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Introduction  

This document contains several supplementary figures, a description of data used in these 
supplementary figures, and a test of the effects of our model parsimony. 

Text S1. Additional site data 
We also use 16 additional predictor variables collected by Moeck et al. (2020) for all 

groundwater recharge sites. These include mean precipitation (Fick & Hijmans, 2017), mean 
potential evapotranspiration (Trabucco & Zomer, 2009), temperature seasonality (Fick & 
Hijmans, 2017), precipitation seasonality (Fick & Hijmans, 2017) mean elevation (Danielson & 
Gesch, 2011), depth to water table (Fan et al., 2013), depth to bedrock (Wei et al., 2017), slope 
(Hengl et al., 2018a), topographic wetness index (Hengl et al., 2018b), the sand fraction, silt 
fraction, clay fraction, lithology, landform, land use (Friedl et al., 2010), and vegetation (FAPAR) 
(Hengl et al., 2018c). We refer to Moeck et al. (2020) and references therein for more 
information on these data.  

 

Text S2. Model parsimony 
The parsimony of this model (Eq. 1-2) could limit its predictive power, but making the 

model more complex does not substantially improve its predictive capacity. A split-sample test 
using 80% of the data for calibration and the remaining 20% for validation yields relatively 
narrow confidence bounds of the fitted parameters (95% confidence bounds α = 0.69 - 0.75, β = 
14.0 - 16.2, not displayed), thus also subsets of the empirical data effectively constrain the 
relationship. The split-sample test also indicates the regional variation in groundwater recharge 
using Eq. 2 can be predicted with a much smaller bias (mean recharge bias = 8.9 mm·year-1) than 
global hydrological models while explaining more of the site-to-site variability than most models 
(mean R2 = 0.36; Fig. S4). Considering an additional 16 site attributes and a Neural Network fit 
with Levenberg-Marquardt optimization only slightly reduces the overall bias in the predictions 
(mean recharge bias = 7.9 mm·year-1) and does not improve the explained site-to-site variability 
substantially (mean R2 = 0.37; Fig. S3). Thus, compared to more complex methods, predictions of 
groundwater recharge based on climate aridity appear effective despite excluding many other 
factors that potentially also affect groundwater recharge. We, therefore, opted to use the most 
straightforward approach in our main paper.  
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Figure S1. Relationship of aridity and recharge across subsets of the global observation-based 
recharge dataset. The recharge values are binned into 50 bins, each containing 2% of the data. 
The error bars display the standard error of the mean for each bin. These mean errors are larger 
for the recharge values not included in the Australian synthesis of Crosbie et al. (2010), because 
there are fewer data points included in per bin as there are fewer data points in the subset (n = 
869 versus n = 4368).   
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Figure S2. Recharge fractions in models and observations. Recharge fractions (the ratio of 
recharge to precipitation) at the 5327 observation sites are estimated with substantial biases by 
PCR-GLOB (b, c) WaterGAP (a, d) and machine learning compared to the simple aridity-recharge 
fraction relationship (this paper) (f). The global hydrological models tend to underestimate the 
recharge fractions by over a factor of two for the observation sites. The recharge fractions are 
also binned into bins each containing 4% of the data. The recent version of WaterGAP (d) 
thereby slightly better simulates spatial differences in recharge rates than the simple aridity-
recharge fraction relationship (this paper), but overall still has much lower recharge rates than 
the observation sites. 
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Figure S3. Mean error in predictions of groundwater recharge rates and recharge fractions at 
the validation sites. Histograms show the mean error in the prediction of groundwater recharge 
fractions (long-term recharge divided by long-term precipitation) using the sigmoidal function 
presented in this paper (a, b) and a neural network fitting approach (c, d) for 1000 repetitions of 
a split-sample test where 80% of the data from the 5237 recharge sites are used for calibration 
and the remaining 20% for validation. The marker indicates the mean of the values, and the 
whiskers indicate the standard deviation. These distributions indicate that models trained on 
several site properties may slightly outperform the sigmoidal function solely based on aridity, 
but differences are very small. 
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Figure S1. Comparison of predicted versus observed recharge for several global recharge 
predictions. Recharge predicted by global models such as PCR-GLOB, WATER-GAP, and machine 
learning (a-e) is systematically lower than recharge of the 5237 observation sites. The previous 
estimates (a-e) underestimate recharge by more than 50% compared to the recharge 
measurements. Using the sigmoid function (f) removes this bias and produces an overall 
average recharge of a very similar magnitude as global recharge estimates (f). The recharge 
rates are also binned into 25 bins for the plots, each containing 4% of the data. 
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Figure S5. Conceptual representation of how groundwater recharge and its main fates vary with 
aridity. The partitioning of precipitation into streamflow and evapotranspiration follows the 
Budyko curve (Budyko, 1974). The redline is the aridity-recharge fraction relationship derived in 
this study presented in Fig. 1b. 
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