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Abstract

Reactive transport models are important numerical tools to support decision making in many fields,1

such as herbicide use regulation. Though, models may be affected by multiple sources of uncertainty.2

Therefore, uncertainty and sensitivity analyses should become the practice to assess the confidence of3

such models. Here, the uncertainty in steady-state concentrations of glyphosate (GLP) and its metabolite4

aminomethylphosphonic acid (AMPA) was assessed using a reaction network that accounts for GLP and5

AMPA biotic and abiotic degradation pathways in soil including biological oxidation or hydrolysis in6

aerobic conditions via metabolic or cometabolic reactions. The mathematical framework is based on7

Michealis-Menten-Monod kinetic equations, which allow to account for microbial strategies to biode-8

grade contaminants. Chemical oxidation is assumed to occur independently from environmental condi-9

tions and resulted in a reduction of GLP concentration up to 15% when it was accounted for. The wide10

spectrum of interconnected catabolic reactions, each occurring at a different rate, as well as uncertainties11

in kinetic parameters estimation, suggest variability in modelling outcomes, which were addressed by12

means of a sensitivity analysis. In particular, the tested reaction network was mainly driven by GLP13

oxidation to AMPA; increasing the corresponding rate constant or decreasing the half-saturation con-14

stant resulted in a substantial decrease of GLP concentration but to an increase in AMPA concentration.15

Identification of the conditions responsible for GLP degradation to non-toxic metabolites, as well as for16

AMPA production and degradation, can allow to forecast unexpected consequences of GLP use and to17

design optimal land management and bioremediation plans.18
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1. Introduction19

The environment is being more and more exposed to new synthetic molecules developed to achieve20

specific purposes [46]. Those molecules may have unforeseen effects to human health [46] and ecosys-21

tem services (e.g., Rose et al. [73] reviewed the consequences of herbicide pollution). Prediction of22

the dynamics of those molecules in the environment together with an estimation of the associated un-23

certainty can allow to quantitatively regulate the use of those molecules and to evaluate adoption of24
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precautionary measures for health protection and pollution control. Regulations report maximum levels25

of known contaminants in water resources [29, 23], air [24, 28], and food [84, 71], while, surprisingly,26

no safety limits exist for soil residues. Indeed, a recent report by the United Nations Food and Agricul-27

ture Organization [72] brings to light the hidden reality of soil pollution. Agricultural lands are stressed28

by applications of agrochemicals, and in particular by herbicides [55] to address farmer needs and to29

overcome weeds resistance. Multiple classes of stakeholders are involved in the process of herbicide30

formulation, approval, use, and monitoring. Modellers can potentially collaborate with stakeholders in31

each process to build robust and accurate mechanistic representations of herbicide dynamics in the en-32

vironment [56, 27]; these models can be used as decisional tools for each class of stakeholders given33

that model outcomes can be tailored to answer specific inquiries. Given the important role numerical34

models can play, their confidence should be consistently evaluated [9]. Nowadays, the interplaying pro-35

cesses affecting herbicides degradation have been comprehensively integrated in models [43, 45, 85].36

For example, the same herbicide can be biodegraded along different pathways depending on the species37

of microorganisms involved and their current metabolic requirements. In situ conditions such as avail-38

ability of additional carbon (C) sources or the presence of inhibitors, can cause switches in degradation39

pathways and affect catalytic rates. Soil organic and inorganic matter may possess catalytic sites, which40

enhance herbicides degradation, or adsorption sites, which impair it by reducing herbicides availability.41

Reactive models have been developed to account for the spectrum of metabolites liberated during degra-42

dation of the parent compound. Each molecule may undergo biotic and abiotic degradation and may43

have different susceptibility to be transported by soil water. More importantly, under the perspectives44

of health protection and pollution control, toxic metabolites contribute to dietary risk assessment [25] as45

well as surface water quality risk assessment [61]. Recent developments in coupling reaction networks46

with ecohydrological processes have improved the capability to predict herbicide dynamics in spite of47

the increased complexity in model structure (e.g., PRZM [17], MACRO [39], SWAT [4], HYDRUS48

[47], MODFLOW-RT3D [40], TOUGHREACT [87], and BRTSim [54]). These types of simulations49

need to be endowed with uncertainty and sensitivity analyses to account for errors in data collection,50

parameter value estimation, and model structure, which usually result in nonlinear model responses and51

unforeseen outcomes [20, 70, 76, 88]. Other benefits from using this approach regard improvements in52

model structure resulting in a more robust or simpler model than the one previously conceived, a bet-53

ter understanding of the modelled system, and the capability to design effective land management plans54

and bioremediation strategies [20, 56, 62, 70, 88]. It is evident that such objectives can be successfully55

achieved only if an interdisciplinary approach is taken; that is, when experts in different fields collabo-56

rate by sharing their technical knowledge to develop comprehensive numerical models. Note that, the57
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capability to communicate effectively and comprehensibly is fundamental.58

This paper introduces to good modelling practices in modelling herbicide biochemical reactions in59

soil. We provide a practical and simplified example of uncertainty and sensitivity analyses of a glyphosate60

(GLP) biochemical reaction network. In a concurrent work, we are testing the presented GLP reaction61

network under the effects of varying eco-hydrological boundary conditions using the sensitivity indices62

AMA [22], which are mentioned in this manuscript together with other indices.63

2. Methods64

A modelling study may involve several phases and multiple classes of stakeholders. The following65

sections will provide an overview of how and why stakeholders may use modelling to make decisions,66

the available numerical models, the steps to develop, integrate, and manage reaction network in models,67

and the importance of clear communication of results.68

2.1. Stakeholders69
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Figure 1: Solid black lines represent the possible interactions amongst stakeholders during the process for herbicides approval,
while dashed black lines indicate interactions after approval. Scheme assuming adoption of precautionary principle, that is, pre-
liminary information concerning herbicides safety must be available. Names, roles, and actions of some identified stakeholders
are indicated, as well as the corresponding potential use of numerical modelling to support actions.

