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• Combining Sentinel-2 and eDNA data re-
veals a land-water linkage of biodiversity.

• The spatial range of this linkage extends
up to 2 km.

• Vegetation functional diversity is the
dominant contributor to this linkage.

• The biodiversity signal detected contains
aquatic and terrestrial organisms.
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Aquatic and terrestrial ecosystems are tightly connected via spatial flows of organisms and resources. Such land-water
linkages integrate biodiversity across ecosystems and suggest a spatial association of aquatic and terrestrial biodiver-
sity. However, knowledge about the extent of this spatial association is limited. By combining satellite remote sensing
(RS) and environmental DNA (eDNA) extraction from river water across a 740-km2 mountainous catchment, we iden-
tify a characteristic spatial land-water fingerprint. Specifically, we find a spatial association of riverine eDNA diversity
with RS spectral diversity of terrestrial ecosystems upstream, peaking at a 400 m distance yet still detectable up to a
2.0 km radius. Our findings show that biodiversity patterns in rivers can be linked to the functional diversity of sur-
rounding terrestrial ecosystems and provide a dominant scale at which these linkages are strongest. Such spatially ex-
plicit information is necessary for a functional understanding of land-water linkages.
1. Introduction

Understanding the spatial distribution of biodiversity and its linkage
across ecosystem types is essential, especially in an era of increasing
human modifications of natural landscapes (Kennedy et al., 2019; Pimm
et al., 2014). It is well-established that species and ecosystem functional di-
versity are unevenly distributed across landscapes, with pronounced
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diversity hot and cold spots (Hughes et al., 2021; Mittermeier et al.,
2011). Intriguingly, however, most past work has focused on individual
ecosystem types, such as forests, grasslands, or aquatic ecosystems, thereby
neglecting a possible co-variation of biodiversity across different ecosys-
tems. Indeed, only very recently the relevance of spatial scaling of biodiver-
sity and ecosystem functioning research and the dependence on the spatial
extent has been postulated (Gonzalez et al., 2020; Thompson et al., 2021).

Natural ecosystems, and the biodiversity therein, are often linked to
each other through flows of organisms and resources (Gounand et al.,
2018a; Guichard and Marleau, 2021; Loreau et al., 2003). One of the
most prominent examples is the coupling of aquatic to terrestrial ecosys-
tems (Gounand et al., 2018b; Grimm et al., 2003; Soininen et al., 2015).
December 2022
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Aquatic ecosystems are not only highly biodiverse yet threatened by an-
thropogenic activities (Dudgeon, 2019), but also strongly influenced by sur-
rounding terrestrial ecosystems through the characteristic fractal structure
of riverine networks embedded across most landscapes worldwide (Dahlin
et al., 2021; Gounand et al., 2018b; Rodriguez-Iturbe and Rinaldo, 2001).
Consequently, in these connected systems, a characteristic in one ecosystem
resulting in an imprint on the diversity of the other ecosystem is expected,
with implications for land management and conservation (Polis et al.,
1997). Specifically, in the aquatic-terrestrial linkage, a site in the river
and its terrestrial vicinity area are tightly shaped by a dominant impact di-
rection from terrestrial to aquatic ecosystems. Multiple mechanisms, such
as direct effect of organismal movement (Ward et al., 2002), and indirect
effects of resource subsidies (Gravel et al., 2010) and food web interactions
(Leroux and Loreau, 2008; Nakano and Murakami, 2001), have been hy-
pothesized to explain such cross-ecosystem interactions. For instance, ani-
mal movements across landscapes can, at the same time, alter carbon
exchange and storage, transport of nutrients, and trophic cascades (Polis
et al., 1997; Schmitz et al., 2018). While proposed individually, all these
mechanisms are essentially mutually non-exclusive, and the differentiation
into them requiresmanipulative studies. Nevertheless, little is known about
the spatial extent of such a linkage, particularly regarding the spatial range
at which one ecosystem could influence local biodiversity in the respective
other ecosystems. Such information, however, is crucial because the spatial
extent of linkage of biodiversity across ecosystems, generating a “spatial
fingerprint”, can be seen as a basic unit at which biodiversity in the river
is significantly influenced by the surrounding terrestrial ecosystems, or in
other words, where the linkage of ecosystems modulates local biodiversity.
The concept of such a spatial fingerprint of land-water linkage of biodiver-
sity enables analyzing biodiversity patterns at the catchment level. In addi-
tion, the spatial extent itself has potentially a broad meaning because it
provides not only a spatial extent for local cross-ecosystem linkage of biodi-
versity, but also a reference scale for aquatic biodiversity protection in
terms of surrounding terrestrial land use management.

In natural ecosystems, higher landscape richness, or more directly land-
scape heterogeneity, can promote biodiversity and ecosystem functioning
at the local scale (Oehri et al., 2020). Moreover, spatial flows of resources
and organisms drive a land-water linkage of organisms and resources in a
catchment (Gravel et al., 2010; Ward et al., 2002). This allows the formula-
tion of the core hypothesis of this study, which is the existence of the land-
water (cross-ecosystem) linkage of biodiversity, herein termed as the
spatial fingerprint of land-water linkage. Following this, our second hy-
pothesis focuses on the dominant scale of the spatialfingerprint.We assume
that the spatial association between terrestrial ecosystem functioning and
the diversity of riverine communities would maximize where local hetero-
geneity of terrestrial landscape and spatialflows of resources and organisms
are mostly integrated, but would then decrease with increasing distances.
Furthermore, we also hypothesize that the indirect effects mostly, but not
exclusively, contribute to the land-water linkage of biodiversity.

To testify to these hypotheses and quantify the spatial extent of linkage
of diversity across ecosystem types, biodiversity must be quantified in scal-
able and comparable manners. Classically, biodiversity is directly quanti-
fied by counting individual species, for example, through inventories
conducted along transects or in plots of defined size. This approach, how-
ever, has inherent limitations for spatial upscaling and cross-ecosystem
comparisons (Gonzalez et al., 2020). Currently, two recent technological
advances are revolutionizing biodiversity sciences, overcoming limitations
with taxonomic and functional coverage, and the possibility to be spatially
scaled. The first advancement is through remote sensing (RS) methods,
which use portable, airborne, or satellite devices to characterize the ecosys-
tem structurally, taxonomically, or physiologically by measuring reflected
or emitted radiation at a distance (O'Connor et al., 2020; Pereira et al.,
2013; Skidmore et al., 2021). RS is particularly capable of characterizing
terrestrial plant communities and a prime method for measuring essential
biodiversity variables (EBVs) (O'Connor et al., 2020; Pereira et al., 2013;
Skidmore et al., 2021). Particularly, RS can map terrestrial ecosystem func-
tional traits and diversity at regional to global scales with resolutions down
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to a meter, enabling the upscaling of biodiversity from local composition to
ecosystem levels (Jetz et al., 2016; Schneider et al., 2017; Zheng et al.,
2020). The second advancement is through environmental DNA (eDNA)
metabarcoding. It is based on the finding that organism's occurrence can
be inferred from environmental samples containing their DNA. This DNA
can be collected, sequenced and matched to taxonomic databases in a stan-
dardized and quantitative manner, making biodiversity assessment more
accurate and efficient (Cilleros et al., 2019; Lodge et al., 2012; Taberlet
et al., 2012; Thomsen and Willerslev, 2015). In aquatic biodiversity sur-
veys, eDNA metabarcoding is so powerful that organismal communities
can be reconstructed from a few liters of water, drastically transforming
how microbial and macrobial communities are surveyed (Keck et al.,
2022). Therefore, this new technology is widely used in aquatic ecosystem
studies, and it is becoming a standard for aquatic biodiversity assessments
(Bista et al., 2017; Bohmann et al., 2014; Deiner et al., 2017; Turak et al.,
2017). The passive transport of DNA in water makes it a particularly effi-
cient method in riverine systems, as the flow along the riverine network
carries and integrates biodiversity information over the catchment
(Deiner et al., 2016; Pont et al., 2018; Shogren et al., 2017), and can be
used for estimating spatial patterns of biodiversity at the landscape level
(Carraro et al., 2020; Shackleton et al., 2019).

Essentially, RS and eDNAmetabarcoding complement each other in bio-
diversity detection. RS is especially powerful in monitoring terrestrial eco-
systems, including physiological properties and structural diversity of
vegetation. Contrastingly, environmental DNA is especially powerful in
assessing biodiversity in riverine systems, including microbial organisms,
invertebrates, and vertebrates, which are largely inaccessible for RS. There-
fore, a combination of RS for terrestrial ecosystems and eDNA for aquatic
ecosystems can provide a holistic view of biodiversity for spatially coupled
ecosystems (Lausch et al., 2018; Yamasaki et al., 2017). Most importantly,
it allows uncovering the spatial scale of land-water linkages of biodiversity
at the landscape level (Bush et al., 2017; Lin et al., 2021).

