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Abstract 32 

On-site wastewater treatment plants (OSTs) often lack monitoring, resulting in unreliable treatment per-33 

formance. They thus appear to be a stopgap solution despite their potential contribution to circular water 34 

management. Low-maintenance but inaccurate soft sensors are emerging that address this concern. 35 

However, how their inaccuracy impacts the catchment-wide treatment performance of a system of many 36 

OSTs has not been quantified. We develop a stochastic model to estimate catchment-wide OST perfor-37 

mances with a Monte Carlos simulation.  38 

In our study, soft sensors with a 70% accuracy improved the treatment performance from 66% of time 39 

functional to 98%. Soft sensors optimized for specificity, indicating the true negative rate, improve the 40 

system performance, while sensors optimized for sensitivity, indicating the true positive rate, quantify 41 

the treatment performance more accurately. This new insight leads us to suggest programming two soft 42 

sensors in practical settings with the same hardware sensor data as input: one soft sensor geared to 43 

high specificity for maintenance scheduling and one geared to high sensitivity for performance quantifi-44 

cation. Our findings suggest that a maintenance strategy combining inaccurate sensors with appropriate 45 

alarm management can vastly improve the mean catchment-wide treatment performance of a system 46 

of OSTs.  47 

Short synopsis statement: We take a systems perspective to show that a maintenance strategy incor-48 

porating inaccurate soft sensors is useful for improving the treatment performance of many on-site 49 

wastewater treatment plants in a catchment.  50 

Keywords: parameter optimization, sensor-based maintenance, soft sensors, WRRF  51 

  52 
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1 Introduction 53 

Water is essential to growing cities, and dwindling resources require a substantial increase in water 54 

efficiency. One option is to deploy modular systems of many on-site wastewater treatment plants (OSTs) 55 

to increase local reuse potential.1–3 The term OSTs refers here to small plants, typically at household 56 

level. The term systems refers throughout this article to the wastewater treatment solution for an entire 57 

catchment. This may be either a large number of OSTs in a modular approach or one central wastewater 58 

treatment plant (WWTP), also called a water resource recovery facility (WRRF). The aim is to enable 59 

locally appropriate recovery solutions.4 Such a paradigm shift from network-based wastewater manage-60 

ment towards more modular or hybrid systems is urgently needed, as noted by Larsen et al.5 Increasing 61 

the flexibility of highly networked and investment-intensive infrastructure will increase planning and op-62 

erating flexibility6 and is another reason to study systems of OSTs. However, the OSTs’ spatial distribu-63 

tion is expected to lead to lower performance than centralized approaches. Therefore, no consensus 64 

yet exists on what degree of decentralization is optimal. 65 

The question about the optimal degree of decentralization also referred to as “single large or several 66 

small,” appears in many areas, including ecology7 and the provision of infrastructure services such as 67 

electricity, heat, and, as in this case, wastewater.8 For systems of OSTs, “several small” means a large 68 

number of wastewater treatment plants spatially distributed in a catchment. Importantly, comparisons 69 

must be made at catchment-wide level and not at individual unit level.  70 

Measuring the units’ performance enables the long-term overall treatment performance to be quantified. 71 

However, it also has a recursive effect on performance by allowing targeted maintenance strategies. 72 

Here, we focus on sensor-measurement-based maintenance, also called sensor-driven maintenance. 73 

Our key hypothesis is that a sensor-based maintenance strategy can enable systems of OSTs to 74 

achieve verifiable performance levels that guarantee environmental and human health.  75 

To our knowledge, online quality monitoring is not commonly practiced, potentially leading to unnoticed 76 

failures.9,10 Instead, maintenance takes place periodically. This time-driven maintenance scheme with-77 

out online monitoring is currently the standard management strategy for OSTs in real-world practice.11–78 

14 Typical intervals are four times per year in Australia,12,15 two to three times per year in Germany,16–18 79 

usually three or more times per year in Japan,13,19 and at least once per year in Switzerland.11 therefore 80 

one to four interventions per year currently seem a feasible range of interventions for OSTs. With one 81 

to four grab samples per OST per year during maintenance as observed performance, the true treatment 82 



4 

 

performance of an OST cannot be estimated sufficiently accurately, creating a risk of undetected fail-83 

ures.  84 

Few measurement campaigns have assessed the performance of OSTs by analyzing grab samples,20–85 