Herbicides (re)approval process can be specific for each country. Generally, the process is multi-70

step, sometimes iterative, and involves Research and Development (R&D) centers, designated experts71

of concerned countries, safety authorities, public audience, and policy makers (Figure 1). For exam-72

ple, European countries adhere to the precautionary principle, meaning that in the absence of scientific73
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evidence about safety, one situation can pose a risk. This approach is fundamental when policy mak-74

ers decide whether to (re)approve a herbicide. The process is described under the Regulation (EC) No75

1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of76

plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC77

(http://data.europa.eu/eli/reg/2009/1107/2014-06-30). R&D laboratories formulate new78

herbicides and collect preliminary data about their biogeochemical characteristics under controlled con-79

ditions in the laboratory and in the field (Figure 1). Next, modelling of molecule dynamics under pre-80

scribed scenarios is carried out. The results are documented and submitted to risk assessors, who evalu-81

ate the completeness of the data provided, carry out their own risk assessments, and, in cooperation with82

other stakeholders, produce a peer reviewed report to be submitted to regulatory bodies. General public83

can access available documents on herbicide and have an opinion, which may have a role in questioning84

the licensing of herbicides (Figure 1). Yet, all organizations and authorities, at national and international85

level, may contribute by providing an additional portfolio of evidence with regard to the herbicide un-86

der assessment. Once a herbicide is approved by regulatory bodies, farmers may want to apply it at87

the recommended rates, which may be adjusted based on in situ conditions (Figure 1). Governmental,88

private, or university laboratories may carry out independent studies to characterize herbicide properties89

in the environment. Based on those findings, modellers use numerical solvers with the aim to repro-90

duce the data observed about herbicide levels. Those models can be site specific; therefore, they can91

be used to design and optimize land managements plans by officers. Environmental protection agencies92

(EPAs) are particularly involved in this step because they have an active role in monitoring contaminants93

concentration in the environment to safeguard human health and ecosystems and possibly to elaborate94

documentation concerning soil pollution by herbicides. Food authorities and research centers monitor95

herbicide levels in the workplace, in food, and in feedstuffs. In case the residues exceed safety thresholds96

they may deliberate more stringent thresholds and suggest management practices aiming at reducing the97

residues in the workplace and along the food chain.98

2.2. Modelling process99

Many processes can affect herbicide activity and persistence in soil, such as land management oper-100

ations, biogeochemical reactions, and variability in meteorological events. The development of a robust101

model can be complex. Moreover, each stakeholder may have different understanding about any complex102

system and may seek for different answers from the modeller. For example, farmers may be interested103

in practical advice on what herbicide to apply, when, and at what rate to guarantee crop protection while104

avoiding to exceed maximum herbicide concentration in food. Land management officers may be in-105

terested in comparing different crop management plans to find the most advantageous one considering106
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Figure 2: (a) Sketches of observed data for different processes over time (left gray boxes). Multiple numerical models may
be used to describe the same process (yellow boxes). Models may contain a different number of parameters that should be
estimated. Parameter uncertainty analyses carried out for each model assess the confidence of the model in reproducing the
data (green boxes). Parameter sensitivity analyses assess the contribution of each parameter variability to the model output
(right gray boxes). (b) The most appropriate models selected to describe each process are coupled together to develop a multi-
model. Modelling scenarios include other driving processes; simulations are run. (c) Uncertainty analyses show the probability
density functions of the likely outcome due to variability in parameters. Sensitivity analyses allocate the sources of uncertainty
amongst the components of the model structure.

multiple objectives including health, sustainability, and environmental protection. EPAs may be inter-107

ested in building an efficient monitoring network and may use modelling to localize the most sensitive108

and informative sites where to collect data on herbicide environmental levels; these sites may provide an109

early warning in case of contamination.110

Herbicide dynamics are affected by a high level of interacting processes in agricultural soils; there-111

fore, robust predictions of herbicide fate in the environment are particularly difficult to make. The mod-112
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eller should gather all the possible knowledge about herbicide interactions in the rhizosphere such as:113

sorption, biochemical degradation, toxicological effect to micro- and macroorganisms, effects on nutri-114

ents cycle, and plant responses. However, those interactions may vary spatially and temporally, while115

additional processes contributing to herbicide dynamics may only be brought to light at a future time.116

Depending on the scenario being investigated, the modeller may need to account for additional processes117

other than biogeochemical ones, such as water dynamics. The modeller may find that one process can118

be described by a suite of solvers (Figure 2a, yellow panel). Selection of the most suitable solver may119

be achieved based on expert judgment [13, 64], who assesses the mathematical modelling, and by carry-120

ing out preliminary analyses to test model robustness against available observations, as well as to rank121

parameters contribution to outcome variability. Later, the selected models, each describing a single pro-122

cess, are coupled with each other. This task results in the development of a multi-model and it allows123

to solve biogeochemical reactions coupled with hydrological forcing, at the requested detail over space124

and time, for example. It is common that several models can adequately describe one single process in125

hydrology[10] and in biogeochemistry[83]. Then, each single hydrological and biogeochemical model126

could be differently combined to frame several multi-models, and each multi-model will be separately127

validated. Also, each single model should be independently characterized using specific observations to128

quantitatively allocate the contribution of single processes to a target outcome, such as herbicide concen-129

tration (Figure 2). This would allow to increase confidence in the formulated multi-model.130

For reliability, models require to be calibrated and validated and different approaches can be used.131

For example, the available dataset (e.g., herbicide concentration at some locations and over time) is132

separated in two or more sets: the calibration set is used to calibrate the parameters and to assess the133

correctness of the model structure, while the calibrated model will be used to predict the observations134

contained in the validation set. For this, field surveys to measure herbicide levels and soil characteristics135

are necessary. However, these studies can be expensive and time-consuming; because of the lack of136

resources to carry out extensive monitoring campaigns, field data are usually poor in spatial and temporal137

resolution. Thus, modellers usually apply biochemical reaction developed under controlled conditions138

and couple them with hydrological boundary conditions, which are more likely to have been measured139

and validated. Modelled herbicide concentrations may then be compared with values reported at sites140

with similar meteorological and hydrological conditions.141

After model validation, simulations are run to meet the objectives and requirements from the stake-142

holders. Typical outputs show the concentrations of the herbicide and its metabolites over space and143

time, partitioning of the molecules in their aqueous, adsorbed, and gaseous phases, and the molecules144

degradation potential.145
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At this stage, a good modelling practice is to carry out both uncertainty and sensitivity analyses (Fig-146

ure 2). The former quantifies the model confidence in terms of output variability and can be represented147

using probability density functions (pdf ). The latter ranks the contribution of each parameter input to the148

output variability, thus identifying and ranking dominant processes in the model system. These analyses149

will provide a spectrum of possible outcomes, which may be used to predict herbicide activity in soil un-150

der varying conditions, to design bioremediation strategies, and to inform policy makers about herbicide151

