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A B S T R A C T   

Drought is considered to be one of the most serious natural disasters in China, which can result in enormous 
damage to nature and socio-economy. Compared to traditional ground-based monitoring techniques, remote 
sensing can effectively compensate for spatial discontinuities at ground stations. The use of remote sensing 
technology for drought monitoring has irreplaceable advantages. The applicability of the TRMM3B43 dataset for 
precipitation was firstly verified in the Wei River basin, and the spatiotemporal characteristics of precipitation 
were analyzed. Based on the TRMM3B43, MODIS NDVI, and MODIS LST datasets, the spatiotemporal variations 
of drought were secondly investigated by calculating the Precipitation Condition Index (PCI), Vegetation Con-
dition Index (VCI), and Temporal Condition Index (TCI). Crop yield was employed as the reference of drought 
impact for evaluating the applicability of the Scaled Drought Condition Index (SDCI) based on the combination of 
the PCI, VCI, and VCI by four kinds of weight determination methods, i.e. Analytic Hierarchy Process (AHP), 
Entropy method, Criteria Importance Through Intercriteria Correlation (CRITIC), and Fuzzy Comprehensive 
Evaluation (FCE). Finally, the agricultural drought calculated by the SDCI was evaluated against drought area, 
disaster area, and crop failure area to verify the applicability of the SDCI for agricultural drought disaster 
assessment in the Wei River basin. The results showed that the SDCI determined by FCE has better correlations 
with crop yield (R2 =0.45) than the other methods. The SDCI values exhibited a "W" shape from 2003 to 2010 
during the growing seasons and agricultural drought showed an increasing trend after 2013. The drought-prone 
areas shifted from north to south, with the degree of drought firstly decreasing and then increasing. In addition, 
the SDCI has better correlations with the disaster area (R2 =0.35) than the drought area (R2 = 0.16). At the 
municipal level, the SDCI could well assess agricultural drought. The results demonstrated that the SDCI can 
effectively monitor and assess drought impacts on agriculture and may provide helpful information for agri-
cultural drought disaster prevention.   

1. Introduction 

Drought is a progressive and recurrent natural disaster that occurs 
almost everywhere in the world, making it one of the most devastating 
natural disasters (Schubert et al., 2016; Yao et al., 2018). Drought 
deeply affects the ecological and socio-economic sectors (Zhong et al., 
2019). Drought and extreme heat are responsible for 9%–10% of the 
decline in national cereal production (Lesk et al., 2016). The drought 
negatively affected different sectors of the Netherlands, resulting in an 
estimated damage of 450–2080 million Euros in the summer of 2018 
(Sjoukje et al., 2020). According to data issued by the Bulletin of food 

and drought disaster in China, China’s annual drought losses due to 
agricultural disasters are 16.302 billion kilograms, accounting for more 
than 60% of all kinds of natural disasters that caused grain losses be-
tween 1950 and 2016 (Zhang et al., 2019). The development of drought 
monitoring and assessment methods has attracted the interest of many 
researchers as drought events become more frequent and severe on a 
global scale (Hu et al., 2019). 

Drought indices can effectively monitor drought based on in-situ 
observations. Based on water supply and demand, Palmer (1965) 
came up with a drought index-the Palmer Drought Index (PDSI), which 
means that the local area is considered as dry when its water supply is 
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less than its demand, and wet otherwise. The PDSI considers not only the 
current water supply and demand but also the impact of previous wet 
and dry conditions and their duration on the current drought conditions. 
To address regional differences in parameters and improve the porta-
bility and spatial comparability of the PDSI, Wells et al. (2004) proposed 
an adaptive PDSI (self-calibrating PDSI, scPDSI), that can be automati-
cally corrected for the local climate. Mckee et al. (1993) proposed the 
Standardized Precipitation Index (SPI), which is a cumulative proba-
bility function derived from successive time series of precipitation at a 
time scale and allowed for comparisons over multiple time scales, 
reflecting not only changes in precipitation but also the evolution of 
water resources over a period. The Standardized Precipitation Evapo-
transpiration Index (SPEI) was developed by Vicente-Serrano et al. 
(2010), which considered both precipitation and potential evapotrans-
piration in determining drought as an extension of the widely used SPI 
(Beguería et al., 2014). The above three drought indicators are currently 
the most widely used indicators to assess drought events (Trenberth 
et al., 2014; Chen and Sun, 2015; Wang et al., 2016). 

Ground-based observations or interpolated grids were widely used to 
monitor and investigate drought in the past (Hayes et al., 1999; Sheffield 
et al., 2012). The dataset based on observation could not effective in 
capturing drought-related characteristics in agriculture at a regional 
scale. At present, Remote Sensing technology has the advantages of wide 
coverage, strong data continuity, objectivity, and timeliness, making it 
the most promising technology in drought monitoring., a series of 
indices have been developed which overcome the shortcoming of spatial 
monitoring ability of in-situ indices (Sur et al., 2015; Park et al., 2017; 
Xu et al., 2018). Normalized Difference Vegetation Index (NDVI) 
(Kogan, 1995a), Land Surface Temperature (LST) (Kogan, 1995a), 
Vegetation Condition Index (VCI) (Kogan, 1995b), Temperature Con-
dition Index (TCI) (Kogan, 1995a), Soil Moisture Condition Index 
(SMCI) (Zhang and Jia, 2013) and other related indices based on 
remote-sensing data have been widely used to monitor and assess agri-
cultural drought worldwide. With the increase of remote sensing satel-
lites, the quality of remote sensing data is constantly improving, 
providing a rich source of information for drought monitoring using 
multi-source remote sensing data (Aghakouchak et al., 2015; Kalisa 
et al., 2020). 