Here, we quantified the spatial extent of a linkage of biodiversity be-
tween aquatic and terrestrial ecosystems by combining RS and eDNA sam-
pling in a 740-km2 river drainage basin to testify to the hypotheses
mentioned above. We assessed aquatic biodiversity of a broad range eu-
karyotic microorganisms, macro- and micro-invertebrates, and vertebrates
along the river network using a generic marker covering a wide breadth of
taxa. Then, we matched the eDNA-derived aquatic biodiversity to terrestrial
ecosystem functional diversity in the catchment based on Sentinel-2 Multi-
Spectral Instrument (MSI) satellite data. Specifically, as for the first and sec-
ond hypotheses, we identified the spatial range within which the functional
diversity of the terrestrial vegetation was associated with the taxonomic di-
versity in the riverine ecosystems and determined at what spatial scale this
linkage was the highest. We then tested our third hypothesis of possible
mechanisms with respect to direct or indirect effects. Thereby, combining
RS and eDNA, we provide a first spatially explicit integration of land-water
linkage of biodiversity, and identify a characteristic spatial fingerprint across
aquatic-terrestrial ecosystem boundaries at the landscape level.

2. Methods

We combined assessments of aquatic biodiversity using eDNA and ter-
restrial diversity based on Sentinel-2 MSI satellite data in the 740 km2

Thur river catchment (Fig. 1). The Thur river catchment is located in the
northeastern part of Switzerland. It covers a mountainous landscape with
an elevation gradient ranging from 460 m to 2423 m a.s.l. and contains a
mosaicked landscape of urban, agricultural, and forested terrestrial ecosys-
tem types.

2.1. RS-derived physiological traits and functional diversity in terrestrial ecosys-
tems

2.1.1. Physiological traits in terrestrial ecosystems by Sentinel-2 MSI
Functional diversitymetrics can provide essential information on terres-

trial ecosystem functioning and are capable to be mapped from either



Fig. 1. Location of the Thur river catchment in Switzerland and eDNA sampling sites. Pink dots are 61 eDNA sampling sites. The blue lines represent river channels draining in
a Northward direction. White lines indicate the boundaries of the main catchment and its three subcatchments (Thur, Necker, and Glatt).
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airborne (Schneider et al., 2017) or satellite platforms (Helfenstein et al.,
2022). With a resolution of 20 m and multi-spectral information covering
large parts of the visible and near-infrared spectral domain, data from the
Sentinel-2 satellites are particularly suited for monitoring physiological
properties of terrestrial ecosystems. Thus, we adapted a spatially continu-
ous method, which was generalized to Sentinel-2 MSI satellite data, to
map the terrestrial ecosystem functional diversity (a metric in EBVs) at a
20 × 20 m resolution (Drusch et al., 2012; Helfenstein et al., 2022). With
the multi-spectral data from Sentinel-2, one can estimate physiological
traits of vegetation and their spatial variations through well-established
vegetation indices (see Supplementary Text). Specifically, we selected veg-
etation indices that are linked to chlorophyll content (CHL), anthocyanin
content (ANT), carotenoid content (CAR), and water content (WAT) to con-
struct a four-dimensional trait space. Functionally, chlorophyll (green pig-
ment) enables plants to capture energy from light in the photosynthesis
reaction; anthocyanin (blue, red, and purple pigment) replaces chlorophyll
during the leaf senescence process; carotenoid (orange and yellowpigment)
prevents possible damage in stress conditions; water content reflects dry
weight and drought stress among the plants (Jetz et al., 2016). Hence,
such traits integrally represent the presence and conditions of vegetation
and reflect the variation and spatial distribution of physiological traits of
vegetation (Díaz et al., 2016).

All vegetation indices were computed on Google Earth Engine (GEE), a
cloud-based platform for spatial analysis (Gorelick et al., 2017). We se-
lected Sentinel-2 MSI Level-2A calibrated surface reflectance (SR) image
collections between June and August in 2017, as no SR images were pro-
duced at the time of eDNA sampling. Based on a cloud-free image acquired
by employing a median filter to the selected image collections, we calcu-
lated eleven spectra indices representing CHL, ANT, CAR, andWAT. All de-
tailed formulas of these vegetation indices are shown in the Supplementary
Text.
3

2.1.2. Selection of physiological traits
To reduce collinearity, we chose one vegetation-index-based trait proxy

in each physiological trait dimension. We computed a correlation matrix of
all the normalized physiological trait proxies (Fig. S1a) and enumerated all
possible four-trait-proxy subsets. For each subset, we calculated the
Frobenius norm (‖A‖F) of the correlation matrix (A), according to Eq. (1).

A ¼
a11 ⋯ a1n
⋮ ⋱ ⋮
am1 ⋯ amn

24 35;
Ak kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

Xn
j¼1

aij
�� ��2vuut :

ð1Þ

Next, we found an optimal subset with the lowest Frobenius norm
(Fig. S1b). The selected trait proxies were CIre (CHL), ARI1 (ANT), PSRI
(CAR), and NDII (WAT). We observed less collinearity among the selected
proxies except for CHL againstWAT, where positive correlation is unavoid-
able because both trait proxies, though in different aspects, reflect the con-
dition of vegetation photosynthesis (Fig. S2).

2.1.3. Terrestrial ecosystem functional diversity in the catchment across distance
We used the 25×25m digital elevationmodel (DEM) of the study area

provided by the Swiss Federal Institute of Topography (Swisstopo) to ex-
tract the catchment of each eDNA sampling site. ArcGIS software (version
10.3) was used to generate a flow directionmap based on the DEM.We pro-
duced a catchmentmapwithflowdistance for each site by tracing thewater
flow direction of each pixel and recording its flow distance to the site. Up-
stream distance buffers of each sampling site were created by setting the
spatial interval to 0.05 km for 0–10 km and 0.1 km for 10–20 km (Fig. 2).
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Fig. 2. Upstream distance buffers of the eDNA sampling site and terrestrial ecosystem functional diversity based on these distance buffers. a. Catchment map with distance
buffers (1 km, 3 km, etc.) of site No. 29 as an example. Flow distance for each pixel was calculated by tracing the 25× 25 m flow direction map. Colors from red to yellow
indicate the increasing trend of flow distance. The zoom-in figure represents the 50 m spatial interval for distance buffers (color scale adjusted). b. Functional divergence
(FDiv) with upstream distance given for 61 eDNA sampling sites (grey lines; the example site No. 29 is highlighted as red line). We calculated FDiv by collecting four-
dimensional trait value vectors from pixels covered by the distance buffer. Non-vegetated pixels were masked out before computation.
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We chose functional divergence (FDiv) among three types of functional
diversity metric (functional richness, functional divergence, and functional
evenness) because FDiv best captured the variation of terrestrial ecosystem
functions and was the most robust to noise and outliers (Schneider et al.,
2017; Villéger et al., 2008). For each sampling site with an upstream dis-
tance buffer, based on the normalized selected trait proxies, we extracted
four-dimensional trait proxy value vectors (Vi) from vegetated pixels (i =
1, 2, …, s) that covered by the upstream distance buffer and calculated
FDiv by following Eqs. (2)–(5).

C ¼ 1
s

Xs
i¼1

Vi: ð2Þ

dGi ¼ Vi−Ck k2 ð3Þ

Δ dj j ¼ 1
s

Xs
i¼1

dGi−dG
�� �� ð4Þ

FDiv ¼ dG
Δ dj j þ dG

(5)

s is the number of vegetated pixels in the upstream distance buffer; C is
the center of gravity of all vectors; dGi is the Euclidean distance between the
vector of ith pixel (Vi) and the center of gravity (C). dG is themean Euclidean
distance of all vectors toC. In a special case, FDiv equals to 1 if all pixels are
in a perfect sphere with equal distance to C.

