (Intercept) 0.34 0.039 86 8.64  < 0.0001
  Body length 0.14 0.016 86 9.01  < 0.0001

Second lowest AICc model of AIC-based approach (ΔAICc = 0.82, ω = 0.15)
  (Intercept) 0.34 0.039 85 8.59  < 0.0001
  Body length 0.15 0.016 85 9.09  < 0.0001
  Spawning environment (river)  − 0.0082 0.0071 85  − 1.16 0.25

Third lowest AICc model of AIC-based approach (ΔAICc = 1.47, ω = 0.11)
  (Intercept) 0.32 0.044 85 7.34  < 0.0001
  Body length 0.15 0.020 85 7.53  < 0.0001
  Number of measured eggs  − 0.00024 0.00029 85  − 0.84 0.40

Fourth lowest AICc model of AIC-based approach (ΔAICc = 1.93, ω = 0.086)
   (Intercept) 0.30 0.078 85 3.89 0.0002
  Body length 0.16 0.030 85 5.17  < 0.0001
  Life history forms (resident) 0.0063 0.012 85 0.51 0.61

Within-clutch variation Final model of backwards model selection and lowest AICc model of AIC-based approach 
(ΔAICc = 0, ω = 0.13)
   (Intercept)  − 0.94 0.27 85  − 3.52 0.00069
  Body length  − 0.17 0.10 85  − 1.68 0.096
  Life history forms (resident)  − 0.087 0.042 85  − 2.09 0.040

Second lowest AICc model of AIC-based approach (ΔAICc = 0.09, ω = 0.12)
   (Intercept)  − 1.39 0.011 87  − 129  < 0.0001

Third lowest AICc model of AIC-based approach (ΔAICc = 0.68, ω = 0.091)
   (Intercept)  − 1.38 0.013 86  − 102.47  < 0.0001
  Life history forms (resident)  − 0.028 0.022 86  − 1.24 0.22

Fourth lowest AICc model of AIC-based approach (ΔAICc = 1.53, ω = 0.060)
  (Intercept)  − 1.40 0.017 86  − 80.69  < 0.0001
  Egg collection methods (press-

ing females’ abdomen)
0.018 0.022 86 0.83 0.41

Fifth lowest AICc model of AIC-based approach (ΔAICc = 1.62, ω = 0.057)
  (Intercept)  − 1.40 0.021 86  − 67.87  < 0.0001
  Spawning environment (river) 0.019 0.024 86 0.78 0.44
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clutch-mean egg diameter increased with female 
body length (F1, 86 = 81.21, P < 0.0001). The AIC-
based approach found three more models with delta 
AICc less than two (Table  2). In addition to female 
body length (P < 0.0001), the spawning environment 
(F1, 85 = 1.34, P = 0.25), the number of measured eggs 
(F1, 85 = 0.71, P = 0.40), and the female life history 
forms (F1, 85 = 0.26, P = 0.61) were included in the 
second, third, and fourth lowest delta AICc models, 
respectively (Table 2).

For within-clutch variation (egg diameter CV), 
in both the final model of backwards model selec-
tion and the best plausible model of the AIC-based 
approach, female body length, and life history forms 
were included as explanatory variables (Fig.  2c, 
Table  2). The degree of within-clutch variation of 
anadromous females was higher than that of resident 
females for a given female body length (F1, 85 = 4.36, 
P = 0.040). The effects of female body length were 
statistically non-significant (F1, 85 = 0.030, P = 0.86). 
The AIC-based approach found four more models 
with delta AICc less than two (Table 2). In the sec-
ond lowest AICc model, no explanatory variable was 
included (Table 2). While the effects were statistically 
non-significant, the life history form (F1, 86 = 1.53, 
P = 0.22), the egg collection methods (F1, 86 = 0.69, 
P = 0.41), and spawning environment (F1, 86 = 0.60, 
P = 0.44) were included in the third, fourth, and fifth 
lowest AICc models, respectively (Table 2).

Discussion

Although the diversity in feeding ecology, habitat use, 
life history forms, and their associated morphology of 
matured individuals has been documented in Arctic 
charr (Jonsson and Jonsson 2001; Sigursteinsdóttir and 
Kristjánsson 2005; Kristjánsson et  al. 2012; Saltykova 
et al. 2017; Doenz et al. 2019), we know relatively little 
about whether and how such diversity is related to vari-
ation seen/exhibited early in life (but see, e.g. Ahi et al. 
2014; Kapralova et al. 2015; Beck 2019; Beck et al. 2019, 
2020). Here, using Greenlandic Arctic charr, we described 
variation in egg size, i.e. a key component determining 
early life history traits, and explored the link between egg 
size variation and female body length, life history forms 
(i.e. anadromous vs. resident), and spawning habitat use 
(i.e. lake vs. river). Similar to the previous studies using 
salmonid fishes, including Arctic charr (Rollinson and 

Rowe 2016; Lasne et  al. 2018; Beck 2019), we found 
that female body length can be a key factor in explaining 
variation in clutch-mean egg diameter. Moreover, we also 
found that female life history forms can be a key factor in 
explaining the degree of within-clutch variation.