23 and even fewer use online sensors for close-to-continuous measurements.24–26 Thus, information that 86 

characterizes performance, OST reliability, and failure rates remains sparse, despite calls for centralized 87 

remote monitoring and control of OSTs as early as 1998.27 Therefore, a decisive factor for the successful 88 

implementation of OSTs is an online monitoring concept.28–30 89 

Traditional wastewater monitoring emphasizes sensor accuracy with a correspondingly high frequency 90 

of maintenance, typically once a week. The equivalent maintenance effort for a large number of OSTs 91 

is so high as to render monitoring infeasible. Olsson (2013)31 stated that OSTs need less accurate and 92 

therefore potentially less frequently maintained sensors than centralized WWTPs but did not quantify 93 

these requirements. Hug and Maurer (2012)10 showed that inaccurate sensors could lead to a discrep-94 

ancy between true performance and the performance reported by the sensors, subsequently referred to 95 

as observed performance. 96 

In previous work, Schneider et al.32 suggested that hardware sensors combined with software models, 97 

together termed soft sensors, could predict target variables from signals from unmaintained physical 98 

sensors. These soft sensors solve the issues of labor-intensive maintenance and the costs of measure-99 

ment accuracy. Therefore, they can potentially resolve the performance issue9 of OSTs by offering real-100 

time data on their status. Soft-sensor accuracy, calculated as the number of correct predictions divided 101 

by the number of predictions, has been identified as 0.83-0.85 for four pH sensors and 0.80 and 0.85 102 

for two dissolved oxygen sensors.33 However, it is unclear whether the inaccurately measured perfor-103 

mance suffices to quantify the true performance of a large number of OSTs and whether a maintenance 104 

strategy is feasible despite inaccurate measurements.  105 

The work reported in this article spans this gap by comparing a monitoring concept for the observation 106 

of such inaccurate soft sensors with the true treatment performance of all OSTs in a catchment and 107 

investigating how well this true performance can be quantified despite the inaccuracy of the sensors. To 108 

do this, we developed a novel stochastic model. This model is used to explore the links between sensor-109 

based monitoring, intervention intensity, and OST reliability in a Monte Carlo simulation. We used the 110 

insights gained in our previous studies32,33 to specify the parameters of the model but did not limit the 111 

model to the previous studies. The following questions are addressed with this model: 112 
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Q1: How do soft-sensor accuracy, reliability of OST, and alarm management influence the true treat-113 

ment performance and the number of interventions required?  114 

Q2: How much can the performance of a large number of OSTs in a catchment be improved by online 115 

monitoring? 116 

Q3: How does optimizing the parameters of the soft sensor influence the treatment performance and 117 

its quantification? 118 

2 Methods 119 

2.1 Model description and data 120 

Where feasible, we used data from a previous study32,33 to develop the stochastic model. The sensors 121 

were for measuring pH and dissolved oxygen, were commercially available, and predicted one target 122 

variable through feature engineering: the ammonium effluent concentration. This ammonium effluent 123 

concentration was assumed to represent the overall treatment performance, and therefore grab samples 124 

were analyzed for ammonium and served as labels for parameter optimization. It is essential to under-125 

stand two characteristics of the previous study: (i) To serve a large number of OSTs, Schneider et al. 126 

(2019) left the sensors unmaintained, leading to inaccurate measurement and prediction of system per-127 

formance. (ii) Schneider et al. (2019) used a binary classification to predict treatment performance. The 128 

two classes predict the completeness of ammonium oxidation in a biological process in a sequencing 129 

batch reactor (SBR). The binary states were defined as ammonium effluent concentrations below and 130 

above 1 gNm-3, which are here termed the “up” and “down” states respectively.  131 

2.1.1 True and observed performance 132 

The soft sensor’s inaccuracy causes a discrepancy between the OSTs’ true and observed performance. 133 

Therefore, we separated the model into two parts: true performance and observed performance (see 134 

Figure 1). Eq. 1 is the conceptual definition of the two performances:  135 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1) 136 

Such inaccuracy can be caused by a lack of maintenance, as is the case for the soft sensors 137 

tested, or a complete lack of observations. The observed performance is the performance that hu-138 

man operators can estimate based on observations such as sensor measurements and inspec-139 

tions. The true performance is what an error-free sensor would measure. In the real world, the true 140 
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performance can only be estimated from the observed performance. The model developed here is 141 

based on the assumption that the true performance has previously been modeled, and we quantify 142 

how well the observation with inaccurate sensors represents this true performance.  143 

2.1.2 Model modules 144 

The model consists of five modules (see Figure 1). The unit failure module (I) defines when an 145 