2.2. eDNA-derived biodiversity in aquatic ecosystem

2.2.1. eDNA sampling in the Thur river network
The Thur catchment covers an area of 740 km2 with three main river

branches (Thur, Glatt, and Necker) and the main land covers including
4

forest (29.0 %), arable and grassland (56.0 %), urban area (10.2 %), unpro-
ductive land (3.6%), andwater (1.2%) land types (data from Swiss Federal
Statistical Office, 2015.website: https://www.bfs.admin.ch/bfs/en/home/
services/geostat/swiss-federal-statistics-geodata/land-use-cover-
suitability/swiss-land-use-statistics/land-use.html). A systematic eDNA
sampling was conducted in June 2016 under base-flow conditions. The de-
tailed sampling, laboratory work, and subsequent bioinformatic analyses
followed established standard procedures are described in Mächler et al.
(2019, 2021), who analyzed the diversity of a small subset of all organisms
and established methodological protocols for the eDNA sampling, respec-
tively. In total, we collected 183 water samples at 61 sites (three individual
replicates per site) in the dendritic river network. For each replicate, 250ml
of river water was filtered on site using GF/F filters (pore size 0.7 μm
Whatman International Ltd.), and the filters were then immediately stored
at −20 °C. Subsequently, DNA was extracted in a specifically dedicated
clean lab, using the DNeasy Blood and Tissue Kit (QiagenGmbH). Handling
and extraction of all replicates were done in a randomized order. We per-
formed two PCR runs with the Illumina MiSeq dual-barcoded two-step
PCR amplicon sequencing protocol by targeting a short barcode region of
the cytochrome c oxidase I (COI), covering a wide breadth of taxa including
eukaryotic microorganisms, macro- and micro-invertebrates, and verte-
brates (Leray et al., 2013). We used a two-step PCR approach: The first
step covered 44 cycles where we used primers containing an Illumina
adaptor-specific tail, a heterogeneity spacer, and the amplicon target site.
The second step covered 10 cycles only and contained the Nextera XT
Index Kit v2 for indexing, thereby reducing tag switches due to PCR errors.
Filter controls (FC), extraction controls (EC), positive and negative PCR
controls (PC, NC) were run alongside. The sequence data were subse-
quently demultiplexed, and the quality of the reads was checked with
FastQC (Andrews, 2010). Then, we end-trimmed (usearch, version
10.0.240), merged the raw reads (Flash, version 1.2.11), removed primer
sites (cutadapt, version 1.12), and quality-filtered the data (prinseq-lite,

https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/land-use-cover-suitability/swiss-land-use-statistics/land-use.html
https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/land-use-cover-suitability/swiss-land-use-statistics/land-use.html
https://www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/land-use-cover-suitability/swiss-land-use-statistics/land-use.html
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version 0.20.4). Next, we used UNOISE3 (usearch, version 10.0.240) to de-
termine ZOTUs, and performed an additional clustering at 99 % sequence
identity to reduce sequence diversity. Before final use, the resulting
ZOTUs were checked for stop codons with invertebrate mitochondrial
code, and to only contain an intact open reading frame.

We merged the ZOTU abundances of the three replicates at each site
and obtained 26,519,031 reads clustered into 10,962 ZOTUs. Then, we cal-
culated the relative abundance for each ZOTU at all sampling sites. To alle-
viate uncertainties, we filtered out the ZOTUs with<0.005% occurrence in
total (i.e., <1326 total reads) and finally used 24,471,930 reads clustered
into 1394 ZOTUs for all analyses (2404 ± 216 (mean ± standard error)
number of reads per ZOTU). Taxonomic information at the phylum and
the class level for all ZOTUswas acquired bymapping against a customized
MIDORI Reference 2 (UNIQ/GB242) database. After that, we computed rel-
ative abundance for each ZOTU at each sitewith the number of reads of one
ZOTU divided by total number of reads at one site (for a depiction of read-
distribution across samples, see Fig. S3), subsequently referred to as our
eDNA data.

2.2.2. Hill numbers as metrics of eDNA-derived biodiversity
We focus on richness and evenness-based descriptors of diversity, as

these are most commonly used in biodiversity sciences. To describe differ-
ent aspects of biodiversity across all eDNA samples, we used Hill numbers,
which are a compatible statistical framework considering both occurrence
and abundance information (Alberdi and Gilbert, 2019; Hill, 1973; Jost,
2007; Mächler et al., 2021). In this framework, the abundant species
(with high ZOTU reads) enlarge their weights with increasing Hill number
q orders. Though in different formulas, thesemetrics are directly relevant to
some popular measurements of biodiversity. For instance, Hill numbers
with order q = 0, 1, and 2 correspond to species richness, the exponential
of Shannon diversity, and the inverse of the Simpson index, respectively.
Therefore, to keep a consistency with these commonly used measurements,
we calculated Hill numbers with order q = 0, 1, and 2 (Eqs. (6)–(7)) after
removing very rare ZOTUs (occurrence< 0.005% across the total 183 sam-
ples). For q = 1, Eq. (7) was used because it is the limit of Eq. (6) as q ap-
proaches one.

qD ¼ ∑
s

i¼1
pqi

� �1= 1−qð Þ
; q≠1ð Þ: ð6Þ

1D ¼ exp −
Xs
i¼1

pi ∙ lnpi

 !
; q ¼ 1ð Þ: ð7Þ

s is the number of ZOTUs at each site, pi is the relative abundance of
ZOTU i.

2.3. Assessing associations of land-water linkage of biodiversity

2.3.1. Linear regression model to assess the strength and uncertainty of the link-
age

Due to uncertainties in both eDNA and RSmeasurements, we employed
amodel II linear regression to assess the association between eDNA-derived
biodiversity (Hill numbers) and the RS-derived terrestrial ecosystem func-
tional diversity (FDiv) across distance upstream, using R2 as the goodness
of fit. As distance increased, sampling sites were removed from the
regression model if their catchments were already entirely covered by the
upstream distance buffer (Fig. S4). To estimate uncertainties, we subsam-
pled 70 % of the available sampling sites 1000 times to build subsampling
models, and then calculated the standard deviation of all R2 results. The
percentages of subsampling models with p-value < 0.05 are shown in
Fig. S5.

2.3.2. Null models for comparison
We developed null models to ensure that the spatial association be-

tween aquatic and terrestrial ecosystems was not a measurement artifact.
5

Specifically, the spatial location of pixels (with their respective functional
trait measurement) within the river catchment was randomly shuffled in
space 1000 times, followed by calculating FDiv for each sampling site ac-
cording to the same upstream distance buffers generated before. Then,
model II simple linear regression was performed to evaluate the correlation
between the eDNA data and the shuffled RS data.

2.3.3. Evaluation of contributions of vegetation productivity and terrestrial eco-
system functional diversity

We calculated the enhanced vegetation index (EVI, Eq. (8)), which can
be used to estimate vegetation productivity (Jiang et al., 2008; Sims et al.,
2006). The EVI values were averaged across the upstream distance buffers
after excluding non-vegetated pixels.

EVI ¼ 2:5∙
ρ785−900−ρ650−680

ρ785−900 þ 6∙ρ650−680−7:5∙ρ458−523 þ 1

¼ 2:5∙
B8−B4

B8þ 6∙B4−7:5∙B2þ 1

ð8Þ

Then, we used linear models summarized in ANOVA tables with se-
quential (type I) tests to evaluate the relative contributions of EVI and
FDiv to the Hill numbers (Hill) across distance, by Eqs. (9)–(10).

Test 1 : ANOVA Hill � EVI þ FDivþ EVI � FDivð Þ: (9)

Test 2 : ANOVA Hill � FDivþ EVI þ FDiv� EVIð Þ: (10)

EVI × FDiv and FDiv× EVI are interaction terms.

2.4. Spatial autocorrelation in terrestrial ecosystem and the riverine network

Spatial autocorrelation is an intrinsic property of natural landscapes.
The issue of spatial autocorrelation is relevant when the scale of distribu-
tion of sampling sites coincides with this inherent spatial property, thus af-
fecting the sampling result pattern. Here, we used the empirical semi-
variogram (bγ hð Þ, namely the Matheron's estimator, see Eq. (11)), a statistic
to display the variability between data points as a function of distance, to
assess spatial autocorrelations in aquatic and terrestrial ecosystems
(Matheron, 1963).

γ̂ hð Þ ¼ 1
2N hð Þ

X
i; jð Þ∈Jh�δ

Z sið Þ−Z s j
� �� �2

: ð11Þ

si, sj are locations in the study areaD. Jh±δ∶={(i, j) : h− δ≤ ‖si− sj‖
< h + δ;si,sj ∈ D} is the set of location pairs with a distance lag h, whose
pairwise distances are in the range of h ± δ. N(h) = |Jh±δ| is the number
of location pairs in Jh±δ. Z(s) is the spatial data (eDNA or RS data).

We conducted a spatial autocorrelation analysis for terrestrial pixels by
calculating the empirical semi-variograms based on the four physiological
trait proxies. We repeated the computation 300,000 times for each trait
proxy map by randomly selecting two pixels within a Euclidean distance
of 4 km and calculating the variance of trait values after removing non-
vegetated pixels. Then, we calculated the bγ hð Þ with binned distance (bin
length = 0.025 km). We further fitted an exponential semi-variogram
model, which is specified below.

γ hð Þ ¼ bþ C0 ∙ 1 � e � 3h
r

� 	
: (12)

Whereby r is the effective range. b is the nugget, the value at distance
zero describing non-spatial variance. C0 is the sill of semi-variogram,
where the curve will level out and never be higher than b + C0.

Following Eq. (11), we also calculated an empirical semi-variogram of
the eDNA-derived biodiversity pattern (Hill number order q = 0) in our
61 sampling sites according to river channel structure, in which, for each
site, only other sites upstream were used in the calculation. We binned
the flow distance of point pairs with an interval of 0.025 km (h = 0.025,
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0.050,…, 10 km; δ= 0.0125 km) to match the resolution of RS and DEM
data, and then calculated the empirical semi-variogram.