Factors contributing to drought include the regional climate (pre-
cipitation, temperature) and local surface characteristics (land cover, 
vegetation community) (Barker et al., 2015; Van Loon and Laaha, 2015). 
Relying on single factor based drought index cannot accurately monitor 
and evaluate drought events, therefore, various combination drought 
indices are proposed to monitor drought conditions by combining a 

single remote sensing drought indices. Based on the TCI, PCI, and SMCI 
indices, Zhang and Jia (2013) proposed the microwave integrated 
drought index (MIDI), which is used to monitor short-term droughts, 
especially meteorological droughts in North China. Sánchez et al. (2016) 
developed the Soil Moisture Agricultural Drought Index (SMADI) com-
bines SMOS-SSM and MODIS-derived LST while including the 8 days 
lagged response of MODIS NDVI for the whole Iberian Peninsula. Zuo 
et al. (2019) structured the Combined Deficit Index (CDI) based on 
precipitation and NDVI from the two sources of data under dryland to 
assess the agricultural drought in Northeast China. The Vegetation 
Supply Water Index (VSWI) based on NDVI and LST was aimed at 
capturing changes in soil moisture in crops to determine whether the 
crop was experiencing drought even if crops were not significantly dry 
(Chen et al., 2020a; Fazi et al., 2020). Liu et al. (2020) analyzed drought 
using a combination of PCI, VCI, SMCI, and TCI and found that MCDI-1 
and MCDI-9 were suitable for meteorological drought monitoring and 
agricultural drought monitoring, respectively in Shandong of China. Wu 
et al. (2021) proposed univariate soil moisture and evapotranspiration 
index (USMEI) and bivariate soil moisture and evapotranspiration index 
(BSMEI) based on evapotranspiration and soil moisture to reflect water 
stress for winter wheat in the North China Plain. 

The Wei River, the largest tributary of the Yellow River, is a climate- 
sensitive area in China where drought disasters frequently occurred due 
to the uneven distribution of precipitation in spatial and temporal 
domain (Zhu et al., 2017). Agricultural land accounts for about 60% of 
the total basin area, and drought causes more than 50% of the total 
agricultural losses (Yuan et al., 2016; Ding et al., 2019). Therefore, the 
comprehensive study on the evolution characteristics of drought in the 
Wei River basin is of great significance to the sustainable development of 
social economy. At present, the researches in the Wei River basin involve 
meteorological drought assessment (Huang et al., 2014; Zhao et al., 
2020), hydrological drought monitoring (Lai et al., 2019; Jehanzaib 
et al., 2020), and its response to meteorological drought (Huang et al., 
2017; Fang et al., 2020; Guo et al., 2020). In addition, Yang et al. (2018) 
and Zhang et al. (2019) developed a multivariate standardized drought 
index based on precipitation (meteorology), runoff (hydrology), and soil 
moisture (agriculture) information for drought monitoring and risk as-
sessments. Therefore, the assessment of agricultural drought based on 
multi-source remote sensing data in the Wei River basin, a major grain 
producing area of Northwest China, has great scientific significance for 
agricultural drought disaster prevention and agricultural water 
management. 

In this study, the Scaled Drought Condition Index (SDCI) was firstly 
developed for agricultural drought assessment which is calculated based 

Fig. 1. (a) Digital elevation model and location of meteorological stations; (b)Spatial distribution of land cover of 2005 in the Wei River basin of China.  
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on Precipitation Condition Index (PCI), Vegetation Condition Index 
(VCI), and Temperature Condition Index (TCI) using TRMM and MODIS 
dataset; then, crop yield was employed as the reference of drought 
impact for evaluating the applicability of the SDCI with four kinds of 
weight determination methods during the growing seasons from 2000 to 
2016; finally, the drought area, disaster area, and crop failure area were 
used to validate the accuracy of the SDCI for assessing drought disaster. 
The main objectives are as follows: (1) to verify the applicability of 
TRMM data in the Wei River basin; (2) to identify the spatiotemporal 
pattern of droughts condition based on PCI, VCI, and TCI; (3) to deter-
mine the optimal weights for the SDCI using four optimization methods; 
(4) to investigate and evaluate agricultural drought calculated by the 
SDCI; (5) to validate the SDCI against agricultural crop production, 
including drought area, disaster area, and crop failure area. 

2. Materials and methods 

2.1. Study area 

The Wei River is the largest tributary of the Yellow River, originating 
from Niaoshu Mountain in Weiyuan County of Gansu Province, flowing 
across Gansu Province, Ningxia Hui Autonomous Region, and Shaanxi 
Province, and merging into the Yellow River at Tongguan, Shaanxi 
Province in the lower reaches (Fig. 1(a)). The Wei River basin (WRB) 
locates between latitude 33◦50 N and 37◦18 N and longitude 104◦E and 
110◦20′E, with a total length of 818 km and a total area of 1.348 × 105 

km2. For the development of the New Silk Road under the Belt and Road 
Initiative, the WRB is located in an important position, as well as an 
important grain production base in China (Li et al., 2015, 2017b; Zhao 

et al., 2015; Zhang et al., 2021). 
The WRB is a temperate continental monsoon climate with hot 

summers and cold winters. Precipitation is concentrated in the summer 
months, with more than 60% of the annual average precipitation 
occurring from July to September (Gao et al., 2012). The average annual 
precipitation in the WRB is 572 mm, and the evaporation from the water 
surface is 660–1200 mm, decreasing from east to west and from north to 
south. The average annual temperature is in the range of 7.8 ~ 13.5 ◦C, 
and the average temperature increases from west to east. The annual 
sunshine hours range from 1900 to 2600 h. Decreasing precipitation and 
runoff have led to an imbalance between water supply and demand 
(Huang et al., 2014, 2017b; Liu et al., 2018), resulting in frequent 
drought disasters in the WRB (Yang et al., 2018). 

The WRB has a resident population of 40.92 × 106, a crop sown area 
of 38.53 × 105 hectares, a crop production of 15.69 × 105 tons, and a 
regional GDP of 20.74 × 107 yuan in 2019. Compared with floods, wind 
hail, and other meteorological disasters, drought areas and crop failure 
areas of crops by drought accounted for about 68% of the total drought 
areas and crop failure areas of crops with 10.92 × 105 hectares and 
12.93 × 104 hectares in 2017, respectively, which are reported by Na-
tional Cryosphere Desert Data Center. The WRB is a relatively developed 
area in northwest China and one of the important grain, cotton, and oil 
producing areas and industrial production bases in China. Therefore, the 
stable and high yield of agriculture in this region is of great importance 
to the food security of western China and even the whole country. 

2.2. Data description 

The datasets used in this study are divided into two categories: 1) 
input datasets used for establishing SDCI, including TRMM, NDVI, and 
LST data; and 2) datasets used for validating the SDCI, including crop 
yield, sown area, drought area, disaster area, and crop failure area. 
Details of these datasets are shown in Table 1. 