OST is operating normally and when a fault or failure occurs. The output of the unit failure module 146 

is the OST state. Typical failures we observed were clogging of the effluent, pump failure, and re-147 

moval of all sludge from the plant (see supporting information S6 of Schneider et al. 202032). The 148 

true performance module (II) uses the unit failure state as an input to quantify the true perfor-149 

mance. In the previous study, this information was unknown too but was approximated with the 150 

measured ammonium concentration. The monitoring module (III) represents all observations avail-151 

able from both soft sensors and human inspection. The observed performance is determined by 152 

using the modeled true performance as input and considering the sensor accuracy. In this article, 153 

the observed performance is the result of the binary classification based on the measured signal 154 

with the unmaintained pH and dissolved oxygen sensors. The output of the monitoring module is 155 

used to quantify the observed treatment performance in a catchment. The alarm management 156 
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module (IV) takes the observed performance as input to decide which OSTs are flagged for inter-157 

vention. In the previous study, no alarm management was implemented. The intervention module 158 

(V) defines the frequency and types of intervention.  159 

 160 

Figure 1: Systematic representation of the treatment performance model of one OST. I. and II. represent 161 
the true treatment performance of one OST. Therefore, they represent the actual OST. III., IV., and V. 162 
the observable performance by sensors and inspection. The arrows indicate the input and output flow 163 
from one module to another. I. is the failure of the OST; a failure or drift of the sensor is included in the 164 
monitoring module. The bold labels on the arrows are the type of input from one module to another; the 165 
small labels are the actual binary input from one module to another. In the Python scripts, the input from 166 
one module to another is implemented as 0 and 1. To estimate the performance of a system of OSTs, 167 
a large number of such units are modeled. 168 

2.2 Model implementation 169 

To keep computational costs low and increase usability, we implemented the model in the simplest way 170 

possible to address the questions presented in the introduction. The implementation below is the specific 171 

implementation based on the previous studies.32,33 172 

At every time step, the model passes through all modules in Figure 1 in the order indicated by the 173 

arrows. The first simulation starts with a newly constructed OST (unit age t = 0 days) in the failure 174 

module and then passes through all the modules in one time step. A time step is defined as one SBR 175 

cycle, which we chose to be one day for simplicity, but ultimately is the frequency at which new soft-176 

sensor-based observations become available. The model is implemented in Python 3,34 is available 177 
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under a GNU common license (Schneider35 on https://gitlab.com/Viraja/systemperformance/), and is 178 

based on Hug and Maurer (2012).10 179 

Failure module (I): The failure module defines whether an OST is fully functioning, here called the up 180 

state, or in a failure situation, the down state. The failure module is a function of the unit age, and for 181 

this article, we use the same binary state as in Schneider et al. (2019).33 Therefore, up, implemented 182 

into the Python code as 1, means all ammonium is oxidized, down, implemented as 0, means not all 183 

ammonium is oxidized. We implemented a failure situation as an irreversible event with a high probability 184 

of insufficient performance that is only resolved by an intervention: sensor-driven maintenance. This 185 

means that within the failure module, an up state can change to a down state but not vice versa. To go 186 

from down to up, an intervention by the intervention module is required.  187 

We used reliability theory, assuming that the failures are stochastic,36 and chose a Weibull-distributed 188 

failure rate.37 The Weibull distribution is often used in infrastructure management. A random number 189 

between 0 and 1 was drawn from a uniform distribution to check whether an OST that is up fails in the 190 

current time step. This number was compared with the Weibull distributed hazard rate in Eq. 2. If the 191 

random number is smaller than the hazard rate, the OST state is changed to down. If the random number 192 

is greater than or equal to the hazard rate, the state stays unchanged.  193 

 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡, 𝑘𝑘, 𝜆𝜆) = 𝑘𝑘
𝜆𝜆
�𝑡𝑡
𝜆𝜆
�
𝑘𝑘−1

 . (2) 194 

Unit age is represented with t in days, λ is the scale factor in days, and k is the dimensionless shape 195 

parameter. Thus, λ and k define the Weibull distribution. For our screening, we kept the shape parameter 196 

k constant at 2, as in a previous study.10 We varied the scale factor λ, which stands for the mean ex-197 

pected survival time in the Weibull distribution, in a sensitivity analysis because the performance is 198 

sensitive to λ and we currently lack sufficient data to estimate λ. The assumption was that OSTs fail on 199 

average every four months and six years (88 to 2216 days). Other failure modes, such as periods without 200 

inflow, defective installations, or contamination with harmful substances, probably follow other distribu-201 

tions and would need the implementation of additional failure probability functions.  202 