(re)approval. Debates about herbicide (re)approval and use can be very intense because herbicides allow152

to maintain good crop yields but may have significant impacts on human health and ecosystem services.153

Clear, explicit, and unbiased studies are crucial for making informed decisions in relatively short time.154

2.3. History of numerical solvers155

Numerical models can be used to (re)approve herbicide use, assess consequences of policy and her-156

bicide alternatives [56] or changes in environmental conditions [80], raise awareness in potential con-157

tamination over the long term, determine areas of intervention, and suggest mitigation strategies. Better158

technologies allow to measure more mechanisms with higher accuracy. For instance, degradation ex-159

periments coupled with mass spectrometry allow to identify metabolites produced during degradation160

of the parent compound. Each theoretical and technological step forward also bring an additional level161

of complexity in the modelling phase. Before the development of numerical approaches, analytical so-162

lutions for herbicide disappearance were derived, such as first-order kinetic equations. These solutions163

are still applied nowadays [33, 78] because they can show good agreement between predicted and ob-164

served in situ herbicide concentrations. However, they cannot distinguish nor quantify the importance of165

each process involved in herbicide disappearance. To overcome these limitations, a suite of numerical166

solvers have been developed. Nolan et al.,[63] screened 20 available numerical models and reviewed in167

further detail 7 of them based on their capabilities for predicting environmental concentrations of agri-168

cultural chemicals. In their review, they concluded that informative mathematical models should account169

for water movement, sorption, biogeochemical transformation and degradation, and metabolite produc-170

tion. Numerical models are continuously developed in order to easily implement comprehensive reaction171

networks with the aim to accurately described herbicide dynamics and their feedbacks on the network172

itself. Indeed, herbicides toxicity to specific microbial populations may cause detrimental effects at the173

ecosystem level (e.g., sulfonylurea herbicides substantially impair the soil nitrogen cycle [73]). Numer-174

ical solvers have also become more user-friendly as a result of the close collaboration between software175

developers and end-users. Typical improvements may regard:176

• Ease of change inputs, boundary conditions, settings, and parameters;177
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• Ease of integrate additional processes affecting the reaction network, which can be achieved by devel-178

oping an open source software or by providing technical support;179

• Availability of clear software documentation to provide insights on mathematical modelling, hence180

allowing to understand the confidence and the validity range of the model181

• Presentation of model outputs in informative manner both textually and graphically to address users182

inquiries.183

2.4. Uncertainties: sources and their management184

In the context of biochemistry, uncertainty may refer to error in laboratory procedures, parameter185

estimation in the calibration phase, and lack of knowledge of all the possible biogeochemical processes186

and their spatial and temporal variability in the modelling phase. Examples regard the lack of detailed187

quantitative description of microbial processes (e.g., microbial dynamics affected by varying environ-188

mental conditions, exposure to exogenous and endogenous stressors such as toxic molecules, or varying189

amounts of nutrients, etc.) or the relationships within microbial communities that may affect microbial190

activity towards other relevant processes. Uncertainties will result in variability of modelling outcome191

and deviation from expectation may be large. To account for laboratory uncertainties, experiments are192

usually carried out in triplicates, and results are reported with their standard deviation. For example, the193

output of a herbicide biodegradation experiment is sketched in Figure 2a as Process 1, where concentra-194

tions are monitored over time. In this case, the modeller would choose some kinetic model to describe the195

observed average concentrations to estimate the model parameters. The reported variability in measured196

concentrations may be taken into account in the estimation procedure. The typical approach for param-197

eter estimation is by inverse problem solution, where parameter values are fine-tuned by minimizing the198

error between observations and predicted values. This numerical procedure allows to calculate some199

calibration statics, such as parameter uncertainties and cross correlation amongst parameters. These200

statistics already provide an indication about the robustness of the model. Single reactions integrated201

in biochemical networks or each parameter part of the equation may contribute to output uncertainty to202

different extents. Each parameter is inherently associated with a probability distribution, which may be203

assumed based on expert judgments or on the statistics generated after parameter estimation. In the litera-204

ture, it has been assumed that kinetic parameters can follow several distributions including Gaussian [44]205

and uniform [68]. Gaussian distributions may represent well laboratory studies where bacteria achieve206

similar kinetic performances, while uniform ones may encompass environmental variability. However,207

no explicit studies have investigated parameter variability in real agricultural conditions [18]. Assump-208

tions made by experts of natural systems can assist to overcome that lack of knowledge. For instance,209
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microorganisms may adopt different strategies depending on environmental conditions to make the most210

of the bioavailable resources. Some bacteria may enhance the rate at which they consume a herbicide,211

while others may enhance their affinity toward the herbicide [65], hence affecting herbicide concentra-212

tion in the environment. Those strategies cannot be captured by first-order kinetic approaches, but they213

can within the Michaelis-Menten-Monod kinetic framework, which is explained in Section 3.1.2.214

When coupling biogeochemical processes with others, boundary conditions may strongly affect the215

expected outcome. These driving forces include, but are not limited to, meteorological and hydrological216

conditions, changes in land use and land management, and spatial variability in soil characteristics. As217

more processes are deemed fundamental to accurately describe some natural system, so the uncertainty218

associated with the model structure increases, which should be thoroughly investigated.219