2.2.1. Meteorological gauging data 
The meteorological data were obtained from the monthly rainfall 

data of 13 meteorological stations of the National Meteorological Sci-
ence Data Center from 2000 to 2016 (http://www.nmic.cn/). The 
location of the 13 meteorological stations were shown in Fig. 1(a). 

2.2.2. TRMM data 
The Tropical Rainfall Measuring Mission (TRMM) dataset is used 

from the TRMM satellite jointly developed by the National Aeronautics 
and Space Administration (NASA) and Japan’s National Space Devel-
opment Agency (NASDA) (https://daac.gsfc.nasa.gov/datasets). The 
TRMM 3B43 dataset was selected with a spatial resolution of 0.25◦

× 0.25◦ from 2000 to 2016 and is given as the monthly interval. The 
dataset records the rate of precipitation given in mm/h, which need to 
be multiplied by the total number of hours in the corresponding month 
to obtain monthly precipitation data in mm. 

At present, TRMM data was widely used in the field of drought 
assessment in various countries (Zhao and Yatagai, 2014; Sahoo et al., 

Table 1 
Datasets used in this study.  

Group Dataset Description Resolution Period 

SDCI inputs TRMM Tropical Rainfall Measuring Mission 0.25◦-Monthly 2000–2016 
MODIS13A2 
(NDVI) 

Moderate resolution imaging spectroradiometer product 13A2 1 km-16 day 2000–2016 

MODIS11A2 
(LST) 

Moderate resolution imaging spectroradiometer product 11A2 1 km-8 day 2000–2016 

SDCI validation Crop yield Crop yield of winter wheat and corn, rice, and so on in the Wei River basin Regional-yearly 2000–2016 
Sown area Area sown or transplanted with crops Regional-yearly 2001–2016 
Drought area Areas where crop yield have been reduced by more than 10% due to drought Regional-yearly 2000–2016 
Disaster area Areas where crop yield have been reduced by more than 30% due to drought Regional-yearly 2000–2016 
Crop failure area Areas where crop yield have been reduced by more than 80% due to drought Regional-yearly 2000–2016  

Table 2 
Datasets description on crop production.  

Name Region Period Missing data 

Sown area Gansu Province 
Shaanxi Province 

2001–2016 / 

Drought area Gansu Province Shaanxi 
Province 

2000–2016 
2000–2016 

2002、2009、 
2010 
/ 

Disaster area Gansu Province 2000–2016 2008 
Crop failure 

area 
Shaanxi Province 2000–2016 2002、2008  

Table 3 
Classification of drought calculated by the Scaled Drought Condition Index.  

Categories of drought PCI TCI VCI SDCI 

Exceptional Drought 0–0.1 0–0.1 0–0.1 0–0.1 
Extreme Drought 0.1–0.2 0.1–0.2 0.1–0.2 0.1–0.2 
Severe Drought 0.2–0.3 0.2–0.3 0.2–0.3 0.2–0.3 
Moderate Drought 0.3–0.4 0.3–0.4 0.3–0.4 0.3–0.4 
Slight Dry 0.4–0.5 0.4–0.5 0.4–0.5 0.4–0.5 
No Drought 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0  
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2015; Cruz-Roa et al., 2017; Guo et al., 2019). However, there were few 
analysis of the applicability of the TRMM dataset in the WRB. Therefore, 
rainfall from the selected 13 in-situ stations was compared with TRMM 
3B43 at the corresponding grid from 2000 to 2016 for accuracy 

Fig. 2. Comparison of the temporal and spatial distribution of TRMM3B43 and 13 meteorological stations. (a)at the monthly scale; (b)at the yearly scale; (c)spatial 
distribution difference of multi-year average precipitation. 

Fig. 3. The variation of annual precipitation and annual precipitation anomaly 
percentage based on TRMM3B43 in the Wei River basin during the 
period 2000–2016. Fig. 4. Comparisons of the Precipitation Condition Index based on the 

TRMM3B43 dataset in the Wei River basin for the period 2000–2016. (The dot 
and lines indicate the mean value, 25th percentile, 50th percentile, and 75th 
percentile; the upper and lower horizontal lines outside of the box are the 
largest and smallest values; the outliers are shown as crosses). 
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verification at annual and monthly time scales in the following analysis. 

2.2.3. MODIS data 
The MODIS/Terra products used in the study are MODIS 11A2 (Land 

Surface Temperature, LST) and MODIS 13A2 (Normalized Differential 
Vegetation Index, (NDVI) were downloaded from https://modis.gsfc. 
nasa.gov/, both with a spatial resolution of 1 km and temporal interval 
of 8-day and 16-day, respectively. Monthly TCI and VCI were calculated 
using LST and NDVI from 2000 to 2016. The numbers h26v05 and 
h27v05 cover the study area. 

2.2.4. Land cover data 
The National Earth System Science Data Sharing Infrastructure of 

China offers land cover data (http://www.geodata.cn/), there are two 
main categories of the dataset. The dataset covers 6 primary types of 
forest, grassland, farmland, settlement, wetlands and water bodies, 

desert, and 25 secondary types. The secondary type of farmland is 
divided into paddy field, irrigable land, and dryland. The study used the 
land cover dataset for 2005 with a spatial resolution of 100 × 100 m and 
the land cover of the Wei River basin is shown in Fig. 1(b). 

2.2.5. Crop yield data 
The WRB covers Gansu Province, Ningxia Hui Autonomous Region, 

and Shaanxi Province. Gansu Province includes Tianshui, Pingliang, 
Qingyang, and Dingxi Cities; Ningxia Hui Autonomous Region includes 
Guyuan and Wuzhong Cities; Shaanxi Province includes Xi’an, Tong-
chuan, Baoji, Xianyang, Weinan, Yan’an and Yulin Cities. Among them, 
the data of crop yield (CY) for Gansu Province, Shaanxi Province and 
Ningxia Hui Autonomous Region are provided by Gansu Statistical 
Yearbook, Shaanxi Statistical Yearbook and Ningxia Statistical Yearbook 
during the period 2000–2016, respectively. The yield per hectare of 
Shaanxi Province during the period 2001–2016 was also obtained from 

Fig. 5. Spatial distribution of the Precipitation Condition Index in the Wei River basin during the period 2000–2016.  
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Shaanxi Statistical Yearbook. The statistical yearbook of three province 
were downloaded from National Bureau of Statistics (https://data.stats. 
gov.cn/). 

