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Climate warming imposes a serious threat, especially to freshwater ecosystems
in temperate and (sub)polar regions, which are often dominated by cold-
adapted ectotherms. Although relatively intense warming during winter is
common across the climatic regions, comparably little focus has been put on
the organismal impacts of winter warming. Embryonic development, which
is exceptionally susceptible to ambient temperature, occurs during winter in
various freshwater ectotherms. Yet, our knowledge of the effects of increased
temperature during embryogenesis on later life stages is limited. Using
brown trout (Salmo trutta), we examined how a 1.5°C temperature increase
from fertilization to hatching affects various traits at the onset of the free-swim-
ming stage (i.e. a comparison between 3.5 and 5.0°C treatments). Although all
hatchlings were kept at the same temperature (7.0°C) from hatching to the onset
of the free-swimming stage for about two months, the temperature increase
during embryogenesis substantially reduced key ecological behaviours, i.e.
activity and exploration levels, at the onset of the free-swimming stage despite
only marginal temperature effects on morphological and physiological traits at
this stage. Given the importance of behavioural traits in early growth and
survival, our study suggests a likely pathway through which subtle changes
in mean winter temperature affect early fitness.
1. Introduction
Ambient temperature is an important abiotic factor influencing ectotherms’
behavioural traits, such as activity and exploration levels [1], which affect
prey capture and predator avoidance, and in turn, growth and survival [2–4].
Acceleration of metabolic processes due to increased temperature is common
among ectotherms, resulting in a change in activity and explorative patterns
[1,5,6]. Besides the immediate effect on physiology, the temperatures to which
individuals have been exposed during their development affect various traits,
such as body size, organ size and morphology, which again result in a
change in activity and exploration levels [1,7,8]. Despite this interaction, more
is known about the immediate direct effect of temperature on behavioural
traits than how different temperatures during development affect life-history
traits and, subsequently, behavioural traits later in life [1].

Notably, our knowledge of how temperatures during development affect
behavioural traits exhibited later in life is mostly limited to that obtained
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from studies in which mean rearing temperatures are kept
constant and non-variable across all life stages (i.e. from fer-
tilization to sexual maturation; [7–9]). Such an approach is a
useful first step in investigating the effects of temperatures
during development on behavioural traits. However, on the
other hand, it might be an oversimplified approach consi-
dering the natural and anthropogenically altered temporal
variation in temperatures [10–12]. This is especially true for
ectotherms in temperate and (sub)polar regions, where
ontogenetic development is often closely associated with sea-
sonality. This considered, investigating how temperatures
during short time windows of development affect subsequent
behavioural traits is an essential next step. To address this
question, salmonids, representative fishes of temperate and
(sub)polar regions, are excellent model organisms.

Relatively intense warming during winter is common
across temperate and (sub)polar regions [10], and the trend
is further exaggerated, especially in alpine streams inhabited
by salmonid fishes, by anthropogenic activities, e.g. hydro-
power plants [12,13]. Importantly, embryonic development,
the most environmentally susceptible period [14,15], occurs
during winter in most salmonid fishes [16–18]. Given that
an increase in temperature during embryonic development
affects not only timing and body size at hatching but also
muscle and organ development [19–22], it could also even-
tually affect behavioural traits exhibited later in life. Here,
we report results from a laboratory experiment using brown
trout (Salmo trutta) embryos specifically aimed at examining
how temperatures during embryogenesis (i.e. from fertiliza-
tion to hatching) affect the behavioural traits at the onset of
the free-swimming stage—key components determining
early survival and growth of salmonid fishes [4,23,24].
2. Methods
For detailed descriptions of the methods, see the electronic
supplementary material, S1 and S2.

(a) Experimental design
Each of 64 eggs collected from each of 20 full- or half-sib families
consisting of two males and 20 females (i.e. 1280 eggs in total) of
broodstock brown trout at Flüelen hatchery in the Swiss canton
of Uri on 7 December 2019 was kept separately until yolk absorp-
tion using eight vertical incubators each consisting of eight trays.
Each of the 64 trays contained an egg from each of the 20 families.
Of the eight incubators, four were set at 3.5°C (i.e. cold treatment)
and the remaining four at 5°C (i.e. warm treatment) (figure 1a). The
1.5°C difference in temperature during embryonic development is
equivalent to or smaller than the temperature changes caused by
climate change and anthropogenic activities (e.g. deforestation,
urbanization and hydropower plants [12,13,25,26]).