2.5. Model uncertainty assessment: methods and insights220

The practice of model uncertainty assessment is becoming more important over time [31]. Many221

model uncertainty assessment techniques exist and are reviewed in [70] and [69]). Those techniques can222

be applied to assess reactive transport processes too. Once the biogeochemical model is calibrated and223

validated, a distribution is assigned to input parameters, from which parameter values are extracted using224

some technique. Random sampling is one option, but advanced sampling methods [15, 16] allow to225

adequately sample the input parameter space, thus allowing to reduce the number of simulations needed226

to obtain a robust outcome in terms of a defined model target output(s) (e.g., concentration of herbicide or227

microbial biomass). Note that, cross-correlation amongst parameters should be specified and accounted228

for in the sampling.229

Different approaches to perform sensitivity analyses should be followed depending on the model230

output space. Monotone spaces may be assessed using differential analysis. With this technique, the231

modeller calculates multiple model outcomes from a small neighborhood of the input parameters (Local232

sensitivity analysis). Input values are generally varied one at a time so that the partial derivative of the233

output with respect to the input can be calculated. However, as demonstrate in Saltelli et al.,[75], this234

approach is not suitable for nonlinear models and complex output spaces, for which Global sensitivity235

analyses are preferred. Usually, this technique explore perturbations of input parameters using a Monte236

Carlo analysis followed by variance-based methods to identify the most influential parameters. The237

influence of one or more parameters on the variance of the output can be quantified through Sobol’s238

indices [79], the family of AMA indices [22], the Fourier Amplitude Sensitivity Test [19], and others.239

Biochemical reaction networks may contain many uncertain parameters. To decrease computational240

time, it could therefore be convenient to carry out two-steps sensitivity analyses. In the first phase,241

referred to as parameter screening phase, modellers identify and neglect those parameters with low in-242
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fluence to the output. It is common to resort to a differential analysis because this technique is less243

time-consuming and generates less data than a Monte Carlo analysis. The second step consists of the244

realization of the variance based global sensitivity analysis on the predominant parameters.245

In most real life modelling applications, the modeller assembles multiple single models to develop246

a multimodel system. For example, when biochemical reaction networks are coupled with hydrological247

models to predict herbicide persistence and dispersion in the environment. Global sensitivity analyses248

allow to rank each hydrological and biogeochemical process to outcome variability and to assess the249

correctness of model structure. We remind the reader that a suite of solvers may be used to describe the250

same process. In this case, uncertainty analyses are useful to identify the most appropriate solver for251

each process. The correctness of model structure can be assessed by means of the process sensitivity252

index proposed by Dai et al. [20] and of the Framework for Understanding Structural Errors applied in253

Borgonovo et al. [12]. Finally, sensitivity analyses may allow to determine the set of parameters that if254

optimized would minimize herbicide concentration at a specific location.255

The sensitivity of the model output with respect to particularly important parameters may require256

further work. In case parameter variability results in a wide range of possible outcomes, then the modeller257

may want to carry out additional investigations with the aim to reduce the parameter uncertainty. On the258

contrary, a narrow range of possible outcomes may induce the modeller to simplify the model. Model259

simplification can be achieved by reducing the number of redundant or negligible parameters or by260

creating a surrogate model. A surrogate model is a simple mathematical function, typically a polynomial,261

that approximate the response of the numerical model given the input, within a prescribed tolerance. Both262

methods would result in a simpler system, less computationally demanding and time-consuming.263

2.6. Data management and update264

Biochemical reaction networks continuously evolve as new processes are found. Also kinetic param-265

eters should be updated as microorganisms may adapt to a herbicide and enhance their activity towards266

herbicide degradation [3]. As a result, biochemical reaction networks should be kept up-to-date. In-267

terested parties can be universities, research centers, and private consultants because all pursue interest268

in discovering new biochemical mechanisms and developing new strategies to optimize some desired269

process [86]. Outputs can then be calculated to provide farmers, policy makers, and the public audience270

with current comprehensive information. A greater sharing of data on kinetic reactions, and therefore271

data availability in the literature (e.g., [42, 43, 45, 50]), is key to the success of continuous development272

of mathematical models.273
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2.7. Model framework and output communication274

Stakeholders such as farmers, policy makers, and the public audience are the end-users of reactive275

transport simulations carried out under different scenarios. The modeller should aim to tailor the commu-276

nication of model formulation and output to address stakeholders knowledge and inquiries. Information277

about herbicide concentration in the environment and their effect to human health and ecosystem services278

is vast. Policy makers may therefore be interested in clear, explicit, simple, concise, informative, and279

comprehensive documents to describe modelling assumptions and scenarios, and to report the consequent280

predicted concentrations. Comparative numerical analyses may be included to capture the implications281

of policy alternatives.282

3. The glyphosate case study283

In the following section, we will assess the uncertainties of a GLP biochemical reaction network.284

Despite the rather simplistic analysis carried out in this study, the contribution of kinetic parameter un-285

certainty to predicted soil concentrations of GLP and AMPA was quantified, the most significant biotic286

process regulating mass fluxes from GLP to AMPA was determined, and the importance of chemical pro-287

cesses for GLP and AMPA removal was shown. The effects of other environmental conditions including288

pH, O2 levels, and varying availability of an additional carbon source and birnessite mineral to model289

outcomes were investigated in a comprehensive in-silico analysis in la Cecilia et al. [45].290

3.1. Methods291

3.1.1. Glyphosate reaction network292

The GLP reaction network was developed in la Cecilia et al. [45] using biological and chemical293

catabolic pathways reported in the literature and following the validation by construct approach pro-294

posed by McCarl and Apland [58] (References in Table 1). The kinetic parameters corresponding to295

each reaction were estimated using laboratory observations contained in the sourced references. The296

biochemical reactions and the later developed GLP reaction network were published on peer-reviewed297

scientific journals, which can give confidence in the formulated biochemical system.298

Soil bacteria can degrade GLP along two pathways: one produces aminomethylphosphonic acid299

(AMPA, P1R1 and P1R1s, Figure 3) and the other produces sarcosine (SRC, P2R1s, Figure 3) (Ref-300

erences in Table 1). Sarcosine does not raise health issues, and therefore, its predicted concentra-301

tions will be neglected in this analysis, as it is also neglected in the glyphosate registration process302

[2, 26]. In contrast, AMPA is toxic and it has been shown to persist longer than GLP in the environment303

[34, 77, 78, 82], Therefore, the conditions leading to AMPA production and its fate in the environment304
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has to be understood. Some bacterial strains can biodegrade it to non-toxic metabolites (P1R2s, Fig-305

ure 3) but this process occurs at a slow rate. In fact, also AMPA has been found in the environment306