True performance module (II): In the current implementation, the failure module’s up state leads to an 203 

up state in the true performance module. Likewise, the failure module’s down state translates into a 204 

down performance.  205 
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Monitoring module (III): Analogously to the failure and true performance module, the sensor-based mon-206 

itoring module also records a binary state based on the information from the true performance module 207 

with a defined accuracy between 0.5 and 1.0. The lower bound is 0.5 because if, instead of measuring, 208 

a random state were drawn from the same distribution as the performance, this random soft sensor 209 

would achieve a 0.5 accuracy; one with an accuracy of 1.0 represents a perfect soft sensor. The follow-210 

ing sensing outcomes are possible for the individual OSTs: 211 

• True positive (TP): The soft sensor indicates up, and the true performance is up.  212 

• False negative (FN): The soft sensor indicates down, and the true performance is up. The 213 

probability for the FN outcome is 1 minus the TP. The FN potentially causes false alarms. 214 

• True negative (TN): The soft sensor indicates down, and the true performance is down.  215 

• False positive (FP): The soft sensor indicates up, and the true performance is down. The prob-216 

ability for this outcome is 1 minus the TN. The FP represents undetected failures. 217 

The sensitivity (Eq. 3) is used when the true performance is up and the specificity (Eq. 4) when the true 218 

performance is down to determine whether the soft sensor makes a true or false prediction. This means 219 

TP is the sum of all true positive predictions of the individual OSTs over all time steps, and the same is 220 

true for FN, TN, and FP. 221 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑𝑇𝑇𝑇𝑇
∑𝐹𝐹𝐹𝐹+∑𝑇𝑇𝑇𝑇

 (3) 222 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑𝑇𝑇𝑇𝑇
∑𝑇𝑇𝑇𝑇+∑𝐹𝐹𝐹𝐹

  (4) 223 

A specificity of 0.98 and a sensitivity of 0.71 were identified through experimental validation under real-224 

istic conditions for the pH-based soft sensor.  225 

Furthermore, we assumed that a complete soft-sensor failure either is noticed immediately or does not 226 

occur, based on our experience33,38 where more than ten commercial pH sensors were tested, this is a 227 

valid assumption. 228 

The alarm management module (IV) converts the input from the monitoring module into a flag for OST, 229 

where action needs to be taken. In the previous study, no alarm management was implemented. There-230 

fore, we used the model to test various alarm management strategies. The most straightforward ap-231 

proach is to flag a unit as needing an intervention as soon as a soft sensor identifies the performance 232 

as down. We call this alarm management strategy (a). An approach to improving confidence is to wait 233 
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for n consecutive cycles labeled down before flagging an OST for an intervention: strategy (b) where n 234 

= 4 and strategy (c) where n = 14. A more elaborate method, strategy (d), uses previously identified 235 

soft-sensor accuracy to calculate the probability of the unit being down from the signal of the current 236 

and previous steps. As soon as this probability has surpassed a threshold (we used 98% as a boundary 237 

close to100%), the unit is flagged for intervention, and an intervention is issued for the unit. To estimate 238 

the probability of the unit being down, we calculate the conditional probability with a sequential proba-239 

bility ratio test:39  240 

𝑃𝑃𝑡𝑡(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑃𝑃𝑡𝑡−1 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∙ 𝑇𝑇𝑇𝑇
𝑃𝑃𝑡𝑡−1(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∙ 𝑇𝑇𝑇𝑇+(1−𝑃𝑃𝑡𝑡−1(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑))∙(1−𝑇𝑇𝑇𝑇)

 , (5) 241 

and correspondingly, 242 

𝑃𝑃𝑡𝑡(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 𝑃𝑃𝑡𝑡−1 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∙(1−𝑇𝑇𝑇𝑇)
𝑃𝑃𝑡𝑡−1(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∙(1−𝑇𝑇𝑇𝑇)+(1−𝑃𝑃𝑡𝑡−1(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑))∙𝑇𝑇𝑇𝑇

 . (6) 243 

𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) represents the probability that the true performance of an 244 

OST is down given that the soft sensor shows a failure (TN or FN) at time t based on the probability of 245 

a down state in the previous time step (t - 1). The probability that an OST is down is updated for every 246 

time step using Eq.s 5 and 6. We limit the probability interval to [0.001, 0.999] with a simple stopping 247 

rule to avoid numerical issues and a memory effect. 248 

Intervention module (V): The intervention is implemented so that an intervention is triggered every time 249 

a flag is raised in the alarm module. To minimize model complexity, we do not distinguish between 250 

different types of interventions nor consider spatial efficiencies. The assumption is that the intervention 251 

always repairs the OST. If the unit state is down and an intervention is issued, the true performance will 252 

be reset to up. Note that an intervention executed when the state is up does not impact the unit perfor-253 

mance or the sensor accuracy. Clearly, such interventions only raise the maintenance cost without any 254 

benefit. In addition to sensor-driven interventions, a time-driven inspection is implemented. The time-255 

driven inspection reveals the true performance of an OST in the time step during which the inspection 256 

is performed and repairs a unit with down status in the same manner as a sensor-driven intervention. 257 