After half of the eggs hatched in each incubator, we increased
the temperature by 1°C every day until it reached 7°C. After that,
hatchlings were kept at 7°C without food supplementation for
the entire duration from hatching to yolk absorption for the sub-
sequent behavioural assay (figure 1a). All chosen temperatures in
this study, including the behavioural assay, were within the suit-
able temperature range for early development [16]. Indeed, the
survival rate of embryos was high during the experiment and
did not significantly differ between temperature treatments (see
electronic supplementary material, S1). Specifically, hatching
rates in the warm and cold treatments were 73 and 70%, respect-
ively, and survival rates from hatching to the behavioural assay
were 90 and 88%, respectively. During the rearing experiment,
we measured the following eight traits: (1) the volume (mm3)
of eggs just before assigning them to the incubators, (2) the
number of days from fertilization to hatching, (3) body length
(mm) and (4) yolk sac volume (mm3) at hatching, (5) routine
metabolic rate within two weeks before the start of the behav-
ioural assay, (6) days from hatching to behavioural assay, and
(7) body length (mm) and (8) body weight (mg) after the third
trial of the behavioural assay (see below and figure 1b–i). For
the routine metabolic rate (i.e. the metabolic rate of an undis-
turbed and spontaneously active individual [27]), we measured
the oxygen consumption rate (O2 µg h−1) of hatchlings at 7°C
using respirometry chambers.
(b) Open-field behavioural assay
For the behavioural assay, hatchlings originating from the largest
and smallest eggs of each of the 20 families in each of the eight incu-
batorswere used to cover the size range of hatchlings in each family
(except when there was only one surviving hatchling of a family in
an incubator). As a result, we assayed behavioural traits of 147 and
141 hatchlings from thewarmand cold treatments, respectively. For
each temperature treatment, we performed a behavioural assay
when all selected hatchlings absorbed their yolk sac almost comple-
tely (i.e. the onset of the free-swimming and exogenous feeding
stage) (figure 1a). As in the rearing experiment, we did not feed
hatchlings during the behavioural assay.

The behavioural assay was performed in a temperature-
controlled room, where the water temperature was maintained at
9.1 ± 0.1°C (N = 6). The undisturbed swimming patterns of hatch-
lings were videotaped for 5.5 min in an open-field (25 cm in
diameter bucket filled with 2 l of oxygen-saturated water (4.5 cm
in depth) (figure 1a)) once a day for three consecutive days (i.e.
5–7 May 2020 in the warm treatment and 11–13 June 2020 in the
cold treatment). By analysing the videos, total distance swum
(cm) and total area covered (cm2) during 4 min were measured
(i.e. we did not use the first 60 and last 30 s in the videos for
analysis) (figure 1a). Water was exchanged in each bucket after
each assay.
(c) Statistical analyses
Since focal behavioural traits were highly repeatable (see elec-
tronic supplementary material, S2), we used individual-mean
values of the traits for the following statistical analyses.
(i) Effects of temperature during embryogenesis on swimming
patterns