3. Results

Based on the cloud-free Sentinel-2 MSI Level-2A SR data, we calculated
spectral chlorophyll content (CHL), anthocyanin content (ANT), carotenoid
content (CAR), and water content (WAT) to represent four physiological
trait dimensions as direct proxies in functional diversity computation
(Fig. 3; see Fig. S6 for density distributions). These spectral components
capture plant physiological traits that integrate different components of ter-
restrial ecosystem functions, and thus functional diversity, related to the
presence and conditions of vegetation (Fahey et al., 2019; Helfenstein
et al., 2022). In the spatial autocorrelation analysis, we observed significant
spatial autocorrelation patterns under all the four physiological trait prox-
ies (CHL andWATwere strongest) and identified the effective range of spa-
tial autocorrelation in terrestrial ecosystems to be 0.54–0.87 km (Fig. 3).

With the eDNA data, we calculated the eDNA-derived biodiversity in
the riverine network with Hill number orders q = 0, 1, and 2, correspond-
ing to species richness, the exponential of Shannon diversity, and the in-
verse of the Simpson index, respectively (Fig. 4). We observed strong and
highly uneven biodiversity patterns across the catchment, with a strong
and significant positive correlation between biodiversity and Strahler
order (Fig. S7a–c; p-value < 0.05), and a decreasing trend of biodiversity
at increasing elevation (Fig. S7d–f). We also simulated a spatial autocorre-
lation pattern using an exponential variogram model (Fig. S8b) and com-
pared it with the empirical variogram plot of the eDNA data (Fig. S8a),
wherewe added a local polynomial regression line as a reference. The result
shows no significant spatial autocorrelation signal in our eDNA data, as
there is no increasing trend at 0–4 km. In other words, we did not find an
upstream spatial autocorrelation pattern in our 61 sampling sites.

The linear regression analysis reveals unimodal or bimodal associations
between the eDNA-based (aquatic) Hill numbers and the RS-based (terres-
trial) FDiv as the upstream distance to sampling sites increases, with a link-
age signal covering an area of 1.0–1.7 km2 up to 1.3–2.0 km radius
Fig. 3. Functional trait proxies assessed through physiological trait characteristics of the
chlorophyll content (CHL), represented by the red-edge chlorophyll index (CIre). b.
anthocyanin reflectance index 1 (ARI1). c. Map and semi-variogram plot of carotenoi
Map and semi-variogram plot of water content (WAT), represented by the normalize
area), and all traits were normalized.
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upstream (Fig. 5). The distanceswith the highest R2 (distancewithmaximal
land-water association) vary across orders of q. For q = 0 (equivalent to
species richness), this distance with the strongest association is 400 m,
with a bootstrapped 90 % confidence interval (CI) of 350–1050 m; for q
= 1 (equivalent to the exponential of Shannon diversity), it is 350 m (90
% CI: 150–400 m) and 850 m (90 % CI: 700–950 m), respectively; for q
= 2 (equivalent to the inverse of Simpson index), it is 350 m (90 % CI:
200–500 m) and 850 m (90 % CI: 650–950 m), respectively. These results
showing the existence and the spatial extent of land-water linkage of biodi-
versity testify to ourfirst and second hypotheses. The strong effect of ZOTU-
level richness decreases with increasing Hill number order (Fig. 5), suggest-
ing that the occurrence of less abundant species has stronger association
with FDiv, rather than the abundant species. Possibly, this could be ascribed
to the decreasing contributions from the less abundant taxonomic groups
after increasing the weight of abundance (increasing Hill number order
q), as an abundant taxonomic group may swamp the effect of the less abun-
dant ones. In addition, it highlights the importance of less abundant taxa
contributing to overall beta-diversity (Kraft et al., 2011) and the negative
effect of large-scale homogenization of biodiversity (Blowes et al., 2019),
which results not only in an erosion of beta-diversity within one ecosystem
but has also a cascading negative effect on other ecosystems. Given the
strongest signal with Hill numbers of order q = 0, which is equivalent to
species richness from presence-absence data and thus relatively conserva-
tive, we conclude that the spatial fingerprint of land-water linkage of biodi-
versity is robust. This is also in line with a broader body of evidence
suggesting that eDNA based data are most robust for presence-absence
data, yet may also capture abundance aspects especially for unicellular or-
ganisms or fish (Visco et al., 2015).

We developed null models to corroborate the robustness of linear
models and to assess the maximal spatial extent of the land-water linkage,
by randomly shuffling the locations of all pixels within the river catchment
(Fig. S9). Then, we assessedwhether and at what spatial extent such a land-
water linkage of biodiversity exists in a null-model scenario. We found that
the R2 of our samplingwas always greater than the null model for distances
<2.0 km (90 % CI: 1.0–4.25 km) for q = 0 (species richness), <1.45 km
terrestrial landscape in the Thur river catchment. a. Map and semi-variogram plot of
Map and semi-variogram plot of anthocyanin content (ANT), represented by the
d content (CAR), represented by the plant senescence reflectance index (PSRI). d.
d difference infrared index (NDII). Non-vegetated pixels were masked out (grey



0
5

10
15
20

200 400 600 800
Hill number (q = 0)

tnuo
C 0

5
10

0 50 100 150
Hill number (q = 1)

C
ou

nt

0
5

10
15

0 25 50 75
Hill number (q = 2)

C
ou

nt

a b c

Hill number
q = 0

Hill number
q = 1

Hill number
q = 2

Elevation (m) Elevation (m) Elevation (m)

Fig. 4. Distribution of biodiversity in the river of the Thur river catchment. Hill numbers were used to describe biodiversity of eDNA samples in the river network. Spatial
patterns and histograms on distribution of diversity using Hill numbers with order a. q = 0, b. q = 1, and c. q = 2 are given. They correspond to species richness (order
q = 0), the exponential of Shannon diversity (order q = 1), and the Simpson index (order q = 2), respectively.

H. Zhang et al. Science of the Total Environment 867 (2023) 161365
(90 % CI: 0.95–2.85 km) for q = 1 (the exponential of Shannon diver-
sity), and <1.3 km (90 % CI: 0.95–4.05 km) for q = 2 (the inverse of
Simpson index), respectively (Fig. 5). These results testify that biodiver-
sity in riverine ecosystems can be linked to the functional diversity of
surrounding terrestrial ecosystems, with the strongest association
occurring at several hundred meters and maximal spatial range to be
1.3–2.0 km upstream.

Furthermore, according to empirical variograms and fitted models, we
found the effective range of spatial autocorrelation in terrestrial ecosystems
to be 0.54–0.87 km (Fig. 3), which is smaller than the spatial range of the
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land-water linkage of biodiversity (1.3–2.0 km) discovered in this study.
Moreover, there is no notable signal of spatial autocorrelation in our
eDNA data (Fig. S8), and the observed spatial range of the land-water link-
age of biodiversity is smaller than the pairwise distance of upstream nearest
sites (mean: 3.54 km; min: 0.67 km; max: 6.01 km). Thus, the inherent spa-
tial autocorrelation in the riverine network cannot drive the observed pat-
tern, as it is at a different scale. As a consequence, we demonstrate that
the spatial range of the land-water linkage of biodiversity is distinct, and
it is not directly driven by spatial autocorrelation in either the riverine
network or terrestrial ecosystems.
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Importantly, the unimodal or bimodal shape of the linkage of biodiver-
sity is not caused by the variation of vegetation productivity, suggesting
that the heterogeneity but not the productivity of terrestrial ecosystems
contributes to local aquatic biodiversity.We tested this byfirstly calculating
the enhanced vegetation index (EVI) to represent vegetation productivity
(Jiang et al., 2008).We adopted a type I ANOVA test to evaluate the relative
contributions of EVI and FDiv to the Hill numbers across distance (Fig. 6).
We found the F-value of FDiv was always higher than the F-value of EVI
at distances smaller than maximal spatial range in both Test1 and Test2
(only parameter order is different), which indicates that FDiv rather than
EVI better correlates with eDNA-derived biodiversity. In addition, we also
found that EVI and FDiv were not correlated at distances <8.0 km
(Fig. S10). Together, this evidences that the unimodal or bimodal signal
of land-water linkage of biodiversity cannot be ascribed to the variation
of vegetation productivity.