The model can model sensor-driven or time-driven interventions or a combination of the two.  258 

2.2.1 Mean performance in a catchment 259 

To answer Q2, we modeled a system with 10 000 OSTs for ten years with individual reliabilities: a ran-260 

dom uniform distribution of λ between 400 and 2200 days. The catchment-wide mean true performance 261 
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is calculated from the true performance of the individual OSTs in the true performance module. Corre-262 

spondingly, the observed performance is calculated from the output of the monitoring module. The over-263 

all true performance is the mean of the performance of all individual OSTs in the catchment. Likewise, 264 

the overall observed performance is estimated by calculating the mean of all soft-sensor measurements 265 

in the monitoring module (III). Three base scenarios were modeled for TN numbers of periodic interven-266 

tions per year: (i) TN = 0 without any intervention, (ii) TN = 1, and (iii) TN = 3. The output of the modeling 267 

is the mean availability of the 10 000 OSTs over 10 years.  268 

2.2.2 Model concept 269 

The stochastic model simulates the true and observed performance of one or many individual OSTs in 270 

a catchment, as displayed in Figure 1. These results allow the catchment-wide performances to be 271 

quantified. Therefore, the model can be scaled to various catchment sizes with different numbers of 272 

OSTs. This article presents the specific implementation of the previous study with inherently inaccurate 273 

soft sensors. However, the model concept is broadly applicable and can be refined with more or im-274 

proved information on OSTs’ performance and failures and the behavior of unmaintained sensors. The 275 

model concept is explained in detail in the supporting information (S1 model concept).  276 

2.2.3 Operational costs 277 

Differences in operational costs are simply represented as the number of interventions. 278 

3 Results and Discussion 279 

3.1 Q1: How do soft-sensor accuracy, reliability of OSTs, and alarm management 280 

influence the true treatment performance and the number of interventions re-281 

quired?  282 

Figure 2.1 shows the mean fraction of time that a single OST’s performance is up, or functioning, in ten 283 

years. Every pixel represents an OST modeled with reliability (the mean survival time λ) on the x-axis 284 

and soft-sensor accuracy on the y-axis with identical inputs for sensitivity and specificity. The target is 285 

to have both high performance (Figure 2.1) and a low number of interventions (Figure 2.2). Therefore, 286 

these two subplots need to be considered jointly. To discuss the results, we highlight two meaningful 287 

regions in the subplots of Figure 2.1: Y represents high performance, which is considered as a feasible 288 

operation, and X represents low performance, which is infeasible. Similarly, we divided Figure 2.2 into 289 
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two areas: A represents a low number of interventions, which is feasible, and B represents a high num-290 

ber of interventions, which is infeasible. We use these areas solely to guide the reader through the 291 

results and discussion.  292 

In Figure 2.1a, the entire plot belongs to area Y, which means that, independently of the sensor accuracy 293 

and the mean survival time, the true treatment performance is nearly always high. The alarm manage-294 

ment strategy for (a) is that an intervention is issued as soon as the soft sensor shows a failure (TN or 295 

FN). Unsurprisingly, this leads to a very high number of units in the up state. Interestingly, even under 296 

these very intervention-intensive circumstances, the performance does not reach 100% for a very low 297 

mean survival time and low sensor accuracy. The very large area B in Figure 2.2a shows the high 298 

number of interventions, and therefore costs, this alarm management entails. Only with very accurate 299 

soft sensors (>98%) and elevated OST reliability does the intervention demand decrease to a reasona-300 

bly low level.  301 

 302 

Figure 2: Sensitivity of the fraction of time an OST is up (2.1, true performance of an OST) and mainte-303 
nance per year (2.2) to two system design parameters, i.e., sensor accuracy and mean survival time 304 
(λ). Every pixel represents an OST with a specific sensor accuracy and λ. The difference between the 305 
four subplots is the alarm management strategy; an intervention is issued after the soft sensor shows a 306 
failure (TN or FN) for (a) 1 day, (b) 4 consecutive days, (c) 14 consecutive days, and (d) conditional 307 
probability of a failure > 98%. The x-axis is from 88 to 2216 days. The subplots of 2.1 are schematically 308 
divided into two sections: Y for high performance and X for low performance. The subplots of 2.2 are 309 
schematically divided by the number of interventions per year into A for feasible and B for infeasible. 310 