2.2.6. Drought disaster data 
Winter wheat, corn, sorghum, soybean, and rice are the main crop 

types in the WRB. Due to the proportion of corn being greater than that 
of winter wheat in the WRB, therefore, corn was selected as typical crop 
for the applicability analysis of drought indices. In addition, the corn’s 
growing period (June – September) was determined as growing season 
in this study. 

Due to the availability of data, the sown area includes Gansu Prov-
inces and Shaanxi provinces and excludes Ningxia Hui Autonomous 
Region from 2001 to 2016. The drought area, disaster area, and crop 
failure area are statistical data of summer and autumn crops caused by 
drought, and it is impossible to distinguish the impact of drought on the 
two types of crops. Therefore, the data of drought disaster could verify 
the applicability of the SDCI in the study area to a certain extent. The 
sources of all disaster data are consistent with that of crop yield data. 
Details regarding these datasets are listed in Table 2. 

2.2.7. Agricultural modernization 
The Total Agricultural Machinery Power refers to total mechanical 

power of machinery used in agriculture, forestry, animal husbandry and 
fishery, including machinery for ploughing, irrigation and drainage, 
harvesting, transport, plant protection, and so on. The Consumption of 
Chemical Fertilizers in Agriculture refers to the quantity of chemical 
fertilizers applied in agriculture in a year, including nitrogenous fertil-
izer, phosphate fertilizer, potash fertilizer, and compound fertilizer. The 
consumption of chemical fertilizers is calculated in terms of amount of 
effective components by means of converting the gross weight of the 
respective fertilizers into weight containing effective component (such 
as nitrogen content in nitrogenous fertilizer, phosphorous pentoxide 
contents in phosphate fertilizer, and potassium oxide contents in potash 
fertilizer). The data of Total Power of Agricultural Machinery and 
Consumption of Chemical Fertilizers in Agricultural of Shaanxi Province 
during the period 2000–2016 were obtained from Shaanxi Statistical 
Yearbook. 

2.3. Methods 

2.3.1. Calculations of drought indices 

2.3.1.1. The Precipitation Condition Index. Previous studies have shown 
that NDVI does not respond immediately after precipitation, and agri-
cultural drought generally has a lag time of 3 months (Potop et al., 2015; 
Wu et al., 2016). Huang et al. (2015) proved that the lag time in summer 
is approximately 3 months in the WRB. Therefore, the cumulative pre-
cipitation for previous three months is used to characterize the precip-
itation condition for the current month. For instance, the amount of 
precipitation in June is the sum of precipitation in April, May, and June. 
Furthermore, the monthly PCI is calculated by the following equation: 

PCI =
PCIj − PCImin

PCImax − PCImin  

where PCImin and PCImax are the minimum and maximum values of PCI 
at each grid in i month; PCIj represents the precipitation in i month 
during the period 2000–2016. 

2.3.1.2. The Vegetation Condition Index. In recent years, Normalized 
Differential Vegetation Index (NDVI) is not only used to reflect the 
growth of vegetation but also used to assess drought events by many 
scholars (Park et al., 2016; Gazol et al., 2018; Chu et al., 2019). 

However, the growing seasons of crops in different regions are in 
respective stages with different water conditions, therefore, the dry/wet 
condition of crops cannot be explained only by the values of NDVI. 
Kogan (1995b) proposed the Vegetation Condition Index, and its 
calculation formula is as follows: 

VCIj =
NDVIj − NDVImin

NDVImax − NDVImin  

where NDVIj is the smoothed monthly NDVI; NDVImax and NDVImin 
represent maximum and minimum NDVI, respectively, calculated by 
multiyear smoothed monthly NDVI series for each pixel during the 
period 2000–2016. 

2.3.1.3. The Temperature Condition Index. The land surface temperature 
(LST) is strongly associated with drought, and the temperature rise is the 
initial indication of the crops being treated with moisture stress and 
drought. The increase of temperature and the closure of leaf stomata can 
reduce the water loss caused by transpiration, reduce the surface latent 
heat flux, increase the surface sensible heat flux, and then cause the 
increase of temperature. Based on this principle, Kogan (1995a) pro-
posed the Temperature Condition Index (TCI), and its calculation for-
mula is as follows: 

TCIj =
LSTmax − LSTj

LSTmax − LSTmin  

where LSTj is the smoothed monthly LST; LST max and LST min represent 
maximum and minimum LST, respectively, calculated by multiyear 
smoothed monthly LST series for each pixel during the period 
2000–2016. 

2.3.1.4. The Scaled Drought Condition Index. Rhee et al. (2010) pro-
posed an agricultural drought index (Scaled Drought Condition Index, 
SDCI) based on VI, LST and TRMM that can assess drought conditions 
well in both dry and humid areas. And its calculation formula is as 
follows: 

SDCI = α ∗ VCI+ β ∗ TCI+ γ ∗ PCI  

where α、β and γ are the weights of monthly VCI、TCI and PCI, 
respectively, and α + β + γ = 1. 

Table 3 shows the drought classification by the PCI, TCI, VCI, and 

Fig. 6. Drought frequency of the Vegetation Condition Index in the Wei River 
basin during the period 2000–2016. 
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SDCI. 

2.3.2. Determination of optimal weight 

2.3.2.1. Analytic Hierarchy Process. Analytic Hierarchy Process (AHP) 
was proposed by Saaty (1990), which is a kind of decision analysis 
method that combines qualitative and quantitative analysis. Based on 
the scoring judgment matrix of the relative importance of the two in-
dicators, which are then aggregated, the weights of each factor are 
finally calculated (Hoque et al., 2020; Zarei et al., 2021). 

2.3.2.2. Entropy method. Entropy method is an objective method for 
determining weights, which could be used to quantify the amount of 
useful information in a given data. When the value of the evaluation 
object varies significantly, its entropy value is smaller, indicating that 
these data provide a large amount of useful information and the 

evaluation object should be given a higher weight (Meng, 1989; Qiu, 
2002; Guo et al., 2021). 