To disentangle the observed land-water linkage of biodiversity and to
evaluate the possible contributions of direct and indirect effects, we
mapped the ZOTUs against a customized MIDORI Reference 2 database
for taxonomic information, which allowed us to identify the taxonomic af-
filiation and the possible origin of the most prominent ZOTUs and read
numbers at phylum and class level, respectively (Fig. 7). Abundant affilia-
tions both with respect to ZOTU richness and read numbers were found
for Arthropods (especially Insecta), Ascomycota (a fungi phylum), and
Bacillariophyta (diatoms). ZOTUs originated from organisms inhabiting
both aquatic and terrestrial environments (Fig. 7), and most groups ob-
served contain both aquatic and terrestrial taxa. Only a small portion (4
out of 44 classes) of ZOTUs came from organismal classes that were re-
stricted to terrestrial ecosystems only, while 12 out of 44 classes were
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exclusively aquatic, indicating that the land-water linkage of biodiversity
is not attributable to organismalmigration across ecosystems (i.e., from ter-
restrial ecosystem to aquatic ecosystem), yet instead due to indirect effects
of resource flows or trophic cascades. Then, we subsampled the eDNA data
based on the taxonomic information to evaluate individual contributions
across major taxonomic groups. Specifically, we calculated the relative
abundances at the phylum level and assessed their associations with FDiv
across distance. Among all the major taxonomic groups at the phylum
level, we detected strong associations in Bacillariophyta, Chordata, Asco-
mycota, Cnidaria, Rotifera, Amoebozoa, Chlorophyta, Cryptophyta, and
Porifera, although the spatial extents were varying (Fig. S11). Moreover,
we repeated the same computation for terrestrial- or aquatic-only groups
at the class level. Contrastingly, there was no apparent association between
relative abundanceswith FDiv in terrestrial-only classes but some strong as-
sociation patterns in aquatic-only classes (Fig. S12). Again, given the small
portion in the total ZOTUs, terrestrial-only classes hardly contribute to the
land-water linkage of biodiversity, substantiating that direct organismalmi-
gration is not a major mechanism. Hence, the indirect effects are the major
factor in shaping the spatial fingerprint of land-water linkage of biodiver-
sity. Importantly, these results also show that the land-water linkage of bio-
diversity includes contributions of aquatic and terrestrial origins, thus
reflecting both an integrated signal of biodiversity across ecosystems and
a signal of local ecosystem biodiversity.

4. Discussion

Combining eDNA sampling and multispectral remote sensing imagery,
we demonstrated a spatial association of biodiversity between aquatic
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and terrestrial ecosystems and gave a spatially explicit quantification of its
peak strength, peaking across a catchment section at a 400 m radius up-
stream around the aquatic sampling site (Fig. 5). Overall, the signal of the
land-water linkage of biodiversity covers a range of up to 2.0 km upstream,
indicating that a place in a river and surrounding terrestrial ecosystems are
closely interlinked, with a tight connection in terms of biodiversity. eDNA
sampling data revealed indirect effects as the major contributing factor to
this spatial association. Furthermore, for the first time, we provide a spe-
cific and scalable approach to quantify the spatial extent of such linkages
across ecosystem types and identify a characteristic spatial land-water fin-
gerprint.

The characterization of the terrestrial ecosystems from a biodiversity
perspective was based on multiple physiological trait proxies (Fig. 3), cap-
turingmajor components of the dominant vegetation cover. Contrary to tra-
ditional biodiversity surveys and estimates, which are often limited to small
scales and numbers of sites and depend on specific taxonomic knowledge,
our approach using high-resolution satellite RS data is not only capable of
depicting regional and spatially continuous characteristics of biodiversity,
but can be directly applied and scaled to map terrestrial biodiversity across
all river catchments worldwide. Additionally, the characterization of
aquatic biodiversity using eDNA allows a scaling across space and time,
and most importantly, does not depend on prior knowledge on the occur-
rence of specific taxa. Thereby, this eDNA and RS combination approach
could contribute to a global understanding of biodiversity patterns. Our
9

method can, in principle, be applied and transferred to all land-water eco-
systems worldwide, as it solely depends on broadly available RS data as
well as eDNA water samples that can be taken across rivers from boreal to
tropical ranges (Blackman et al., 2021; Zinger et al., 2020), and may be es-
pecially useful to uncover biodiversity patterns in understudied regions,
such as regions beyond Europe and North America.

In this study, we identified a strong fingerprint of land-water linkage of
biodiversity, with a metric of terrestrial ecosystem functional diversity de-
veloped on a combination of four physiological trait components of vegeta-
tion (Helfenstein et al., 2022). To evaluate the relative individual
importance of these component proxies, namely CHL, CAR, ANT, and
WAT,we removed one dimension at each time and repeated the calculation
process. We found that the maximum values of R2 dropped remarkably
when CHL or WAT was removed (Fig. S13 & Table S1). Moreover, the
shape was flatter after both CHL and WAT were removed (Fig. S14 &
Table S1). This indicates that CHL and WAT, the indices inherently repre-
senting the photosynthesis activity of vegetation and thus carbon storage
and potentially vegetation structure, mainly characterize the spatial finger-
print of land-water linkage of biodiversity.

For the characterization of the aquatic biodiversity (Fig. 4), we adopted
a commonly used generic COI marker amplifying eDNA signals across a
wide range of taxa. While it is predominantly used to target invertebrates,
it also gives a high coverage of eukaryotic microorganisms (Zafeiropoulos
et al., 2021). Consequently, a large proportion of retrieved sequences
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aligned with macro-and micro-invertebrates; yet we also covered a wider
breadth of taxa regarding ZOTUs, including microorganisms and verte-
brates. The general validity of eDNA to reproduce overall biodiversity pat-
terns is well established (Keck et al., 2022), and its use has been especially
propagated for riverine systems (Altermatt et al., 2020; Blackman et al.,
2021; Civade et al., 2016). More specifically, also for the specific study
catchment of the river Thur, it has been shown how the eDNA method
can accurately capture the biodiversity of Ephemeroptera, Plecoptera, and
Trichoptera (EPT) (Mächler et al., 2019). Specifically the comparison to
kicknet sampling and cumulative historical data (1981–2016) proved that
eDNA metabarcoding (using the COI marker) captures the major compo-
nents of diversity and, most importantly, can provide comparable data set
for large sampling campaigns, and thus being suitable for eDNA based bio-
diversity assessments in general (Deiner et al., 2017; Mächler et al., 2021).
In our eDNA data, 351 out of 1394 ZOTUs can be assigned at the species
level, yet many of these taxa, as well as the un-assigned taxa, can reside
in different ecosystems. Therefore, it is difficult to attribute most ZOTUs
to exact either aquatic or terrestrial origins and the coverage of organisms
is highly variable in the respective reference databases (Weigand et al.,
2019). Therefore, to avoid any bias, we applied a taxonomy-free approach
using ZOTUs only. This approach covers a broader taxonomic breadth yet
does not address the contribution of individual taxonomic groups. Still, ac-
cording to the taxonomic information and the origin of environments of our
eDNA data (Fig. 7), we observed that ZOTUs originated from aquatic and
terrestrial environments both contributed to the land-water linkage of bio-
diversity, and directmigration of terrestrial organisms was not a major con-
tributing factor. We also evaluated the relative contribution of each of the
major taxonomic groups at the phylum level to the spatial land-water fin-
gerprint by omitting one of these major taxonomic groups at a time and re-
peating the calculations. Intriguingly, the association pattern was almost
the same regardless of which taxonomic group was omitted (Fig. S15), sug-
gesting that the land-water fingerprint of biodiversity is highly robust and
thus does not depend on a single major organismal group.

Multiple expectations of possible mechanisms, which could be catego-
rized as direct effects, such as organismal movement, and indirect effects,
such as resource subsidies and food web interactions, have been proposed
and thoroughly discussed in the cross-ecosystem and meta-ecosystem stud-
ies. Though focusing on different perspectives and being brought up indi-
vidually, these possible mechanisms are basically mutually non-exclusive.
In this study, we identified the origin of eDNA ZOTUs in the river at the
phylum/class level, and evidenced that direct organismal movement was
not a major contributing factor. Thus, it is more likely that the spatial fin-
gerprint of land-water linkage of biodiversity is due to the indirect effects
of resource subsidies or food web interactions at the spatial scale of
1.3–2.0 kmupstream. The RSmetric, FDiv, an indexmeasuring the local di-
versity of ecosystem functioning and possible strength of within- or cross-
ecosystem interactions, could better reflect the potential indirect effects
from terrestrial ecosystems. Specifically, FDiv quantifies the heterogeneity
of vegetation physiological trait distribution in terrestrial ecosystems
within a distance buffer. Such local heterogeneity may cause spatial dis-
crepancies in resources, or food web components in terrestrial ecosystems,
then influence the biodiversity of aquatic ecosystems nearby. Nevertheless,
it would go beyond our data to claim which of these processes is more
prominent, as we cannot assign most of the ZOTUs at the species level,
thereby limiting a functional understanding of aquatic communities. There-
fore, we focused on documenting the specific spatial range of land-water
linkage of biodiversity, while partitioning into very specific mechanisms
would require a robust null model of how these mutually non-exclusive
mechanisms may interfere.

The methodology to assess the spatial fingerprint of land-water linkage
of biodiversity proved to be an efficient way to uncover an underlying pic-
ture of biodiversity in spatially coupled ecosystems, by combining in situ
measures of eDNA and regional data of RS. Both eDNA metabarcoding
and RS are capable of assessing biodiversity across scales because of easy
access to vast quantities of information with high robustness and accuracy,
non-invasive and standardized procedures, and relatively low costs (Kelly
10
et al., 2014; Kissling et al., 2018; Skidmore et al., 2015; Valentini et al.,
2016; Williams et al., 2021). Therefore, the methods applied here can con-
tribute to next-generation biodiversity monitoring at regional to global
scales (Bohan et al., 2017).