The age of females is often correlated with their 
body size, thus confounding the effects of body size 
on egg size. For example, Lasne et al. (2018) showed 
that larger Arctic charr females tend to produce 
smaller eggs than smaller females at a given age, 
although a positive relationship between egg size 
and female body size was also detected when pooling 
all data, similar to the present study. We do not have 
data on the age of females in the present study, and 
thus, we cannot tease apart the effects of female body 
size and age on egg size. In future studies, it would 
be interesting to examine how body size and age dif-
ferently affect egg size and to explore the adaptive 
significance of egg size adjustment depending on 
maternal body size and age.

We did not detect any significant effects of female 
spawning habitat use and life history forms on the 
clutch-mean egg diameter. Given that egg size plays 
an important role in determining early behavioural 
and morphological traits that correlate with feed-
ing ability as well as early growth and development 
rates (Leblanc et  al. 2011; Cogliati et  al. 2018; Self 
et al. 2018; Beck 2019; Beck et al. 2020), the result 
suggests a possibility that female body size variation 
could be a direct and major cause of variation in vari-
ous early life history traits. In contrast to the present 
study, using Icelandic Arctic charr, Beck (2019) found 
significant differences in clutch-mean egg diameter 
among anadromous and several distinct resource 
morphs even after accounting for female body size. 
Specifically, river anadromous females produced 
smaller eggs than females of several resource morphs 
in lakes. In the present study, the second lowest AICc 
model included the spawning environment. Consist-
ent with the previous study, river spawner produced 
marginally smaller eggs than lake spawner, although 
the effect of spawning environment on clutch-mean 
egg diameter was not significant (Table 2). Based on 
the theories of egg size evolution (Smith and Fretwell 
1974; Parker and Begon 1986; Venable 1992), 
smaller eggs are generally predicted to be favoured 
in benign environments. All this considered, as the 
previous study suggested (Beck 2019), a fluvial envi-
ronment could be a favourable condition for alevin 
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and fry of Arctic charr. In addition, however, there 
is also a possibility that the pattern is reflecting the 
female physiological conditions, which is susceptible 
to ambient environments, including food condition, 
temperature, and river discharge (Jonsson and Jons-
son 1999; Campbell et  al. 2006; Braun et  al. 2013; 
Jonsson et al. 2014).

We found that anadromous females produced more 
variable-sized eggs within a clutch than resident 
females for a given female body length. Similar to 
the present study, Beck (2019) showed that anadro-
mous Arctic charr females produced more variable-
sized eggs within a clutch than females of several lake 
resource morphs after accounting for female body 
length. The consistent pattern of anadromous females 
having clutch with a higher degree of within-clutch 
variation suggests common adaptive advantages that 
anadromous females can obtain in producing variable 
eggs within a clutch and/or physiological constraints.

The most conservative explanation for the varia-
tion in the degree of within-clutch variation between 
anadromous and resident females and along female 
body length is that the pattern is just reflecting the 
difference in female physiological conditions, which 
are susceptible to growing and feeding environments 
(Einum and Fleming 2004; Jastrebski and Mor-
bey 2009). However, the difference in the degree of 
within-clutch variation between anadromous and res-
ident females can also be interpreted in an adaptive 
context. For example, it is predicted that females can 
obtain higher geometric average offspring survival in 
less predictable environments by producing variable-
sized offspring within a clutch, since they decrease 
the likelihood of complete reproductive failure in any 
single year (i.e. diversified bet-hedging: Einum and 
Fleming 2004; Marshall et  al. 2008). The benefit of 
producing a clutch consisting of variable-sized eggs 
may thus be higher for individuals breeding once in 
a lifetime, since complete failure in one breeding sea-
son of individuals breeding once in lifetime results 
in zero lifetime reproductive success. In many itero-
parous salmonid fishes, the proportion of repeated 
breeding of resident life history forms is higher 
than that of anadromous life history forms (Fleming 
1998). All this considered, it is expected that ana-
dromous females should produce a clutch with larger 
within-clutch variation than resident females. In 
future studies, it would be interesting to collect long-
term data on egg size and analyse if the differences in 

within-clutch variation between life history forms are 
consistent over time.
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