2.3.2.3. Criteria Importance Through Intercriteria Correlation. Criteria 
Importance Through Intercriteria Correlation (CRITIC) was developed 
by Diakoulaki et al. (1995). The CRITIC method is a comprehensive 
measure of the objective weight of the indicators based on the 
comparative strength of the evaluation indicators and the conflict be-
tween them (Jahan et al., 2012; Chang et al., 2020). 

2.3.2.4. Fuzzy Comprehensive Evaluation. Zadeh (1965) introduced 
fuzzy comprehensive evaluation (FCE), which transformed qualitative 
evaluation into quantitative evaluation based on the affiliation theory of 
fuzzy mathematics. The method could better solve the issues of fuzzy 
and difficult to quantify, and is suitable for various non-deterministic 
problems (Wu et al., 2018; He et al., 2021). 

Fig. 7. Spatial distribution of the Vegetation Condition Index in the Wei River basin during the period 2000–2016.  
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Fig. 8. Seasonal drought frequency of the Temperature Condition Index at monthly scale in the Wei River basin during the period 2000–2016. (a)Spring; (b)Summer; 
(c)Autumn; (d)Winter. 

Fig. 9. Spatial distribution of seasonal drought frequency of the Temperature Condition Index in the Wei River basin during the period 2000–2016. (a)Spring; (b) 
Summer; (c)Autumn; (d)Winter. 
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3. Results and analysis 

3.1. Applicability of the TRMM dataset in the WRB 

In order to evaluate the applicability of the TRMM dataset in the 
WRB, the comparison between the temporal and spatial distribution of 
TRMM3B43 and rainfall data from 13 meteorological stations in the 
WRB during the period 2000–2016 were shown in Fig. 2. It can be seen 
from Fig. 2(a) and (b) that the R2 between rainfall from 13 meteoro-
logical stations and TRMM3B43 were 0.83 and 0.65 at the monthly time 
scale and annual time scale, respectively. It proved that the TRMM3B43 
dataset had well applicability in the WRB on both monthly and annual 
time scales. Moreover, a comparison of the spatial distribution of the 
TRMM3B43 dataset and 13 meteorological stations based on average 
annual precipitation was illustrated in Fig. 2(c). It was shown that the 
spatial distribution of the two kinds of datasets was substantially 

consistent. The annual precipitation was incremented from the north to 
the south, increasing from the west to the east. The TRMM3B43 dataset 
in the WRB showed an annual precipitation of 300–764 mm, while the 
rainfall from meteorological stations was from 386.7 to 840.9 mm. In 
general, the precipitation from the TRMM3B43 dataset could well reflect 
the spatial distribution of rainfall in the WRB, although its value was 
slightly lower than that of meteorological stations. 

The variations of annual precipitation and annual precipitation 
anomaly percentage based on the TRMM3B43 dataset during the period 
2000–2016 in the WRB were shown in Fig. 3. The average annual pre-
cipitation from 2000 to 2016 was 545.06 mm; the maximum value was 
767.34 mm in 2003, higher than 40.78% of the average; the minimum 
precipitation reached 385.32 mm in 2016, lower than 29.31% of the 
average. Besides, the annual precipitation anomaly percentage was 
17.7% and 16.51% in 2013 and 2011, respectively; and the annual 
precipitation anomaly percentage was − 14.62% and − 10.4% in 2008 
and 2004, respectively. This indicated that the temporal variation of 
precipitation in the WRB was unstable, which is particularly prone to 
drought disasters. 

3.2. Variations of drought identified by multiple indices 

3.2.1. Drought variation based on the PCI 
Based on TRMM3B43 precipitation data, the PCI was calculated in 

Table 4 
Optimal weights of SDCI for different methods.  

Weight AHP Entropy CRITIC FCE 

α  0.36  0.203  0.288  0.37 
β  0.363  0.246  0.286  0.36 
γ  0.277  0.551  0.426  0.27  

Fig. 10. The coefficient of determination (R2) between the SDCI and CY under different weighting methods during the growing season from 2000 to 2016.  
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the WRB for the period 2000–2016 (Fig. 4). The red and blue boxes 
indicate the negative and positive values of the percentage of precipi-
tation anomalies, respectively. Except for the year 2003, all the mean 
values of PCI (PCI-mean) were less than 0.5, which meant that the WRB 
occurred different degrees of drought during the period 2000–2016. The 
distributions of the PCI value for the years 2000, 2005, and 2012 were 
relatively dispersed, while those for the years 2001, 2004, and 2015 
were relatively concentrated. 

The spatial distribution of the PCI in the WRB during the period 
2000–2016 was presented in Fig. 5. Before the year 2010, the drought in 
the north of the WRB was heavier than that in the south, except in the 
years 2002 and 2007; After the year 2010, on the contrary, the drought 
in the south was heavier than that in the north. Except the year 2003, 
drought events with varying degrees often occurred in the central region 
of the basin. 

3.2.2. Drought variation based on the VCI 
Temporal variations and spatial distributions of the VCI in the WRB 

during the period 2000–2016 were shown in Fig. 6 and Fig. 7, respec-
tively. It can be concluded from Fig. 6, the frequency of exceptional 
drought based on the VCI was 27.59% and 1.93% in the years 2000 and 
2001, respectively. In all other years, the frequency of exceptional 
droughts was less than 0.1%, which could assume that no extreme 
drought events occurred in other years. The trend of the frequency of 
extreme drought based on the VCI was similarly to that for exceptional 
drought, 26.95% and 21.71% in the years 2000 and 2001, respectively. 
In all other years, the frequency of extreme droughts was almost less 
than 1%. The percentages of severe drought and moderate drought 

generally showed a trend of fluctuating downward. 
It can be seen from Fig. 7 that the drought in the WRB identified by 

the VCI was more severe in the northern part in the years 2000 and 
2001, and began to be mitigated in the year 2002, which was the pos-
itive effect of the national policy of returning farmland to the forest 
(grass) implemented around the year 1999, and ecological restoration 
projects have been carried out in the WRB, such as returning farmland to 
forests, closing mountains for forest cultivation, and protecting natural 
secondary forests. The implementation of these ecological restoration 
projects had caused sloping farmland, dry hilly gully region, and low to 
medium cover grassland, which were originally covered by sparse crops 
or grass, to be replaced by forest or grassland. The average VCI value in 
the WRB was relatively low with about 0.2 in the year 2000, as the 
period of tree growth was still short, the ecological restoration projects 
had not yet completely established; then the measures began to bear 
fruit and the overall situation of vegetation cover improved with an 
average VCI value of 0.3 in the year 2001. 