The spatial fingerprint of land-water linkage of biodiversity detected is
robust and may be evenmore resolved when the spatio-temporal matching
of the two approaches is increased. Our study adopted Sentinel-2MSI Level-
2A calibrated SR for RSmeasurements. It was generated on Level-1C top-of-
atmosphere reflectance and is less affected by clouds or aerosols. Therefore,
it is more accurate inmapping the physiological traits of vegetation. Due to
the lack of Level-2A reflectance in 2016, we used Level-2A reflectance in
2017 for calculation in order to match the eDNA sampling at the respective
seasonal time point. While there is likely seasonality in both RS and eDNA
data (Bolton et al., 2020; De Souza et al., 2016), the inter-annual variation
in RS between 2016 and 2017 is relatively minor, being testified by a very
high correlation of corresponding bands and physiological trait indices on
Level-1C data between 2016 and 2017 (Tables S2 & S3). Additionally, the
meteorological conditions were very similar between 2016 and 2017, and
both years were close to the normal condition in terms of temperature
and precipitation (Table S4). Thus, the spatial fingerprint is robust across
years, at least when the land cover and meteorological conditions are not
changing. In reverse, the method may be directly applicable to detecting
terrestrial ecosystem changes, as a change in the magnitude and extent of
the spatial fingerprint may be expected.

Hitherto, biodiversity conservation and management have often been
system specific, yet our work indicates strong cross-ecosystem dependen-
cies at the spatial scale of hundreds of meters to a few kilometers. Conse-
quently, our findings have direct implications. For example, the
conservation buffer distance applied for streams or rivers in most countries
is only a few to a few dozen meters. Given that we report spatial dependen-
cies of 400 m to 2 km, our work suggests that managing biodiversity in
aquatic systems requires the integration of terrestrial surroundings at
such scales. Therefore, one direct conservation application could be an ac-
curate measurement of conservation buffer distance across various catch-
ments. Another direct implication is that the distances identified in our
study can be used to determine protected area categories. For instance,
buffer areaswith a distance of 0–400m to streamor river could bemanaged
or protected more intensively, while buffer areas with a distance of
0.4–2.0 km to stream or river may need to be sustainably managed with re-
spect to aquatic biodiversity effects. We note, however, that the scale of the
spatial fingerprint could be catchment-specific, thus requiring a case-by-
case evaluation in other parts of the world.

In conclusion, we uncovered a spatially explicit land-water linkage of
biodiversity in a large mountainous catchment by using eDNA sampling
and satellite remote sensing imagery. The linkage of biodiversity between
rivers and surrounding terrestrial landscapes covers an area section of
around 1.7 km2 in the catchment with a radius of 2 km upstream, with
the maximal strength at a radius of 400 m. This spatially explicit informa-
tion identifies a characteristic fingerprint of land-water linkage of biodiver-
sity in spatially coupled ecosystems. While developed in a mountainous
regionwith differentmajor land cover types, including forest, grassland, ag-
riculture, and urban areas, our method does not depend on specific organ-
ismal groups, thus, can be used for all regions with spatially heterogeneous
land cover types, providing an applicable basis for biodiversity conserva-
tion and land management in riverine systems globally.

CRediT authorship contribution statement

Heng Zhang: Conceptualization, Methodology, Software, Formal anal-
ysis, Writing – original draft. Elvira Mächler: Formal analysis, Investiga-
tion, Writing – review & editing. Felix Morsdorf: Methodology,
Resources, Writing – review & editing. Pascal A. Niklaus: Methodology,
Writing – review & editing. Michael E. Schaepman: Methodology, Re-
sources, Writing – review& editing. Florian Altermatt:Conceptualization,
Methodology, Resources, Writing – original draft, Supervision, Project ad-
ministration, Funding acquisition.



H. Zhang et al. Science of the Total Environment 867 (2023) 161365
Data availability

Data will be made available on request.
Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgements

We thank Chelsea Little for support during fieldwork, Luca Carraro for
help extracting catchment information, and Isabelle Helfenstein and Enrico
Bertuzzo for their help with functional divergence computation. Finally, we
thank the reviewer for their helpful comments on our manuscript. F.A. is
funded by the Swiss National Science Foundation Grants No
31003A_173074 and PP00P3_179089, and F.A, F.M., and M.S. by the
University of Zurich Research Priority Programme on Global Change and
Biodiversity (URPP GCB).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.161365.
References

Alberdi, A., Gilbert, M.T.P., 2019. A guide to the application of hill numbers to DNA-based di-
versity analyses. Mol. Ecol. Resour. 19, 804–817.

Altermatt, F., Little, C.J., Mächler, E., Wang, S., Zhang, X., Blackman, R.C., 2020. Uncovering
the complete biodiversity structure in spatial networks: the example of riverine systems.
Oikos 129, 607–618.

Andrews, S., 2010. FastQC: a quality control tool for high throughput sequence data.
Babraham Bioinformatics. Babraham Institute, Cambridge.

Bista, I., Carvalho, G.R., Walsh, K., Seymour, M., Hajibabaei, M., Lallias, D., Christmas, M.,
Creer, S., 2017. Annual time-series analysis of aqueous eDNA reveals ecologically rele-
vant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087.

Blackman, R.C., Osathanunkul, M., Brantschen, J., Di Muri, C., Harper, L.R., Mächler, E.,
Hänfling, B., Altermatt, F., 2021. Mapping biodiversity hotspots of fish communities in
subtropical streams through environmental DNA. Sci. Rep. 11, 10375.

Blowes, S.A., Supp, S.R., Antão, L.H., Bates, A., Bruelheide, H., Chase, J.M., Moyes, F.,
Magurran, A., McGill, B., Myers-Smith, I.H., 2019. The geography of biodiversity change
in marine and terrestrial assemblages. Science 366, 339–345.

Bohan, D.A., Vacher, C., Tamaddoni-Nezhad, A., Raybould, A., Dumbrell, A.J., Woodward, G.,
2017. Next-generation global biomonitoring: large-scale, automated reconstruction of
ecological networks. Trends Ecol. Evol. 32, 477–487.

Bohmann, K., Evans, A., Gilbert, M.T.P., Carvalho, G.R., Creer, S., Knapp, M., Douglas, W.Y.,
De Bruyn, M., 2014. Environmental DNA for wildlife biology and biodiversity monitor-
ing. Trends Ecol. Evol. 29, 358–367.

Bolton, D.K., Gray, J.M., Melaas, E.K., Moon, M., Eklundh, L., Friedl, M.A., 2020. Continental-
scale land surface phenology from harmonized landsat 8 and Sentinel-2 imagery. Remote
Sens. Environ. 240, 111685.

Bush, A., Sollmann, R., Wilting, A., Bohmann, K., Cole, B., Balzter, H., Martius, C., Zlinszky, A.,
Calvignac-Spencer, S., Cobbold, C.A., 2017. Connecting earth observation to high-
throughput biodiversity data. Nat. Ecol. Evol. 1, 0176.

Carraro, L., Mächler, E., Wüthrich, R., Altermatt, F., 2020. Environmental DNA allows
upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11,
3585.

Cilleros, K., Valentini, A., Allard, L., Dejean, T., Etienne, R., Grenouillet, G., Iribar, A.,
Taberlet, P., Vigouroux, R., Brosse, S., 2019. Unlocking biodiversity and conservation
studies in high-diversity environments using environmental DNA (eDNA): a test with gui-
anese freshwater fishes. Mol. Ecol. Resour. 19, 27–46.

Civade, R., Dejean, T., Valentini, A., Roset, N., Raymond, J.-C., Bonin, A., Taberlet, P., Pont,
D., 2016. Spatial representativeness of environmental DNA metabarcoding signal for
fish biodiversity assessment in a natural freshwater system. PloS one 11, e0157366.

Dahlin, K.M., Zarnetske, P.L., Read, Q.D., Twardochleb, L.A., Kamoske, A.G., Cheruvelil, K.S.,
Soranno, P.A., 2021. Linking terrestrial and aquatic biodiversity to ecosystem function
across scales, trophic levels, and realms. Front. Environ. Sci. 9, 217.

De Souza, L.S., Godwin, J.C., Renshaw, M.A., Larson, E., 2016. Environmental DNA (eDNA)
detection probability is influenced by seasonal activity of organisms. PloS one 11,
e0165273.

Deiner, K., Bik, H.M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer,
S., Bista, I., Lodge, D.M., De Vere, N., 2017. Environmental DNA metabarcoding:
transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895.
11
Deiner, K., Fronhofer, E.A., Mächler, E., Walser, J.-C., Altermatt, F., 2016. Environmental DNA
reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7,
12544.