Figure 2.1 shows the impact of the alarm management on the up time of the unit. The alarm manage-311 

ment defines how many consecutive time steps a down signal needs to be recorded in the monitoring 312 

module to trigger an intervention: (a) 1, (b) 4, and (c) 14. The area of Y is smaller in (b) than in (a). This 313 
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means that a small delay of four time steps of the intervention, as in Figure 2.1b, leads to a substantial 314 

decrease in up time for units with low reliability. However, in Figure 2.2b, the area of A is larger than in 315 

2.2a. This means management strategy (b) is preferable over (a) for the number of interventions. This 316 

trend continues in Figure 2.2c, with the difference that the effect of low-accuracy sensors is clearly visible 317 

as a reduction in area Y in Figure 2.1c. Soft sensors with low or intermediate accuracy have a low 318 

probability of showing a series of 14 consecutive negative signals and therefore are prone to consider-319 

able intervention delays, even when the down performance is apparent, as in our example. Thus, the 320 

optimal value for consecutive negative signals lies between 4 and 14 days. Figure 2.1d shows the impact 321 

of more sophisticated alarm management based on the confidence in the monitoring signal. Interven-322 

tions are triggered when the estimated probability (Eq.s 5 and 6) of a unit having a down state exceeds 323 

0.98. This approach assumes that the soft-sensor accuracy is known and links it with the alarm man-324 

agement. High up time for units is achieved for all but the least reliable units and with medium or higher 325 

accuracy soft sensors.  326 

OSTs are operated optimally somewhere in the intersection of areas Y (Figure 2.1) and A (Figure 2.2) 327 

(Y ∩ A), where the true treatment performance is high and the number of interventions remains low. The 328 

Y ∩ A of alarm management strategy (a) is restricted by A. Figure 2.2a shows that an alarm manage-329 

ment that triggers an intervention as soon as the sensor indicates a negative signal will lead to many 330 

FN and, therefore, the high costs that many interventions would entail. The exception to this high number 331 

of false alarms is to build very accurate sensors with more than 98% accuracy, where none of the alarm 332 

management strategies lead to a high number of interventions. Conversely, Y ∩ A for strategy (c) is only 333 

curtailed by Y, the true treatment performance displayed in Figure 2.1c, suggesting that too few inter-334 

ventions are triggered in strategy (c). In this case, the threshold used to trigger an alarm is set too high, 335 

leading to delayed inspections and reduced performance.  336 

The most successful alarm management strategies are (b) and (d). Interestingly, both strategies pro-337 

duce a similar Y ∩ A area, although their underlying causes differ. For (b), a high number of interventions 338 

are needed (Figure 2.2, area A), whereas the performance is high for any sensor accuracy between 0.5 339 

and 1.0 (Figure 2.1, area Y). For (d), the opposite can be observed: the number of interventions is low 340 

for all sensor accuracies, but the true treatment performance drops for sensor accuracies below 0.6.  341 

Assuming that strategies (b) and (d) are both preferable alarm strategies, we can learn that a minimal 342 

OST robustness is required or a replacement strategy40 needs to be set in place if a high number of 343 
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failures is observed at the end of life of OST units. In (b) and (d), this robustness threshold is around a 344 

one-year mean survival time if the failure follows a Weibull distribution (Eq. 6). Soft sensors have no 345 

such clear threshold because we assume they are frequently replaced and do not reach the end-of-life 346 

phase before replacement.  347 

3.2 Q2: How much can the performance of a large number of OSTs in a catchment 348 

be improved by online monitoring?  349 

In this section, we explain how the true performance of each OST (Q1) translates into an overall systems 350 

performance of a large number of OSTs (10 000) in a catchment, referred to here as system perfor-351 

mance, and how the true system performance compares to the observed one. Furthermore, we discuss 352 

how sensor-driven interventions triggered by online monitoring compare to the same number of periodic 353 

time-driven maintenance interventions. Figure 3 shows the mean true system performance and the sys-354 

tem performance observed from monitoring with inaccurate sensors. The mean number of interventions 355 

per unit per year is indicated with N for time-driven interventions and SN for sensor-driven interventions. 356 

The exact results (shown in Figure 4 as horizontal, dashed lines) as mean availability are (i) 0.31 of the 357 

time, or 31% up time of the 10 000 OSTs out of 10 × 365 days for N = 0; (ii) 0.66 for N = 1; and (iii) 0.83 358 

for N = 3. Figure 3 shows that the observed performance’s deviation from the true performance depends 359 

on the sensor accuracy and, except in the extreme case of a nearly perfect sensor, is substantially lower 360 

than the true performance.  361 

Figure 3 further shows the influence of various soft-sensor accuracies on the true system performance 362 

and how accurately the true performance is observed. The observed system performance improves 363 

nearly linearly with soft-sensor accuracy. This is the behavior that we would expect in a system with 364 

close to 100% true performance. The performance observed in this special case directly reflects soft-365 

sensor accuracy. The true performance is consistently above 90%, even with inaccurate soft sensors. 366 