In the years 2002 and 2003, the drought was relatively severe in the 
central region; in the years 2005–2008, the northern region experienced 
severe drought, which was more severe than that in other regions. After 
the year 2009, the severity of the drought had been mitigated across the 
basin. A moderate drought occurred in the year 2013 in the south- 
eastern region, which had been alleviated in the years 2014 and 2015, 
however, a moderate drought returned to hit the south-eastern and 
central-western regions. 

3.2.3. Drought variation based on the TCI 
The drought frequency based on the TCI at monthly interval in the 

WRB during the period 2000–2016 was illustrated in Fig. 8. In China, a 
year is divided into four seasons: spring (March-May), summer (June- 
August), autumn (September-November) and winter (December- 
February next year). 

In terms of multi-year average seasonal drought frequency (moder-
ate drought and above), winter had the highest frequency of drought 
(47.74%), followed by summer (34.11%), autumn (33.21%), and spring 
(32.58%). In spring, the frequency of moderate drought, severe drought, 
extreme drought, and exceptional drought all showed a downward trend 
with 2%/10 y, 3.2%/10 y, 4.3/10 y, and 14.6%/10 y, respectively. In 
summer, the frequency of severe drought, extreme drought, and 
exceptional drought all showed a downward trend; while moderate 
drought showed a slight upward trend (0.7%/10 y). As for exceptional 
drought, the frequency of occurrence was relatively high before the year 
2005 and began to decline from the year 2006. In autumn, the frequency 
of severe drought, extreme drought, and exceptional drought all showed 
a downward trend; while moderate drought showed a slightly upward 
trend (0.9%/10 y). In winter, the frequencies of exceptional drought and 
extreme drought showed an upward trend; while severe drought and 
moderate drought showed a downward trend. 

The spatial distributions of frequency of seasonal drought based on 
the TCI in the WRB during the period 2000–2016 were shown in Fig. 9. 
The frequency of spring drought was below 40% in most of the WRB, 
while that in the surrounding areas, such as the north, south, east, and 
west was relatively high, ranging between 40% and 60%. In summer, 
half of the WRB had a drought frequency of less than 40%, mainly in the 
central and western regions, while most of the southern and northern 
regions contributed a drought frequency between 40% and 60%. The 
frequency of droughts in autumn was the opposite of that in summer, 
with relatively low frequency in the south and north and relatively high 
frequency in the central WRB. The frequency of drought was relatively 
high in winter compared to other seasons. The frequency of winter 
drought in the northern, midwestern, and southern margins was below 
40%, while that in the most region of the WRB, especially for the 
western, south-central regions, was between 40%− 60%. 

Fig. 11. Temporal variation of the Scaled Drought Condition Index for growing 
season in the Wei River basin during the period 2000–2016. (a) at annual scale; 
(b) at monthly scale. 
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3.3. Agricultural drought assessment by using the SDCI 

3.3.1. Comparisons between crop yield and the SDCIs under different 
weights 

To determine the suitable weights for the SDCI in the WRB, four 
different methods were used to obtain the weighting results using TCI, 
VCI and PCI data as inputs for June-September from 2000 to 2016. The 
optimal weights were shown in Table 4. In terms of these four results, 
the difference between the weights of the VCI and TCI was relatively 
small. The weights of the PCI were relatively larger than those of the TCI 
and VCI, except for the AHP and FCE methods. 

To better assess the performance of SDCIs, the coefficient of deter-
mination (R2) between the SDCI and CY calculated under different 
weighting methods during the growing season from 2000 to 2016 was 
illustrated in Fig. 10. In terms of CY dataset, the lack of data for Ningxia 

Hui Autonomous Region in 2000 may have some influence on the re-
sults. In Fig. 10, the R2 between FCE-SDCI and CY was the highest with 
0.45, while the R2 for entropy-SDCI were the lowest with 0.14. There-
fore, the weights of FCE were selected for the following SDCI calculation 
and analysis. 

3.3.2. Spatiotemporal variations of the SDCI 
Based on the calculation of the PCI, VCI, and TCI with the weights of 

FCE, the agricultural drought in the WRB for the period 2000–2016 was 
assessed by the SDCI, Fig. 11 showed the temporal variation of agri-
cultural drought at annual and monthly scale. 

As can be seen from Fig. 11(a), the variation of CY generally followed 
the changes in the SDCI value. The SDCI values exhibited a "W" fluctu-
ation from 2003 to 2010 during the growing seasons. The VCI showed a 
slightly upward trend, while PCI demonstrated the opposite trend; The 

Fig. 12. Spatial distribution of the Scaled Drought Condition Index for growing season in the Wei River basin during the period 2000–2016.  
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TCI also presented a "W" shape, and there was a turning point in the year 
of 2007. The changing trend of the SDCI was similar to that of the TCI, 
showing a "W" shape, which indicated that the SDCI comprehensively 
considers the drought situation on the basis of fully considering all 
factors, and the influence of temperature in this region was greater than 
that of precipitation. After 2008, the CY increased as the average of SDCI 
increased, and decreased as the average of SDCI decreased. However, for 
the same value of SDCI, there were some differences in the CY. For 
instance, the SDCI values for 2008 and 2009 were almost identical with 
0.45 and 0.46 respectively, while CY were 10.83 million tons and 9.94 
million tons, respectively, a difference of 0.89 million tons was mainly 
due to the difference in their sown areas of 125.16 thousand hectares. In 

addition, the SDCI value for 2002 was 0.37 with a moderate drought 
occurred, and CY was 7.9 million tons, while the SDCI value for 2003 
was 0.59 with no drought happened, and CY was only 7.45 million tons. 
It also maybe on account of sown areas of 2205.35 thousand hectares in 
2002 and 2115.99 thousand hectares in 2003, a reduction of 89.36 
thousand hectares in the sown areas. 