Díaz, S., Kattge, J., Cornelissen, J.H., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M.,
Wirth, C., Prentice, I.C., 2016. The global spectrum of plant form and function. Nature
529, 167–171.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C.,
Laberinti, P., Martimort, P., 2012. Sentinel-2: ESA's optical high-resolution mission for
GMES operational services. Remote Sens. Environ. 120, 25–36.

Dudgeon, D., 2019. Multiple threats imperil freshwater biodiversity in the anthropocene.
Curr. Biol. 29, R960–R967.

Fahey, R.T., Atkins, J.W., Gough, C.M., Hardiman, B.S., Nave, L.E., Tallant, J.M., Nadehoffer,
K.J., Vogel, C., Scheuermann, C.M., Stuart-Haëntjens, E., 2019. Defining a spectrum of in-
tegrative trait-based vegetation canopy structural types. Ecol. Lett. 22, 2049–2059.

Gonzalez, A., Germain, R.M., Srivastava, D.S., Filotas, E., Dee, L.E., Gravel, D., Thompson,
P.L., Isbell, F., Wang, S., Kéfi, S., 2020. Scaling-up biodiversity-ecosystem functioning re-
search. Ecol. Lett. 23, 757–776.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google
earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ.
202, 18–27.

Gounand, I., Harvey, E., Little, C.J., Altermatt, F., 2018a. Meta-ecosystems 2.0: rooting the
theory into the field. Trends Ecol. Evol. 33, 36–46.

Gounand, I., Little, C.J., Harvey, E., Altermatt, F., 2018b. Cross-ecosystem carbon flows
connecting ecosystems worldwide. Nat. Commun. 9, 4825.

Gravel, D., Guichard, F., Loreau, M., Mouquet, N., 2010. Source and sink dynamics in meta-
ecosystems. Ecology 91, 2172–2184.

Grimm, N.B., Gergel, S.E., McDowell, W.H., Boyer, E.W., Dent, C.L., Groffman, P., Hart, S.C.,
Harvey, J., Johnston, C., Mayorga, E., 2003. Merging aquatic and terrestrial perspectives
of nutrient biogeochemistry. Oecologia 137, 485–501.

Guichard, F., Marleau, J., 2021. Meta-ecosystem dynamics. Springer, Cham.
Helfenstein, I.S., Schneider, F.D., Schaepman, M.E., Morsdorf, F., 2022. Assessing biodiversity

from space: impact of spatial and spectral resolution on trait-based functional diversity.
Remote Sens. Environ. 275, 113024.

Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology
54, 427–432.

Hughes, A.C., Orr, M.C., Yang, Q., Qiao, H., 2021. Effectively and accurately mapping global
biodiversity patterns for different regions and taxa. Glob. Ecol. Biogeogr. 30, 1375–1388.

Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F.W., Asner, G.P., Guralnick, R.,
Kattge, J., Latimer, A.M., Moorcroft, P., 2016. Monitoring plant functional diversity
from space. Nat. Plants 2, 16024.

Jiang, Z., Huete, A.R., Didan, K., Miura, T., 2008. Development of a two-band enhanced veg-
etation index without a blue band. Remote Sens. Environ. 112, 3833–3845.

Jost, L., 2007. Partitioning diversity into independent alpha and beta components. Ecology
88, 2427–2439.

Keck, F., Blackman, R.C., Bossart, R., Brantschen, J., Couton, M., Hürlemann, S., Kirschner, D.,
Locher, N., Zhang, H., Altermatt, F., 2022. Meta-analysis shows both congruence and
complementarity of DNA and eDNA metabarcoding to traditional methods for biological
community assessment. Mol. Ecol. 31, 1820–1835.

Kelly, R.P., Port, J.A., Yamahara, K.M., Martone, R.G., Lowell, N., Thomsen, P.F., Mach, M.E.,
Bennett, M., Prahler, E., Caldwell, M.R., 2014. Harnessing DNA to improve environmen-
tal management. Science 344, 1455–1456.

Kennedy, C.M., Oakleaf, J.R., Theobald, D.M., Baruch-Mordo, S., Kiesecker, J., 2019. Manag-
ing the middle: a shift in conservation priorities based on the global human modification
gradient. Glob. Chang. Biol. 25, 811–826.

Kissling, W.D., Ahumada, J.A., Bowser, A., Fernandez, M., Fernández, N., García, E.A.,
Guralnick, R.P., Isaac, N.J., Kelling, S., Los, W., 2018. Building essential biodiversity var-
iables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93,
600–625.

Kraft, N.J., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O., Stegen, J.C.,
Vellend, M., Boyle, B., Anderson, M.J., 2011. Disentangling the drivers of β diversity
along latitudinal and elevational gradients. Science 333, 1755–1758.

Lausch, A., Bastian, O., Klotz, S., Leitão, P.J., Jung, A., Rocchini, D., Schaepman, M.E.,
Skidmore, A.K., Tischendorf, L., Knapp, S., 2018. Understanding and assessing vegetation
health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 9,
1799–1809.

Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez, V., Boehm, J.T., Machida,
R.J., 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI
region for metabarcoding metazoan diversity: application for characterizing coral reef
fish gut contents. Front. Zool. 10, 34.

Leroux, S.J., Loreau, M., 2008. Subsidy hypothesis and strength of trophic cascades across
ecosystems. Ecol. Lett. 11, 1147–1156.

Lin, M., Simons, A.L., Harrigan, R.J., Curd, E.E., Schneider, F.D., Ruiz-Ramos, D.V., Gold, Z.,
Osborne, M.G., Shirazi, S., Schweizer, T.M., 2021. Landscape analyses using eDNA
metabarcoding and earth observation predict community biodiversity in California.
Ecol. Appl. 31, e02379.

Lodge, D.M., Turner, C.R., Jerde, C.L., Barnes, M.A., Chadderton, L., Egan, S.P., Feder, J.L.,
Mahon, A.R., Pfrender, M.E., 2012. Conservation in a cup of water: estimating biodiver-
sity and population abundance from environmental DNA. Mol. Ecol. 21, 2555–2558.

Loreau, M., Mouquet, N., Holt, R.D., 2003. Meta-ecosystems: a theoretical framework for a
spatial ecosystem ecology. Ecol. Lett. 6, 673–679.

Mächler, E., Little, C.J., Wüthrich, R., Alther, R., Fronhofer, E.A., Gounand, I., Harvey, E.,
Hürlemann, S., Walser, J.C., Altermatt, F., 2019. Assessing different components of diver-
sity across a river network using eDNA. Environ. DNA 1, 290–301.

Mächler, E., Walser, J.-C., Altermatt, F., 2021. Decision-making and best practices for
taxonomy-free environmental DNA metabarcoding in biomonitoring using hill numbers.
Mol. Ecol. 30, 3326–3339.

https://doi.org/10.1016/j.scitotenv.2022.161365
https://doi.org/10.1016/j.scitotenv.2022.161365
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152343143
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152343143
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152357223
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152357223
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152357223
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090143105231
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090143105231
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152366023
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152366023
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152373903
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152373903
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151162564
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151162564
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152387363
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152387363
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090143125061
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090143125061
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153079093
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153079093
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153079093
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145172509
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145172509
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153084313
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153084313
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153084313
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153136822
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153136822
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153136822
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153319602
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153319602
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145308739
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145308739
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153482482
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153482482
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153482482
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145377479
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145377479
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153497152
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153497152
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090153497152
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145388959
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145388959
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145398759
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145398759
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154030222
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154030222
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145442619
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145442619
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145451439
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145451439
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154035392
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154035392
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154035392
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154043662
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154043662
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154051222
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154051222
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154082372
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154082372
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145457869
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145457869
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090145464829
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154095862
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154095862
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154095862
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154102682
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154102682
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146368938
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146368938
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146432098
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146432098
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146442908
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146442908
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154106452
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154106452
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154108892
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154108892
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154108892
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151219834
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151219834
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154114232
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154114232
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154114232
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146452208
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146452208
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146452208
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151376504
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151376504
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154118122
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154118122
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154118122
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154121512
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154121512
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154121512
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154128722
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154128722
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146476058
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146476058
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090146476058
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154136772
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154136772
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154141742
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154141742
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154234191
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154234191
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154243541
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154243541
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154243541


H. Zhang et al. Science of the Total Environment 867 (2023) 161365
Matheron, G., 1963. Principles of geostatistics. Econ. Geol. 58, 1246–1266.
Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M., Gascon, C., 2011. Global biodi-

versity conservation: the critical role of hotspots. Biodiversity Hotspots. Springer, Berlin,
Heidelberg, Heidelberg, pp. 3–22.

Nakano, S., Murakami, M., 2001. Reciprocal subsidies: dynamic interdependence between
terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. 98, 166–170.

O'Connor, B., Bojinski, S., Röösli, C., Schaepman, M.E., 2020. Monitoring global changes in
biodiversity and climate essential as ecological crisis intensifies. Eco. Inform. 55, 101033.