However, high performance despite low sensor accuracy comes at the cost of maintenance frequency. 367 

SN = 12 interventions is three times higher than the usual frequency of one to four interventions per 368 

year in use today (see introduction). Figure 3 shows that the soft-sensor accuracy should be 0.7 or 369 

higher to keep the number of interventions equal to or lower than three per year. The modeled treatment 370 

performance for a 0.7 soft-sensor accuracy is 97% (with 0.12% variance, see supporting information). 371 

The previously developed pH-based soft sensors have an overall accuracy of 0.80–0.85,33 well above 372 

this minimum of 0.7. These results suggest that the broad adoption of the sensor technology currently 373 
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available would significantly improve treatment performance. Figure 3 suggests an improved treatment 374 

performance from 66% (when N = 1) to 98% (with SN = 1–2 and 0.8 soft-sensor accuracy). Therefore, 375 

when changing from the current paradigm of regular, time-driven interventions towards measurement-376 

based, sensor-driven interventions, the system potentially shifts from a mediocre to a decent true per-377 

formance even with inaccurate soft sensors. 378 

 379 
Figure 3: Comparison of true (large circles with the corresponding number of sensor-driven interven-380 
tions: SN) and observed (small circles) system performance of 10 000 OST for sensor-based mainte-381 
nance schemes for various soft-sensor accuracies. The horizontal dashed lines are the reference to 382 
maintenance schemes without sensors (time-driven interventions: N). They indicate the true system 383 
treatment performance for N = 0, 1, and 3. The vertical shaded area indicates the current real-world 384 
soft sensor and shows that a true treatment performance of around 98% would be reached with the 385 
current sensors, while the observed performance would be expected to be around 80% (intersection of 386 
the gray shaded area with the interpolation of the true, respectively observed performance).  387 

3.3 Q3: How does optimizing the parameters of the soft sensor influence the treat-388 

ment performance and its quantification? 389 

Table 1 shows two diverging aspects of sensor accuracy. The modeling results imply that optimization 390 

for specificity improves the system treatment performance but reduces the accuracy of the performance 391 

quantification. Monitoring with high specificity is especially relevant for the high inflow variability such 392 

small OSTs encounter.20 Therefore, the difference between true and observed system performance in 393 

Figure 3 is sensitive to the parametrization of the soft sensor; the soft sensors in the previous study 394 

were optimized for specificity.33 The benefit of this conservative approach is that it results in more reliable 395 

information for alarm management, which in turn improves the true system performance. However, this 396 

specificity-optimized soft sensor leads to less accurate quantification of the observed performance. 397 
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Table 1: Influence of soft-sensor specificity, sensitivity, and reliability on mean true performance, the 398 
mean observed performance, and mean number of interventions per unit per year for a system of 10 000 399 
OSTs. The category “as Figure 3” uses the same random uniformly distributed λ in days as Figure 3 400 
(400 and 2200): “low”(100 to 400), and “high” (800 to 2200).  401 

sensor  
accuracy 

OST reliability mean true perfor-
mance  

mean observed per-
formance  

mean number of in-
terventions 

specificity 0.98, 
sensitivity 0.7 

as Figure 3 0.99 0.69 3.5 
low 0.82 0.54 23 
high 0.99 0.71 2.5 

specificity 0.7, 
sensitivity 0.98 

As Figure 3 0.96 0.95 1.4 
low 0.64 0.71 13 
high 0.98 0.96 0.80 

 402 

The modeling results suggest that the soft sensor should be used with two sets of optimized parameters: 403 

one geared toward high specificity for alarm management and one toward high sensitivity to quantify 404 

system performance. Both can be used with the same calibration data as input. Realizing this possible 405 

double use of data to obtain different outputs is an important change in mindset and a strength of any 406 

soft-sensor approach.  407 

3.4 Alarm management 408 

Two alarm strategies have been identified as preferable to the other two strategies investigated. One is 409 

very simple: waiting for four consecutive negative cycles; the other uses a conditional probability that 410 

depends on sensor accuracy. The latter is the more elaborate method. However, it has two disad-411 

vantages: Firstly, an error in the estimated sensor accuracy could lead to inadequate system perfor-412 

mance quantification. Secondly, if the accuracy is lower than estimated, the performance is lower, but 413 

the number of interventions will not rise as required because of the overestimated accuracy (Figure 2.1d 414 

and Figure 2.2d). In reality, if the low performance of an individual OST occurs due to wrong estimation 415 

of sensor accuracy, this low performance would probably not be discovered because performance is 416 

estimated from this same inaccurate sensor. In contrast, a sensor with lower accuracy would simply 417 

cause more interventions (Figure 2.1b and Figure 2.2b). A rising number of interventions is likely to be 418 

noticed by an operator. This shows that when choosing an alarm management strategy, the ease with 419 

which an unfavorable state of the system can be identified should also be considered.  420 