[81, 66]. Li et al., [51] and Paudel et al., [67] have shown GLP and AMPA chemical degradation (P2R1c307

and P1R2c respectively, Figure 3) catalysed by Mn3+ and Mn4+ ions contained in birnessite mineral308

((Na0.3Ca0.1K0.1)(Mn3+, Mn4+)2O4 · 1.5H2O).309

PO4
3-

H+

CH2O

A
n
a
e
ro

b
ic

Sarcosine

C3H7NO2

Glyphosate

C3H8NPO5

GLP

Aq,
p

aq

SRC

Aerobic

C
H

2 O

O2

P2R2a

P2
R
2b

A

Glyoxylate

C2H2O4

GLX

aq

C
H

2
O

Amino-methyl-

phosphonic acid

CH6NPO3

AMPA

Aq,
p

P1R2s

A
e
ro

b
ic

D

Phosphono-

formaldehyde

CHPO4

aq

Aerobic

Head 

compound

Final 

product

Intermediate 

compound

Aliphatic

Inorganic

--- Compound short name

Organophosphate

Compound phase

(aqueous, protected)

aq,
p

C

A BHyO

B BAER

BANAER

D Ochrobactrum anthropi GPK 3

E Birnessite (Mn3+, Mn4+ containing 

mineral)

Biotic reaction

Abiotic reaction

Solid line

Dashed line

P-R- Reaction coordinates

Uncertain
Dashed line

Inhibitor

P2R1c

H+

E

PO4
3-

CH2O
O2

A

H+

CO2

P1R2c

H+

E

Glycine

C2H5NO2

GLY

aq

Anaerobic
Aerobic

O2H2O

CO2 CH4

P1R3b P1R3a

O2

B

Aerobic

CO2

H2O

Methylamine

CH5N

MTH

aq

Anaerobic

H2O

P2R3b
C

Aerobic

P1R1s

CH2O
O2

A
Aerobic

P1R1

CO2

H2O

O2

A

CH2O
O2

H+

CO2

P2R1sPO4
3-

A
e

ro
b

ic

D C B

B

CH2O
aq

Available as electron donor 

(e.g., denitrification, 

sulphate reduction)

CO2

P2R3a

CH2O

C

PO4
3- Aq,

pNH3

aq

Figure 3: GLP biochemical degradation reaction network in soil from [45]. Extended biochemical reactions and the corre-
sponding kinetic parameters are reported in Table 1.

3.1.2. Numerical solver310

BRTSim-v2.2 ([based on 52]) is a 1-D general-purpose multiphase and multicomponent bioreaction311

transport solver for variably saturated soil systems. The soil moisture dynamics are dealt with a finite312

volume scheme that solves the Richards equation along the vertical direction. BRTSim can account for313

any number of chemical and biological species. Equilibrium reactions can be defined for aqueous com-314

plexation, ion exchange, gas dissolution, and mineral adsorption and are calculated in BRTSim using315

the mass-action law. Transport of chemical species is accounted for by the Darcy’s advection and Fick’s316

diffusion. Note that advection of gas species in the gas phase was neglected given the time scales of317

interest in this work. Chemical and biochemical reactions involving primary species and microbial func-318

tional groups, described in this solver as primary species, are accounted for in BRTSim by means of the319

Michaelis-Menten-Monod (MMM) kinetic equations [7, 8, 53, 59], which can be written in their generic320
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Equation Pathway Biochemical aqueous reaction Kinetic Parameters Functional Specific(n)

group biomass

affinity

µ K KI Y Y Φ′

(s−1) (M) (M) (g-C-Biomass (mg-wet-Biomass s−1

g-C-Substrate−1) mol-Substrate−1)

EQ1(a) P1R1s C3H8NPO5
GLP

+ CH2O + 2 O2 →CH6NPO3
AMPA

+ C2H2O4
GLX

+ CO2(aq) + H2O(aq) 3.17×10−5 1.04×10−3 2.53×10−4 BHyO 1.24 × 10−6

1.26×10−4 1.03×10−1 2.46×104 1.02 × 10−5

EQ2(b) P2R1s C3H8NPO5
GLP

+ CH2O(aq) + O2(aq)→C3H7NO2
SRC

+ 3 H+ + PO 3 –
4 + CO2(aq) 3.34×10−5 1.09×10−4 BHyO 8.39 × 10−6

2.12×10−4 1.52×10−1 3.64×104 4.32 × 10−6

EQ3(c) P1R1 C3H8NPO5
GLP

+ O2(aq)→CH6NPO3
AMPA

+ C2H2O4
GLX

3.35×10−5 4.05×10−3 2.53×10−4 3.86×10−2 2.78×104 BHyO 2.97 × 10−7

EQ4(d) P1R2s CH6NPO3
AMPA

+ CH2O(aq) + O2(aq)→CH5N
MTH

+ 3 H+ + PO 3 –
4 + CO2(aq) 5.04×10−6 2.08×10−3 2.53×10−4 BHyO 5.86 × 10−7

1.38×10−4 1.73×10−2 4.14×103 8.80 × 10−6

EQ5(e) P1R3a CH5N
MTH

+ 1
2 O2(aq)→CH2O(aq) + NH3(aq) 1.39×10−4 2.15×10−4 2.66×10−3 6.39×102 BAER 1.01 × 10−3

EQ6(f) P1R3b CH5N
MTH

+ 1
2 H2O(aq)→CH4(aq) + CO2(aq) + NH3(aq) 1.17×10−4 5.38×10−1 1.29×10−3 3.09×102 BANAER 7.05 × 10−7

EQ7(g) P2R2a C3H7NO2
SRC

+ 1
2 O2(aq)→ C2H5NO2

GLY
+ CH2O(aq) 4.08×10−3 3.37×10−5 2.50×10−3 1.80×103 BAER 6.74 × 10−2

EQ8(h) P2R2b C3H7NO2
SRC

+ CH2O(aq) + H2O(aq)→ CH5N
MTH

+ 2 CH2O(aq) + CO2 +2 H+ 5.36×10−5 2.95×10−4 6.87×10−2 4.95×104 BANAER 5.04 × 10−6

4.39×10−3 2.46 × 10−7

EQ9(g) P2R3a C2H5NO2
GLY

+ 3
2 O2(aq)→ 2 CO2(aq) + NH3(aq) + H2O(aq) 1.22×10−4 1.06×10−4 5.21×10−4 2.50×102 4.57×10−3