Oehri, J., Schmid, B., Schaepman-Strub, G., Niklaus, P.A., 2020. Terrestrial land-cover type
richness is positively linked to landscape-level functioning. Nat. Commun. 11, 154.

Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R., Scholes, R.J., Bruford, M.W.,
Brummitt, N., Butchart, S., Cardoso, A., 2013. Essential biodiversity variables. Science
339, 277–278.

Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H.,
Roberts, C.M., Sexton, J.O., 2014. The biodiversity of species and their rates of extinction,
distribution, and protection. Science 344, 1246752.

Polis, G.A., Anderson, W.B., Holt, R.D., 1997. Toward an integration of landscape and food
web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28,
289–316.

Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., Roset, N., Schabuss, M.,
Zornig, H., Dejean, T., 2018. Environmental DNA reveals quantitative patterns of fish bio-
diversity in large rivers despite its downstream transportation. Sci. Rep. 8, 10361.

Rodriguez-Iturbe, I., Rinaldo, A., 2001. Fractal River Basins: Chance and Self-organization.
Cambridge University Press, Cambridge.

Schmitz, O.J., Wilmers, C.C., Leroux, S.J., Doughty, C.E., Atwood, T.B., Galetti, M., Davies,
A.B., Goetz, S.J., 2018. Animals and the zoogeochemistry of the carbon cycle. Science
362, eaar3213.

Schneider, F.D., Morsdorf, F., Schmid, B., Petchey, O.L., Hueni, A., Schimel, D.S., Schaepman,
M.E., 2017. Mapping functional diversity from remotely sensed morphological and phys-
iological forest traits. Nat. Commun. 8, 1441.

Shackleton, M., Rees, G.N., Watson, G., Campbell, C., Nielsen, D., 2019. Environmental DNA
reveals landscape mosaic of wetland plant communities. Glob. Ecol. Conerv. 19, e00689.

Shogren, A.J., Tank, J.L., Andruszkiewicz, E., Olds, B., Mahon, A.R., Jerde, C.L., Bolster, D.,
2017. Controls on eDNA movement in streams: transport, retention, and resuspension.
Sci. Rep. 7, 5065.

Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi, D.D., Flanagan, L.B., Gold-
stein, A.H., Hollinger, D.Y., Misson, L., Monson, R.K., 2006. On the use of MODIS EVI to
assess gross primary productivity of North American ecosystems. 111, G04015.

Skidmore, A.K., Coops, N.C., Neinavaz, E., Ali, A., Schaepman, M.E., Paganini, M., Kissling,
W.D., Vihervaara, P., Darvishzadeh, R., Feilhauer, H., 2021. Priority list of biodiversity
metrics to observe from space. Nat. Ecol. Evol. 5, 896–906.

Skidmore, A.K., Pettorelli, N., Coops, N.C., Geller, G.N., Hansen, M., Lucas, R., Mücher, C.A.,
O'Connor, B., Paganini, M., Pereira, H.M., Schaepman, M.E., Turner, W., Wang, T.,
Wegmann, M., 2015. Agree on biodiversity metrics to track from space: ecologists and
space agencies must forge a global monitoring strategy. Nature 523, 403–406.
12
Soininen, J., Bartels, P., Heino, J., Luoto, M., Hillebrand, H., 2015. Toward more integrated
ecosystem research in aquatic and terrestrial environments. Bioscience 65, 174–182.

Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., Willerslev, E., 2012. Towards next-
generation biodiversity assessment using DNAmetabarcoding. Mol. Ecol. 21, 2045–2050.

Thompson, P.L., Kéfi, S., Zelnik, Y.R., Dee, L.E., Wang, S., de Mazancourt, C., Loreau, M.,
Gonzalez, A., 2021. Scaling up biodiversity–ecosystem functioning relationships: the
role of environmental heterogeneity in space and time. Proc. R. Soc. B 288, 20202779.

Thomsen, P.F., Willerslev, E., 2015. Environmental DNA–An emerging tool in conservation
for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18.

Turak, E., Harrison, I., Dudgeon, D., Abell, R., Bush, A., Darwall, W., Finlayson, C.M., Ferrier,
S., Freyhof, J., Hermoso, V., 2017. Essential biodiversity variables for measuring change
in global freshwater biodiversity. Biol. Conserv. 213, 272–279.

Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P.F., Bellemain, E.,
Besnard, A., Coissac, E., Boyer, F., 2016. Next-generation monitoring of aquatic biodiver-
sity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942.

Villéger, S., Mason, N.W., Mouillot, D., 2008. Newmultidimensional functional diversity indi-
ces for a multifaceted framework in functional ecology. Ecology 89, 2290–2301.

Visco, J.A., Apothéloz-Perret-Gentil, L., Cordonier, A., Esling, P., Pillet, L., Pawlowski, J.,
2015. Environmental monitoring: inferring the diatom index from next-generation se-
quencing data. Environ. Sci. Technol. 49, 7597–7605.

Ward, J., Tockner, K., Arscott, D.B., Claret, C., 2002. Riverine landscape diversity. Freshw.
Biol. 47, 517–539.

Weigand, H., Beermann, A.J., Čiampor, F., Costa, F.O., Csabai, Z., Duarte, S., Geiger, M.F.,
Grabowski, M., Rimet, F., Rulik, B., 2019. DNA barcode reference libraries for the moni-
toring of aquatic biota in Europe: gap-analysis and recommendations for future work. Sci.
Total Environ. 678, 499–524.

Williams, L.J., Cavender-Bares, J., Townsend, P.A., Couture, J.J., Wang, Z., Stefanski, A.,
Messier, C., Reich, P.B., 2021. Remote spectral detection of biodiversity effects on forest
biomass. Nat. Ecol. Evol. 5, 46–54.

Yamasaki, E., Altermatt, F., Cavender-Bares, J., Schuman, M.C., Zuppinger-Dingley, D.,
Garonna, I., Schneider, F.D., Guillén-Escribà, C., van Moorsel, S.J., Hahl, T., 2017. Geno-
mics meets remote sensing in global change studies: monitoring and predicting phenol-
ogy, evolution and biodiversity. Curr. Opin. Environ. Sustain. 29, 177–186.

Zafeiropoulos, H., Gargan, L., Hintikka, S., Pavloudi, C., Carlsson, J., 2021. The dark mAtteR
iNvestigator (DARN) tool: getting to know the known unknowns in COI amplicon data.
Metabarcoding Metagenom. 5, e69657.

Zheng, Z., Zeng, Y., Schneider, F.D., Zhao, Y., Zhao, D., Schmid, B., Schaepman, M.E.,
Morsdorf, F., 2020. Mapping functional diversity using individual tree-based morpholog-
ical and physiological traits in a subtropical forest. Remote Sens. Environ. 252, 112170.

Zinger, L., Donald, J., Brosse, S., Gonzalez, M.A., Iribar, A., Leroy, C., Murienne, J., Orivel, J.,
Schimann, H., Taberlet, P., 2020. Advances and prospects of environmental DNA in neo-
tropical rainforests. Adv. Ecol. Res. 62, 331–373.

http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090147073688
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152064453
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152064453
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152064453
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154252071
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154252071
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154399101
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154399101
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154405681
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154405681
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090147180928
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090147180928
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152123533
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152123533
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154413371
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154413371
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154413371
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154420161
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154420161
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090147443687
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090147443687
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152324553
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090152324553
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154428121
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154428121
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090148112137
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090148112137
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154435481
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154435481
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090149120776
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090149120776
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090149579865
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090149579865
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090149593025
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090149593025
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154443331
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154443331
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154451061
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154451061
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154458181
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154458181
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154468051
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090154468051
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150010225
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150010225
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150016785
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150016785
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150023775
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150023775
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090155216851
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090155216851
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150087915
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150087915
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150100145
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150100145
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150100145
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090155391810
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090155391810
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150113175
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150113175
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090150113175
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151095124
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151095124
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151095124
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151103654
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151103654
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151108954
http://refhub.elsevier.com/S0048-9697(22)08469-8/rf202301090151108954

	A spatial fingerprint of land-�water linkage of biodiversity uncovered by remote sensing and environmental DNA
	1. Introduction
	2. Methods
	2.1. RS-derived physiological traits and functional diversity in terrestrial ecosystems
	2.1.1. Physiological traits in terrestrial ecosystems by Sentinel-2 MSI
	2.1.2. Selection of physiological traits
	2.1.3. Terrestrial ecosystem functional diversity in the catchment across distance

	2.2. eDNA-derived biodiversity in aquatic ecosystem
	2.2.1. eDNA sampling in the Thur river network
	2.2.2. Hill numbers as metrics of eDNA-derived biodiversity

	2.3. Assessing associations of land-water linkage of biodiversity
	2.3.1. Linear regression model to assess the strength and uncertainty of the linkage
	2.3.2. Null models for comparison
	2.3.3. Evaluation of contributions of vegetation productivity and terrestrial ecosystem functional diversity

	2.4. Spatial autocorrelation in terrestrial ecosystem and the riverine network

	3. Results
	4. Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References




