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Introduction
Water, sanitation, and hygiene (WASH) services are described in
global action plans as necessary to curb antimicrobial resistance
(AMR), despite a lack of supporting data.1,2 WASH services are
thought to interrupt environmental transmission of antimicrobial
resistant bacteria by reducing fecal contamination of the environ-
ment (i.e., by sanitation) and fecal exposures (i.e., by drinking
water treatment, hygiene).2 Further, WASH services reduce the dis-
ease burden attributable to enteric pathogens, which decreases antibi-
otic use and associated AMR selective pressure.2 Extended-spectrum
beta-lactamase-producing Escherichia coli (ESBL-E. coli) are
recommended as a proxy for the global AMR threat, in part
because ESBL-E. coli infections increase morbidity, mortality,
and treatment costs3; are pervasive in humans, animals, and envi-
ronmental compartments4; and confer resistance to critically im-
portant antimicrobials.

In this study, we evaluated the impact of a cluster-randomized
controlled trial of in-line drinking water chlorination on ESBL-E.
coli fecal carriage among Bangladeshi children. The trial previ-
ously demonstrated that chlorination significantly reduced pediat-
ric diarrheal disease, antibiotic use, illness-related expenditures,
and E. coli prevalence and concentrations in drinking water.5

Materials and Methods
We analyzed, double-blind, 479 fecal samples of children <5 years
of age following their enrollment in a cluster-randomized con-
trolled trial of in-line water chlorination at their primary drink-
ing source in two low-income communities in Bangladesh
(Dhaka and Tongi) between July 2015 and December 2016.5

The intervention (n=240 fecal samples) included children

whose primary water source was amended to include a passive
chlorine dosing device; within the active control (n=239), the
device provided vitamin C.5 Fecal samples were collected once
per child, a mean of 9.3 (median= 10:7) months after enroll-
ment in the study, representing the length of time children were
exposed to the intervention. Prevalence and concentration of
the ESBL-E. coli and ESBL–Klebsiella, Enterobacter, Shigella,
and Citrobacter (ESBL-KESC) groups in fecal samples col-
lected after the intervention were compared between the inter-
vention and control children. The difference and associated
significance in the carriage were determined using a modified
Poisson regression. Impacts on concentrations were determined
using multiple linear regression.

We detected and enumerated ESBL-E. coli and ESBL-KESC
groups directly from fecal samples using CHROMID ESBL agar
(bioMérieux). Using short-read metagenomic sequencing, we
determined occurrence and relative abundance of beta-lactamase
(bla) genes in a subset (n=97) of fecal samples. We sequenced a
subset (n=96) of ESBL-E. coli isolates. The protocol for the
original trial was approved by the review committees at the
International Center for Diarrheal Diseases Research, Bangladesh
(protocol 14022) and Stanford University (protocol 30456),
and included consent for future analyses.5 E. coli genomes are
archived at the National Center for Biotechnology Information
(NCBI), BioProject PRJNA705080. Metagenomes are archived
as NCBI Bioproject PRJNA706606. Supporting information on
methods, including the CONsolidated Standards of Reporting
Trials (CONSORT) 2010 checklist, are available at https://doi.
org/10.17605/OSF.IO/9NGT8.

Results and Discussion
In-line drinking water chlorination did not significantly reduce
fecal carriage or concentrations of ESBL-E. coli or ESBL-KESC
in Bangladeshi children, despite previous efficacy against diar-
rheal disease and antibiotic use.5 Specifically, ESBL-E. coli prev-
alence was 4.0% (67% vs. 63%) and ESBL-KESC was 3.4%
(13% vs. 10%) higher in the control than in the intervention
group, but the differences were not statistically significant when
controlling for study site and participant age (Figure 1, Table 1;
n=470). Notably, 9 of 479 (2%) samples were removed from
analysis because no date of birth was reported. Relative risk (RR)
[95% confidence interval (CI)] of the intervention for ESBL-E.
coli was 0.98 (0.78, 1.23) and for ESBL-KESC was 0.76 (0.44,
1.29) (Table 1). ESBL-E. coli and ESBL-KESC concentrations
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were also not statistically significantly different when controlling
for study site and participant age (Figure 1, Table 1). ESBL-E.
coli accounted for the median 4% of all E. coli (n=113).

Analysis of other factors influencing ESBL-E. coli and
ESBL-KESC prevalence and concentration in children identi-
fied significant influences of study site (Tongi) and number of
households in a compound (>10) for ESBL-E. coli and use of
antibiotics in the previous 2 months for ESBL-KESC (support-
ing information including full results are available at https://
doi.org/10.17605/OSF.IO/9NGT8). Gender, age, study enroll-
ment duration, treatment center visits, and people in the house-
hold had no significant effect.