EQ10(i) P2R3b C2H5NO2
GLY

+ 1
2 H2O(aq)→ 3

2 CH2O(aq) + CO2(aq) + NH3(aq) 2.20×10−4 2.94×10−1 9.25×10−5 4.44×101 BANAER 1.69 × 10−5

EQ11(l) R4 CH2O + O2 → CO2(aq) + H2O(aq) 2.55×10−5 1.55×10−4 9.36×10−2 2.25×104 BHyO 7.33 × 10−6

Reaction rate (M s−1) Adsorption rate (M s−1) Desorption rate (M s−1) Desorption rate (M s−1)

EQ12(m) R1 C3H8NPO5
GLP(aq)

−−−⇀↽−−− C3H8NPO5
GLP(p)

- 2.08×10−2 1.03×10−2 1.17×10−2 Birnessite

EQ13(m) P2R1c C3H8NPO5
GLP(p)

+ 1
2 O2 → C3H7NO2

SRC
+ PO 3 –

4 + H+ 2.67×10−3 Birnessite

EQ14(m) R2 CH6NPO3
AMPA(aq)

−−−⇀↽−−− CH6NPO3
AMPA(p)

- 2.63×10−1 1.59×10−4 1.47×10−2 Birnessite

EQ15(m) P1R2c CH6NPO3
AMPA(p)

+ 1
2 O2 → CH5N

MTH
+ PO 3 –

4 + H+ 1.52×10−5 Birnessite

EQ16(m) R3 PO 3 –
4 (aq) −−−⇀↽−−− PO 3 –

4 (p) - 1.09×10−2 1.50×10−2 7.72×10−4 Birnessite

Table 1: Biochemical reactions implemented in the numerical solver together with their corresponding kinetic parameters as
estimated in [45] against laboratory observations published in (a) [5]; [38]; (b) [60]; (c) [57]; (d) [5]; (e) [49]; (f) [36]; (g) [1];
(h) [37]; (i) [21]; (l) BHyO was assumed to grow on CH2O as an independent reaction, with MMM kinetic parameters aver-
aged from estimations against experiments in [5]; [38]; [60]. (n) Specific biomass affinity Φ′ = µBK−1Y−1, with B=1 mg L−1

and Y in mg-wet-Biomass mol-Substrate−1 [42]. BHyO encompasses Achromobacter Group V D, Agrobacterium radiobacter,
Arthrobacter sp. GLP-1, Flavobacterium sp. GD1, Pseudomonas sp. LBr, and Pseudomonas PG2982; BAER encompasses
Arthrobacter P1 and Pseudomonas Ovalis; BANAER encompasses Clostridium purinolyticum, Methanosarcina barkeri and Eu-
bacterium acidaminophilum. SRC (sarcosine); GLX (glyoxylate); GLY (glycine); MTH (methylamine). The order of K values
follows the order of C-containing compounds in the corresponding biological reaction. BHyO encompasses Achromobacter
Group V D, Agrobacterium radiobacter, Arthrobacter sp. GLP-1, Flavobacterium sp. GD1, Pseudomonas sp. LBr, and
Pseudomonas PG298; BAER encompasses Arthrobacter P1 and Pseudomonas Ovalis; BANAER encompasses Clostridium puri-
nolyticum, Methanosarcina barkeri and Eubacterium acidaminophilum.

form as:321

1
xk

dXk(t)
dt

= µk

∏
nO

X
xnO
nO (t) ·

∏
nM M

XnMM (t)

XnMM (t) + Kn

(
1 +

∑
nCOM

XnCOM (t)
KnCOM

) ∏
nI

XnI (t)
XnI + KnI

(1)

where x is the stoichiometric number relative to molecule k with concentration X (mol L−1 or M), t is time322

(s), µ is the reaction rate (s−1), nO is the number of biological-mineral-chemical species contributing to323

the reaction, nMM is the number of Michalis-Menten (MM) terms with the corresponding half-saturation324

constant Kn (M), nCOM is the number of competition terms with the corresponding constant KnCOM (M),325

nI is the number of inhibition terms with the corresponding constant KnI (M). In case a molecule k is326

transformed by any microbial biomass i with concentration B (mg L−1) and biomass yield constant Y327
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(mg-wet-biomass mol-substrate−1), then XnO takes the form of Bi
Yi

and biomass dynamics can be written328

as:329

dBi(t)
dt

=
1
xk

dXk(t)
dt

· Yi − δiBi(t) (2)

where δ is the microbial mortality rate constant (s−1).330

3.1.3. Scenario331

In a previous research [45], the sensitivity of the GLP reaction network used in this work was as-332

sessed with respect to abiotic factors, such as dissolved oxygen content, dissolved carbon content, birnes-333

site concentration, and pH. To make use of this knowledge, we numerically investigate GLP and AMPA334

dynamics under identical conditions, which could represent slow GLP leaching through a contaminated335

agricultural soil. Hence, in a 1 L bioreactor, GLP at 0.003 M concentration and an additional carbon336

source (CH2O) at 0.001 M concentration were released at a Q = 0.0036 L h−1 flow rate in an aqueous so-337

lution without and with birnessite mineral at 1.20 g kg−1
dry-soil concentration, with constant pH = 7 and O2338

levels equal to 3 mg L−1. GLP and AMPA concentrations were modelled over time as a function of both339

biological and chemical processes. Output concentrations represent steady-state conditions. Chemical340

degradation occurred only after GLP or AMPA absorbed onto birnessite [51]; adsorption was described341

by means of Langmuir kinetics [48], while degradation was described by means of MM kinetics. Using342

two separate experiments in the same laboratory conditions, Li et al., [51] showed GLP and AMPA chem-343

ical degradation and measured the concentration of PO 3 –
4 liberated by these two reactions. The release344

of PO 3 –
4 was very quick with GLP, while it was 1 order of magnitude slower with AMPA. Although345

birnessite mineral can break GLP down to both AMPA and SRC, the very high rate at which PO 3 –
4346

concentration increased following GLP degradation might suggest that GLP was preferentially degraded347

to SRC (P2R1c, Figure 3). Therefore, it was assumed that GLP could only be degraded to SRC, and not348

to AMPA. The microbial functional group BHyO can grow on GLP and AMPA. The bacteria mortality349

rate δ (s−1) was assumed to be constant and equal to 10−6 s−1 after [32]. Phosphate (PO 3 –
4 ) inhibitory350

effect on GLP and AMPA biodegradation along P1R1 and P1R2, respectively, was accounted for using351

an inhibition value KI = 2.53× 10−4 M estimated against observations in [5]. Substrate competition was352

not included in this work due to the limited variety of substrates available. O2 consumption in aerobic353

reactions was accounted for using a MM value K = 1.40 × 10−5 M after [14], while an inhibition value354