Temporal variation of the SDCI at the monthly scale was presented in 
Fig. 11(b). The SDCI values of the four months all showed an upward 
trend of fluctuation in different degrees, indicating that the drought 
degree of the WRB had decreased. The R2 between monthly SDCI and CY 
had the highest value in July with 0.32, followed by June with 0.3, the 
lowest value in August with 0.07. Therefore, throughout the whole 

Fig. 13. R2 between the Scaled Drought Condition Index with crop production from 2000 to 2016. (a) R2 between the SDCI and drought area at the whole basin 
scale; (b) R2 between the SDCI and drought area at municipal scale; (c) R2 between the SDCI and disaster area at the whole basin scale; (d) R2 between the SDCI and 
disaster area at municipal scale; (e) R2 between the SDCI and crop failure area at the whole basin scale; (f) R2 between the SDCI and crop failure area at munic-
ipal scale. 
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growing season, the beginning month of sown had a great influence on 
the CY. 

The spatial distributions of the growing seasons SDCI in the WRB 
during the period 2000–2016 were shown in Fig. 12. It can be seen that 
droughts events occurred in most parts of the basin before 2002, and the 
severity of the drought reduced after 2003. A severe drought occurred in 
the northern part of the basin until 2008, after which it showed weak-
ening and a shift from the northern to the southern part of the basin. 
Most areas of the basin experienced drought events in 2016. 

3.3.3. Utility of SDCI in drought disaster monitoring 
To better demonstrate the utility of the SDCI to assess agricultural 

drought in the WRB, the SDCI was also analyzed in comparison with the 
drought area, disaster area, and crop failure area. Areas where crop yield 
have been reduced by more than 10%, 30%, 80% due to drought are 
defined as drought area, disaster area, and crop failure area, respec-
tively. The year of 2003 with extremely high precipitation was excluded 
from this analysis. 

The drought area and SDCI values of Gansu Province and Shaanxi 
Province were compared and analyzed, the results were shown in Fig. 13 
(a). Limited by data availability, R2 between the SDCI and the drought 
area was 0.16, which did not show a good agreement, whereas the 
trends were consistent in some years. For example, the SDCI value first 
increased and then decreased from 2011 to 2014, while the CY value 
first decreased and then increased. In general, the SDCI values were less 
correlated with the drought area, and in turn the R2 between SDCI 
values and the disaster area were selected for the following analysis. 

The R2 between the SDCI and the drought area at municipal scale of 
Gansu Province and Shaanxi Province in the WRB during the period 
2000–2016 were presented in Fig. 13(b). The highest correlation coef-
ficient is contributed by Qingyang (0.71), followed by Yan’an (0.41). 
Except for Xi’an (0.08), Xianyang (0.07), Weinan (0.06), Baoji (0.04) in 
the south and Yulin (0.1) in the north of the WRB, the R2 of other regions 
were generally between 0.2 and 0.4. The results proved that the SDCI 
performed well in monitoring agricultural drought conditions in the 
western and central regions of the basin. 

Comparative analysis of the disaster area and the SDCI values in 
Gansu Province and the results were shown in Fig. 13(c). The R2 be-
tween the SDCI and areas affected was 0.35. From 2009–2016, the trend 
of changes in SDCI values and the disaster area remained largely 
consistent. The results showed that the SDCI values could well reflect the 
disaster area of the basin. 

The R2 between the SDCI values and the disaster area by each region 
in Gansu Province were shown in Fig. 13(d). It can be seen that the 
highest R2 was produced by Qingyang (0.79), followed by Pingliang 

(0.44), Tianshui (0.41) and Dingxi (0.32). The drylands of Qingyang, 
Tianshui, Pingliang, and Dingxi accounted for 20.48%, 11.6%, 11.2%, 
and 8.86% of the total area of each region, respectively, which indicated 
that the SDCI index could well reflect the disaster area. 

The average of SDCI across Shaanxi Province was calculated and 
then compared with the crop failure area from 2000 to 2016, which was 
shown in Fig. 13(e). A linear correlation between crop failure areas and 
the SDCI values was detected with a R2 of 0.06. It can be seen that crop 
failure area reached a maximum of 10.93 × 105 hectares in 2010. Ac-
cording to news reports, in the winter of 2009 and early 2010, a drought 
occurred in Weinan of Shaanxi Province, with 70 consecutive days of no 
precipitation, and relative soil humidity in most fields fell below 50%, 
which was extremely harmful to summer crop growth. Therefore, the 
value of crop failure area in 2010 relatively higher was due to summer 
drought suffered by Weinan, rather than autumn drought. 

Comparative analysis of crop failure areas and the SDCI values in 
Shaanxi Province and the results were shown in Fig. 13(f). Although 
Weinan produced the highest R2 between crop failure area and the SDCI 
value (R2 =0.39), the crop failure area was heavily influenced by the 
summer drought. In addition, the second highest R2 was 0.28 from 
Tongchuan. Therefore, an analysis comparing the SDCI index with the 
drought area, disaster area and crop failure area showed that the SDCI 
can provide a good response not only to crop yield but also to the extent 
of agricultural disasters. 

4. Discussion 

4.1. Determination of weights for variables in drought index 

The determination of the weight for each variable in drought index is 
very important for the accuracy of drought monitoring (Guo et al., 
2019). Zhang and Jia (2013) proposed the Microwave Integrated 
Drought Index (MIDI), which is combined of PCI, SMCI and TCI, the 
weight is determined based on experimental weights. Huang et al. 
(2015) built an Integrated Drought Index combined runoff, soil moisture 
and precipitation using entropy method in the Yellow River Basin. An 
integrated drought condition index (IDCI) was developed by integrating 
SPEI-3, SMCI, and VCI by principal component analysis to determine the 
weights in Inner Mongolia China (Shen et al., 2019). In this study, four 
different methods were used to determine the weight, and the weight 
determined by comparison with crop yield not only makes up for the 
limitations of a single method, but also better reflects the agricultural 
drought rather than meteorological drought. 

4.2. Suitability of the SDCI for indicating agricultural drought 

The SDCI was based on precipitation, temperature, and vegetation 
data, including the impact of temperature changing rate, a lag time of 
agricultural drought responding to meteorological drought (3 months), 
comprehensive information regarding vegetation growth (Cao et al., 
2022), which is suitable for identification and monitoring of agricultural 
drought. 