We performed linear mixed models (LMMs) using the lmer func-
tion in the lme4 package [28] to assess how temperature
treatment affects focal behavioural traits. Prior to the analyses,
individual-mean values of focal behavioural traits were square-
root transformed to meet the assumptions of linear models. In all
models, we considered the number of days from hatching to be-
havioural assay (log-transformed) as a covariate to account for
behavioural differences caused by developmental stages. Further-
more, for the total area covered, we considered total distance
swum as an additional covariate. This allowed us to examine
whether there were differences in swimming trajectories and,
thus, exploration levels between temperature treatments. For
example, for a given total distance swum, a higher total area cov-
ered can be interpreted as a higher exploration level. We
considered female ID and tray level nested within incubator ID
as random factors to account for non-independence among hatchl-
ings sharing the samemother and rearingwater, respectively. In all
LMMs in this study, when the variance of a random factor was
close to zero and producedmodels with a singular fit, we removed
the random factor from the models.
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Figure 1. (a) Schematic diagram of the experiment. (b–k) Overview of early life-history traits and behavioural traits in the cold (shown in blue) and warm (shown in red)
treatments. In (b–j), dots represent individuals, the thick horizontal bars represent the median, the box contains 50% of the data and the whiskers indicate the range. The
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square-root scaled in ( j–k). Traits for which a significant effect of temperature treatment was detected are depicted in bright colours in the figures and labelled in bold.
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(ii) Exploration of mechanisms underlying the temperature effects
First, to explore key early life-history traits in differentiating behav-
ioural traits between temperature treatments, we performed LMMs
on the following traits: (1) egg volume, (2–4) traits at hatching
(number of days from fertilization to hatching, body length and
yolk sac volume), (5–8) traits at behavioural assay (number of
days from hatching to behavioural assay, body length, body
weight and oxygen consumption rate) (figure 1b–i). All trait
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values were log-transformed. Female ID was considered as a
random factor. In addition, except for egg volume, tray level
nested within incubator ID was also considered as a random
factor. Then, by using the early life-history traits in which a signifi-
cant difference between temperature treatments was detected and
behavioural traits, we constructed piecewise structural equation
models (piecewiseSEM [29]) for each treatment to explore how
early life-history traits affect behavioural traits (figure 2). For
detailed descriptions of the statistical analyses, see electronic
supplementary material, S3.
3. Results
(a) Effects of temperature during embryogenesis on

swimming patterns
Total distance swum in the warm treatment (439.8 ± 17.2 cm
(mean ± s.e.)) was 25% lower than in the cold treatment
(589.2 ± 15.3 cm) (F1,6.7 = 21.3, p = 0.003) (figure 1j ). Similarly,
total area covered in the warm treatment (112.7 ± 6.6 cm2)
was 51% lower than in the cold treatment (229.6 ± 6.7 cm2)
(figure 1j ). Importantly, total area covered was significantly
lower in the warm treatment than in the cold treatment
(F1,92.5 = 67.0, p < 0.0001) even after accounting for total dis-
tance swum (F1,283.8 = 828.2, p < 0.0001) (figure 1j,k). The
number of days from hatching to behavioural assay had
no significant effect on total distance swum (F1,13.5 = 3.3,
p = 0.09) and total area covered (F1,96.8 = 0.2, p = 0.7).

(b) Exploration of the mechanisms underlying the
temperature effects

Among the eight measured early life-history traits (figure 1b–i),
we found significant differences between temperature treatments
only in the number of days from fertilization to hatching and in
body weight at behavioural assay. The number of days until
hatching and the body weight in the warm treatment were 25%
lower (F1,6.0 = 184.2, p< 0.0001) and 8% higher (F1,46.0 = 26.6,
p< 0.0001) than in the cold treatment, respectively.

In the piecewiseSEM for each temperature treatment, we
initially considered all possible links between early life-history
traits in which we detected significant effects of temperature
treatment (i.e. number of days until hatching and body weight
at behavioural assay (see above and figure 1c,h)) andbehavioural
traits (figure 2a). Subsequent backwardmodel selection revealed
that body weight at behavioural assay was a key early life-his-
tory trait explaining variation in behavioural traits within each
temperature treatment (figure 2b,c). Specifically, in both temp-
erature treatments, heavier hatchlings swam longer distances
than lighter hatchlings, and hatchlings that swam longer dis-
tances covered larger areas than those that swam shorter
distances.Hence, an increase inbodyweight indirectly increased
total area covered in each temperature treatment. However,
despite the higher body weight of hatchlings in the warm treat-
ment comparedwith the cold treatment (figure 1h), both activity
and exploration levels in thewarm treatmentwere lower than in
the cold treatment (figure 1j). Thus, the temperature effects on
body weight do not seem to explain the lower activity and
exploration levels found in the warm treatment.
4. Discussion
In the present study using brown trout as amodel organism,we
have demonstrated that an increase in temperature only during
embryonic development results in individuals being markedly
less active and explorative at the onset of the free-swimming
stage. This suggests that temperature conditions during embry-
ogenesis are critical in shaping early behavioural traits, key
components determining individual early survival and
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growth [3,4,23,24]. In many salmonid fishes, embryonic devel-
opment occurs during winter [16–18], when relatively intense
warmingoccurs as a result of climate change andanthropogenic
activities [10,12,13]. Our study suggests a likely pathway
through which such an increase in winter temperature affects
early growth and survival of the ecologically and commercially
important fish in temperate and (sub)polar streams. As rep-
resented by salmonid fishes, ontogenetic development of
ectotherms in temperate and (sub)polar regions is often closely
associated with seasonality. All this considered, the present
study emphasizes the importance of gaining detailed knowl-
edge of temperature effects on different life stages in order to
better assess the impacts of climate change and anthropogenic
activities on ectotherm populations in the climatic regions.