KI = 3.125 × 10−6 M was used for O2 inhibition on anaerobic processes (adapted from [41]). The pH355

effect on biological activity was accounted for by using a K = 10−9 M for high pH and an inhibition356

value KI = 10−5 M for low pH, respectively, after [11].357
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3.1.4. Uncertainty and sensitivity analyses358

Microorganisms may evolve different strategies for scavenging nutrients and energy from anthro-359

pogenic molecules depending on the surrounding environmental conditions. High substrate concentra-360

tion may select for fast GLP biodegraders (high µ), while low substrate concentration may favor GLP361

biodegraders with a high affinity for GLP (low K). A suite of sensitivity analyses were run to assess362

the uncertainty to GLP and AMPA equilibrium concentrations resulting from a specific group of MMM363

kinetic parameters (i.e., µ, K, or Y) or a specific biological reaction (i.e. EQs 1 to 4). To this aim, the364

MMM kinetic parameters relative to one group and to EQs 1 to 4, were randomly chosen from a Gaus-365

sian distribution with mean equal to the corresponding experimentally retrieved parameter and standard366

deviation (σ) equal to 5, 10, 15, 20, 25, and 30% of that value, per each analysis. For each generated367

parameter space, we referred to ”low” values as those smaller than the 33th quantile, ”middle” values as368

those between the 33th and 66th quantiles, and to ”high” values as those greater than the 66th quantile. For369

the stochastic sensitivity analysis, 2000 simulations were run for each group of parameters and for each370

σ. Simulations were repeated with and without accounting for the effect of chemical degradation after [6]371

observed that ions may inhibit GLP and AMPA degradation by Mn-oxides. The difference between GLP372

equilibrium concentration predicted in each model run (GLPc,sto and GLPsto, with and without birnessite373

respectively) and the concentration predicted using experimentally retrieved parameter values (GLPc,ref374

and GLPref, with and without birnessite respectively) was used as the sensitivity measure (SMc,GLP =375

GLPc,sto - GLPc,ref and SMGLP = GLPsto - GLPref). The same approach was repeated for AMPA; there-376

fore, the difference between AMPA equilibrium concentration predicted in each model run (AMPAc,sto377

and AMPAsto, with and without birnessite respectively) and the concentration predicted using average378

parameter values (AMPAc,ref and AMPAref) was calculated as SMc,AMPA = AMPAc,sto - AMPAc,ref and379

SMAMPA = AMPAsto - AMPAref.380

3.2. Results381

3.2.1. Uncertainty analysis: GLP and AMPA concentrations382

GLP and AMPA equilibrium concentrations were reached within 100 simulated days. GLP and383

AMPA concentrations showed unimodal distributions (Figure 4). When abiotic catalytic reactions were384

not accounted for, output distributions were more skewed, GLP and AMPA concentrations were higher,385

and output ranges were larger. GLPc,ref was nearly 7.4×10−4 g kg−1
dry-soil (thin dashed black line in Figures386

4a, c, and e), value in line with field data in Silva et al. [77]. AMPAc,ref was nearly 1.5×10−3 g kg−1
dry-soil387

(thin dashed gray line in Figures 4b, d, and f), value in line with field data in Silva et al. [77]. These388

concentrations are higher than those modelled for GLP, highlighting that produced AMPA was slowly389

biodegraded and suggesting that AMPA can persist in soil longer than GLP; consequently, AMPA may be390
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regarded as more concerning than GLP in the perspective of environmental protection. GLP and AMPA391

distribution skewness was opposed, meaning that GLP biodegradation to AMPA rather than SRC was392

the preferential pathway in the reaction network because the more GLP was degraded the more AMPA393

was produced.394

3.2.2. Sensitivity analysis: contribution of kinetic parameters395

The parameter space corresponding to the 4 input variables was assumed to be adequately sampled396

by 2000 simulations, and increasing variability for each parameter group revealed interesting results397

(Figure 5). Chemical and biological processes collaborated to fast degrade GLP. Lower µ resulted in398

slower biodegradation rates, which were flanked by the catalytic action of birnessite mineral. The lowest399

µ values caused the mineral surface to become saturated; in this case, GLP concentration increased. In400

the lack of birnessite, the increasing variability in µ resulted in a nonlinear increase in GLP concentra-401

tion. Biotic processes alone could fast degrade GLP; low µ resulted in a substantial increase in GLP402

concentration, while high µ did not substantially decrease it. Increasing variability in K resulted in lower403

GLP concentration both with and without birnessite. This is because GLP application concentration was404

similar to K; low K substantially increased the biodegradation rate, while high K did not decrease it405

likewise. Similarly, increasing variability in Y resulted in lower GLP concentration. In the presence of406

birnessite, bacteria consumed small amounts of substrate; therefore, varying Y did not substantially af-407

fect GLP. In the lack of birnessite, high Y resulted in an trade off between a slower degradation rate but a408

higher biomass concentration; conversely, low Y resulted in faster rates but lower biomass concentration.409

Therefore, GLP concentration did not change in average.410

3.2.3. Sensitivity analysis: contribution of biochemical processes411

Boxplots in Figure 6 represent the variability in SM values resulting from uncertainty in kinetic412

parameter values for the scenario σ = 10%. The predicted SM values were grouped as ”low”, ”middle”,413

or ”high” according to the values taken by the corresponding stochastic kinetic parameter. The two414

most important features in Figure 6 are: (1) the deviation of the mean SM from 0 g kg−1
dry-soil, which415

means there was no difference between reference and uncertain scenarios on average, and (2) the range416

of each boxplot. Reaction P1R1 (Table 1, EQ3) mostly drove the GLP reaction network because the417

average of SMc,GLP and SMGLP substantially changed as the parameter values relative to EQ3 changed418