The WRB is characterized as decreasing precipitation and increasing 
average air temperature at monthly scale (Huang et al., 2016). The SDCI 
value showed a small inflection point in the year of 2007, which was 
consistent with the change of temperature, while precipitation did not 
change significantly, indicating that the impact of temperature on SDCI 
was greater than precipitation. The finding is consistent with previous 
studies confirming that the influence of temperature on vegetation was 
greater than precipitation (Liu and Menzel, 2016). Furthermore, the 
growing season of corn is from June to September, which is consistent 
with the conclusion proposed by Dai et al. (2022) that PET and tem-
perature are main influencing factor of drought propagation in summer. 

The SDCI value showed in a "W" shape from 2003 to 2010 and it 
demonstrated that the WRB presented a transition from wet to dry, and 
then from dry to wet, which is consistent with the results of MIDI based 

Fig. 14. The influence of agricultural modernization affecting agricultural 
drought in Shaanxi Province. 
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on Precipitation Anomaly Percentage, Runoff Anomaly Percentage, 
Standardized Precipitation Index with 6-month aggregation time step 
and Modified Palmer Drought Severity Index (Chang et al., 2016). The 
frequency of droughts was generally greater in the north than that in the 
south, and higher in the west than that in the east based on the SDCI, 
which is consistent with the finding of Yang et al. (2018) based on a 
nonlinear multi-variate drought index (NMDI). 

4.3. The influence of agricultural modernization affecting agricultural 
drought 

Agricultural modernization can effectively alleviate the impact of 
drought on people’s life, it is essential to consider agricultural 
modernization factors for assessing the agricultural drought (Qin et al., 
2015; Yang et al., 2018). To reduce the impact of agricultural drought, 
improving breeding, apply chemical fertilizers, increase the use of ma-
chinery and supplement farmland irrigation can be implemented in 
agricultural production (Wu et al., 2020). In order to better show the 
impact of agricultural modernization, Total Agricultural Machinery 
Power, Consumption of Chemical Fertilizers and yield per hectare of 
Shaanxi Province during the period 2000–2016 were shown in Fig. 14. 

As observed in Fig. 14, the value of Total Agricultural Machinery 
Power firstly increased and then began to decrease at the year of 2015. 
The Total Agricultural Machinery Power is divided into three stages: 
"fluctuating upward (2003–2009) - stable forward (2010–2014) - 
beginning to decline (after 2015)" (Yang et al., 2020). During the 
Eleventh Five-Year Plan and the Twelfth Five-Year Plan, government 
vigorously promoted rural social and economic construction, raised the 
overall agricultural production capacity, and accelerated the process of 
agricultural modernization. The total power of agricultural machinery 
only declined in 2016, mainly because the insured amount of small 
agricultural machinery decreased (i.e. small tractors, small tractors 
towing farm machinery) according to the statistics data from Nation 
Bureau of Statistics. 

The temporal variation of Consumption of Chemical Fertilizers 
showed firstly upward and then downward trend and the turning point 
at the year of 2013. In 2012, The People’s Government of Shaanxi 
Province issued a three-year action to prevent and control water pollu-
tion in the WRB to reduce unreasonable fertilization and agricultural 
non-point source pollution (Shaanxi Provincial People’s Government, 
2012). Furthermore, The People’s Government of Shaanxi Province is-
sued a notice on a three-year action plan (2015–2017) to consolidate 
and improve the prevention and control of water pollution in the WRB 
(Shaanxi Provincial People’s Government, 2015). It is expected to 
reduce agricultural non-point source pollution and other problems in the 
basin. 

The yield per hectare displayed an upward trend of fluctuation. In 
2004, the value increased greatly because of the change of corn planting 
varieties in Guanzhong Plain (Lei et al., 2012). Before 2004, the corn 
planted in the west of Guanzhong Plain was a single hybrid with high 
quality and high yield. At the year of 2004, the single hybrids with high 
yield and multi resistance was planted. The value in the year of 2007 was 
lower maybe due to the rapid reduction of planting area. 

Therefore, it can be reasonably concluded that the variations of 
agricultural drought were caused by both climate change and human 
activities (Huang et al., 2015). In the case of the SDCI combining three 
factors, the impact of human activities may account for a certain pro-
portion (Zhang et al., 2019). The impact of human activities and climate 
change on agricultural drought can be further considered separately in 
the future. 

5. Conclusions 

In this study, the SDCI was used by determining variable weights 
based on three remote sensing components (PCI, VCI, and TCI) to assess 
the agricultural drought in the Wei River basin of China from 2000 to 

2016. The performance of SDCI was evaluated based on crop yield 
compared with four kinds of weights determination methods. And then, 
drought area, disaster area and crop failure area were used to validate 
the results of the agricultural drought assessment. The main conclusions 
are summarized as follows: 

A comparison of precipitation from TRMM3B43 and meteorological 
gauging stations showed that the TRMM3B43 could accurately charac-
terize the precipitation across the WRB at annual and monthly scales, 
whereas the precipitation was underestimated. Based on the 
TRMM3B43 dataset, the maximum precipitation reached 767.34 mm in 
2003 and the minimum reached 385.32 mm in 2016. The precipitation 
in the south of the WRB was greater than that in the north, while that in 
the east was greater than the west. 

The arid area of the WRB shifted from the north to the south based on 
the PCI analysis, and the arid area showed a decreasing trend after 2008. 
The drought frequency and arid area both showed a decreasing trend 
indicated by the VCI, and the arid area similarly shifted from the north to 
the south. The drought frequency showed a downward trend at the 
seasonal scale calculated by the TCI. 

The SDCI correlates well with crop yield based on FCE with the R2 of 
0.45. The temporal variation of the SDCI value showed a "W" fluctuation 
from 2003 to 2010. Comparing with the drought area, disaster area, and 
crop failure area, it indicated that the SDCI provides a good assessment 
of the severity of agricultural drought in the Wei River basin of China. 

In conclusion, the SDCI is applicable to the evaluation of agricultural 
drought in the Wei River Basin of China and provides strong support for 
agricultural disaster prevention, disaster risk reduction and disaster loss 
reduction. 
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