The intervention had no impact on the relative abundance
or occurrence of any bla gene or allele in the child fecal
metagenomes or occurrence of any bla allele in the E. coli iso-
lates. In fecal metagenomes, blaCfxA (n=89 of 95, or 94%),

Figure 1. Fecal carriage rates of (A) ESBL-E. coli and (B) ESBL-KESC in
the intervention (n=240) and control (n=239) groups. The term negative
was assigned to samples where no growth was observed after direct plating
onto CHROMID ESBL agar or after the enrichment step; enrichment corre-
sponds to samples with presumptive ESBL-E. coli colonies after the
enrichment step; and quantifiable corresponds to samples with presump-
tive ESBL-E. coli colonies after direct plating onto CHROMID ESBL
agar. Concentrations of (C) ESBL-E. coli and (D) ESBL-KESC in the
intervention and control groups among samples with direct positive cul-
tures (quantifiable). The dotted horizontal line is the mean log10 CFU/g-
wet feces in the intervention and control groups; the LLOD is indicated.
Note: CFU, colony forming units; ESBL, extended-spectrum beta-lacta-
mase-producing; KESC, the Klebsiella spp., Enterobacter spp., Serratia
spp., and Citrobacter spp. group; LLOD, lower limit of detection.
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blaACI (75%), blaTEM (72%), and blaOXA (60%) were detected.
ESBL-encoding genes were also found in children without cul-
turable ESBL-E. coli.

In the genomes of the 96 sequenced ESBL-E. coli, we identi-
fied 50 unique sequence types (STs), including ST38 (12.8%)
and ST131 (11.6%), which are associated with extraintestinal
infections.6 In almost all (99%) of ESBL-E. coli we detected an
ESBL gene, with blaCTX-M-15 as the most prevalent (90%). Genes
conferring resistance to macrolides (73%), quinolones (48%), tet-
racyclines (37%), and trimethoprim (48%) were common.

The lack of a significant effect of chlorination on ESBL-E.
coli carriage stands in contrast to the impact chlorination had on
diarrheal disease. Environmental interventions targeting a single
exposure route, even one associated with a substantial portion
of enteric pathogen transmission, may be insufficient to
reduce AMR in regions of high AMR prevalence and multiple
concurrent exposure routes.4,7

High AMR prevalence offers increased opportunities for
transmission, which may limit intervention efficacy. Although it
was not significant, we observed a meaningful reduction in preva-
lence of ESBL-KESC carriage, which was detected in only 12%
(n=479) of all children. The lower prevalence of ESBL-KESC
compared with ESBL-E. coli (observed in 65% of 479 children)
is similar to the 9% observed for diarrheal disease, which the
intervention significantly reduced.5 ESBL-KESC was also further
reduced in Dhaka [RR=0:57 (95% CI: 0.23, 1.28)], where the
intervention was more effective against diarrheal disease, than in
Tongi [RR=0:89 (95% CI: 0.45, 1.71)]. Although ESBL-E. coli
is considered an AMR indicator organism, other indicators with
lower prevalence—such as ESBL-KESC—may provide useful
insight in evaluations of interventions. Investigations of the resis-
tome and mobilome may further aid in identification of interven-
tion impacts.7

A lack of an observed impact of water chlorination on
ESBL-E. coli carriage may also be attributed to the longer dura-
tion of carriership (estimated at 1.1 y) relative to other enteric
pathogens (typically <30 d).8,9 Interventions that interrupt
exposures but do not directly reduce carriage may not impact
prevalence until there has been sufficient loss of carriage.

A major limitation of the study was power. Increased sample
size may have benefited our secondary analysis examining reduc-
tion in ESBL-KESC prevalence, which, despite a meaningful effect
size, was not significant. Additional limitations were the open
enrollment study design and limited duration of the intervention
prior to stool collection (median= 10:7months). However, sub-
group analysis on enrollment duration showed no substantial differ-
ence in impact compared with that observed for the entire cohort
(supporting information; https://doi.org/10.17605/OSF.IO/9NGT8).

Given the extensive support for WASH investments to combat
AMR,1,2,10 there is a clear need to identify conditions under which
interventions will be effective. Gathering such evidence requires:
a) defining meaningful reductions in AMR carriage; b) identifying
interventions with the potential to achieve these reductions (such
as those effective against diarrheal disease); c) granting sufficient
exposure to the intervention to allow loss of AMR carriage, which
may be longer than needed for diarrheal reductions; and d) evaluat-
ing a sufficient sample size.
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