(red horizontal lines in Figure 6a and c, boxplots in 3rd, 7th, and 11th column); P1R1s contributed419

little to the reaction network, while P2R1s and P1R2s did not affect the reaction network (Figure 6a,420

boxplots in 1st, 2nd, and 4th column, respectively). Results from EQ3 showed that higher GLPc,sto421

(therefore greater positive SMc,GLP) resulted from lower µ values (or high K or Y values, Figure 6a)422
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and corroborated that Y did not affect GLPsto, that is when there was no birnessite mineral (Figure423

6c, 9th to 12th column). EQ3 also decreased the model output variability as indicated by the smaller424

SMc,GLP and SMGLP range for EQ3 compared to those relative to EQs 1, 2, and 4 (Figure 6a and c).425

EQ2 did not influence the reaction network to a great extent given that this is a cometabolic reaction, and426

therefore, the overall reaction rate is a function of CH2O concentration; CH2O was consumed by GLP427

biodegraders for growth in the competing reaction R4 (Table 1). Yet, sarcosine produced along EQ2 and428

its further metabolites were assumed to not contribute to the C sources available to GLP biodegraders429

for their growth. EQ4 influenced the least the reaction network. In fact, this reaction involves AMPA430

biodegradation, which poorly contributes to GLP biodegraders growth (i.e., Y relative to AMPA is 1 order431

of magnitude lower than Y relative to GLP as reported in Table 1) and occurs at a slow rate (Figure 6b432

and d). GLP biodegradation to AMPA described by EQ3 was found to be the most important regulatory433

process on the reaction network; therefore, it was expected that EQ3 influenced SMc,AMPA and SMAMPA434

as well. A faster AMPA production was not followed by the same increase in AMPA degradation rate,435

thus it accumulated. In the event that microorganisms degrade GLP to AMPA, then AMPA would pose436

an even more serious risk to the environment.437
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Figure 4: Distribution of GLPc,sto and GLPsto around GLPc,ref and GLPref, respectively, in (a), (c), and (e) and AMPAc,sto and
AMPAsto around AMPAc,ref and AMPAc,ref, respectively, in (b), (d), and (f). σ = 10%. Number of bins were chosen according
to Freedman-Diaconis rule.

4. Conclusions438

Reactive transport solvers are a great tool to support decision-making for farmers, regulatory bodies,439

and EPAs to sustainably manage and protect the environment. Overall, uncertainty analyses of herbicide440
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degradation networks can provide policy makers and stakeholders with a quantitative decisional tool to441

explore possible outcome variability resulting from a range of modelling assumptions, thus supporting442

herbicides approval. Yet, sensitivity analyses allow to rank the processes or parameters contributing to443

outcome variability, hence providing a wider insight into sustainable land management planning. In this444

study, we found that chemical degradation of glyphosate (GLP) and its metabolite AMPA in soil by445

manganese-containing oxides would result in a reduction of GLP and AMPA concentrations by nearly446

25%. While we accounted for competition for catalytic sites on the oxide by GLP, AMPA, and orthophos-447

phate, we did not account for other likely competing cations abundantly available in soil [6]. When only448

biological reactions were accounted for, we found that GLP oxidation to AMPA was the main process449

driving GLP degradation. This could have been expected as the other three cometabolic biological re-450

actions are functions of CH2O concentration; in fact, la Cecilia & Maggi [45] showed that more GLP451

was converted into sarcosine along one of the cometabolic reaction at increasing CH2O bioavailability.452

A relatively small uncertainty of the reaction rate constant µ and the half-saturation constant K resulted453

in minimum predicted GLP concentrations that were nearly half of the maximum concentrations. These454

two parameters have been shown to describe the strategies used by microorganisms to transform a sub-455

strate (e.g., pesticides) [65]. Of utmost importance, Porta et al., [68], showed that uncertainties in kinetic456

parameters of the reaction network for the herbicide atrazine coupled with the nitrogen cycle in soil457

can result in ecological imbalances, which might be detrimental to soil quality and functioning. As a458
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Figure 6: Boxplot showing the outcome variability in SMc,GLP (a), SMGLP (c), SMc,AMPA (b), and SMAMPA (d), grouped hori-
zontally by parameter quantiles (i.e., Q1 = 33th and Q2 = 66th) and vertically by MMM kinetic parameter, and organized by
equation number. Black horizontal lines indicate SMc,GLP, SMGLP, SMc,AMPA, and SMAMPA equal to 0. σ = 10%.

second important remark, Greskowiak et al., [35] showed that the variability in first-order degradation459

constants estimated within and across laboratory and field conditions ranged over 3 orders of magni-460

tude for 82 compounds. Similarly, Charnay et al. [18] concluded that pesticides degradation rates vary461

spatially possibly due to the dynamics of peculiar biodegraders. Such uncertainty can therefore be rele-462

vant in environmental risk assessment studies, where the practice is to average the available information463

and predict one time-series of environmental concentrations [26, 30]. The reduction of uncertainty in464

pesticide biodegradation kinetic values might be achieved through studies aiming at better understand-465

ing what are the factors the favor or limit microbial communities in removing pesticides at the global466

scale; at the European scale, a similar investigation was carried out by Pierre et al.,[74] in the context of467

chloroethene-contaminated aquifers.468

To sum up, our analyses suggested that:469

• All kinetic parameters (i.e., µ, K, and th biomass grwoth yield Y) are important descriptors of470

biological processes within a complex reaction network, and their variability may cause different471
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responses;472

• At background concentrations of O2 and an additional carbon source, GLP is preferentially biode-473

graded to AMPA;474

• The metabolite AMPA is suggested to be an emerging contaminant in the environment;475

• Effort should be put into AMPA monitoring campaigns to collect data on its level of contamination476

for consideration in future regulation initiatives;477

• Birnessite mineral addition into the soil and soil biostimulation by adding an additional carbon478

source may be successful strategies for cleaning up soils contaminated with GLP and AMPA.479
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