In the present study, we were not able to elucidate the
underlying mechanisms differentiating behavioural traits
between temperature treatments. Body size and metabolic
rate, which are generally susceptible to temperature during
development, have been thought to be key traits in differentiat-
ing behavioural traits of individuals kept in contrasting
temperatures during development [1]. However, we could
not detect any effect of temperature treatment on metabolic
rate. Furthermore, although we found that (i) the body
weight of hatchlings from the warm treatment was higher
than those from the cold treatment and (ii) an increase in
body weight increased activity and exploration levels in each
temperature treatment, hatchlings from the warm treatment
were less active and explorative than those from the cold treat-
ment. Therefore, both metabolic rate and body weight were
unlikely to explain the observed behavioural differences
between temperature treatments. The discrepancy in key
traits in differentiating behavioural traits between studies
emphasizes the complicated processes that shape behavioural
traits. Although not measured in the present study, there are
several possible traits that could influence behavioural traits
and explain behavioural differences between temperature
treatments. In salmonid fishes, muscle, organ and brain devel-
opment, which could influence behavioural traits, are also
susceptible to rearing environment during embryogenesis,
including temperature [21,22,30,31]. Moreover, the use of yolk
sac resources could differ depending on rearing temperatures
during embryonic development [32,33], possibly influencing
the nutritional status of hatchlings. Given that nutritional
status is a key component determining individual behaviour
[34–36], the temperature-dependent use of yolk sac resources
could also eventually influence the behavioural traits of hatchl-
ings. Anatomical, histological and chemical investigations on
hatchlings kept in contrasting temperaturesduring embryogen-
esis may provide insight into the mechanisms differentiating
behavioural traits between temperature treatments.

Becoming less active and explorative in response towarmer
temperatures during embryogenesis could be interpreted as
adaptive behavioural plasticity. In salmonid fishes, the
growth period for hatchlings is generally limited to the
spring to autumn period. Importantly, smaller individuals at
the onset of winter often have lower energy reserves relative
to their metabolic rate, which often results in higher winter
mortality rates than for larger individuals in various species,
including salmonid fishes [37–39]. As shown in this and pre-
vious studies [18–20], warmer temperatures during
embryogenesis can shorten the development period from ferti-
lization to hatching, extending the duration of the growth
period but simultaneously increasing the time exposed to pre-
dation risk. Although the relationships between the
behavioural traits and growth and survival of individuals are
mixed and controversial [2–4,6,40,41], it has been generally
assumed that less active and explorative individuals are less
exposed to predation risk while they are less efficient in food
intake and, eventually grow slowly [42,43]. All this considered,
if the extension of the growth period allows hatchlings to grow
large enough to overwinter regardless of activity and explora-
tive levels, the reduction in activity and exploration levels in
response to warmer temperatures during embryogenesis
could be favoured since the predation risk would be reduced.
At the same time, however, warmer temperatures during
embryogenesis, which occurs in winter, may also affect the
densities and traits of predators and prey of the hatchlings
[44]. This will further complicate the effects of the reduced
activity and exploration levels on early growth and survival.
Examining (i) the extent to which the reduced activity and
exploration levels caused by an increase in winter temperature
persist, (ii) how the behavioural changes affect early growth
and survival during the extended growth period and time
exposed to predation, and (iii) how the effects of the behaviour-
al changes on early fitness differ depending on community
members are important next steps in understanding the orga-
nismal impacts of winter warming on ecologically and
commercially important fish species.
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