3.5 Simplifications, assumptions, and potential model extensions 421 

The current model aims to answer the scoping questions presented at the end of the introduction and is 422 

implemented in the most straightforward way, requiring several strong simplifications and assumptions. 423 

However, the model35 is designed in such a way that every module can be refined for applications that 424 



17 

 

go beyond the investigated aspects in this article, such as planning monitoring strategies, and support-425 

ing system design decisions such as balancing the costs of investment in sensor hardware and mainte-426 

nance against the costs of interventions caused by false alarms.  427 

A strong simplification is the applied binary performance model, which assumes that a plant either fulfills 428 

the requirements or not. This ignores the possibility that overperforming plants could compensate for 429 

minor malfunctions or that a unit self-recovers from a shock. Our conservative model’s assumption of 430 

stochastic failure behavior therefore represents the lower boundary of system performance.  431 

A second strong simplification is the alarm management implementation presented here. The signals 432 

from the sensors are treated as statistically independent, leading to a very simple and, again, conserva-433 

tive result. Possible improvements include using machine learning algorithms for anomaly detection in 434 

the online time series and spatially optimizing an intervention strategy that also considers OST locations.  435 

The third very relevant simplification is the constant accuracy of the sensors between the intervention 436 

intervals. Our own experience shows that this is reasonably realistic. However, much more research in 437 

soft sensors is needed to show how sensor accuracy can be modeled more realistically.  438 

We conclude that most simplifications and assumptions lead to conservative results that indicate the 439 

minimal performance achievable for the given inputs. 440 

3.6 Possible model extensions 441 

For further studies, improving the model with more differentiated failure modes, such as biology failure 442 

due to prolonged periods without influent, and effective performance distributions would give a more 443 

detailed quantitative estimation of the achievable performance of real-world systems of OSTs. An inter-444 

esting extension would be to couple our performance model with an agent-based modeling approach 445 

and a detailed physical-biological treatment plant model. This could also capture various socioeconomic 446 

behaviors that affect the performance of systems of OSTs. Furthermore, the model presented in this 447 

article could also be modeled with a stochastic Petri net with aging tokens.41,42 448 

3.7 Single large or several small? 449 

To decide which system is the most efficient for treating wastewater across an entire catchment, quan-450 

tifying the performance of a system of OSTs is essential. We showed that accurate quantification re-451 

mains challenging for OSTs and will require more research on soft sensors. However, when comparing 452 
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OST and centralized systems, it is remarkable that even for centralized systems, many unknowns re-453 

main about the true treatment performance in an entire catchment: Firstly, losses via combined sewer 454 

overflows and faulty connections are only partly monitored;43 in Switzerland, for instance, 2.7% of the 455 

yearly dry-weather flow is estimated to be discharged untreated during rain events via combined sewer 456 

overflows.43 Secondly, losses from sewers due to suboptimal infrastructure management are another 457 

unknown. In Europe, sewer losses are estimated to be from 5% to 20%,44 which is low compared, for 458 

example, to the 77% estimated for Vietnam.45 These two issues highlight that the true system perfor-459 

mance of centralized WWTPs needs to be quantified similarly to that of OSTs to achieve a fair compar-460 

ison of system performance. 461 

This article shows that systems of OSTs with adequate monitoring have the potential to achieve high 462 

performances at catchment level, even with conservative assumptions. We believe that this justifies the 463 

need for more research into the remote operation and monitoring of systems of decentralized, modular, 464 

and unstaffed WWTPs with particular emphasis on resource recovery and reuse.  465 

Lastly, we want to emphasize the importance of evaluating environmental impact from the system per-466 

spective. Without professional monitoring, maintenance, and repair, no technical system works 467 

properly.46 This applies equally to OSTs and centralized systems. Therefore, to further scale up systems 468 

of OSTs, centralized management47 and appropriate monitoring strategies are essential. 469 

Abbreviations 470 

N  number of interventions 471 

OST  on-site wastewater treatment plant 472 

SBR  sequencing batch reactor 473 

WRRF water resource recovery facility 474 

WWTP wastewater treatment plant 475 

Supporting information 476 

Detailed description of the model concept including model walkthrough, influence of the modeled num-477 

ber of OSTs on the variance. 478 
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